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A B S T R A C T   

The sex hormones testosterone and estradiol influence brain structure and function and are implicated in the 
pathogenesis, prevalence and disease course of major depression. Recent research employing gender-affirming 
hormone treatment (GHT) of gender dysphoric individuals and utilizing positron emission tomography (PET) 
indicates increased serotonin transporter binding upon high-dosages of testosterone treatment. Here, we 
investigated the effects of GHT on levels of monoamine oxidase A (MAO-A), another key target of antidepressant 
treatment. Participants underwent PET with the radioligand [11C]harmine to assess cerebral MAO-A distribution 
volumes (VT) before and four months after initiation of GHT. By the time this study was terminated for technical 
reasons, 18 transgender individuals undergoing GHT (11 transmen, TM and 7 transwomen, TW) and 17 cis- 
gender subjects had been assessed. Preliminary analysis of available data revealed statistically significant 
MAO-A VT reductions in TM under testosterone treatment in six of twelve a priori defined regions of interest 
(middle frontal cortex (− 10%), anterior cingulate cortex (− 9%), medial cingulate cortex (− 10.5%), insula 
(− 8%), amygdala (− 9%) and hippocampus (− 8.5%, all p<0.05)). MAO-A VT did not change in TW receiving 
estrogen treatment. Despite the limited sample size, pronounced MAO-A VT reduction could be observed, 
pointing towards a potential effect of testosterone. Considering MAO-A’s central role in regulation of seroto-
nergic neurotransmission, changes to MAO-A VT should be further investigated as a possible mechanism by 
which testosterone mediates risk for, symptomatology of, and treatment response in affective disorders.   

1. Introduction 

Mental health disorders show clinical sex dichotomies that have been 
associated with differences in sex hormone levels: women are twice as 
likely to be diagnosed with major depressive disorder (MDD) (Kessler, 
2003), have greater illness severity (Young et al., 1990) and possibly a 

differential response to serotonergic antidepressants (Sramek et al., 
2016). Accumulating evidence from preclinical and clinical research 
illustrates substantial effects of sex hormones on serotonin neurotrans-
mission (Spies et al., 2020). Positron emission tomography (PET) allows 
for human in vivo investigation of sex hormone related changes to se-
rotonin proteins and function (Spies et al., 2020). 
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Sex differences in serotonin markers provide indirect evidence for an 
influence of sex hormones, as has been shown for serotonin synthesis 
(Frey et al., 2010; Sakai et al., 2006; Chugani et al., 1998; Nishizawa 
et al., 1997) and reuptake (Erritzoe et al., 2010; Kranz et al., 2014a, 
2014b), as well as 5-HT1A (Parsey et al., 2002; Jovanovic et al., 2008) 
and 5-HT4 receptor levels (Madsen et al., 2011). Other evidence comes 
from correlational studies linking sex hormone levels to serotonin pro-
tein levels, as is the case for the 5-HT1A (Lanzenberger et al., 2011; Witte 
et al., 2009; Stein et al., 2014) and 5-HT2A receptors (Frokjaer et al., 
2010). 

A more direct assessment is made possible by studies on serotonin 
markers during phases characterized by substantial changes in sex 
hormone levels. For example, monoamine oxidase A (MAO-A), which 
degrades serotonin and for which increased expression can be under-
stood as an endophenotype of MDD (Meyer et al., 2006), was shown to 
be elevated in the early postpartum period (Sacher et al., 2010) and in 
postpartum depression (Sacher et al., 2015). 

However, strongest evidence for an influence of sex hormones on 
human serotonin neurotransmission comes from treatment studies 
linking exogenous sex hormone administration to changes in serotonin 
markers. For example, hormone replacement therapy (HRT) in post-
menopausal women has been shown to increase cortical 5-HT2A recep-
tor (Moses et al., 2000; Moses-Kolko et al., 2003) and decrease serotonin 
transporter (5-HTT) levels (Jovanovic et al., 2015). 

In this context, gender-affirming hormone treatment (GHT) in 
transgender individuals, which aims to adjust physical appearance in 
accordance with gender identity, provides a unique investigatory 
framework (Kranz et al., 2020). GHT in transmen (TM) i.e., assigned 
women at birth with male gender identity, allows for the investigation of 
long-term effects of high dosages of testosterone on the brain. 
Conversely, GHT in transwomen (TW), i.e., in assigned men at birth with 
female gender identity, provides information on the effects of high 
dosages of estradiol and anti-androgen treatment. Using this approach, 
we recently observed testosterone treatment related increases in 5-HTT 
levels in TM in several cortical and subcortical brain regions (Kranz 
et al., 2015). These effects are in line with preclinical studies showing 
increased SLC6A4 messenger RNA and 5-HTT protein expression upon 
testosterone exposure (McQueen et al., 1999). 

