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Abstract 4 

Nowadays, the topic of restorative experience in built environments has attracted more attention 5 

because of the increasing stress levels in modern society. Researchers have sought to identify the 6 

architectural features that influence a person’s perceived restorative experience to achieve 7 

human-centered architectural designs. However, the relevant design knowledge is 8 

unsystematically scattered, making it difficult for designers to interpret information and make 9 

informed decisions in practice. This paper explores the feasibility of machine learning in 10 

capturing the restorative quality of design alternatives, thereby providing decision support for 11 

proactive architectural design analysis. To deal with feature selection and the uncertainty 12 

associated with affective modeling, a framework is introduced that integrates design of 13 

experiments and machine learning methods. The human restorative experience is assessed within 14 

non-immersive VR environments using self-reported psychometric scales. Consequently, 15 

general regression neural network is revealed as superior to other machine learning methods in 16 

forecasting the restorative experience. 17 
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1 Introduction 22 

Currently intrinsic to our daily lives, stress has been identified as a critical health issue that 23 

impacts multiple spheres of our society. For example, it entails expressive costs for healthcare 24 

systems, thus significantly affecting the economy [1]. The socio-urban context of extended 25 

periods of time spent indoors and increased urban densification has led researchers to investigate 26 

the expressive impacts of built environments on our mental well-being and to explore how design 27 

can help mitigate urban stress [2]. Previous studies have found that poorly designed buildings 28 

can negatively impact a person’s psychological state by causing stress, anxiety, depression, and 29 

even violent behavior [3–5]. Greater focus has been placed on the affective experience elicited 30 

by architectural design attributes within the domain of human-centered architectural design. 31 

Specifically, the restorative potential of built environments, i.e., the capability to reduce mental 32 

fatigue, improve productivity, and relieve stress, has attracted considerable interest in recent 33 

years [6]. There is widespread agreement that particular design attributes of built environments 34 

can influence our mental resilience or foster restorative experiences [7,8]. However, the relevant 35 

knowledge to support experience-focused architectural design is scattered across several 36 

disciplines, such as architecture, psychology, and sociology. In addition, the information 37 

available in the early design stages is often vague, incomplete, and inconsistent [9,10]. Moreover, 38 

analytical models and tools to facilitate the decision-making process in the early stages of the 39 

design of built environments focused on emotional wellness are still scarce. Under this 40 

circumstance, the designer is compelled to judge vaguely and subjectively the experience-related 41 

quality of the design alternatives. Therefore, how to reduce the uncertainty and subjective bias 42 

of human assessment while increasing efficiency in identifying the optimal design alternative 43 

regarding the quality of experience criteria has been an area of great interest among researchers.  44 

Among researchers in design domains, there is a common belief that measuring the user 45 

experience of a product is the foremost step in improving such experience [9]. If the complex 46 

nonlinear relationship between design attributes and quality of experience can be established 47 

using mathematical methods, then it is possible to identify the design alternative with the highest 48 

quality of affective experience while eliminating the influence of subjective assessment [9]. 49 

Specifically, if we could construct prediction models that can be applied to forecast restorative 50 

experience values for each design alternative, the alternatives could be ranked by their restorative 51 

potential and thus the designer could detect faults, conduct further improvements, and make the 52 

appropriate decision on the design alternative, resulting in a more objective and efficient 53 

evaluation and development process in the early design stages.  54 
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In the field of architectural design, attempts to use machine learning to predict building 55 

performance in aspects such as environmental comfort have been made along with the 56 

development of information and communication technology. It is believed that the convergence 57 

between design and machine learning can address multifactor problems by finding connections 58 

between variables (i.e., input, internal, and output variables) without explicit knowledge on the 59 

physical behavior of the system [11,12]. Therefore, to evaluate the restorative quality of design 60 

alternatives in support of the decision-making process for the design of built environments 61 

focused on emotional wellness, this research aimed to develop machine learning models to 62 

predict individual restorative experiences using design attributes. Evidently, success in obtaining 63 

a reliable machine learning model depends heavily on the choice of input variables and the 64 

available dataset [13]. The restorative experience addressed in this study can only be measured 65 

with people’s feedback; conducting such experiments on a large scale is usually time-consuming 66 

and expensive in terms of the massive effort required for participant recruitment and data 67 

collection [14]. An optimization of data collection for training machine learning models is 68 

necessary to maintain the quality of the dataset and eliminate the number of experiments 69 

conducted for data generation. Though several studies have associated the effect of design 70 

attributes on restorative quality of built environment, few discussions on the interaction effect of 71 

design attributes (i.e., the effect of one independent variable on an outcome depends on the state 72 

of another independent variable) are present in the literature. What’s more, earlier studies have 73 

demonstrated different prediction performances among various machine learning models [15–74 

19]. These performance differences emphasize the impact of the problem context and provide a 75 

strong reason to test several techniques for developing machine learning models.  76 

In this regard, this study develops an integrated framework using non-immersive virtual reality 77 

(VR) and design of experiment (DOE) to leverage machine learning techniques in predicting the 78 

restorative quality of the built environment. The proposed method is intended to optimize the 79 

data collection process and address the complexity and uncertainty in modeling the human 80 

affective experience. The predictive performance of multiple machine learning models is 81 

compared for further prediction model selection to support the decision-making in human-82 

centered architectural design. This approach could greatly help designers and decision makers 83 

improve the efficiency of design, selection, and successive iteration processes by using a genetic 84 

algorithm that employs specialized knowledge [20]. In addition, this study sought to identify the 85 

interaction effect of design attributes on the perceived restorative experience in the built 86 

environment, minimizing bias in estimating model parameters [21].  87 
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While a great number of studies related to restorative design have been conducted in the area of 88 

institutional construction [22–24], there have been few empirical investigations into residential 89 

design, despite the fact that emotional support and relaxation are major functions of the home 90 

environment [25]. As such, the focus of the present study is on residential buildings. Meanwhile, 91 

a generic kitchen model is used as a pilot study in our research since its essential functional 92 

elements (e.g., storage unit, stove, and oven) are generally the same among different households 93 

regardless of occupant differences in cultural background or personal preference. Thus, further 94 

investigation is needed on the affective needs for other building types. In addition, although this 95 

study aimed to quantify and represent the restorative experience of built environments using a 96 

single value, it cannot guarantee the superiority of a design. The quantitative value obtained by 97 

a predictive model is intended to be an indicator with the potential to evaluate the relative strength 98 

of a design alternative.  99 

The remainder of the present paper is organized as follows. Firstly, the literature pertaining to 100 

qualitative and quantitative research on affective design and machine learning methods for 101 

affective experience modeling to clarify the point of departure. Secondly, the research 102 

methodology and scope are proposed and described in Section 3. A detailed discussion on the 103 

non-immersive VR-DOE-based method for data collection is illustrated in Section 4. Section 5 104 

presents the data analysis and machine learning models for restorative experience modeling. 105 

Section 6 discusses the experimental findings and the predictive modeling results. Finally, 106 

Section 7 concludes by highlighting the applicability and limitations of these research findings. 107 

2 Literature Review 108 

2.1 Affective Design in Built Environment  109 

Affective design usually focuses on the emotional and mental communication between the user 110 

and the products [26]. For decades, efforts have been made to understand the correlation between 111 

built environments and corresponding human affective experience and utilize such correlation as 112 

a foundation for human-centered building improvement in architectural domains [27,28]. 113 

According to Vischer’s environmental comfort model (see Figure 1), psychological comfort is 114 

the highest level in the hierarchy for achieving occupant satisfaction, and it refers to a sense of 115 

belonging, ownership, and control over an environment in which stress also plays a critical role 116 

[29,30].  117 
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  118 

Figure 1. Habitability pyramid (source: Vischer [30]) 119 

There is consensus among scholars that specific characteristics of architectural environments 120 

could help people in reducing anxiety and recovering from cognitive fatigue and stress, thus 121 

increasing the overall satisfaction level attributable to built environments. Previous studies 122 

showed that design attributes, such as interior colors, views (through windows), lighting, and 123 

layout of the room, can serve as significant predictors in assessing the satisfaction level in 124 

healthcare facilities [22,23,31–33]. Various design elements in birthing centers, such as shapes 125 

and angles of walls, ceilings, and fixtures, were also found to be associated with women’s 126 

affective experience and birth outcomes [34]. The golden ratio design principle was also found 127 

to affect a person’s emotional response in an eye-tracking-based experiment [35]. The above-128 

mentioned findings, equally, provide concrete evidence for designers optimizing affective design. 129 

