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Abstract
The area under the receiver operating characteristic curve (AUC) is one of the
most popular measures for evaluating the performance of a predictive model. In
nested models, the change in AUC (∆AUC) can be a discriminatory measure of
whether the newly added predictors provide significant improvement in terms of
predictive accuracy. Recently, several authors have shown rigorously that ∆AUC can
be degenerate and its asymptotic distribution is no longer normal when the reduced
model is true, but it could be the distribution of a linear combination of some χ2

1

random variables1;2. Hence, the normality assumption and existing variance estimate
cannot be applied directly for developing a statistical test under the nested models.
In this paper, we first provide a brief review on the use of ∆AUC for comparing
nested logistic models and the difficulty of retrieving the reference distribution behind.
Then, we present a special case of the nested logistic regression models that the
newly added predictor to the reduced model contains a change-point in its effects. A
new test statistic based on ∆AUC is proposed in this setting. A simple re-sampling
scheme is proposed to approximate the critical values for the test statistic. The
inference of the change-point parameter is done via m-out-of-n bootstrap. Large
scale simulation is conducted to evaluate the finite-sample performance of the ∆AUC
test for the change-point model. The proposed method is applied to two real-life
datasets for illustration.

Keywords
AUC, change-points, discriminatory measures, m-out-of-n bootstrap ,nested models.

1Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong.

Corresponding author:
C.Y. Lee, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong.
Email: james-chun-yin.lee@polyu.edu.hk

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

This is the Pre-Published Version.

This is the accepted version of the publication Lee CY. Nested logistic regression models and ΔAUC 
applications: Change-point analysis. Statistical Methods in Medical Research. 2021;30(7):1654-1666 Copyright 
© The Author(s) 2021. DOI: 10.1177/09622802211022377



2 Statistical Methods in Medical Research XX(X)

1 Introduction

In medical and epidemiological studies, the receiver operating characteristic (ROC) curve
serves as a general tool to visualize how well a continuous explanatory variable can
predict a binary response. The area under a ROC curve (AUC), on the other hand, is
a scalar measure of model discriminatory accuracy which can be easily comprehended
by practitioners. In the literature, ∆AUC, the difference between two AUCs, has been
frequently used to test for the association between a certain bio-marker and the binary
response over another bio-marker, based on the Mann-Whitney statistic3. This is also
referred to as “head-to-head” comparison of the two underlying non-nested models4.
In particular, the DeLong test5 has become a widely-adopted approach where the
test statistic ∆AUC has an asymptotic zero-mean normal distribution under the null
hypothesis of no difference in predictive accuracy between the two bio-markers, and
the variance estimate has an explicit formulation.

Recently, extra attention has been paid to implement ∆AUC test to compare a reduced
regression model with the full regression model based on the same dataset, where the
highly correlated composite risk scores of the two estimated models are used to compute
the test statistic instead of the covariate values. It is well-known that the DeLong test
cannot be directly applied under this kind of nested model setting1;2;4;6, or the test will
result in an extremely conservative size under the null hypothesis, and low power if
the signal is not strong enough. This is due to the fact that the test statistic based on
the nested model degenerates and it no longer follows a normal distribution under the
null hypothesis. Hence, the distribution cannot be fully characterized by the variance
parameter. However, the test statistic is still found to be normal with simple formula
for the variance estimate under the alternative hypothesis. Several remedies have been
proposed in the literature. For instance, Seshan et al.4 proposed to use a projection-
permutation approach in which the newly added predictor variable is decomposed
orthogonally in order to simulate the correct reference distribution for the test statistic.
Later, Demler et al.2 proposed a method of injecting a random noise to the reduced
and full models respectively, which can help resolving the degeneracy issue and shifting
the underlying distribution towards normal although the power of the ∆AUC test is
compromised in this case. Given the complexity of the test statistic under the null
hypothesis, a more direct approach, as if it is treated as a proxy for the gold standard
in the literature, to achieve the correct reference distribution of the test statistic is via
re-sampling.

Logistic regression models with change-point in the covariate effects can also be
considered as a special case of the nested model. Change-point models are particularly
useful in clinical studies when the effect of the covariates on the response cannot be
assumed to be linear, but it can be thought of being driven by one or more change-points.
Change-point models provide favorable flexibility in exploring the non-linear association
between the covariate and response, while it is less susceptible to over-fitting issues
as compared to modeling with polynomial splines. Moreover, the statistical inference
for the change-point parameter is of clinical importance, but it is treated as a nuisance
component in nonparameteric smoothing methods. In this paper, we study the logistic
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regression model where a covariate exhibits its effect on the response only when the
covariate value exceeds a certain change-point, which is also known as “threshold” or
“threshold limit values” in the literature. This model has broad applicability in medicine
and epidemiological studies. For demonstration, two medical datasets are explored. In
the first example, we study the non-linear association between the HIV-1 infection rate
of infants and the immune response bio-markers of the mother7. When the immune
response is too low, usually no protective effects would be contributed to lowering
the risks of developing HIV-1 disease. Presumably, the immune response is effective,
through the indication of a certain unknown threshold value, only when it starts to
have a significant impact on the disease outcome. In the second example, we study
the non-linear association between the incidence of chronic bronchitis and average dust
concentration in the workplace8;9. When the dust concentration is low, it has usually
a negligible effect on the risk of incidence. However, beyond a critical level of dust
concentration, the risk is assumed to increase with the dust concentration.