However, membrane 5-HTT levels are usage dependent and posi-
tively related to synaptic serotonin levels (Ramamoorthy and Blakely, 
1999). Hence, reduction in serotonin degradation and resulting increase 
in synaptic serotonin and serotonin reuptake via 5-HTT offers an alter-
native explanation to our previous PET findings (Kranz et al., 2015). 
Indeed, animal research supports this interpretation (Smith et al., 2004) 
whereas human research testing this hypothesis is lacking. Hence, we 
aimed to investigate the effects of GHT on MAO-A levels using PET. 
Based on animal research (Bethea et al., 2015; Briggs and Briggs, 1972), 
we hypothesized that MAO-A VT would be reduced both in TW and TM 
after four months of estrogen and testosterone treatment, respectively. 

2. Methods and materials 

2.1. Participants 

Eighteen transgender individuals (11 TM and 7 TW) and 17 cis- 
gender controls (9 CW, 8 CM) participated in this study. Transgender 
participants reported gender dysphoria starting before or at puberty. 
Mean age was numerically larger in TW 33.4±13.3 (mean±SD) 
compared to TM 23.9±6.8 and cis-controls 26.8±7.7, but this difference 
was not statistically significant (p>0.05, ANOVA). Transgender in-
dividuals were included if they had a DSM-5 diagnosis of gender 
dysphoria (302.85), had no steroid hormone treatment within 6 months 
prior to inclusion, and were seeking GHT. As in our previous studies, e. 
g., (Kranz et al., 2014a, 2014b, 2018, 2017, 2015), transgender and 
control participants underwent a standard medical examination 
including ECG, physical examination and routine laboratory testing to 

rule out internal and neurological disorders. Further exclusion criteria 
were pregnancy (positive urine pregnancy test) or breastfeeding, other 
psychiatric comorbidities as determined by the Structured Clinical 
Interview for DSM-IV (SCID) as well as body dysmorphic disorder 
(DSM-5: 300.7). Current psychopharmacologic treatment, current sub-
stance abuse, as well as stainless steel grafts and other contradictions for 
MRI or PET were further exclusion criteria. All subjects provided written 
informed consent. The study was approved by the Ethics Committee of 
the Medical University of Vienna (1104/2015). 

2.2. Study design and treatment protocol 

The study was designed as a longitudinal mono-center study (Clin-
icalTrials.gov Identifier: NCT02715232). TM and TW underwent a 
baseline scan before start of GHT (PET 1) and a second scan four months 
(136.1±22.2 days) into GHT (PET 2). Cis-gender controls (CW, CM) 
underwent two scans with the time interval of 139–273 days between 
PET 1 and PET 2 to determine the test-retest variability of MAO-A VT. 
Baseline scans in TM and CW were performed irrespective of their 
menstrual cycle phase. GHT followed protocols routinely implemented 
at the Department of Obstetrics and Gynecology, Unit for Gender 
Identity Disorder at the Medical University of Vienna. GHT is based on 
estrogen, progesterone and testosterone administration and alters sex 
hormone levels in the direction of those of the desired gender. TM 
received 1000 mg testosterone undecanoate every 12 weeks (Nebido® 
250 mg/ml, 4 ml vial, intramuscular). TW received daily 50 mg 
cyproterone acetate (Androcur® 50 mg tablet, oral). Additionally, TW 
over 40 years of age received daily doses of 100 μg estradiol (Estradot®/ 
Estramon®, transdermal therapeutic system applied twice a week) while 
those less than 40 years of age received 4 mg/day estradiol hemihydrate 
(Estrofem® 2 mg, oral). Hamilton Depression rating scale (HDRS) was 
assessed by an experienced clinician at a screening as well as at a follow- 
up visit after PET 2. 

2.3. Serum sampling 

Blood samples were collected prior to PET scanning for transgender 
individuals at each visit. Plasma levels of estradiol (E2), testosterone (T) 
and progesterone (P) were determined using quantitative electro-
chemiluminescence immunoessay method (ECLIA) at the Department of 
Laboratory Medicine, Medical University of Vienna, Austria 
(http://www.kimcl.at). 