For instance, decorative fountains have been increasingly used in healthcare facilities, as they 130 

can serve as positive distractions that reduce patients’ stress levels [36]. Many hospital designs 131 

integrate gardens or modify the traditional waiting area in terms of the general layout, color 132 

scheme, or furniture in order to improve the mood, the physiological state, and the overall 133 

occupant satisfaction level. 134 

Even though the qualitative evidence can provide designers with referable case studies and 135 

additional information, it is imperative that the designers have extensive experience and domain 136 

knowledge for interpreting the research findings and integrating credible research evidence in 137 

support of implementing relevant approaches in the design process. In this regard, many scholars 138 

have been attempting to quantitatively measure the effect of architectural design attributes on 139 

human experience. Ergan et al. conducted a crowdsourcing-based experiment to examine 140 

occupants’ emotional reactions to various design attributes, such as window design, ceiling 141 

‘Value’ added through process

‘Value’ calculated through 
measurement

‘Value’ based on necessity

Habitability threshold

Discomfort

Psychological comfort

Functional comfort

Physical comfort

Occupant satisfaction and wellbeing
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height, color, and space layout; in the experiment, the participants were asked to select their 142 

preferred space in a pair of bipolar scales and rate the preferred space with a semantic value [37]. 143 

To measure the human experience in a more objective manner, Ergan et al. also 144 

incorporated body area sensor networks (i.e., EEG, GSR, and PPG) to evaluate people’s 145 

experience related to stress and anxiety under predefined different design scenarios [38]. 146 

Likewise, Martinez-Soto et al. used eye-tracking data to investigate people’s reaction toward 147 

environment with different restorative potential. Gao and Zhang adopted the measure of physical 148 

measurement (i.e., skin conductance) and psychological scale to identify the patient’s experience 149 

toward design characteristics.  150 

Overall, these studies have clearly indicated the quantitative relationship between architectural 151 

design attribute and human experience. Nevertheless, compared to other building design 152 

frameworks such as LEED and Living Building Challenge (LBC), affective design still lacks 153 

clear analytical models and tools for practical application in current practice. Many experiments 154 

in the context of affective design were usually conducted through a one-factor-at-a-time (OFAT) 155 

method-based experiment design or by simultaneously altering multiple design attributes. This 156 

poses a challenge in interpreting the independent or interactive effects of the variable (i.e., design 157 

attribute) of primary interest. Thus, in this study, a machine learning method trained by data 158 

collected using fractional factorial experiment design is used to model the relationship between 159 

restorative experience and design attributes to predict the restorative quality of design 160 

alternatives in support of the early design process.  161 

2.2 Prediction Models for Affective Design  162 

Models are frequently referred to as efficient media for synthesizing and communicating 163 

knowledge during the design process. A model could be regarded as an abstraction used to 164 

explain concepts and their relationships, which are too complex to be otherwise illustrated; for 165 

example, the affective experience of architectural designs in this case [39]. 166 

In design domains, numerous attempts have been made to model the relationship between design 167 

attributes and the user’s affective experience using machine learning methods [40]. These models 168 

can be generally categorized as multiple linear regression, artificial neural networks (ANNs), 169 

support vector machines (SVMs), and fuzzy inference systems (FISs) [19]. Specifically, multiple 170 

linear regression is widely used in the domain of affective modeling because of its easy 171 

implementation and interpretation [41]. Lanzotti and Tarantino applied logistic regression (i.e., 172 

a variant of linear regression) to predict users’ perceived quality toward the interior design of 173 

trains [41]. Park et al. utilized linear regression models to model the user affective experience of 174 

mobile phones, which showed satisfactory performance in terms of goodness of fit [42]. However, 175 



 7 

this modeling was performed under the assumption that design attributes are linear with respect 176 

to a user’s affective experience [19]. Thus, the uncertainty and bias in questionnaire data are 177 

typically neglected in the regression model. Compared with linear regressions, ANN models have 178 

been shown to be more capable of handling the nonlinear nature of human perception phenomena. 179 

Many neural networks have been adopted to depict the nonlinear relationship between user 180 

affective experience and product features for affective designs such as designs for motorcycle 181 

helmets, paddle tennis rackets, mobile phones, and office chairs [19,43,44]. For instance, a radial 182 

basis function was introduced by Chen et al. [45] to evaluate the cultural influence on affective 183 

experience. This function attempts to model data uncertainty by simulating the bell-shaped 184 

distribution in fuzzy-based systems. Similarly, Ling et al. [18] incorporated a wavelet function-185 

based ANN to perform an affective design for mobile phones. Although ANNs can capture the 186 

nonlinearity between affective experience and the related design attributes, the unexplained 187 

behavior of the network, labeled the “black-box,” reduces trust in the solutions [46]. In this regard, 188 

support vector regression (SVR), an extension of the SVM, is suggested as an alternative method 189 

for mapping the nonlinearity of feature space. The SVM is a popular machine learning tool, first 190 

identified by Vapnik, who observed its excellent performance in solving sparse and noisy data 191 

that usually exist in real-world problems such as pattern recognition [43]. In the design domain, 192 

SVR has been successfully adopted in predicting user affective responses based on product 193 

attributes [44,45]. Yang and Shieh [44] employed SVR to develop a model for predicting 194 

consumer affective responses to product forms. Fan et al. [45] proposed an SVR approach to 195 

model the relationship between design attributes and customers’ affective responses. 196 

Interestingly, Chan et al. [19] reviewed the literature that reports on the use of ANNs and SVR 197 

for affective modeling and found that SVR models perform better overall compared with neural 198 

network models. Moreover, taking advantage of its interpretability with which the developed 199 

model can be interpreted, verified, and improved by human experts, FIS, also known as a fuzzy 200 

rule-based model, was introduced by Lai et al. [46] in mobile phone design to handle the 201 

nonlinearity and fuzziness of human affective experience [50]. Similarly, this fuzzy rule-based 202 

modeling approach was also adopted in designing cars and office chairs [20,47,48].  203 

In summary, this section provides a brief discussion of the general machine learning methods 204 

used to determine the relationship between human affective experience and design attributes. 205 

Even though many studies address the customer’s affective needs for product designs, the 206 

relevant research in built environment design remains limited. Therefore, this study aims to 207 

assess the feasibility of using typical machine learning models (i.e., linear regression, ANN, 208 

SVM, and FIS) in predicting human affective experience of built environment.  209 
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3 Research Methodology 210 

The primary objective of this study is to develop data-driven prediction models to evaluate 211 

restorative quality of design alternatives in support of the decision-making process for human-212 

centered architectural design. To achieve this goal, a careful feature selection and data collection 213 

is necessary to deliver meaningful predictive modeling results. Accordingly, the present study 214 

proposes an integrated VR-DOE-based machine learning method to predict the restorative 215 

experience of the built environment. The data collection optimization was performed using the 216 

DOE method so that the input variable and data were properly selected to provide the most 217 

unbiased and precise results commensurate with the desired expenditure of time and effort. The 218 

use of DOE method also enables one to identify the output variation caused by the effect of the 219 

interaction among factors, providing researchers with a better understanding of the relationship 220 

between the restorative quality and the design attributes of the built environment, as well 221 

as explains more about the variability in the dependent variable [21]. Here, fractional factorial 222 

design was the DOE method used for experiment design, as it makes it possible to obtain a 223 

reasonable amount of training data through a fewer experiments number and screen the effect of 224 

each factor. Meanwhile, linear regression and three other machine learning modeling methods 225 

(artificial neural network, support vector regression, and fuzzy inference system) are employed 226 

to develop models to predict the restorative quality of a space, given its particular design 227 

attributes, and a comparative analysis of the performance of each predictive model is then 228 

conducted. In addition, this study incorporates relevant psychometric scales to scientifically 229 

measure the human-perceived restorativeness in virtual reality simulated environments, in order 230 

to maximize the utility of predictive models. 231 

The steps of the research methodology are presented in Figure 2. The first and foremost step is 232 

to perform a comprehensive review of the available literature on architecture and psychology to 233 

identify the architectural design attributes that potentially influence the restorative- or stress-234 

related human experiences (see section 4.1). The second step is to design and perform 235 

experiments, to investigate human responses related to restorative experiences under various 236 

combinations of design attributes, and collect data. A two-level fractional factorial design is 237 

employed to generate various combinations of design attributes for the experiments (see section 238 

4.2), wherein the setting of each experimental run is generated in the form of a 360-degree 239 

panorama (i.e., VR image-based models) using Autodesk Revit®. This allows a careful yet 240 

effortless evaluation of the design model using any mobile or VR device (see section 4.3). These 241 

