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Abstract: 

Vibration dampers with tunable properties are of practical significance to 

accommodate the need of vibration control under different circumstances. Among 

major parameters, tunable damping to deliver required accuracy within a given 

frequency range is difficult to achieve in practice. This paper proposes a hybrid tunable 

damper by combining the advantages of both Coulomb friction damping and 

electromagnetic shunt damping. The tunable friction damper (FD) allows for coarse 

tuning with a larger tunable range, while the tunable electromagnetic shunt damper 

(EMSD) functions as a fine tuner with fine precision. The end result is a significantly 

increased tunable frequency range with high precision. The proposed method allows 

for simple and low cost adjustment of the damping forces in both dampers. A prototype 

is fabricated and experimentally tested in a dynamic vibration absorber (DVA) system. 

The predicted tenability is experimentally verified and H optimal damping of the DVA 

is readily achieved by using the proposed hybrid damper.   
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1. Introduction

Tunable damping is much needed in motion control of robots which usually

requires low damping during its motion and high damping to prevent oscillation about 

its target position. Same applies to vibration isolation of machinery and structures 

which demand large damping during startup to reduce resonant vibration and low 

damping at its steady operating frequency. Some applications are damping sensitive, 

exemplified by a dynamic vibration absorber (DVA) which needs to operate with 

optimum damping to meet the designed performance. However, the commonly used 

viscous damper can hardly offer the required tunability after being manufactured. On 

the other hand, magnetorheological (MR) dampers, which can potentially offer 

tunability and fast response, are not widely applied in industry because of their cost and 

external power supply requirement. Moreover, both viscous and MR dampers require 
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proper sealing to prevent leakage of the functioning fluid inside the damper. 

Alternatively, a piezoelectric shunt damper can provide tunable damping force, mainly 

applied to thin-wall structures under high-frequency excitations. 

As an emerging concept, electromagnetic shunt damper (EMSD) has been 

exploited for vibration control and energy harvesting since its first inception [1]. Owing 

to its fine tunability of the generated damping force, EMSD has been implemented in 

various applications such as vibration isolation of single-degree-of-freedom systems 

[2 -5 ], dynamic vibration absorbers [6 -9 ], vibration control of cantilever beams and 

plates [10 -12 ], etc. Various control strategies were also developed, exemplified by 

passive control [ 13 ], adaptive control [ 14 ], hybrid control [ 15 ], 𝐻∞  and 𝐻2 

optimization [16-17] etc. Nonlinear damping was also investigated with a nonlinear 

EMSD [18 -20 ], for which equivalent nonlinear damping and nonlinear mass were 

derived and verified with specifically arranged magnets. Moreover, EMSD was shown 

to entail simultaneous vibration control and energy harvesting [21-24]. However, the 

application of EMSD is limited to the vibration control of heavy machines or low-

frequency problems because of the insufficient damping force provided by EMSD. 

Since the damping coefficient of an EMSD is inversely proportional to the circuit 

resistance, negative impedance was used to improve the tunable damping range [25-

27]. However, a negative resistor requires external power supply, which adds system 

complexities and restricts its applications. The system can even become unstable if the 

absolute value of the negative impedance is larger than the internal impedance of the 

EMSD coil. Moreover, the excessive sensitivity of the system to negative impedance is 

not suitable for the fine-tuning of damping, as to be theoretically illustrated later on in 

this paper. Therefore, a hybrid damper with a different type of coarse tuning method is 

needed to alleviate the above shortcomings.  

A friction damper (FD) is on the top of the alternatives to provide a large damping 

force with light and a small structural body. The stick-slip boundary determined by FD 

was deduced analytically while Den Hartog investigated the forced vibration of a 

single-degree-of-freedom (SDOF) system with combined viscous and Coulomb 

damping [28]. The displacement transmissibility in a SDOF system with a FD in either 

a fixed or oscillating wall was investigated [29], and the corresponding experimental 

results verified Den Hartog’s analytical results [30 ]. Used as a vehicle semi-active 

suspension, a tunable FD was modeled and experimentally investigated with an 

electrohydraulic driving system [31]. The experimental results showed that the residual 

back-pressure and reduced hydraulic system bandwidth are two significant issues, 

which can be coped with by a preloading spring and a pressure control loop. Meanwhile, 

FDs have also been applied to damp cable vibrations [32].  