Existing methods for testing the presence of change-points in logistic regression are
typically based on the maximal score or maximal likelihood ratio tests7;8;10;11. However,
to the best of the author’s knowledge, no previous work has considered ∆AUC as the test
statistic for the presence of change-points. Hence, this paper fills the gaps in developing
the ∆AUC test for change-point detection based on the binary regression model, and the
method where critical values for the proposed test statistic can be approximated under
the appropriate reference distribution.

We structure the paper as follows. In Section 2, we first provide a brief review on the
∆AUC test for ordinary nested logistic regression model. Then, we provide details for the
model specification, the proposed test statistic, the re-sampling approach for hypothesis
testing, and the confidence interval estimation of the change-point parameter. In Section
3, the finite-sample performance of the proposed method is studied based on various
parameter settings. The proposed method is applied to the two medical datasets in Section
4. Lastly, some concluding remarks are provided in Section 5.

2 The ∆AUC test

2.1 Nested logistic regression models; a review

Let Yi be the binary medical outcome of the ith individual in a random sample of size n,
i = 1, 2, . . . , n. As is customary, we use n0 =

∑n
i=1 I(Yi = 0) and n1 =

∑n
i=1 I(Yi =

1) to denote the total number of non-events and events respectively, where I(.) is the
usual indicator function. In the presence of a set of explanatory variables, say Wi =
(W1i, . . . ,Wip), it is often of interest to know whether an additional set of variables,
called Vi = (V1i, . . . , Viq), could significantly increase the predictive accuracy of the
original model. That is, for a particular dataset, to compare the model

ηi = P (Yi = 1|Wi) =
exp{γ + βTWi}

1 + exp{γ + βTWi}
(1)
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over

η∗i = P (Yi = 1|Wi,Vi) =
exp{γ + βTWi +αTVi}

1 + exp{γ + βTWi +αTVi}
, (2)

where γ is a scalar parameter, β and α are p- and q-dimensional vectors of regression
parameters respectively. Here, one can regard ηi and η∗i as the event probabilities of the
ith individual derived from a transformation of the risk scores, the linear combination of
the covariates, in the two models respectively. For testing the hypotheses

H0 : α = 0 against H1 : α 6= 0, (3)

one can consider the test statistic, namely ∆An, which has the form

∆An = A∗n −An,

where An = (n0n1)−1
∑n0

i=1

∑n1

j=1 I
(
η̂j

(1) ≥ η̂i(0)
)

and

A∗n = (n0n1)−1
∑n0

i=1

∑n1

j=1 I
(
η̃∗j

(1)
≥ η̃∗i

(0)
)

are the Mann-Whitney estimators of the
AUC based on the fitted responses of models (1) and (2), commonly computed by the
maximum likelihood estimators (MLE) (γ̂, β̂) in model (1) and (γ̃, β̃, α̃) in model
(2), respectively. The superscript of η indicates the group (i.e. Y = 0 or 1) at which
the predicted probabilities are drawn for comparison. Generally, the AUC itself can
be regarded as the correct classification probability that a randomly selected event has
a higher risk score than a randomly selected non-event. Thus, a higher AUC value
typically indicates a higher predictive accuracy of the model, and hence a higher degree
of goodness-of-fit. Therefore, we reject the null hypothesis when we observe a fairly
large value of ∆An. Essentially, the above H0 in (3) for Vi having no association with
the response is the same as H0 : ∆An = 0.12

The distribution of ∆An is desired for developing a statistical test based on the
hypotheses in (3). For a non-nested model, one can certainly consider the widely used
∆AUC test proposed by DeLong et al. (1988), in which they derived a consistent
estimator for the variance of ∆AUC and they showed that the test statistic under the
null hypothesis has an asymptotic zero-mean normal distribution. However, several
authors1;2;4 recently showed that such method cannot be applied directly to the nested
models because the test statistic can be degenerate. The invalidity arises mainly because
the assumptions that (η̂i, η̃∗i ) and (η̂j , η̃∗j ) for i 6= j are mutually independent, and that
increment and decrement of AUC are equally likely to occur at α = 0 are violated4. In
particular, the asymptotic distribution of ∆An is still normal (i.e., the non-degenerate
case) under the alternative hypothesis, that is, when at least one of the elements in V
is associated with the response. Interestingly, its asymptotic distribution under the null
hypothesis (i.e., the degenerate case) can be an infinite sum of weighted χ2 random
variables according to the theory of U-statistics2. Nonetheless, Heller et al.1 considered
the test statistic computed via estimating the regression parameters by treating the AUC’s
as the objective functions, through the use of a kernel function to approximate the
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non-parametric component of the AUC. They showed that the resulting asymptotic null
distribution is a sum of q weighted χ2

1 random variables. To date, it is remarked that the
asymptotic null distribution of the test statistic computed via the most commonly used
MLE of binary regression parameters is still considered as mathematically intractable
in general. At least, Monte Carlo methods are deemed to be infeasible, or otherwise
impractical (also see the Appendix).