VR image-based design models are then used in the experiment to assess the restorativeness of 242 
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the built environment. Additionally, a questionnaire is developed using psychometric scales (i.e., 243 

perceived restorativeness scale and restoration-supportive built environment scale), based on the 244 

previously reported studies on perceived restorativeness (see section 4.4) [49–51]. Once the 245 

questionnaire and the VR panorama-based models for each experimental run are prepared and 246 

examined through a pilot test, the online experiment is launched through emails and social media 247 

platforms to collect data (see section 4.5). The collected data are subsequently preprocessed, and 248 

the corresponding results are analyzed for statistical significance (see section 5.1 and 5.2). Once 249 

the input features are selected, multiple machine learning models are used to predict the 250 

restorative qualities of the built environment using design attributes (see section 5.3). Finally, a 251 

regression performance analysis of the developed predictive models is performed to identify the 252 

most appropriate models that can forecast the overall restorative quality of a built environment 253 

with several design alternatives.  254 

 255 
Figure 2 Research methodology 256 

Literature Review

Architecture

Psychology

Identification of architectural 
design factors that influence 

human experience

Experiments Design and Data Collection

Fractional 
factorial design

VR model 
development

Questionnaire
design

Pilot test and 
Data collection

Data 
preprocessing

Factorial 
analysis

Predictive modeling by 
machine learning methods

Data analysis and Predictive Modeling



 10 

4 Experiments Design and Data Collection for Human Restorative Experience  257 

4.1 Architectural Design Attributes 258 

Many architectural design attributes have been found to be related to human-perceived 259 

restorativeness in the built environment [22,37]. It is generally believed that design attributes that 260 

support fascination, curiosity, or involuntary attention can be credited for enhancing recovery 261 

from mental fatigue [34].  Table 1 lists the eight architectural design attributes commonly related 262 

in the literature to restorativeness- and stress-related experiences.  263 

Table 1. Architectural design attributes associated with human restorativeness- and stress-related 264 

experience in the literature  265 

Architectural design attributes References 

Exposure to nature and indoor plant [52–57] 

Presence/absence, dimensions, shapes of windows [23,58–63] 

Openness/Spaciousness of spaces [64–68] 

Lighting  [69–72] 

Finish color scheme [73–80] 

Visual complexity [1,81–83] 

Space layout [33,37,84–87] 

Spatial alignment [37,88,89] 

Window Designs and Access to Natural Elements 266 

Access to natural elements and the presence of windows are the components most frequently 267 

discussed in the study of human restorative experience in built environments. Research suggests 268 

that increased exposure to bright light effectively reduces depression and improves the mood of 269 

occupant-users, even for people hospitalized with severe depression [55–57]. In this context, 270 

windows in built environment settings have been of great interest among scholars. Pati et al. 271 

indicated that the presence of windows has a positive impact on stress reduction, while Nejati 272 

supported that a window enhances the perceived quality of the overall experience of a physical 273 

environment [23,61]. Moreover, Lowenhaupt Collins pointed out that the perceived quality of a 274 

window’s view is intimately related to the window’s dimension and shape [62]. Generally, higher 275 

occupant satisfaction and visual comfort are associated with higher window-to-wall ratio (i.e., 276 

30%) than with a lower window-to-wall ratio (i.e., 15%), as showed in Taehoona et al.[63]. 277 
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Spaciousness of Spaces 278 

The perceived spaciousness of an interior space has been correlated with a reduction in the feeling 279 

of stress and anxiety. Previous studies indicate that ceiling height, aspect ratio, and square 280 

footage are the main attributes that determine how people experience a space. That is, the larger 281 

the horizontal areas and the higher the ceiling height, the more spaciousness people perceive and, 282 

ultimately, the more comfortable they feel in the environment [64,66–68]. 283 

Lighting 284 

Lighting has been considered a potential source of fascination to restore attention and promote 285 

the use of unintentional attention by augmenting one’s perception of the environment [69]. Both 286 

the illuminance level and the correlated color temperature have been associated with attention 287 

restoration through the perception of brightness and the quality of color environments [72]. 288 

According to Manav, the color temperature of 4000k was preferred to 2700K for the perception 289 

of comfort and spaciousness, while an illumination level of 2000 lx was preferred to 500 lx for 290 

impressions of comfort, spaciousness, brightness perception, and color saturation [72]. 291 

Color Scheme 292 

The choice of colors in architectural design plays a significant role in the process of attention 293 

restoration for individuals, as it is associated with one’s feeling of serenity or agitation, which in 294 

turn impacts one’s stress level [77–79]. Generally, warm color schemes involving shades of 295 

orange, yellow, and brown help people increase their awareness, whereas cold color schemes, 296 

including shades of green, blue, and grey, help people focus on visual and mental tasks [80].  297 

Visual Complexity 298 

Visual complexity is associated with visual attention and comfort with regard to the assumption 299 

that design attributes that enable one to capture involuntary attention can facilitate mentally 300 

restorative processes. The amount of detail in visual stimuli affects a person’s ability to be 301 

effortlessly attentive [83]. In studies on visual perception [1], people have shown a preference 302 

for designs with greater visual complexity.  303 

Space Layout 304 

The layout of space (i.e., symmetry of objects in the interior environment) has also been 305 

identified as an influential design attribute, altering environmental perceptions [37]. A 306 

symmetrical space layout increases the perceived quality of the environment and affects occupant 307 
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satisfaction [33]. Enquist and Arak found that people appreciate greater symmetry and that 308 

symmetrical patterns hold an almost universal appeal for humans [86,87].  309 

Spatial Alignment 310 

Spatial alignment allows the brain to identify similarities and differences among elements, which 311 

effectively draws visual attention to one important region by enhancing that region’s visual 312 

saliency [89]. Based on their human experience and a built environment-related experiment, 313 

Ergan et al. concluded that people associate the experience of pleasure and aesthetics with the 314 

presence of spatial alignment and show greater preference for aligned spaces [37].  315 

 316 

Based on the literature review and given the context of this study, the following 10 design 317 

attributes that are typical of architectural design elements in residential environments were 318 

selected and investigated in this study: 1) room size, 2) rectangularity of room shape, 3) ceiling 319 

height, 4) light temperature, 5) visual complexity, 6) room layout symmetry, 7) window-to-wall 320 

ratio, 8) window aspect ratio, 9) finish color scheme, and 10) space alignment.  321 

4.2 Experiments Design 322 

Statistical experimental design is frequently performed in experiment planning, as it allows 323 

appropriate data to be collected and analyzed in order to deliver valid and objective conclusions. 324 

The present study endeavored to establish a ‘balanced’ dataset that comprehensively represents 325 

all sample populations for predictive model development so that the model can characterize the 326 

relationship based on the data rather than merely ‘memorizing’ the training data of over- or 327 

under-represented populations [90]. To obtain uniformly distributed data over the investigated 328 

attributes and reduce the total number of experiments (design alternatives) required, the 329 

fractional factorial design approach was employed in this study to develop a balanced dataset. 330 

Specifically, two levels were assigned to each design attribute, as presented in Table 2. It should 331 

be noted that the space-A and space-B in the table are only meant to illustrate the different values 332 

of design attributes. The experiment aimed to gather response data from people regarding the 333 

extent of their perceived restorativeness in a setting that combines various interior design 334 

attributes. Compared to randomized controlled trial design, factorial design allows the researcher 335 

to comprehensively evaluate the influence of multiple attributes and detect interaction effects 336 

among these attributes [91]. However, for a study with many independent variables, full factorial 337 

design can lead to an excessive number of experimental runs and data, i.e., in this study, 1,024 338 

experimental runs are required for full factorial design. In this context, fractional factorial design 339 

is considered a cost-efficient experiment design because it requires fewer experimental runs 340 
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while maintaining the same level of statistical power [92]. In this study, the restorative quality 341 

of each design alternative (experimental run) was evaluated by the participants, and a greater 342 

number of experimental runs would significantly affect the respondent’s cognitive burden and 343 

the relative costs associated with data collection. Thus, in this study, a 1/25 factorial experiment 344 

design was conducted to examine the effect of the 10 aforementioned architectural design 345 

attributes at a two-level resulting in 32 experimental runs, which supports the selection of input 346 

features for further predictive modeling [93]. Table 3 presents the 32 experimental runs (design 347 

alternatives) of this study, as generated by the Minitab statistics software. Each run represents a 348 

combinatorial design alternative modeled later using Revit and evaluated in the later experiment.  349 

 350 

  351 
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Table 2. List of attributes and their levels with two unlabeled design alternatives in the 352 

experiment 353 

Design attributes Space-A Space-B 

Room size 
 

110 ft2 210 ft2 

Rectangularity 

of room shape 
 

Square 
 

 
Narrow Rectangle  

Ceiling height Slightly low 
 

Slightly high 

Light 

temperature  
Warm-white 

 
Daylight 

Visual 

complexity  
Moderately low 

 
Moderately high 

Room layout 

symmetry  
Asymmetric 

 
Symmetric 

Window-to-wall 

ratio 
Slightly low Moderately high 

Window aspect 

ratio  
Verical 

 

 
Horizontal 
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Finish color 

scheme  
Clean-White 

 
Modern Rustic 

Spatial 

alignment  
Unaligned 

 
Aligned 

 354 

  355 



16 

Table 3. Experimental runs of design alternatives selected by fractional factorial design 356 