Due to the nonlinearity of the FD, few research was conducted in view of its 

application as a DVA. H optimal DVA [33] can be implemented with properly tuned 

FD in both translational [34 ] and rotational [35 ] forms. Particularly, relative to the 

excitation force, a small dry friction force can function well in a DVA without inducing 

the stick-slip motion [34-36]. A statistical linearization method was proposed to replace 



the nonlinear friction damping with equivalent viscous damping [37]. Moreover, both 

rigid and flexible friction dampers were theoretically investigated for optimum DVA 

implementation [38]. Results show that both dampers can obtain the H optimal status 

of the DVA, and the flexible friction damper performs better with higher stiffness. This 

alludes to the possibility of exploiting tunable FD to provide coarse damping tuning for 

the H optimal DVA as long as the Coulomb damping force is restricted to avoid the 

stick-slip motion. 

The above literature review suggest that the damping enhancement method specific 

to EMSD is mainly confined to the use of negative impedance. Meanwhile, the 

nonlinearity of FD also limits its application in DVAs. To tackle these issues, a tunable 

hybrid damper with Coulomb friction and electromagnetic shunt damping is proposed 

in this paper for achieving H optimal DVA. The damping force in a properly designed 

FD can be coarsely tuned by changing the normal contact force with a compression 

spring, and the damping force of the EMSD can be fine-tuned by adjusting the external 

resistance of the EMSD circuit. The major contributions of this paper are: 1) the tunable 

damping range is significantly improved by combining a FD and an EMSD of tunable 

damping forces without compromising the tuning precision; 2) the desired amount of 

damping can be obtained by a proper combination of the two types of damping; 3) the 

theoretically predicted H∞ optimal damping of DVA based on the fixed-point theory is 

proven experimentally for the first time by using the proposed hybrid damper. 

The paper is organized as follows. Section 2 introduces the theoretical model of 

DVA with hybrid damper, including the mechanism of FD and EMSD. Section 3 

provides the procedure of the hybrid damper design and verifies its damping coefficient 

with experiments. Section 4 presents the on-site experimental calibration of H optimal 

DVA with the proposed hybrid damper. Section 5 summarizes the results and 

conclusions.   

2. Theoretical analyses

2.1 Hybrid damper 

As the main components of the proposed hybrid damper, EMSD and FD are 

connected in parallel.  

2.1.1 EMSD 

A linear EMSD with opposing magnets is adopted as shown in Fig. 1a to fine-tune 

the damping force [5]. An opposing magnet bar is located in the central hole of the coils, 

with the adjacent coils connected with 180° phase difference. Electromotive force is 

induced due to the relative motion between the magnets and the coils. The 

corresponding damping coefficient 𝑐𝐸 can be expressed as: 
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where 𝐾𝑡 denotes the transduction factor; 𝑍 the total impedance of the shunt circuit; 

𝑍𝑖𝑛 the impedance of the coil and 𝑅𝑙𝑜𝑎𝑑 the external resistance of the circuit as shown 

in Fig. 1b. 𝑐𝐸 can be finely tuned by adjusting the external resistance 𝑅𝑙𝑜𝑎𝑑.  

Fig. 1. Linear EMSD with opposing magnet configuration: (a) magnets and coils, (b) 

shunt circuit  

2.1.2 FD 

Applying a FD in a SDOF vibration system in Fig. 2, the motion equation of the 

mass 𝑚 writes  

( ) 0sgn cosNmx F x kx F t + + = (2) 

where 𝑥 denotes the displacement; 𝜇 the friction coefficient; 𝐹𝑁 the normal force; 

𝑘  the spring stiffness and 𝐹0𝑐𝑜𝑠𝜔𝑡  the sinusoidal excitation force. 𝑠𝑔𝑛(𝑥̇)  is a

signum function defined as 
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Fig. 2. Schematic of a SDOF system with FD 

(a) (b) 



 

 

For a pure Coulomb damper as shown in Fig. 2, the hysteresis loop is a rectangle 

as illustrated in Fig. 3a. The corresponding energy dissipation ∆𝐸𝑅 per cycle in the 

damper can be expressed as 

 4R NE F X =  (4) 

The equivalent damping of the FD can be derived by the energy dissipation per 

cycle in the hysteresis loop in Fig. 3. The hysteresis loop of a conventional linear 

viscous damper is an ellipse as shown in Fig. 3b, with the corresponding energy 

dissipation per cycle ∆𝐸 written as 

 2E c X  =  (5) 

where 𝑐 denotes the damping coefficient of linear viscous damping; 𝜔 the angular 

frequency and 𝑋 the displacement amplitude. 

 

Fig. 3. Hysteresis loop of (a) FD and (b) linear viscous damping 

The equivalent damping of the FD can be derived by equating Eqs. (4) and (5), 

yielding  
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2.1.3 Hybrid damping 

With the EMSD and FD arranged in parallel, the total effective hybrid damping 

coefficient 𝑐 can be expressed as 
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where 𝑐𝑃 denotes the inevitable parasitic damping in the hybrid damper, which usually 

can be regarded as a constant Coulomb damping without tunability. Z is the external 

impedance of the conventional linear EMSD. 