2.2 Logistic regression models with a change-point in the covariate
effects
Change-point models are widely applicable in epidemiological and medical data
analyses, where the relationship between the explanatory variable(s) and the response
is deemed to be partly linear or non-linear. In practice, models with one or two change-
points would be considered sufficient in finite-sample settings, as making inference on
the models with three or more change-points usually requires a large sample size and
a substantially longer computational time. Fong et al.7 previously studied the statistical
tests for the presence of a change-point in covariate effect based on the logistic regression
model with an interaction term. They proposed to use the maximal likelihood ratio tests
and a Monte Carlo method to simulate the critical values, which have been proven
efficient and consistent. With reference to Section 2.1, it is easy to see that change-point
models can also be regarded as a special case of the nested models naturally, where
an additional term associated with the change-point parameter is added to the original
model to form the full model. This leads us to consider ∆AUC as a statistic for testing
the presence of change-point in the covariate effects based on the logistic regression
model, while the threshold variable is considered as a continuous surrogate measurement,
namely V1 below. Based on model (1), we are interested to test whether introducing a
change-point effect of V1 would increase the predictive accuracy of the original model
significantly. We want to test for the hypotheses

H0 : α1 = 0 for all δ ∈ B against H1 : α1 6= 0 for some δ ∈ B, (4)

in the alternative model

η∗∗i (δ) = P (Yi = 1|Wi, V1i) =
exp{γ + βTWi + α1(V1i − δ)+}

1 + exp{γ + βTWi + α1(V1i − δ)+}
, (5)

where a+ = max(0, a) for constant a, q = 1 and δ is an unknown change-point
parameter lying in a data-dependent compact support B that regulates the effect of V1

on the response. One merit for considering such model specification is that the covariate
effect on response changes smoothly, which is considered more practical in real-life data
analysis. Also, the model is particularly useful when V1 is assumed to have negligible
effects on the binary outcome given V1 is relatively low compared to δ, but not for V1 > δ.
In epidemiological or medical studies, δ generally indicates the maximum tolerance level
(minimum dosage level) where V1 could reach before it poses risk (protective effects) to
the binary outcome of interest. There are various forms of modeling a change-point in
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the covariate effects, for example, one can replace (V1 − δ)+ by simply a step function
I(V1 − δ > 0) in (5), or to add V1 as an element inW in both (1) and (5) for a segmented
regression, but these models will not be discussed further in this paper.

Under H0 in (4), model (5) reduces to model (1) and the corresponding AUC
calculation has been discussed in the last subsection. Nonetheless, standard methods for
computation of AUC is not applicable to model (5) as δ is a nuisance parameter which
is not present under H0 and it is unknown in nature. Instead, we can first fix the value
of δ in B, then calculate the statistic A∗∗n (δ)−An for each of the pre-specified δ’s, and
select the maximal statistic as the test statistic. The revised ∆AUC test statistic under the
change-point problem for H0 in (4) is

∆A∗n = sup
δ∈B

A∗∗n (δ)−An

where An is previously defined and

A∗∗n (δ) = (n0n1)−1
n0∑
i=1

n1∑
j=1

I

(
η̃∗∗j (δ)

(1)
≥ η̃∗∗i (δ)

(0)
)

is the AUC calculated based on model (5), evaluated at the MLE
(
γ̃(δ), β̃(δ), α̃1(δ)

)
for a given δ. As a counterpart, the commonly studied maximal likelihood ratio statistic
takes the form

LR∗n = sup
δ∈B

LR(δ) = sup
δ∈B

{
2`
(
γ̃(δ), β̃(δ), α̃1(δ); δ

)
− 2 sup

γ,β,α1

` (γ,β, α1)

}
which is just two times the difference between the maximum log-likelihood function
involved in (5) considering a profile of δ, and the usual maximum log-likelihood function
involved in (1). Moreover, a natural estimate for δ can be obtained by considering
δ̃∆AUC = arg maxδ∈B A

∗∗
n (δ)−An and δ̃LR = arg maxδ∈B LR(δ), respectively. In

practice, B includes all distinct values of the observed V1i for i = 1, . . . , n. To avoid
edge effects where numerical instability may arise if we evaluate the statistic near the
smallest or largest possible values of B, we propose to search over the value of δ in-
between the 10th and 90th percentiles of the observed values of the change-point variable
V1. Moreover, we divide the support equally by incorporating a constant grid size d to
perform the search for both tests.

2.3 Re-sampling procedures for ∆A∗
n

The distribution of ∆A∗n under the null hypothesis of α = 0 is proposed to be evaluated
based on the re-sampling methods since its asymptotic distribution is unlikely to be
tractable as discussed in Section 2.1, especially in the change-point settings. We adopt
the following procedure to re-sample the data under the null hypothesis:

1. For a given dataset of sample size n, we fit model (1) to obtain the MLE γ̂ and β̂.
The predicted probability of the ith individual η̂i is calculated for i = 1, . . . , n.
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2. Generate a total number of M simulated samples, say M = 2, 000. For the
jth simulation, j = 1, . . . ,M , produce the simulated response Y

(j)
i of the ith

individual based on a binary random variable with probability η̂i, andWi is fixed.
3. For testing the hypothesis in (4), calculate ∆A

∗(j)
n based on the jth

simulated sample, j = 1, . . . ,M . With level of significance τ , we reject H0

if the calculated test statistic is larger than the 100× (1− τ)th percentile of
(∆A

∗(1)
n , . . . ,∆A

∗(M)
n ).

In the above steps, the critical values for the maximal likelihood ratio test statistic LR∗n
can also be approximated easily as a by-product of the procedure.