Run 

Attributes 

Room 
size 

Rectangularity 
of room shape 

Ceiling 
height 

Light 
temperature 

Finish 
color 

scheme 

Window 
aspect 
ratio 

Window 
to wall 
ratio 

Room 
layout 

symmetry 

Visual 
complexity 

Space 
alignment 

1 210 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 
rustic 

Horizontal Low Symmetric High Unaligned 

2 110 ft2 Square Low 
Warm-
white 

Modern 
rustic 

Vertical Low Asymmetric High Unaligned 

3 110 ft2 
Narrow 

rectangle 
High Daylight 

Modern 
rustic 

Horizontal Low Asymmetric High Aligned 

4 210 ft2 Square High 
Warm-
white 

Clean-
white 

Vertical High Asymmetric Low Unaligned 

5 110 ft2 
Narrow 

rectangle 
High 

Warm-
white 

Clean-
white 

Vertical High Asymmetric High Aligned 

6 110 ft2 
Narrow 

rectangle 
High 

Warm-
white 

Modern 
rustic 

Vertical Low Symmetric Low Unaligned 

7 210 ft2 
Narrow 

rectangle 
High 

Warm-
white 

Clean-
white 

Horizontal Low Symmetric Low Aligned 

8 110 ft2 Square High Daylight 
Clean-
white 

Vertical Low Asymmetric Low Aligned 

9 110 ft2 Square High 
Warm-
white 

Modern 
rustic 

Horizontal High Asymmetric Low Aligned 

10 110 ft2 Square Low 
Warm-
white 

Clean-
white 

Vertical High Symmetric Low Aligned 

11 110 ft2 
Narrow 

rectangle 
Low 

Warm-
white 

Modern 
rustic 

Horizontal High Symmetric High Aligned 

12 110 ft2 
Narrow 

rectangle 
Low 

Warm-
white 

Clean-
white 

Horizontal Low Asymmetric Low Unaligned 

13 110 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-
white 

Vertical Low Symmetric High Aligned 

14 110 ft2 
Narrow 

rectangle 
High Daylight 

Clean-
white 

Horizontal High Symmetric Low Unaligned 

15 210 ft2 Square High Daylight 
Modern 
rustic 

Horizontal Low Asymmetric Low Unaligned 

16 210 ft2 Square Low Daylight 
Modern 
rustic 

Vertical High Asymmetric High Aligned 

17 210 ft2 Square Low Daylight 
Clean-
white 

Vertical Low Symmetric Low Unaligned 

18 110 ft2 Square Low Daylight 
Modern 
rustic 

Horizontal Low Symmetric Low Aligned 

19 210 ft2 
Narrow 

rectangle 
High Daylight 

Modern 
rustic 

Vertical High Symmetric Low Aligned 

20 110 ft2 Square High 
Warm-
white 

Clean-
white 

Horizontal Low Symmetric High Unaligned 

21 110 ft2 
Narrow 

rectangle 
Low Daylight 

Modern 
rustic 

Vertical High Asymmetric Low Unaligned 

22 210 ft2 
Narrow 

rectangle 
High 

Warm-
white 

Modern 
rustic 

Horizontal High Asymmetric High Unaligned 
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23 210 ft2 Square Low 
Warm-
white 

Clean-
white 

Horizontal Low Asymmetric High Aligned 

24 210 ft2 Square High Daylight 
Clean-
white 

Horizontal High Symmetric High Aligned 

25 110 ft2 Square High Daylight 
Modern 
rustic 

Vertical High Symmetric High Unaligned 

26 210 ft2 
Narrow 

rectangle 
High Daylight 

Clean-
white 

Vertical Low Asymmetric High Unaligned 

27 210 ft2 Square High 
Warm-
white 

Modern 
rustic 

Vertical Low Symmetric High Aligned 

28 210 ft2 
Narrow 

rectangle 
Low Daylight 

Clean-
white 

Horizontal High Asymmetric Low Aligned 

29 210 ft2 
Narrow 

rectangle 
Low 

Warm-
white 

Modern 
rustic 

Vertical Low Asymmetric Low Aligned 

30 210 ft2 Square Low 
Warm-
white 

Modern 
rustic 

Horizontal High Symmetric Low Unaligned 

31 110 ft2 Square Low Daylight 
Clean-
white 

Horizontal High Asymmetric High Unaligned 

32 210 ft2 
Narrow 

rectangle 
Low 

Warm-
white 

Clean-
white 

Vertical High Symmetric High Unaligned 

 357 

4.3 Virtual Reality Model Generation 358 

It would be impractical to provide 32 real room settings with defined design attributes for the 359 

purpose of the experiment. Thus, following the DOE results, each experimental run (design 360 

alternative) was represented in a VR-based 360-degree panoramic model (see Figure 3). The 361 

basic geometry, structure, and design setting of the virtual environment and objects (e.g., cabinet, 362 

countertop, sink, light fixture) were configured in a building information model in Revit (2019). 363 

Autodesk Cloud Rendering was then used to render the design into high-resolution stereo 364 

panoramas that could be shared via a website URL. Participants could then use either a 365 

smartphone with cardboard VR viewer or a desktop to access the VR panorama.  366 

A number of studies have demonstrated that there is not a significant difference in terms of 367 

occupant perception between physical spaces and well-designed VR environments [63,94–97]. 368 

Moreover, using VR models rather than static images to represent design configurations allows 369 

for a continuous stream of congruent stimuli that deliver a vivid illusion of reality to the 370 

participant. This has to do with the concept of “presence,” the subjective feeling of “being in a 371 

virtual environment,” which determines the effectiveness of a VR simulation. On the other hand, 372 

to ensure adequate visual fidelity among various VR display platforms (e.g., smartphone-based 373 

VR and desktop-VR paradigms), the devices used in the experiment (VR display type and 374 

resolution configurations) were recorded. Although the interaction fidelity and immersion level 375 

provided by the two display systems used are different, their influence on emotional elicitation 376 
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may not be significant [98–103]. Meanwhile, an assumption was made in this study that a 377 

satisfactory sense of presence provided by the VR model can ensure sufficient emotional 378 

stimulation of participants, since the emotional elicitation effect is strongly associated with the 379 

feeling of presence in a VR platform [104]. Therefore, multiple questions adopted 380 

from Heydarian et al. [105] assessing the realism of the VR environment compared to the 381 

physical world were included in the questionnaire in order to verify the validity of the developed 382 

VR model. 383 

 384 

 385 
Figure 3 Screenshots of VR models for experimental runs 386 

 387 

4.4 Design of Questionnaire  388 

During the experiment, participants were expected to assess the restorative quality of a room 389 

setting and describe their relevant experience by filling out a questionnaire, which consisted of 390 

two parts: a) background questions and b) restorative experience measurement. 391 

4.4.1 Background Questions  392 

Prior to the questions measuring one’s restorative experience, the questionnaire asked for 393 

demographic information, including age, gender, and education level, and past experiences with 394 

architectural design, virtual reality models, and built environments as settings for restorative 395 

experiences. The additional background questions regarding past experiences with architectural 396 

design, virtual reality models, and built environments were intended to examine the influence of 397 

these experiences on the interpretation of results pertaining to perceived restorativeness. 398 

Moreover, the Ishihara color blindness test was added as a core module in the demographic 399 
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information portion of the questionnaire to identify and eliminate the potential influence of 400 

participants with color blindness. 401 

4.4.2 Restorative Experience Measurement 402 

To measure the human-perceived restorativeness of the built environment in a reliable and 403 

quantifiable manner [106], two self-reported restorativeness scales—the Perceived 404 

Restorativeness Scale (PRS) by Hartig et al. [49,51] and the Built Environment Restoration 405 

Support Scale (BERS) by Fischl and Garling [107]—were incorporated in this study as part of 406 

the questionnaire. Self-reported restoration experience assessment, as an explicit measure, has 407 

been widely used in studies on environmental restorativeness to quantify individual’s 408 

psychological reactions [50,106,108]. Specifically, the selected self-reported scale, PRS, is one 409 

of the most widely used measures addressing the extent to which certain environmental settings 410 

have restorative qualities, and its validity has been proven by sufficient psychometric analysis in 411 

terms of content, construct, convergent, discriminant, and criterion-related validity [50,106]. 412 

This scale has been credited for its generalizability and sensibility in identifying differences in 413 

perceived restorativeness in a given environment on the part of participants of various ages, 414 

health levels, and nationalities. However, PRS is rarely used for indoor environments. In 415 

comparison, the BERS was explicitly proposed to assess the restorative quality of the built 416 

environment but rarely examined in previous studies. Since limited attempts have been made to 417 

examine the validity of the BERS, it was included in the questionnaire only as a supplemental 418 

measure to the PRS. 419 

In the PRS measurement, perceived restorativeness is assessed using four dimensions, namely, 420 

the feelings of “being away,” “fascination,” “coherence,” and “compatibility,” based on Kaplan 421 

and Kaplan’s Attention Restoration Theory [109,110]. Given this paper’s focus, the interested 422 

reader can refer to the cited references [51,111] for a detailed description of each restorativeness 423 

dimension. The PRS measurement developed by Hartig et al. [49,51] uses either 26 or 16 items. 424 