(a) (b) 



 

 

 

Fig. 4. Total hybrid damping coefficient variation with shunt impedance of EMSD 

Given the excitation frequency and response amplitude, the damping coefficient of 

the FD is regarded as a constant by fixing the normal contact force. Subsequently, the 

hybrid damping variation with the shunt impedance of EMSD is curved in Fig. 4. The 

black solid line denotes 𝑐 variation with Z. Methods 𝐴 (blue dash line) and 𝐵 (green 

dash line) in Fig. 4 correspond to the negative impedance method mentioned above and 

the proposed hybrid damper, respectively. 𝑐 varies sharply with the shunt impedance 

within a sensitive domain. Note that there is no absolute demarcation boundary between 

the so-called sensitive and non-sensitive domains, they are relative concepts. 

As illustrated in Fig. 4, the negative impedance method extends the curve of the 

conventional linear EMSD by moving the origin coordinate from 𝑂′  to 𝑂 . The 

tunable damping range is increased with negative impedance, but the added region is 

still located in the sensitive domain where the damping requires precise adjustment of 

the external impedance. On the other hand, the proposed hybrid damper improves the 

damping tunability by combining a FD with an EMSD. As illustrated in Fig. 4, the 

conventional linear EMSD curve is moved up to the green dash line with a constant 

Coulomb damping coefficient. To achieve the same amount of damping tuning, the 

proposed hybrid damper is less sensitive to the circuit resistance than the negative 

impedance method is, thus facilitating the fine-tuning of damping during on-site 

calibrations of the damper.   

2.2 DVA system with hybrid damper  

The fine tunability of the proposed hybrid damper is tested on a DVA system which 

requires optimum damping as shown in Fig. 5. The motion equations of the primary 

mass 𝑚1 and DVA mass 𝑚2 write 

 ( ) ( )1 1 1 1 2 1 2 1 2 0 cosm x k x k x x c x x F t+ + − + − =  (8) 

 ( ) ( )2 2 2 2 1 2 1 0m x k x x c x x+ − + − =  (9) 



where 𝑘1  and 𝑘2  denote the respective spring stiffness of the primary system and 

DVA; 𝑥1  and 𝑥2  their respective displacement responses. The respective natural 

frequency of the primary system and that of the DVA before they are coupled together 

are 𝜔𝑛1 = √𝑘1 𝑚1⁄  and 𝜔𝑛2 = √𝑘2 𝑚2⁄ . c is the total equivalent viscous damping

coefficient of the DVA provided by the hybrid damper. 

Fig. 5. DVA vibration system with the proposed hybrid damper 

The dimensionless displacement response amplitude 𝑋1/𝑋𝑠𝑡  of the primary 

system can be derived and written as 
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where 𝑋𝑠𝑡 = 𝐹0 𝑘1⁄   denoting the static deformation of primary system spring; 𝜉 =

𝑐 𝑐𝑐⁄ is the damping ratio; 𝑐𝑐 = 2𝑚2𝜔𝑛2 is the critical damping coefficient of the DVA.

𝜆 = 𝜔/𝜔𝑛1is the frequency ratio; 𝛾 = 𝜔𝑛2/𝜔𝑛1 the natural frequency ratio and 𝜇 =

𝑚2/𝑚1 the mass ratio. The dimensionless displacement response amplitude reaches its 

min-maximum value with the H optimal natural frequency ratio and damping ratio. 
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The damping coefficient is set to zero to obtain the boundary condition of the stick-

slip motion with pure Coulomb damping. Examining the displacement transmissibility 

from 𝑚1 to 𝑚2 leads to the required range of force ratio, expressed as [29] 
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where 𝐹𝜇 = 𝜇𝐹𝑁 is the friction force; 𝐹𝑘 = 𝑘2𝑋1 the equivalent transferred excitation 

force from the primary system. The dimensionless parameters 𝑈, 𝑉, 𝑆  can be 
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3. Hybrid damper design and analyses 

As shown in Fig. 6, the FD and the EMSD are combined and aligned vertically to 

form a tunable hybrid damper. Since the tuning mechanisms of both 

components/dampers are fixed together and the moving parts are locked with a coupling 

mechanism, the Coulomb damping force and the electromagnetic shunt damping force 

can function on the moving parts simultaneously with independent tunability. Therefore, 

the two kinds of dampers are connected in parallel conforming to the connection as 

shown in Fig. 5.  