Under H1, a confidence interval of ∆A∗n can be calculated based on the empirical
percentiles of (∆A

∗(1)
n , . . . ,∆A

∗(M)
n ), but we simulate the response Y

(j)
i using the

predicted probability η̃∗∗i (δ) based on the MLE of (5) with δ = δ̃∆AUC instead of η̂i.

2.4 Confidence interval estimation for δ
If the null hypothesis in (4) is rejected, providing a confidence interval for δ is of interest,
but the asymptotic distribution of δ̃ can be complicated. This is a non-standard problem
where the objective functions A∗∗n (δ) and LR(δ) are not differentiable with respect
to δ. In general, the classical bootstrap proposed by Efron and Tibshirani13 produces
inconsistent estimators in such problem. Based on the change-point Cox regression
model, Lee and Lam14 shows empirically that the classical bootstrap estimator for
the change-point parameter can be inconsistent. For clustered survival data, Deng et
al.15 proposed to use the m-out-of-n bootstrap approach to construct an equal-tailed
confidence interval for the change-point parameter, and use the method proposed by
Bickel and Sakov16 to select the desired value of m. The m-out-of-n bootstrap approach
is defined by sampling m observations with replacement from a dataset of size n, where
m→∞ and m/n→ 0. Following the work of Bickel and Sakov16 and Deng et al.15,
we propose the following algorithm to select the bootstrap distribution for δ with optimal
m, denoted by m∗.

1. Create a sequence of m given by mj = [rjn] for j = 1, 2, . . . and r ∈ (0, 1),
where [a] is the greatest integer less than or equal to a. For each mj , calculate
the empirical bootstrap distribution for the change-point estimator

F̃mj ,n(x) = N−1
N∑
i=1

I
(
m

1/2
j (δ̃mj

− δ̃) ≤ x
)

where N is the number of bootstrap samples, δ̃mj is the change-point estimator
based the sample of sizemj , and δ̃ is the change-point estimator based the original
sample of size n, evaluated by the metrics A∗∗n (δ) or LR(δ).

2. Let d be the Kolmogorov-Smirnov distance and set m∗ =
arg min

mj

d(F̃mj ,n(x), F̃mj+1,n(x)). If more than one mj achieve the minimum,

the largest one is chosen.

Prepared using sagej.cls



8 Statistical Methods in Medical Research XX(X)

3. The desired m-out-of-n bootstrap estimator is F̃m∗,n(x). Denote Qψ
as the 100× ψth percentile of the sampled deviation (δ̃m∗ − δ̃) from
F̃m∗,n(x). A 95% equal-tailed confidence interval for δ is constructed by(
δ̃ + (m∗/n)1/2Q0.025, δ̃ + (m∗/n)1/2Q0.975

)
, where (m∗/n)1/2 is an adjust-

ment factor for over-estimated variance when m∗ < n.

There are mainly two distinctions between the above approach and that used in Deng et
al.15. First, we adopt an asymmetric rather than a symmetric confidence interval. Second,
the change-point parameter δ in model (5) has been proven to be n1/2-consistent17 but
not n-consistent.

3 Simulation study
We evaluate the finite-sample performance of the proposed test by simulation study.
According to the model in (5), we consider the following regression model in the
simulation:

π{P (Yi = 1|W1i, V1i)} = γ + β1W1i + α1(V1i − δ)+,

where π(.) is the logit function. We want to test for the null hypothesis of α1 = 0 for all
δ ∈ B. The random variables W1 and V1 are independently generated from the standard
normal distribution. In all scenarios we consider below, the regression parameter β1 is
set to 1, and the proportion of events for the population E(Y ) is set to be 0.1, 0.25
or 0.5 via controlling the value of γ. For the calculation of the proposed test statistic,
we adopt a grid size d = 0.1 in the search of δ and perform re-sampling M = 2000
times for its reference distribution. Table 1 summarizes the performance of the re-
sampling procedures in approximating the critical values for the two maximal tests
under the null model with no change-points (i.e. α1 = 0). Based on 1000 replicates,
the right-tail empirical percentiles of the test statistics, together with the corresponding
averaged critical values are reported. Three levels of significance are considered, namely
τ = 0.1, 0.05 and 0.01. Under the null hypothesis of no change-points, the re-sampled
critical values averages congruent to the empirical percentiles in both tests. In comparison
to LR∗n, a different behavior to ∆A∗n is that the increase in n will result in the shrinkage
of the critical values. This is due to the fact that the test statistic is non-standardized in
nature. Hence, in measuring the dispersion of the re-sampled critical values, we report
the standard-error-to-mean ratio for ∆A∗n and simply the standard error for LR∗n in Table
1. Typically, the dispersion measurements of the re-sampled critical values decrease as
the sample size n increases, indicating a more accurate approximation.

Table 2 summarizes the empirical rejection rates in the above three settings under H0

and six under H1 where the change-point parameter δ is set to 0. In general, the maximal
likelihood ratio test has very stable and good performance of type I error rate control.
The AUC test performs well when E(Y ) = 0.5 or E(Y ) = 0.25, but it is noticeably
conservative when the prevalence is low, say E(Y ) = 0.1, with n < 500. Under the
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Table 1. Approximation of the critical values for ∆A∗
n (in the scale of 10−3) and LR∗

n under
H0 evaluated at the 100(1− τ)th percentiles; standard-error-to-mean ratio and standard
error of the re-sampled critical values are presented in the brackets for ∆AUC and LR tests
respectively.