This study adapted the 16-item method to make it more suitable for use in research contexts 425 

where the evaluated scenario comprises indoor built environments [51]. As a result, 17 seven-426 

point Likert-scale questions (see Table 4) were proposed in the questionnaire to measure the 427 

participants’ perceived restorativeness. Moreover, to measure restorative experience in a 428 

standardized, plausible, and relevant context, emotion-provoking methods that put participants 429 

under psychological stress before exposure to configured environmental settings have been 430 

commonly used in previous studies to ease the restoration effect measurement [22,112]. Thus, a 431 

scenario description adapted from Lindal and Hartig [65] was provided to participants before 432 

moving on to the restorativeness measurement for the contextual stimuli control: Imagine it is 433 
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afternoon. You are walking home from work alone. You are mentally exhausted from intense 434 

concentration at work, and you appreciate having a chance to stroll and recover. The purpose 435 

of this affective description was to specify a condition of directed attention fatigue and to 436 

emphasize for participants the range of variation in compatibility due to factors other than a 437 

change in the physical environment [65]. 438 

It is noteworthy that the developed questionnaire was reviewed by six researchers in the field of 439 

architectural design and ergonomics before being sent to prospective respondents. These 440 

researchers were asked to provide feedback on the visual noticeability of the design attributes as 441 

the visual stimulus component of the environmental settings, as well as on the validity of each 442 

questionnaire item in terms of wording, format, content, and clarity. Based on the researchers' 443 

feedback, the VR models and questionnaire were modified and finalized. 444 

Table 4. Measurement items in questionnaire 445 

Dimensions Questionnaire Items 

Perceived 

Restorativeness 

Scale (PRS) 

Being Away 
Spending time here gives me a break from my day-to-day routine. 

Being here helps me to relax my focus on getting things done. 

Fascination 

This place is fascinating. 

This place draws my attention without any effort on my part. 

My attention is drawn to many interesting features in this space. 

I want to get to know this place better. 

There is much to explore and discover in this space. 

Coherence 

There is too much going on in this space. 

This is a confusing place. 

There is a great deal of distraction in this space. 

It is chaotic in here. 

Compatibility 

This space fits my character. 

I can do things I enjoy in this space. 

Sometimes even a small space can feel like a whole world of its own. 

It can seem like it is enough room to become completely engaged in 

this space and not concern yourself with anything beyond its walls. 

It is easy to see how things are organized in this space. 

I could find ways to enjoy myself in a place like this. 
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Built Environment Restoration 

Support Scale (BERS) 

Recall one of those times when you worked hard on a project that 

required intense and prolonged effort. Remember how it felt. You 

probably reached a point where you could tell that your ability to work 

effectively had started to decline and that you needed a break. You 

needed to do something during the break to restore your ability to 

work effectively on the project. Put yourself in that mindset now, and 

then please rate your satisfaction level toward the presented design as 

a setting in which to take a break and restore your ability to work 

effectively. 

446 

4.5 Participant Recruitment and Data Collection 447 

Data collection was conducted via the Internet. Participants received an invitation letter through 448 

e-mail that contained a link to the online questionnaire. Participants were invited to complete the449 

experiment voluntarily, and could withdraw at any time. A total of 32 VR models (one for each 450 

experimental run) were assessed in this study. Figure 4 shows the procedure for a single 451 

experimental session. After the introduction and background information section, participants 452 

were given 2 min to read a paragraph of affective text (i.e., stimulus material for eliciting stressful 453 

feelings) as stated in Section 4.4.2 [22,112]. Then, a 3-min non-immersive VR experience of the 454 

configured design was provided, where the exposure duration was determined in reference to 455 

previous lab-based human affective-related experiments [38,113–116]. Afterward, participants 456 

were asked to evaluate their perceived restorativeness experience by answering the next section 457 

of the questionnaire. An access link was made available in every question so that the participant 458 

could re-visit the VR environment as needed to reduce memory load and improve the accuracy 459 

of the affective judgment. Each experimental session took approximately 13-20 minutes on 460 

average to complete. 461 

462 
Figure 4 Overview of a single experimental session 463 

Introduction &
informed consent

Ishihara color 
blindness test

Demographic 
information

Emotional stimuli

Presence of VR 
model

Restorativeness 
measure 

3 min2 min 5-10 min1 min 1 min1 min
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5 Data Analysis and Prediction  464 

Once the responses were collected through the experiments, data preprocessing and analysis were 465 

then performed to identify the meaningful input features for the development of prediction 466 

models. In this study, five machine-learning models, namely, linear regression, radial basis 467 

function neural network (RBFNN), general regression neural network (GRNN), SVR, and FIS, 468 

were developed to predict the human restorative experience toward the built environment. Their 469 

predictive performance was also compared using performance metrics for further model selection. 470 

5.1 Data Pre-Processing 471 

Data preprocessing aimed to clear responses that did not meet certain criteria, such as incomplete 472 

responses, responses that were given too quickly (“speeder” responses), inconsistent responses, 473 

and outlier responses [117,118]. Specifically, to ensure the credibility of the experimental results, 474 

four indices—(a) total response time, (b) response patterns (i.e., LongString), (c) Mahalanobis 475 

distance, and (d) Cronbach’s alpha—were calculated based on the response data, and data 476 

cleaning was performed accordingly. For example, the speeder and inattentiveness responses can 477 

be easily identified through the respondents’ response times and patterns. The response time 478 

measures the total time needed by the respondent to complete the questionnaire. A much shorter 479 

response time indicates that the respondent may be speeding through questions and paying little 480 

attention to providing an assessment. The response pattern is analyzed to identify respondents’ 481 

careless responses (for example, a respondent who consistently provides the same answer). 482 

Following the method proposed by Johnson [119], an index termed LongString was used to 483 

compute the maximum number of items with identical consecutive response on a single page 484 

[117–119]. As for the outlier responses, the Mahalanobis distance, denoted as MD in Equation 485 

1, was computed for each response for the same design alternative, measuring the multivariable 486 

distance between each response vector and the mean of the sample vector, which indicates the 487 

individual responses outside the distribution. Moreover, with respect to the internal consistency 488 

of the measures, Cronbach’s alpha (see Equation 2) was estimated to reflect the extent to which 489 

the question was inter-correlated in measuring the participants’ perceived restorative experience. 490 

In alignment with previous works, a of at least 0.7 was also used in this study to indicate adequate 491 

internal consistency of responses [120]. 492 

𝑀𝑀𝑀𝑀2 = (𝑟𝑟 − 𝑟̂𝑟)𝑇𝑇 ∙ 𝐶𝐶−1 ∙ (𝑟𝑟 − 𝑟̂𝑟)  (1) 

where 𝑟𝑟 is the vector of the response; 𝜇̂𝜇 is the vector of mean value; and C is the covariance 493 

matrix of these two variables’ vectors.  494 
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𝛼𝛼 =
𝑛𝑛

𝑛𝑛 − 1
�1 −

∑𝜎𝜎𝑖𝑖2

𝜎𝜎𝑥𝑥2
�  (2) 

where 𝑛𝑛 is the number of responses; 𝜎𝜎𝑖𝑖2 is the variance of questionnaire item i; and 𝜎𝜎𝑥𝑥2 is the total 496 

variance of the questionnaire. 497 

 498 

5.2 Factorial Analysis 499 

To detect which architectural design attributes and which interactions between attributes 500 

influence one’s perceived restorativeness to the greatest extent, an analysis of variance (ANOVA) 501 

was performed on the remaining dataset (i.e., after data pre-processing) using Minitab 18 502 

statistical software. The main effect of a design attribute was measured by the corresponding 503 

change in the output, i.e., the restorative experience associated with the change made at the level 504 

of that design attribute averaged over other design attributes. The interaction effect (i.e., two-505 

way interaction between variables A and B) is defined as the average difference between the 506 

main effect by A at the high level of B and the effect of A at a low level of B. Note that the 507 

significance of a design attribute or its effect on restorative experience is determined by its p-508 

value [121]. 509 

5.3 Predictive Modeling for Restorative Experience 510 

As reported in previous studies, prediction models developed using machine-learning methods 511 

may show different prediction performances under various problem contexts [16–20]. To explore 512 

the capability of machine-learning models in affective modeling for built environments, linear 513 

regression and three other typical machine-learning methods (ANN, SVR, and FIS) were tested 514 

to develop the prediction models for human restorative experience. These three machine learning 515 

models were adapted from a comprehensive literature review conducted by Chan et al. [19] that 516 

examined 94 research publications and summarized the machine-learning methods used to model 517 

the relationship between the affective quality of a product and its design attributes. Among the 518 

machine-learning methods discussed in the study by Chan et al., we focused on models with a 519 

lower variance capable of characterizing the relationship from a small dataset in order to mitigate 520 

the risk of overfitting (considering that it is impractical to conduct such data collection 521 

experiments on a large scale, given the associated cost and effort). As a result, three machine-522 

learning methods were selected due to their generic applicability and their ability to handle noisy 523 

and nonlinear small datasets, as proven in previous studies [19].  524 

The inputs to the machine-learning models included the selected variables identified as 525 

statistically significant based on the factorial analysis in the previous step, while the output was 526 
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the numeric measurement of the reported restorative experience. To begin, the dataset was 527 

divided into a training set and a validation set. The overall dataset was divided into training and 528 

testing sets based on the principle that the size of the dataset for machine learning should be 529 

roughly ten times the degrees of freedom in the model, which means approximately 100 sample 530 

points are needed for a 10-variable model. Although we would like to have kept as many samples 531 

as possible in the training dataset to provide more features for training, an inordinately small 532 

testing set may have resulted in unacceptably high variance in the performance assessment results. 533 