 

Fig. 6. (a)3D model of FD, and the structure of the proposed tunable hybrid damper, 

(b) tuning mechanism: tuning spring control part of FD and coils with an external 
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resistor of EMSD, (c) moving parts: friction block of FD and opposing magnets of 

EMSD 

An opposing magnet configuration of the EMSD [5] is adopted, in light of its 

verified effectiveness in providing effective damping force. Six opposing permanent 

magnet pairs and the corresponding coils with 180° phase difference are located on the 

bottom. The damping coefficient of the EMSD can be adjusted with tunable resistors 

connected to the coils. 

According to Eq.(6), the damping coefficient of the FD can be adjusted by varying 

the normal force acting on the friction blocks 𝐹𝑁. As shown in Fig. 6b, this force can be 

varied by adjusting the deformation of the tuning springs with the rotation of the tuning 

screw. Since the thread of the tuning screw is counter-rotating with levorotatory thread 

on the left side and dextrorotatory thread on the right side, the varying distance between 

the copper nuts on the tuning screw is twice as large as the screw pitch of 2 mm per 

cycle of the screw. Therefore, the total deformation of the tuning springs is 4 mm with 

one turn of the tuning knob. The damping coefficient can be fine-tuned by precisely 

controlling the rotation of the knob. 

The friction block of the moving part in Fig. 6c is compressed by the symmetrical 

friction blocks of the tuning mechanism in Fig. 6b. Three smooth shafts and nine linear 

bearings provide a linear guide to the motion of the nuts on the tuning screw. Moreover, 

the limit screw on the top-left of Fig. 6b helps fix the rotating angle of the tuning screw.  

3.1 Tunable FD 

As mentioned above, the adjustable deformation of the tuning springs in Fig. 6b 

provides the tunable normal force to the friction block of the moving part, leading to 

the desired damping force in the hybrid damper. As shown in Fig. 6a, the distance 𝑠 

denotes the distance between the farthest left and farthest right nuts on the tuning screw. 

The deformation of the tuning springs ∆𝑠 can be defined as  

 0s s s = −  (14) 

where 𝑠0 denotes the initial distance between the friction blocks. The tunable normal 

force 𝐹𝑁 can be expressed as 

 N RF k s=   (15) 

where 𝑘𝑅 denotes the stiffness of the tuning springs.  Using Eqs. (6) and (15) and 

eliminating 𝐹𝑁 give the equivalent damping coefficient of the FD as 

 2
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where 𝑓 denotes the vibration frequency in Hz. 



 

 

The linear fitting curve of the tuning spring in Fig. 7 shows that the measured 

stiffness of the spring is around 0.244 N/mm. The friction blocks are made of A356 

aluminum alloy, the corresponding friction coefficient locates in the range 𝜇 ∈

[0.37, 0.59] under different normal forces [39]. Since a soft tuning spring and small 

tunable range of the normal force are used in the following tests, the friction coefficient 

 is assumed to be a constant. The relationship between the absolute value of the FD 

damping force amplitude 𝐹𝑅 and ∆𝑠 can be expressed as 

  R RF k s=   (17) 

Therefore, the product of the friction coefficient and the tuning spring stiffness 𝜇𝑘𝑅 

can be acquired through the FD hysteresis loop with different ∆𝑠. 

 

Fig. 7. Tuning spring stiffness test result of FD 

3.2 Tunable EMSD 

The EMSD in the proposed hybrid damper has six opposing magnet pairs as shown 

in Fig. 8. The opposing magnet bar locates on the central hole of the coils with coaxial 

alignment. The air gap between the magnet bar and the inner wall of coils is 2.25 mm 

to improve the electromechanical coupling efficiency without introducing additional 

parasitic damping. 



 

 

 

Fig. 8. The proposed EMSD part with opposing magnets configuration: (a) schematic, 

(b) prototype, (c) magnetic field distribution  

𝑁𝑑𝐹𝑒𝐵  N33 permanent magnet is chosen as the magnetic field source. The 

corresponding cloud figure of magnetic flux density is shown in Fig. 8(c). 3D printed 

nylon skeleton acts as the carrier of the coils to minimize the friction from the magnets 

bar. A thicker wire diameter (𝑑𝑤𝑖𝑟𝑒 = 1𝑚𝑚) of the coil is selected to reduce the heat 

generation inside the coils. The remaining parameters of the EMSD are listed in Table 

1. 