E(Y ) Method n
Empirical percentiles Averaged critical values

τ = 0.1 τ = 0.05 τ = 0.01 τ = 0.1 τ = 0.05 τ = 0.01

0.5

∆A∗n

200 13.72 17.40 26.47 14.26 (0.18) 18.61 (0.18) 28.64 (0.18)
300 9.61 11.85 18.76 9.43 (0.15) 12.33 (0.15) 19.07 (0.16)
500 5.87 7.41 11.25 5.62 (0.12) 7.39 (0.12) 11.45 (0.13)

LR∗n

200 4.27 5.73 9.17 4.27 (0.15) 5.63 (0.21) 8.84 (0.47)
300 4.40 5.74 8.76 4.21 (0.15) 5.55 (0.20) 8.70 (0.45)
500 4.34 5.52 9.73 4.17 (0.14) 5.49 (0.19) 8.61 (0.43)

0.25

∆A∗n

200 17.88 22.87 34.40 18.82 (0.24) 24.61 (0.24) 38.01 (0.24)
300 11.87 15.68 25.77 12.22 (0.19) 16.01 (0.19) 24.85 (0.19)
500 7.48 9.97 15.83 7.23 (0.14) 9.51 (0.14) 14.80 (0.15)

LR∗n

200 4.38 5.66 8.09 4.35 (0.17) 5.75 (0.25) 9.09 (0.51)
300 4.43 5.85 8.78 4.26 (0.15) 5.63 (0.22) 8.86 (0.46)
500 4.46 5.98 8.42 4.19 (0.14) 5.54 (0.20) 8.66 (0.45)

0.1

∆A∗n

200 37.28 50.27 79.54 40.83 (0.36) 52.83 (0.35) 81.24 (0.35)
300 23.27 33.48 47.70 26.36 (0.32) 34.56 (0.31) 53.36 (0.31)
500 14.63 18.96 32.73 14.68 (0.24) 19.43 (0.24) 30.54 (0.24)

LR∗n

200 4.82 6.25 9.95 4.89 (0.26) 6.35 (0.27) 9.60 (0.45)
300 4.48 6.03 9.90 4.62 (0.28) 6.13 (0.32) 9.48 (0.47)
500 4.29 6.13 10.12 4.34 (0.18) 5.76 (0.25) 9.17 (0.53)

alternative models (i.e. the last six scenarios of Table 2), it can be seen that both tests
provide reasonable power, but the proposed ∆AUC test is generally less powerful than
the maximal likelihood ratio test. Indeed, Seshan et al.4 have reported that ∆AUC test has
lower power than the Wald test based on the ordinary nested logistic regression model
detailed in Section 2.1. Since the likelihood ratio test is asymptotically equivalent to
Wald test under the null hypothesis in (3), the presented result for the maximal versions
of ∆AUC and likelihood ratio test statistics here is consistent with their findings.

For illustration purpose, we plot the bivariate distribution of the change-point
parameter estimate δ̃ based on ∆A∗n and LR∗n under the null and alternative hypothesis
settings, respectively (Figure 1). It is noted that we do not attempt to make inference on
the bivariate distribution of the two estimators, but to explore the possible dependency
between them, empirically. UnderH0 where the change-point parameter δ does not exist,
the estimators scatter around the space quite uniformly, and noticeable dissonance can
be observed. A reviewer remarked that the AUC- and LR- based estimators of δ are
correlated but can produce opposite results under H0. Nonetheless, the two estimators
cluster around the true change-point parameter value δ = 0 underH1 with either α = −1
or α = 1, and they also tend to assemble along the diagonal lines of the graphs. This
indicates that, given a dataset from H1, the change-point parameter estimates provided
by the maximal ∆AUC test and likelihood ratio tests generally “agree” with each other,
although they are evaluated based on different metrics. Our empirical analysis shows
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Table 2. Empirical rejection rates of the proposed ∆AUC test and the maximal likelihood
ratio test, evaluated at the 100(1− τ)th percentiles, under the null and alternative
hypotheses. change-point parameter δ = 0 for α1 6= 0.

n
∆A∗n LR∗n

α1 E(Y ) Rejection rates Rejection rates
τ = 0.1 τ = 0.05 τ = 0.01 τ = 0.1 τ = 0.05 τ = 0.01

0 0.5
200 0.093 0.046 0.008 0.099 0.054 0.009
300 0.106 0.052 0.009 0.111 0.055 0.009
500 0.108 0.052 0.008 0.110 0.052 0.013

0 0.25
200 0.087 0.042 0.007 0.103 0.047 0.008
300 0.091 0.047 0.006 0.110 0.055 0.009
500 0.110 0.059 0.008 0.114 0.057 0.007

0 0.1
200 0.076 0.032 0.003 0.099 0.047 0.011
300 0.081 0.033 0.005 0.094 0.047 0.014
500 0.097 0.049 0.009 0.103 0.057 0.015

−1 0.5
200 0.936 0.889 0.712 0.954 0.919 0.764
300 0.982 0.970 0.902 0.990 0.977 0.936
500 1.000 0.998 0.993 1.000 1.000 0.998