Thus, 100 responses (83%) were used for training and 20 responses (17%) for testing. Due to the 534 

limited sample sizes, k-fold cross-validation was applied to the training set to mitigate the risk 535 

of overfitting and to enhance the model fitting and generalization. The training set was initially 536 

used to identify the optimal model parameter with 5-fold cross-validation. The parameter setting 537 

achieving good performance in minimizing the averaged 5-fold cross-validation error for both 538 

the training set and the testing set was determined to be the optimal solution. Subsequently, the 539 

parameters obtained were adapted in order to train/fine-tune a model using the entire training set 540 

(i.e., 100 responses). Accordingly, the trained models were evaluated on the validation set (i.e., 541 

20 responses), and performance metrics of RMSE and R2 were used to evaluate the predictive 542 

performance of the models. All design and training of the machine-learning models was 543 

performed in MATLAB 2020b. It should be noted that the optimal parameters of each method 544 

were determined based on the best prediction performance via grid search in the parameter space 545 

after multiple trial-and-error tests. The following subsections describe the process of developing 546 

the machine-learning models.  547 

5.3.1 Linear Regression Model 548 

Linear regression model (see Equation 3) predicts the output, i.e., perceived restorativeness in 549 

the built environment, as a weighted sum of the input features. Each weight 𝜔𝜔𝑖𝑖  of the input 550 

features in the model can be determined by the least-squares method as well as maximum 551 

likelihood estimation. To maximize the precision of predictors in a model, insignificant variables 552 

were eliminated in a stepwise manner during the regression process. A threshold of 0.1 regarding 553 

the variables’ statistical significance (i.e., p-value < 0.1) was applied during the linear regression 554 

to avoid an underspecified regression model, in accordance with the limitation of the sample size 555 

and the subjective nature of self-reported surveys. All individual factors and the lower terms of 556 

interaction factors with significant effects were included in the linear model to present the model 557 

hierarchy.  558 
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𝑌𝑌 = 𝑓𝑓(𝑥𝑥) =  �𝜔𝜔𝑖𝑖𝑥𝑥
𝑛𝑛

𝑖𝑖=1

  (3) 

5.3.2 ANN Model 559 

To choose a neural network architecture, multiple factors are considered, such as a simple model 560 

architect, strong capability for nonlinear fitting, generalization for new data, and tolerance for 561 

small sample size and high noise by human subjectivity in an affective design. Inspired by 562 

previous studies and data characteristics [122–127], the radial basis function neural network 563 

(RBFNN) and the general regression neural network (GRNN) were used in this study because of 564 

their ability to achieve global optimization with strong robustness and fault tolerance [124]. At 565 

times, it should be noted, they have even demonstrated better accuracy and training speed than 566 

other neural networks with simple architecture, e.g., multilayer perceptron networks [128,129]. 567 

Figure 5 shows their respective architectures. 568 

The RBFNN is a three-layer feedforward network that uses radial basis function as its activation 569 

function. The output of this result can then be expressed as a scalar function of input vectors, as 570 

shown in Equation 4. Here, 𝜑𝜑(𝑥𝑥, 𝑥𝑥𝑐𝑐) denotes the radial basis function whose output depends on 571 

the Euclidean distance to the center 𝑥𝑥𝑐𝑐. To calculate the center of the radial, the Gaussian function 572 

(see Equation 5) was used on each hidden unit as the transfer function. The value coming out of 573 

the hidden layer (i.e., radial basic layer) is multiplied by a weight associated with the node and 574 

passed to the output layer. Then, the output layer accumulates up the weighted values and 575 

presents this sum as the network’s output. 576 

577 

578 
Figure 5 Architectures of the RBFNN and the GRNN 579 

580 

581 
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𝑌𝑌 = 𝑓𝑓(𝑥𝑥) = �𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝑥𝑥, 𝑥𝑥𝑐𝑐)
𝑚𝑚

𝑗𝑗=1

  (4) 

𝜑𝜑(𝑥𝑥, 𝑥𝑥𝑐𝑐) = exp (−
‖𝑥𝑥 − 𝑥𝑥𝑐𝑐‖2

2𝜎𝜎2
)  (5) 

where 𝑥𝑥𝑐𝑐 is the center vector; 𝑤𝑤𝑗𝑗 is the connection weight from the hidden unit to the output unit; 582 

𝜎𝜎 is the width of the Gaussian function; and ‖𝑥𝑥 − 𝑥𝑥𝑐𝑐‖ represents the distance input to the center 583 

of the basis function. 584 

 585 

The GRNN is a variation to the radial basis neural networks and consists of four parts: the input 586 

layer, the pattern layer, the summation layer, and the output layer. This model is known for its 587 

ability to achieve global optimization with strong robustness and fault tolerance. The mathematic 588 

representation of the GRNN can be seen into Equation 6, where 𝑤𝑤𝑘𝑘 is the activation weight of 589 

the pattern layer node 𝑘𝑘 and 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) is the radial basis function kernel. 590 

𝑓𝑓(𝑥𝑥) =
∑𝑤𝑤𝑘𝑘𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘)
∑𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘)

 (6) 

 591 

During the network design and training process, the smoothing factor of the kernel functions to 592 

train these two neural networks was set at 0.3 as a trade-off between the model generalizability 593 

and the fast-changing function.  594 

5.3.3 SVR Model 595 

Support vector regression applies a line referred to as hyperplane to descript the trend of the data. 596 

Rather than minimizing the error between the observed and predicted values, SVR aims to fit the 597 

best line within a threshold value so that as many samples as possible can be included to enhance 598 

model reliability. To obtain the SVR model, the regression process can be formed as the 599 

optimization problem outlined in Equation 7 [130].  600 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 
1
2
‖𝜔𝜔‖2 (7) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
𝑦𝑦𝑖𝑖 − 𝜔𝜔𝑖𝑖 ∙ 𝜙𝜙(x) − 𝑏𝑏𝑖𝑖 ≤ ε
𝜔𝜔𝑖𝑖 ∙ 𝜙𝜙(x) + 𝑏𝑏𝑖𝑖 − 𝑦𝑦𝑖𝑖 ≤ ε 

 𝑖𝑖 = 1,2, … 𝑙𝑙
  

where 𝑦𝑦𝑖𝑖  is the observed output; weighted vector 𝜔𝜔𝑖𝑖  and bias 𝑏𝑏𝑖𝑖  are the parameters for the 601 

prediction of an observed data; and ε is the epsilon margin that serves as a threshold for the 602 

difference between the prediction and the observed outputs. 603 

 604 
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The performance of the SVR model depends heavily on its parameters, such as the kernel 605 

function parameter, the regulation parameter, and the width of the epsilon-insensitive band. It is 606 

necessary to optimize the training parameters for better generalization performance and to 607 

eliminate the overfitting problem, given the limited sample size [131]. During the training 608 

process, SVR employed a Gaussian function as the kernel function and the sequential minimal 609 

optimization algorithm (SMO) to find the optimal solution. The best performance was found 610 

when the Kernel scale was 2.154 and Edsilon was 0.535. 611 

5.3.4 FIS Model 612 

To obtain a fuzzy inference system from the data, the foremost step is to divide the data space 613 

into fuzzy clusters. Following Park and Han’s instruction, this study employed the fuzzy 614 

subtractive clustering algorithm (FSC), an unsupervised algorithm, to identify potential clusters 615 

among the input data [20]. The FSC can automatically estimate a fair number of clusters based 616 

on the density (potential) of data points in a space where a cluster center is one of the clustered 617 

data [132,133]. Consequently, 10 rules (10 clusters) were generated based on the optimal 618 

combination of fuzzy clustering parameters. The local model of each rule was then expressed 619 

using the Takagi–Sugeno–Kang (TSK) model in a mathematical manner. The regression 620 

parameters of the local models were further determined by the linear least-squares estimation 621 

technique and represented as outlined in Equation 8.  622 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥 ∈ 𝐶𝐶𝑘𝑘,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑌𝑌𝑃𝑃𝑃𝑃 = 𝑎𝑎0 + �𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗

𝑀𝑀

𝑗𝑗=1

  (8) 

where 𝑥𝑥𝑗𝑗 is the jth dimension of data point; M is the overall dimension of design elements (i.e., 623 

equal to 10 in this case); and 𝑎𝑎0 are the regression parameters; 𝐶𝐶𝑘𝑘 refers to the kth cluster. 624 

5.3.5 Assessment of Prediction Performance  625 

The accuracy of the predictive result is reflected in the prediction error; thus, measuring and 626 

analyzing the magnitude of the prediction error is of great significance in terms of demonstrating 627 

the accuracy of the prediction result [134]. Root mean square error (RMSE) is a standard metric 628 

that expresses the average deviation between the predicted value and the observed value, and it 629 

is commonly used to compare the performance of machine-learning regression models [44,124]. 630 

However, it is difficult to ascertain the quality of a predictive model by merely looking at a 631 

singular value of RMSE. For instance, an RMSE value of 0.4 alone does not intuitively indicate 632 

whether or not a model performs well in predicting restorative quality. This shortcoming can be 633 

addressed with the use of another performance indicator, R-squared (R2), which gives the 634 

percentage of output variance that can be explained by the independent variables in the model 635 
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[135]. Compared to RMSE, R2 is more informative in indicating the model prediction 636 

performance, where an R2 value of 0.8 means that the evaluated model explains 80% of the 637 

variation within the data, regardless of the ranges and distributions of the ground truth values 638 

[135]. Therefore, in the present study, both RMSE and R2 were used to assess the goodness-of-639 

fit of the prediction models, where a high R2 value and a low RMSE in all possible regression 640 

methods is considered to be indicative of a better fit in modeling the relationship between 641 

perceived restorativeness and architectural design attributes.  642 

In addition, the scatterplots of the observed data against the predicted data were further employed 643 

to illustrate the distribution pattern of the prediction error, (i.e., a constant variance of error across 644 

the various levels of the dependent variable). In other words, the scatterplots of observed vs. 645 

predicted PRS scores in our study revealed whether the predictive model could perform 646 

equivalently in predicting various levels of dependent variables. For instance, the scatterplots of 647 

observed vs. predicted PRS scores in our study revealed whether the predictive model could 648 

perform equivalently in predicting various design settings with different PRS scores [136].  649 

6 Results and Discussion 650 

A summary of the main findings from the experiment together with analytical results regarding 651 

predictive modeling are provided in the section. 652 

6.1 Demographic Characteristics 653 

A total of 144 participants took part in the experiment, and 120 responses (data points) were used 654 

for further data analysis and prediction model development after data cleaning has been carried 655 

out to remove any incomplete or unqualified responses. Data reliability was tested with Cronbach 656 

alpha and the result of 0.824 suggests a good internal consistency of survey responses, which 657 

means the online questionnaire results are able to reliably measure a person’s perceived 658 

restorative experience under specific interior design settings. The distribution of the participants 659 

in terms of demographic characteristics (age, gender, and education level) is outlined in Table 5. 660 

Participants were queried as to their background knowledge and relevant experience with respect 661 

to interior design, and only 4.2% of participants stated they do not have any experience or 662 

knowledge of interior design. Moreover, more than 50% of participants had interior design 663 

experience or were familiar with the basic principle. In terms of virtual reality models, 70.8% of 664 

participants stated they have prior experience with VR techniques and gave the VR model a score 665 

of 5.43 out of 7 (SD=0.72) in terms of its sense of presence, indicating that the virtual model is 666 

an adequate representation of the physical environment for the purpose of measuring user 667 

experience [137]. During the experiment, no significant differences were found for age, gender, 668 
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and level of education, which suggests the demographic variables did not influence the responses 669 

in the present study. However, the attitude of a respondent with respect to whether or not the 670 

kitchen is a relaxed place in the home was found to be significantly associated with the result of 671 

the respondent’s response for restorativeness measure (p-value = 0.03). This finding is consistent 672 

with previous research findings that a person’s previous experience or their environment-related 673 

attitude would influence their perception of the environment [138,139]. 674 

675 
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Table 5. Demographic information of participants 676 

  
Number of 

participants 
Proportion  

Gender Female 34 28.33% 

Male 86 71.67% 

Age range 18–24 4 3.33% 

25–34 70 58.33% 

35–44 27 22.50% 

45–54 14 11.67% 

55–64 5 4.17% 

Education 

level 

Some college training 

but no degree 

13 10.83% 

High school degree or 

equivalent 

(e.g., GED) 

5 4.17% 

Bachelor’s degree 66 55.00% 

Graduate degree 36 30.00% 

 677 

6.2 Factorial Analysis of Design Attributes 678 

The Pareto chart in Figure 6 summarizes the top 20 input variables with significant main and 679 

interaction effects according to the results of the factorial analysis. The bars for each variable 680 

represent the absolute values of standardized effects of design attributes and their interactions on 681 

human-perceived restorative experience as measured by PRS and BRES. The reference line of 682 

1.982 is plotted to indicate the 95% significance level, meaning that if a bar crosses the reference 683 

line, this indicates that the variable is determined as being influential to the output change at a 684 

statistical significance level of 0.05 (p-value < 0.05). Therefore, at the protected significance 685 

level (i.e., 95% significance level), the main effects of window aspect ratio, room size, and light 686 

temperature were significantly influential to restorative experience results measured by both PRS 687 

and BERS, revealing the strong relationship between the design feature and human-perceived 688 

restorativeness in environments. However, finish color scheme and ceiling height contribute a 689 

statistically significant difference to the result of PRS score, but fail the significance hypothesis 690 

test for the BRES measure, which may be explained by the expression of BRES leading the 691 

participant to focus more on assessing the feeling of “being away” and “fascination” in 692 
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environments while neglecting the concept of “coherence.” Similarly, the difference in 693 

interaction effect of Rectangularity × Room layout symmetry according to PRS and BERS 694 

measures could also be explained the same way. The significant interaction effect of 695 

Rectangularity × Room layout symmetry was evident in terms of the output of “coherence” 696 

feeling in PRS measure (p-value < 0.05); in contrast, the same interaction effect failed the 697 

hypothesis test for the BERS measure. For this reason, PRS is used as the only target output in 698 

the data analysis that follows. 699 

In terms of interaction effects, the six two-way interaction effects of Rectangularity × Room 700 

layout symmetry; Ceiling height × Window-to-wall ratio; Room size × Finish color scheme; 701 

Rectangularity × Light temperature; Room size × Visual complexity; and Light temperature × 702 

Window aspect ratio were identified as contributing to the results of PRS measure in the present 703 

study. Three examples of interaction effects with the most significant standardized effect are 704 

plotted in Figure 7, illustrating the mean PRS score versus two levels of design attributes under 705 

different settings of other variables. As shown in Figure 7a, if the ceiling height of a room is low, 706 

a low window-to-wall ratio (indicated by the black dashed line) is associated with a higher score 707 

of PRS and restorative experience, whereas in the scenario in which a room has a high ceiling, 708 

the participant found the high window-to-wall ratio offers a more restorative experience 709 

according to the PRS score. Likewise, in a rectangular kitchen, as depicted as the red line in 710 

Figure 7Figure 7c, the participant found the asymmetrical layout could provide them a more 711 

restorative experience in comparison to a symmetrical layout, although the symmetry of a space 712 

is usually positively associated with higher perceived restorativeness in environments as shown 713 

in the case of square-shape kitchen space. Moreover, looking at Figure 7b, it is apparent that the 714 

room size has a significant influence on a person’s perceived restorativeness under a modern 715 

rustic color setting. In contrast, the PRS score appeared to be less affected by room size when 716 

the color scheme is clean-white. 717 
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718 
Figure 6 Pareto chart of the standardized effects for responses using PRS and BERS scales 719 

720 

721 
Figure 7 Plots for interaction effects of (a) Ceiling height × Window-wall ratio, (b) Room size 722 

× Finish color scheme, and (c) Room layout symmetry × Rectangularity 723 

6.3 Comparison of Predictive Modeling Results 724 

Multiple machine learning methods were applied using the response data to build the prediction 725 

model. As suggested by the factorial analysis results in Section 4.2 (i.e., that all design attributes 726 

should be incorporated into the linear model according to the significance level of effects and the 727 

model hierarchy), a total of ten design attributes—(1) room size, (2) rectangularity of room shape, 728 