Table 1. The parameters of EMSD 

Magnet 

parameters 

Type & grade NdFeB N33 

Internal diameter 6 mm 

External diameter 24.5 mm 

Length  8 mm 

Quantity  12 

Skeleton 

parameters 

Internal diameter 29 mm 

Thickness  1 mm 

External diameter 50 mm 

Height  98 mm 

Coil 

parameters 

Internal diameter(𝑑1) 31 mm 

External diameter(𝑑2) 50 mm 

Total length(𝑙𝑐)  90 mm 

Turns(𝑁𝑡𝑜𝑡𝑎𝑙)  810 

Wire diameter(𝑑𝑤𝑖𝑟𝑒) 1 mm 

Wire length(𝐿𝑤𝑖𝑟𝑒)   101.8 m 

(a) (c) (b) 



 

 

According to Eq. (1), the damping coefficient of the EMSD can be obtained after 

the determination of the transduction factor 𝐾𝑡 and the coil internal impedance 𝑍𝑖𝑛. 

3.2.1 The transduction factor  

The definition of the transduction factor 𝐾𝑡  is the path integral of the radial 

magnetic flux density 𝐵𝑟 through the circular coil  

 ( ),t r
loop

K B x r dl= −   (18) 

For the EMSD with six opposing magnet pairs in Fig. 8, 𝐾𝑡 is converted to 

 ( ) ( )
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where 𝑀𝑎 denotes the number of opposing magnet pairs; 𝑁 the number of turns for 

each coil and 𝑟(𝑖, 𝑗) the radius of the target coil. 

According to Eq.(19), the value of the transduction factor 𝐾𝑡  depends on the 

distribution of the radial magnetic flux density 𝐵𝑟 , the radius 𝑟(𝑖, 𝑗)  and the total 

number of turns 𝑀𝑎 × 𝑁 of the coils. While 𝑟(𝑖, 𝑗) and number of turns of the coil 

are easy to be determined, 𝐵𝑟 is determined from the simulation of the magnetic field 

distribution through a free magnetic finite element analysis software FEMM.  

 

Fig. 9. Simulated magnetic flux density with different coercivity and measured 

superficial magnetic flux density at target points 

The magnet coercivity still requires back derivation with the measured superficial 

𝐵𝑟 of point 𝑃 in Fig. 8a. Simulated 𝐵𝑟 at point 𝑃 with different coercivity is shown 

as the blue dots in Fig. 9. The corresponding measured value is around 1.013T, denoted 

by the red dash line in the figure. The simulated 𝐵𝑟intersect with the measured value 



 

 

when the coercivity is around 780kA/m. The corresponding 𝐾𝑡 can be calculated as 

8.0242V ∙ s/m with the corrected coercivity based on Eq. (19). 

3.2.2 Coil internal impedance 

The internal impedance of the coil 𝑍𝑖𝑛 in Eq.(1) includes the internal resistance 

𝑅𝑖𝑛 and inductive impedance 2𝜋𝑓𝐿𝑖𝑛 of the coil expressed as 

 ( )
22 2in in inZ Z fL= +  (20) 

where 𝐿𝑖𝑛  represents the coil internal inductance.  

The internal inductance is as small as 𝐿𝑖𝑛=2~3mH, and the hybrid damper works 

at low-frequency domain. At 10 Hz, for example, the inductive impedance is less than 

0.2Ω  which can be ignored in the internal impedance calculation. Therefore, the 

internal impedance is approximately equal to the internal resistance 
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where 𝜌 = 0.0175 Ω ∙ mm2 m⁄  denotes the electrical resistivity of copper. With the 

parameters tabulated in Table 1, the internal resistance is calculated as 2.268 Ω. The 

measured internal resistance is around 2.250 Ω. The difference between the calculated 

and measured results is in a reasonable range. Considering the resistance of the 

connection wires between the coils and the tunable resistor, the value of the total 

internal impedance is taken as 2.6 Ω. The maximum damping coefficient of EMSD is 

evaluated based on Eq.(1) (𝑐𝐸 = 24.765 N ∙ s m⁄ ) when the external resistance 𝑅𝑙𝑜𝑎𝑑 

is zero with the calculated values of 𝐾𝑡 and 𝑍𝑖𝑛 above. 

3.3 Damping measurement and verification 

The theoretically predicted damping coefficient of the EMSD and the FD with the 

structural parameters mentioned above can be obtained through Eqs. (1) and (16). For 

verification purposes, experiments are conducted to deduce the damping coefficients 

from the measured hysteresis loops in different cases. As shown in Fig. 10, the 

hysteresis loops can be drawn by the measured damping force and the corresponding 

displacement with 10 Hz and 1 mm amplitude excitation. The damping coefficient of 

the energy lost per cycle can then be obtained by 

 
1 0

22

U U U
c

X fX 

 −
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where ∆𝑈  is the energy loss, which can be evaluated by the enclosed area of the 

hysteretic loop. 𝑈1  denotes the energy lost per cycle of the damper at certain 

deformation of the compression springs of FD (Fig. 10a) or external resistance of 

EMSD circuit (Fig. 10b). 𝑈0 denotes the energy loss without FD or EMSD. 