−1 0.25
200 0.818 0.700 0.421 0.854 0.748 0.519
300 0.940 0.886 0.694 0.959 0.921 0.760
500 0.993 0.981 0.931 0.999 0.988 0.961

−1 0.1
200 0.494 0.332 0.102 0.589 0.422 0.209
300 0.663 0.521 0.236 0.698 0.576 0.346
500 0.846 0.748 0.437 0.892 0.817 0.545

1 0.5
200 0.942 0.880 0.713 0.953 0.903 0.775
300 0.983 0.970 0.908 0.992 0.982 0.941
500 0.999 0.999 0.996 0.999 0.999 0.998

1 0.25
200 0.877 0.819 0.591 0.930 0.868 0.702
300 0.973 0.946 0.845 0.988 0.972 0.909
500 1.000 1.000 0.987 1.000 1.000 0.997

1 0.1
200 0.643 0.506 0.237 0.749 0.639 0.419
300 0.828 0.723 0.481 0.901 0.845 0.653
500 0.963 0.931 0.791 0.986 0.969 0.905

that the population event proportion E(Y ) has no alarming effects on the change-
point parameter estimation. Hence, we do not plot the diagrams for scenarios with
E(Y ) = 0.25 and E(Y ) = 0.1 here.

Table 3 reports the coverage probability of the m-out-of-n bootstrap approach for the
nominal 95% confidence interval for δ. We set the parameters β1 = −1 and α1 = 2
or −2. The sequence of candidates for optimal m are set to be mj = [0.75jn] with
j = 1, . . . , 5 for n = 200 and j = 1, . . . , 8 for n = 300, 500, respectively. The number of
bootstrap samples is set to be N = 200, and the searching grid size is set to be d = 0.01.
In general, it can be shown that them-out-of-n bootstrap provides proper coverage to the
change-point parameter.
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Figure 1. Empirical distributions of δ̃ based on ∆A∗
n and LR∗

n for scenarios with
E(Y ) = 0.5, n = 500; left panel: α1 = 0, middle panel: α1 = 1, and right panel: α1 = −1.

Table 3. Coverage probability of the nominal 95% confidence interval for δ based on the
m-out-of-n bootstrap under the alternative hypothesis.

α1 E(Y )
∆A∗n LR∗n

n = 200 n = 300 n = 500 n = 200 n = 300 n = 500
−2 0.5 0.967 0.965 0.976 0.942 0.961 0.973
−2 0.25 0.953 0.974 0.965 0.955 0.937 0.954
−2 0.1 0.957 0.928 0.935 0.932 0.943 0.937
2 0.5 0.970 0.966 0.975 0.947 0.963 0.970
2 0.25 0.972 0.967 0.962 0.940 0.948 0.943
2 0.1 0.965 0.936 0.930 0.931 0.926 0.923

4 Application

4.1 Mother-to-child-transmission dataset
The proposed method for change-point determination, detailed in Section 2.2, is applied
to the mother-to-child HIV transmission dataset at which the clinical study aims at
exploring the association between immunological bio-markers of the mothers and the
risk of transmission of HIV-1 viruses to the new-born babies18. The dataset includes 236
HIV infected mothers (n = 236) where 79 of them are transmitters. In addition to the
binary response, the dataset contains two explanatory variables. These are a continuous
variable named NAb SF162LS (treated as V1) as a measure of neutralization activity
of the HIV-1 viruses and the types of birth (treated as W1) which has been coded as 0
for vaginal birth and 1 for birth via Caesarean section. The effects of NAb SF162LS
can be thought to be thresholded at a particular value. In general, it is assumed that
this covariate has no effect on response if its intensity is lower than a certain threshold
value, but it starts to grant a protective effect to the risk of HIV transmission provided
that its intensity is large enough. Previously, Fong et al.19 proposed to use the maximal
likelihood ratio test to analyze the dataset where a Monte Carlo procedure was adopted to
sample the corresponding critical values. For illustration, we hereby apply the proposed
∆AUC-based method for change-point determination in comparison to the maximal
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likelihood ratio test. As the variable NAb SF162LS ranges from 3.9 to 14.1, a grid
size of d = 0.05 is adopted in the computation of the proposed test statistics and the re-
sampling procedure. In approximating the distribution of the test statistics, the number
of re-sampling M is set to be 10000.

Table 4. Tests results for the mother-to-child HIV transmission dataset

Test Statistic δ̃
Critical values via re-sampling

p-value
τ = 0.1 τ = 0.05 τ = 0.01

∆A∗n 0.1182 7.58 0.0629 0.0730 0.0959 0.0011
LR∗n 11.8947 7.33 4.4374 5.8430 9.3634 0.0023

Figure 2 illustrates the profiles of our proposed ∆AUC statistic and the likelihood ratio
statistic. It is observed that the ∆AUC statistic attains its maximal value at δ̃∆AUC =
7.58, while the likelihood ratio statistic attains its maximum at δ̃LR = 7.33. The two
estimates for the change-point location are very close to each other. The results of the
statistical tests can be found in Table 4. The null hypothesis of no change-points is
rejected based on both tests with p-values less than 0.01 from the re-sampling procedures.
A significant incremental amount of predictive accuracy (0.1182, in terms of AUC) can
be gained when we consider a change-point model in this application. A re-sampling 95%
confidence interval for the AUC improvement is (0.0510, 0.1902). Based on N = 1000
bootstrap samples with d = 0.01,mj = [0.75jn] for j = 1, . . . , 5, the m-out-of-n 95%
confidence intervals for the change-point parameter δ are (6.43, 9.34) and (6.03, 10.47)
based on the ∆AUC and LR tests, respectively. For illustrative purpose, the logistic
regression model conditioned on δ = 7.58 is fitted and it is observed that the thresholding
effect associated with (NAb SF162LS − δ)+ is significantly negative (α̃1 = −0.4104)
according to its standard error (s.e.(α̃1) = 0.1306). For NAb SF162LS > 7.58, the
odd ratio is 0.6633 when there is a unit increase of NAb SF162LS.