(3) ceiling height, (4) light temperature, (5) visual complexity, (6) room layout symmetry, (7)729 

window-to-wall ratio, (8) window aspect ratio, (9) finish color scheme, and (10) space 730 

alignment—were set as the dependent variable inputs for the other machine learning methods. 731 

Moreover, the extent to which the participant believes a kitchen is a relaxed place is also included 732 
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as a context input variable to assess the perceived restorative quality in environments during 733 

modeling as their significant correlation was argued by other scholars and supported by the result 734 

of the factor analysis in the present study. Meanwhile, as has already been noted in the factorial 735 

analysis (i.e., Section 6.2), the description used to measure BERS might cause the participant to 736 

focus more on the “being away” and “fascination” aspects while assessing the restorativeness of 737 

the environments. The PRS score was used as the only target output for the predictive modeling. 738 

It should also be noted that PRS was more thoroughly examined for construct validity and 739 

generalizability compared to BERS. Also, PRS has more scale items to rate than BERS, which 740 

reduces the risk of internal inconsistency [106].  741 

As a result, a total number of five predictive models were developed, of which the machine 742 

learning methods used to develop the models include linear regression, neural networks (i.e., 743 

GRNN and RBFNN), support vector regression (SVR), and fuzzy inference system (FIS). The 744 

comparison of their prediction performance using training and testing sets is shown in Table 6. 745 

It is apparent that three artificial intelligence methods, i.e., SVR, neural network, and FIS, all 746 

have better predictive performance than the linear regression. The R-squared value of linear 747 

regression indicates that this model is capable of explaining only 36.00% of the variation in 748 

human-perceived restorative experience in the validation set. However, some scholars have 749 

argued that the interpretation of R-squared value varies depending on the research area. Any 750 

study involving an attempt to predict human behavior, such as in psychology, typically tends to 751 

yield lower R-squared values in comparison to engineering problems due to the non-linearity of 752 

human nature, as previously discussed herein [140,141]. Additionally, to obtain more in-depth 753 

insight into the performance of GRNN, RBFNN, FIS, and SVR models, their respective best 754 

model structures and fitness plots were used to compare the prediction performance. Among the 755 

four prediction models, the GRNN and RBFNN neural networks have similar statistical 756 

performance in terms of low RMSE scores and high R-squared values. Comparing GRNN and 757 

RBFNN, the performance of the former is only slightly better. This result is consistent with the 758 

experiment conducted by Chen et al. [124], which studies the human emotional response to 759 

various aircraft cockpit designs. Moreover, since GRNN is a single-pass associative memory 760 

feedforward neural network, its computation time for training is relatively shorter than that of 761 

other artificial neural networks.  762 

Figure 8 further demonstrates the scatterplots of observed data against predicted data using each 763 

of the four artificial intelligence models. The x-axis is the predicted PRS score by predictive 764 

model and the y-axis is the observed value. Therefore, the closeness of data points to the 765 

regressed diagonal line indicates the goodness-of-fit of the models. The plots for GRNN, RBFNN, 766 
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and FIS (see Figure 8a, 8b, 8c) are quite similar in terms of the slope of goodness-of-fit as well 767 

as the data pattern, and their predicted values are relatively close to the corresponding observed 768 

PRS values in comparison to those predicted by the SVR model (see Figure 8d). While assessing 769 

the performance of models for their applicability in predicting the target output, it should be 770 

noted that both the average error of regression and the distribution or the pattern of prediction 771 

error should be taken into consideration. From these scatterplots, the residual distribution can be 772 

observed by measuring the distance from the data points to the diagonal line. Ideally, the 773 

distribution should be symmetrical around the diagonal line, indicating reliable standard errors 774 

of regression coefficients. However, as shown in the support vector regression scatterplot (Figure 775 

7d), the distribution of data points indicates that the SVR model has relatively poor performance 776 

when predicting the cases with various PRS values, as these data points can be seen to be 777 

crowding below the diagonal line when PRS < 4 and gathering above the line when PRS > 4. 778 

Overall, GRNN, RBFNN, and FIS models perform reasonably well in predicting the PRS score 779 

of a room based on the design attributes when compared to linear regression and SVR models. 780 

The results also suggest that the GRNN model is superior to RBFNN and FIS in terms of PRS 781 

score forecasting among the validation datasets. 782 

Table 6. Performance values of machine learning methods 783 

Machine learning method 
RMSE R-squared

Train Test Train Test 
Linear regression 0.4025 0.5214 60.91% 36.00% 

SVR 0.3742 0.3289 69.70% 73.19% 

Neural networks 
RBFNN 0.2676 0.2631 83.14% 82.85% 

GRNN 0.2670 0.2532 83.21% 84.11% 

FIS 0.2819 0.2922 81.29% 78.85% 
784 
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785 
Figure 8. PRS values observed and predicted by four machine learning models 786 

7 Conclusions and Future Work 787 

The affective experience of occupant-users is vital for the perceived usability of residential 788 

buildings and should be considered in the early design phases. Although many studies have 789 

attempted to identify the architectural design attributes that most influence the human affective 790 

experience, the fragmented and ambiguous nature of the relevant information makes its use in 791 

human-centered architectural designs challenging. This study aimed to construct prediction 792 

models that could be applied to forecast values of experiential quality for each residential design 793 

alternative in order for the design practitioner to easily capture the affective quality of the design 794 
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and further improve user satisfaction with the design, regardless of the designer’s experience, 795 

skills, and subjective opinion. Such prediction models lay a foundation for developing analytical 796 

models and tools to facilitate the decision-making process at the early stages of design to ensure 797 

an emotional wellness-focused built environment. It should be noted that conventional machine 798 

learning methods for affective design usually require large datasets for feature selection and to 799 

ensure the delivery of meaningful results. This can be time-consuming and expensive for studies 800 

with human subject. This work thus contributes to the body of knowledge on human–building 801 

interaction by introducing a non-immersive VR-DOE-based machine learning method that 802 

optimizes the data collection process and addresses the inherent complexity and uncertainty in 803 

modeling the affective experience.  804 

In this study, VR technologies were employed not only to produce a controllable and valid 805 

experimental environment, but also to demonstrate various combinations of design attributes and 806 

environment settings. This study also employed fractional factorial design for highly efficient 807 

experiment planning and screening for significant factors. The results show that an interior’s 808 

spaciousness and color scheme were the most noticeable and influential attributes in the human 809 

restorative experience, consistent with the findings from previous studies. In addition, significant 810 

interaction effects were identified for Ceiling height × Window-to-wall ratio, Room size × Finish 811 

color scheme, and Room layout symmetry × Rectangularity of room shape, which had often been 812 

overlooked in previous studies. Moreover, five machine learning models were proposed to 813 

represent the restorative experience in the built environment and compared in terms of their 814 

prediction performance. The results suggest that the GRNN model was superior in describing the 815 

nonlinear relationship between design attributes and human affective experience in comparison 816 

to the predictive models developed using the other four machine learning methods, i.e., linear 817 

regression, fuzzy inference system, support vector regression, and RBFNN. Taken together, these 818 

findings add to the rapidly expanding field of human-centered environmental design and form a 819 

basis for the future development of a decision support system for designers in wellness-focused 820 

architectural design (considering that the relevant knowledge is scattered across several 821 

disciplines). 822 

Despite its valuable contributions, this study was subject to several limitations. First, the 823 

participants recruited were mostly characterized as highly educated and young, which may 824 

influence the generalizability of the results. Second, the factors related to personal subjective 825 

experience, such as cultural differences or preference bias toward specific design settings, should 826 

also be included in future studies to enhance the quality of affective modeling. Third, the 827 

feasibility of using human physiological responses, such as electrocardiogram (ECG), 828 
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electroencephalogram (EEG), skin conductance (SC), or blood oxygen to measure human 829 

affective response toward environmental stimuli have been explored by many researchers 830 

[2,22,38,113,115,142]. Although the causal quantitative relationship between biosensing data 831 

and the perceived restorativeness is still under investigation and inconclusive [2,115], it is still 832 

believed that the use of objective human physiological response measures in combination with 833 

self-reported restorativeness scales in future research would be of great help in eliminating the 834 

potential biases in self-report assessments and better understanding the complex interaction 835 

between built environment and human experience [143]. Likewise, further validation using 836 

actual residential design scenarios should also be carried out, whereby the restorative quality of 837 

design, evaluated using predictive models, could be analyzed based on the feedback provided by 838 

professional architects to improve the ecological validity of the predictive model. In addition, an 839 

assumption was made during the experiment that a satisfying sense of presence provided by VR 840 

models could promise sufficient emotional stimulus received by participants; to improve the 841 

accuracy of prediction results from the non-immersive VR-based method, further improvement 842 

of incorporating the variable of VR display platforms into analysis should be also investigated in 843 

future work. Overall, insights gained from further research are also expected to contribute to the 844 

early stages of projects by providing designers with more scientific feedback on their designs. 845 
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