Fig. 10. Hysteresis loop of the proposed hybrid damper: (a) FD hysteresis loop with 

various deformation lengths of tuning spring (b) EMSD hysteresis loop with various 

external resistance 

The damping force of the FD fluctuates because of the lack of a tightly linear guide 

when the normal force (indexed by the deformation length of the tuning spring) is 

getting large. The fluctuation can be reduced or eliminated by fixing the friction pads 

at the proper location in FD. The introduction of a linear guide is bound to increase the 

parasitic damping which will affect the damping component analysis. Since the 

proposed FD and EMSD are combined, the parasitic damping hysteresis loop of the two 

(a) 

(b)



 

 

dampers have a similar value in Fig. 11 (𝑐𝑃 ≈ 10N ∙ s/m). Moreover, the parasitic 

damping hysteresis loop is roughly a rectangle, which shows similar property between 

the parasitic damping and Coulomb damping.  

 

Fig. 11. Measured and simulated damping coefficient variation. (a) FD with different 

deformations of the tuning spring, (b) EMSD with different external resistance values  

The calculated 𝜇𝑘𝑅 in Eq.(17) is around 0.125 with the measured damping force 

and the corresponding ∆𝑠  in Fig. 10. Subsequently, the corresponding friction 

coefficient can be calculated as 𝜇 = 0.51 , which falls into the limited interval 

[0.37, 0.59]. With the obtained friction coefficient, the simulated damping coefficient 

of the FD can be calculated based on Eq.(16), shown as the red dash line in Fig. 11a 

(a) 

(b) 



with various deformations of the tuning spring. The measured damping coefficient of 

FD is shown by the black dot in Fig. 11a by processing the measured hysteresis loop 

based on Eq.(22). The simulated and measured results of the FD damping coefficient 

agree well in Fig. 11a, which demonstrates the effectiveness of the proposed FD model. 

With the calculated 𝐾𝑡 and 𝑍𝑖𝑛, the simulated damping coefficients with different 

external resistance values can be obtained through Eq.(1), drawn as the red dash line in 

Fig. 11(b). The measured damping coefficient of EMSD is also shown as the black dots 

in Fig. 11b with the same method of FD as described before. Moreover, both the tunable 

damping of the EMSD and the total damping with constant parasitic damping with 

different external resistances are plotted in Fig. 11b. The simulated and measured 

ESMD damping coefficients match well except that the simulated ones are slightly 

higher when the external resistance is large. The possible reason is that the parasitic is 

not measured accurately enough. 

Fig. 12. Hysteretic loop of the proposed tunable hybrid damper: (a) friction blocks 

disconnected (just parasitic damping and EMSD with zero external resistance), (b) 

friction blocks connected with zero deformation of the tuning springs, (c) deformation 

of the tuning spring at 2 mm, (d) deformation of the tuning spring at 16 mm  

With the verified damping coefficient calculation method, the measured hysteresis 

loops of the proposed hybrid damper with tunable Coulomb damping and fixed 

maximum electromagnetic shunt damping are plotted in Fig. 12 for comparison with 

the simulated results. Examinations on the four tuning spring scenarios of the FD listed 

in Fig. 12 show that the measured hybrid damping match well with the simulated results 

with different normal forces. As supplementary information, more hysteresis loop 

(a) 

(c) 

(b) 

(d)



comparison figures are provided in Fig. A.1, also evidencing the agreement between 

the calculated and measured results. 

The hysteresis loops of the proposed hybrid damper look similar, but not exactly 

the same. Based on the quasi-static models and without considering the system parasitic 

damping, the damping force of the MR damper includes two parts: the viscous damping 

force and the force due to yield stress of the magnetorheological fluid. Since both forces 

are related to the magnetic field, the hysteresis loop cannot be described easily. The 

proposed hybrid damper can be regarded as a combination of a pure viscous damper 

and a Coulomb friction damper. The hysteresis loop is a simple superposition of 

rectangle and ellipse. The mechanism of the proposed hybrid damper can then be 

identified, which is easier than the MR damper. 

4. Experimental implementation of the optimum DVA

Upon verifying the proposed hybrid damper model, the following experiments are

conducted to investigate the damping tunability of the proposed hybrid damper when it 

is applied to a DVA system. 

4.1 Experiment setup 

The proposed hybrid damper is installed in a DVA system, shown in Fig. 13, to 

calibrate the H optimal DVA through tunable damping. The experimental system is 

built up based on the theoretical model in Fig. 5. The proposed hybrid damper with FD 

and EMSD is installed in the middle part of the system. A tuning mechanism is fixed 

with the primary system and regarded as an integrated part of the primary system mass, 

while the moving part is connected with the DVA counter-weight which also contributes 

to the DVA mass. The natural frequency is tuned to 9Hz by changing the primary mass 

before the DVA is added to the system. Other parameters are listed in Table 2. 