4.2 Chronic bronchitis dataset
The second dataset studied the occurrence of chronic bronchitis of n = 1256 Munich
workers which was collected between 1966 and 1977. The data was analyzed by Ulm8

and Küchenhoff and Carroll9. The association between the risk of developing bronchitis
disease and three explanatory variables, namely average dust concentration (temporarily
denoted as variable Z) in the industrial workplace, duration of exposure (W1) and
smoking status (W2), is explored. Following Küchenhoff and Carroll9, we adopt a
monotonic transformation to the average dust concentration, such that the change-point
variable of interest becomes V1 = log(1 + Z) which ranges from 0.182 to 3.219. The
effects of V1 on the chance of having chronic bronchitis is commonly modeled by a
change-point parameter δ which is termed as “threshold limit value” in occupational
medicine. In particular, low dust concentration (i.e. low value of V1) has no effect on the
risk of workers, but the risk will increase subsequently if the dust concentration is found
to be higher than a particular unknown level δ.

In order to test for the presence of a change-point, we apply the proposed method to
the dataset with M = 10000 and d = 0.01. From Figure 3, the change-point estimates
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Figure 2. The plots of A∗∗
n (δ)−An (in the scale of 10−2) and LR(δ) for the mother-to-child

HIV transmission dataset at which δ̃ = 0.758 based on the proposed test statistic ∆A∗
n and

δ̃ = 0.733 based on the maximal likelihood ratio test statistic LR∗
n.

Table 5. Tests results for the bronchitis dataset

Test Statistic δ̃
Critical values via re-sampling

p-value
τ = 0.1 τ = 0.05 τ = 0.01

∆A∗n 0.0217 1.25 0.0054 0.0069 0.0112 <0.0001
LR∗n 19.6634 1.27 4.5397 6.0803 8.7192 <0.0001

of the two maximal tests, namely 1.25 for ∆A∗n and 1.27 for LR∗n, are very close to
each other. In Table 5, the two tests reject the null hypothesis of no change-points with
p-values < 0.001. The AUC improvement is 0.0217 with a re-sampling 95% confidence
interval (0.0070, 0.0437). Based on N = 1000 bootstrap samples with d = 0.002,mj =
[0.75jn] for j = 1, . . . , 8, them-out-of-n 95% confidence intervals for δ are (0.70, 1.68)
and (0.66, 1.66) based on the ∆AUC and LR tests, respectively. Similar to previous
example, we fit the model conditioned on δ = 1.25, and the estimated coefficient for
(V1 − δ)+ is 0.8261 with standard error 0.1850. This may indicate that, when the average
dust concentration at workplace is higher than exp(1.25)− 1 = 2.49 mg/cm3, it starts to
attribute to the risk of developing bronchitis of the Munich workers.

After all, the performance of the AUC and likelihood ratio tests in the two applications
is very similar to each other in terms of change-point detection and change-point location
estimates.

5 Discussion
As areas under the ROC curves provide summary measures for discriminatory accuracy
of the underlying predictive models, it is natural to consider the pairwise difference
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Figure 3. The plots of A∗∗
n (δ)−An (in the scale of 10−3) and LR(δ) for the bronchitis

dataset at which δ̃ = 1.25 based on the proposed test statistic ∆A∗
n and δ̃ = 1.27 based on

the maximal likelihood ratio test statistic LR∗
n.

of the AUC for model comparison. This paper tries to provide a brief review on the
use of ∆AUC for comparing nested binary regression model, and explore the potential
difficulties in obtaining the reference distribution of the test statistic under the null
hypothesis. In particular, it is shown that the null distribution, when using the commonly
used MLE of binary regression parameters to compute the statistic, could be complicated
and Monte Carlo methods cannot be applied directly in practice. Hence, the most
popular or reliable way for providing a correct reference distribution will certainly lie
on some data permutation or perturbation methods. Nevertheless, the efficiency of the
latter methods may compromise the use of ∆AUC for the hypothesis testing purposes,
especially in the large n or large p problems. On the contrary, the likelihood ratio test or
Wald test is very efficient and the results can be obtained easily from standard software
outputs. Even in logistic models with a change-point, the maximal likelihood ratio test
can be shown to have an asymptotic distribution represented by score vectors and it can
be achieved easily via the simulation of multivariate normal random variables7. Despite
the above, prevalence of conducting a ∆AUC test remains high in the field of biostatistics
for comparing nested logistic models.