Table 2. Identified parameters of the experimental system 

Notation Values Description 

𝑓𝑛1 9 Hz Natural frequency of the primary system 

𝑓𝑛2 8.1876 Hz Natural frequency of DVA 

𝛾 0.849 Natural frequency ratio 

𝑘1 20.961 N/mm Stiffness of primary system 

𝑘2 2.686 N/mm Stiffness of DVA 

𝑚1 6.5549 kg Equivalent mass of the primary system 

𝑚2 1.165 kg Equivalent DVA mass 

𝜇 0.1778 Mass ratio 

As shown in Fig. 13, a non-contact electromagnetic exciter mounted on top of the 

mounting frame provides the excitation force without introducing additional stiffness 

to the dynamic system. The exciter coil is fixed on the mounting frame while the 

permanent magnets of the exciter are fixed on the primary system which can be 



regarded as part of the primary mass. The linear guide is composed of 4 rotation 

bearings on each side face, and the smooth glassy surface for bearing motion allows 

reducing the parasitic damping of the primary system. A force sensor is used on the top 

of the primary mass to measure the excitation force. Two displacement sensors are used 

to measure the absolute displacement of the primary system mass and that of the DVA 

mass. A nylon tube with a pre-compressed DVA spring inside is fixed on the tuning 

mechanism of the FD to provide a rough linear guide for the DVA mass vibration. 

Moreover, an 8-bit electromagnetic relay combination is used to control the resistance 

of the variable resistor. 

The data acquisition and signal generation are conducted with the B&K PULSE 

7767 system. The driving signal to the exciter is amplified by the B&K 2712 power 

amplifier before sending it to the non-contact exciter.  

Fig. 13. Experimental set-up of DVA system with a tunable hybrid damper 

4.2 Fixed-points calibration 

The pre-requisite of the optimum DVA implementation is to tune the natural 

frequency ratio into the calculated parameters listed in Table 2 based on Eq.(11). 

However, some parameters (such as the mass of the primary system and that of the DVA) 

are not able to be quantified precisely, the system calibration can be conducted by 

tuning the fixed-points into the same value with different damping. With the selected 

spring of the primary system and DVA, and the natural frequency of the primary system 

is located at 9Hz, the only changeable parameter with no restriction is the DVA mass 

for achieving the optimum frequency ratio between the primary and the DVA system. 

To check whether the dimensionless vibration amplitude X1/Xst of the primary mass 𝑚1 



at the fixed-points (P and Q in Fig. 14) is equal or not, the displacement frequency 

response curves of the primary mass with three different damping values are plotted to 

find the fixed points. With better damping tunability and sufficient tuning range, the 

EMSD is utilized for the fixed-points calibration. As shown in Fig. 14, the fixed-points 

P and Q possess the same dimensionless magnitude with properly tuned DVA.  

Fig. 14. Fixed points calibration 

The next step is to tune the damping of the EMSD such that the fixed points P and 

Q become the peaks of the frequency response curve. The three curves in Fig. 14 

already show that the fixed points P and Q locate at different positions of the curve. 

With more precise tuning of the EMSD damping, the H optimal DVA is obtained by 

locating the maximum response points at the fixed points P and Q in the next section. 

4.3 Results analysis 

The measured response spectra of mass 𝑚1 with EMSD and FD are shown in Fig. 

15. With the fine-tuning of the EMSD damping, the optimal DVA with equal resonant

vibration amplitudes is achieved when the external resistance of EMSD equals 3Ω as

shown in Fig. 15a. On the other hand, when the deformation length of the tuning spring

is about 4 mm, H optimal tuning of the DVA is experimentally achieved. However, the

response magnitude is not able to maintain at exactly the same value near the fixed

points with different deformations of the tuning springs, especially with a large

damping force. The measurement results verified the conclusions from references [34-

36] that the FD functions better when the Coulomb damping force is small relative to

the excitation force. Therefore, FD is only suitable to provide coarse tuning of the

damping.

To investigate the FD influence on the DVA damping tuning, the response spectra 

of mass 𝑚1  with the proposed FD and EMSD within the working boundary are 



 

 

measured and plotted in Fig. 16. Similar results between Fig. 16 and Fig. 15a show that 

the FD with a small damping force has a slight influence on the stability of the DVA 

system. 