Change-point analysis for binary outcomes is one of the most important research
topics in medical research for risk prediction, since the linear assumption in the covariate
effects may not be appropriate on some occasions. We study a special case of the nested
logistic regression model where the influence of a newly added covariate is regulated
by an unknown change-point parameter δ under the alternative model. A statistical test
based on ∆AUC is proposed for the presence of a change-point in the effects of a newly
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added covariate, provided that there are already p explanatory variables that are linearly
associated with the outcome of interest. A simple grid search method is adopted to
compute the proposed test statistic and the estimator of the change-point location. A
reviewer remarked that it is also important to consider alternative methods such as the
gradient descent method when the clinically meaningful threshold is small but the support
of the biomarker is large. A re-sampling method is proposed to obtain the approximated
critical values for the test statistic, that it does not attempt to restore the normality of the
test statistic but to retrieve the exact null distribution. It is found that the proposed test is
valid and feasible. Simulation study shows that the newly proposed test works well under
the null and alternative hypotheses in finite-sample size settings.

Previously, Pepe et al12 showed that the test for the association between a new
predictor variable and the response is equivalent to the AUC test under the nested
logistic models. Hence, it is often recommended for practitioners to avoid testing for
AUC improvement, but to conduct the generally most powerful test for association (e.g.
LR test) in evaluating the performance of a new predictor variable. In the change-point
settings, we also show empirically that ∆A∗n has similar, or otherwise slightly inferior
power than LR∗n under the alternatives. The natural change-point estimators δ̃ derived
from the two maximal tests share similar patterns and they are able to capture the true
location most of the time under H1. It suffices to say that the ∆AUC test could only
provide minimal amount of additional information, that is the incremental value of the
predictive accuracy for the change-point model against the reduced linear model. In this
case, it is more clinically important to construct the confidence intervals for the AUC
improvement and the change-point location.

Recently, there is an increased popularity of the analysis using ROC curves to
manipulate the performance of risk prediction in survival models20. The idea is to
consider a series of time-dependent ROC curves developed based on the individual
counting processes, such that a scalar measure for the overall model predictive accuracy
can also be achieved by considering the integral of AUC(t) with respect to, say, the
distribution of time21. Since the censored data also contains a binary response and
continuous explanatory variables as the structure, it is conjectured that the proposed
method can be extended to accommodate survival outcomes in the near future.
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Appendix
Here, we show briefly that the test statistic based on AUC computed via the MLE could
be complicated. Consider just the simple case for q = 1 in model (2) and let θ = (β, α1)
be the regression parameters without the intercept term γ. Denote the MLE for β in
model (1) be β̂ and the MLE for θ in model (2) be θ̃ = (β̃, α̃1).

Since, exp(x)/{1 + exp(x)} is an increasing function, it suffices to write

An(β̂) = (n0n1)−1
n0∑
i=1

n1∑
j=1

I
[
β̂T (W

(1)
j −W (0)

i ) ≥ 0
]
,

A∗n(θ̃) = (n0n1)−1
n0∑
i=1

n1∑
j=1

I
[
β̃T (W

(1)
j −W (0)

i ) + α̃1(V1j − V1i) ≥ 0
]
.

Assume that we can apply some twice differentiable smooth functions to approximate

I(.) based on some tunning parameters. Denote G(θ) =
(
GT
β Gα1

)T
=

∂

∂θ
A∗n(θ)

and Σ(θ) =
∂

∂θ
G(θ) =

(
Σββ Σβα1

Σα1β Σα1α1

)
. Under H0, α10 = 0, θ0 = (β0, 0) and

A∗n(θ0) = An(β0). Taylor series expansions of An(β̂) around β0 and A∗n(θ̃) around
θ0 yields the difference

A∗n(θ̃)−An(β̂)

= G(θ0)T (θ̃ − θ0)−Gβ(θ0)T (β̂ − β0)

+
1

2
(θ̃ − θ0)TΣ(θ0)(θ̃ − θ0)− 1

2
(β̂ − β0)TΣββ(θ0)(β̂ − β0) + op(1).

According to the proof of theorem 1 in Heller et al.1, and see also p.308 of Cox
and Hinkley22, we can relate β̂ with θ̃ by (β̃ − β̂) = −I−1

ββ(θ0)Iβα1
(θ0)α̃1, where

I(θ) =

(
Iββ Iβα1

Iα1β Iα1α1

)
is the information matrix derived from the negative second-

order derivative of the log-likelihood of model (2). It immediately follows that

T1 = G(θ0)T (θ̃ − θ0)−Gβ(θ0)T (β̂ − β0)

= Gβ(θ0)T (β̃ − β̂) +Gα1
(θ0)α̃1

=
[
Gα1(θ0)−Gβ(θ0)T I−1

ββ(θ0)Iβα1(θ0)
]
α̃1.

Hence, n1/2T1 is a zero-mean Gaussian variable. Similarly, we can show that

T2 =
1

2
(θ̃ − θ0)TΣ(θ0)(θ̃ − θ0)− 1

2
(β̂ − β0)TΣββ(θ0)(β̂ − β0)

=
{
Σα1β(θ0)− Iβα1(θ0)T I−1

ββ(θ0)Σββ(θ0)
}

(β̃ − β0)α̃1

+
1

2

{
Σα1α1(θ0) + Iβα1(θ0)T I−1

ββ(θ0)Σββ(θ0)I−1
ββ(θ0)Iβα1(θ0)

}
α̃1

2
,
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in which the asymptotic distribution of the first term in 2nT2 is unable to be resolved
easily, but the second term is clearly associated with a properly scaled χ2

1 distribution.
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