 

Fig. 15. Primary system response with two kinds of tunable dampers respectively: (a) 

tunable EMSD with different electrical resistances, (b) tunable FD with different 

deformations of tuning springs 

(a) 

(b) 



Fig. 16. Primary system response with the proposed hybrid damper when FD friction 

blocks are just connected and EMSD with different external resistance. (a) response 

curves in full frequency range, (b) closeup around the fixed-points. 

With the verification of tunability of the individual damper as described above, the 

hybrid damper is used for the H optimal DVA calibration with both EMSD and FD 

being activated. The response spectra in Fig. 15b show that the damping force provided 

by FD is sufficient for the optimal DVA damping requirement when the deformation of 

the tuning springs is between 4 mm and 6 mm. Therefore, tests on hybrid damper are 

conducted with the fixed FD when ∆𝑠 < 4 mm. The response curves of the primary 

mass with different ∆𝑠 of the FD and external resistance of EMSD are plotted in Fig. 

(a) 

(b)



 

 

17. The required tuning of ∆𝑠 of the FD and the corresponding external resistance of 

EMSD for H optimal DVA obtained from the experiments are listed in Table 3. 

 

Fig. 17. Primary system response with the proposed hybrid damper when EMSD 

external resistance varies and FD deformation length of tuning spring are fixed at: (a) 

1 mm, (b) 2 mm, (c) 3 mm, (d) 4 mm  

The damping adjustment of the proposed hybrid damper shows that FD can be 

utilized as a coarse tuning damper with the fine-tuning EMSD working together to 

achieve the optimum DVA. With the increasing deformation length of the FD tuning 

spring, the EMSD damping required by the H optimal DVA calls for higher external 

resistance. Therefore, the coarse damping tuning ability of the FD successfully shifts 

the EMSD from the sensitive domain into the non-sensitive domain as shown in Fig. 4 

to allow more precise tuning of the EMSD. 

Table 3. Tuned parameters of hybrid damper for H optimal DVA 

∆𝑠 of FD 𝑅𝑙𝑜𝑎𝑑 of EMSD 

not connected 1 Ω 

0mm (just connected) 1.5 Ω 

1 mm 2 Ω 

2 mm 2.75 Ω 

3 mm 4 Ω 

4 mm 6 Ω 

(a) 

(c) 

(b) 

(d) 



5. Conclusions

A hybrid damper with tunable Coulomb and electromagnetic shunt damping

(EMSD) is proposed to cope with applications requiring damping tunability. The 

proposed hybrid damper is applied to a DVA and H optimal damping of the absorber 

is achieved experimentally. The theoretical model of the hybrid damper with tunable 

damping is also experimentally verified. Coulomb damping can be adjusted by varying 

the compressive spring force acting on the friction blocks of the damper. The Coulomb 

damper is used to provide the coarse tuning of the hybrid damper while the EMSD 

supplements by offering fine-tuning of the damping to the damper. Both theoretical and 

experimental analyses show that the Coulomb damper is capable of enlarging the 

tunable range of the EMSD damping without compromising its tuning accuracy. The 

tunable EMSD adopts a six opposing magnet pair configuration which has been proved 

sufficiently effective. The damping provided by the EMSD is adjustable by varying the 

external electrical resistance of the EMSD circuit. Meanwhile, fine adjustment of the 

external resistance of the EMSD circuit provides sufficient tunability of the damping 

force of the damper. The measured damping coefficients match well with the calculated 

results from the theoretical models of the pure EMSD, FD, and the FD-EMSD hybrid 

damper. As an application example, the damper is implemented in a DVA which 

requires a precise tuning of the damping to work at its optimum condition. Experiments 

show that the H optimal working condition is readily setup owing to the FD-enabled 

coarse tuning and EMSD-induced fine-tuning abilities. Meanwhile, theoretical 

prediction, in terms of lowering the tuning sensitivity of the EMSD by its combined 

usage with the FD, is also confirmed by experiments.  
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Appendix. Hysteresis loops of the hybrid damper 

As a supplement to Fig. 12, the intact hysteresis loops of the proposed hybrid 

damper are plotted in Fig. A.1. The corresponding deformation of the tuning spring 

varies with the interval of 2 mm (∆𝑠 ≤ 8 mm ) or 4mm (∆𝑠 > 8 mm ). The model 

effectiveness of the proposed hybrid damper is verified through the agreement between 

experimental and simulation results, shown in Fig. A.1.   



(a) 

(c) 

(b) 

(d) 

(e) 

(g) 

(f) 

(h)



Fig. A.1. Hysteresis loops of the proposed tunable hybrid damper when the 

deformation of the tuning spring is (a) 2mm, (b) 4mm, (c) 6mm, (d) 8mm, (e) 12mm, 

(f) 16mm, (g) 20mm, (h) 24mm, (i)28mm, (j) 32mm, (k) 36mm, and (l) 40mm
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