2.4. Positron emission tomography 

Synthesis and quality control of [11C]harmine, (7-[11C]methoxy-1- 
methyl-9H-pyrido[3,4-b]indole) was performed as published by our 
group by means of a GE TRACERlab FX C Pro module (Philippe et al., 
2015). [11C]harmine was produced with a radiochemical purity of >95% 
and a radiochemical yield (end of synthesis) of 6.8±3.0 GBq/µmol and 
molar activity of 158.1±114.4 GBq/µmol. The molar activity at the time 
of administration was 105.1±91.1 GBq/µmol. All PET scans were 
performed in a GE Advance full-ring scanner (General Electric Medical 
Systems, Milwaukee, WI, USA) at the Department of Biomedical Imaging 
and Image-guided Therapy, Division of Nuclear Medicine, Medical 
University of Vienna as described previously (Baldinger-Melich et al., 
2019; Spies et al., 2018; James et al., 2019). Briefly, a 5 min transmission 
scan was done using retractable 68Ge rod sources for tissue attenuation 
correction. Data acquisition started simultaneously with an intravenous 
bolus injection of [11C]harmine (4.6 MBq/kg body weight). PET scans 
were acquired in 3D mode with a total scanning time of 90 min, separated 
into 51 optimized time frames, a spatial resolution of 4.36 mm FWHM one 
cm next to the center of the field of view and reconstructed in 35 trans-
axial section volumes with an iterative filtered backprojection algorithm 
(128×128 matrix). Automatic arterial blood sampling was carried out 
continuously for the first 10 min at a rate of 4 ml/min (ALLOGG, 
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Mariefred, Sweden) and manually at 5, 6, 7, 8, 10, 20, 40, 60, and 80 min 
after [11C]harmine injection (Ginovart et al., 2006). A gamma counter 
cross-calibrated to the PET system was used to obtain radioactivity con-
centrations in whole blood and plasma. Samples at 6, 7 and 8 min were 
used for individual cross-calibration between manual and automated 
blood sampling. Radioactive metabolites of the tracer were determined 
using high-performance liquid chromatography (HPLC) (Hilton et al., 
2000). 

2.5. Magnetic resonance imaging (MRI) 

For co-registration of PET data in SPM12 (Wellcome Trust Center for 
Neuroimaging, London, United Kingdom; http://www.fil.ion.ucl.ac. 
uk/spm/), every participant underwent a T1-weighted structural MRI 
scan performed using a 3 Tesla PRISMA MR Scanner (Siemens Medical, 
Erlangen, Germany, MPRAGE sequence: TE/TR=2.19/2000 ms, flip 
angle=9◦, 1×1 mm voxel size, 1 mm slice thickness, 256 slices). 

2.6. Data preprocessing and MAO-A quantification 

Quantification was carried out using PMOD 3.509 (PMOD Technol-
ogies Ltd., Zurich, Switzerland; www.pmod.com). By multiplication of 
fitted whole blood activity, plasma-to-whole blood ratio and the fraction 
of intact radioligand in the plasma, the final arterial input function (AIF) 
was obtained. Next, the Logan plot, using estimated AIF and the time 
activity curve of the thalamus as high uptake region, was used to 
quantify voxel-wise MAO-A total volume of distribution (VT). Regional 
VT were delineated by regions-of-interest (ROIs) from a modified AAL 
atlas (Savli et al., 2012), in combination with a delineation of the dorsal 
and median raphe nucleus in MNI space (Kranz et al., 2012). See Fig. 1 
for analyzed ROIs. The primary endpoint of the analyses was MAO-A VT 
in 12 ROIs, namely the middle frontal cortex, the insula, the anterior, 
middle, and posterior cingulate cortex, hippocampus, amygdala, 
caudate, putamen, thalamus, as well as dorsal and median raphe nu-
cleus. ROI-selection was based on our previous study investigating the 
effects of GHT on 5-HTT (Kranz et al., 2015). 

2.7. Statistics 

Linear mixed model analysis was used. The global model included 
group (transgender, cis-controls), PET (PET 1, PET 2) and ROI (11 a- 
priori defined ROIs) as factors and MAO-A VT as dependent variable. 
This was followed by post hoc models and pairwise comparisons. Mul-
tiple testing was corrected using Fisher least significant difference pro-
cedure in accordance with the closed test principle, i.e., post hoc models 
were declared nonsignificant if the comparison of interest in the global 
model (i.e., of the three-way interaction) was nonsignificant, but carried 
out without further correction in case of a significant p value in the 

global model. Likewise, linear mixed models were computed to assess 
treatment-induced changes in plasma hormone levels. Finally, associa-
tions between treatment-induced hormonal changes and changes in 
regional MAO-A VT were calculated using correlation analysis. Here, the 
Bonferroni procedure was applied to prevent alpha inflation (twelve 
separate tests). SPSS version 24 for Windows (SPSS Inc., Chicago, Illi-
nois; www.spss.com) was used for statistical analyses. 

3. Results 

Measurements were terminated prematurely (December 2019) due 
to irreparable damage of the PET scanner. By then, 52 scans suitable for 
quantitative analysis were available including 16 scans from TM, 10 
scans from TW, 15 scans from CW and 11 scans from CM. At screening, 
HDRS was 3.89±5.56, 3.00±4.69, 0.00±0.00 and 0.63±0.44 in TM, 
TW, CM and CW, respectively. After PET2 HDRS was 4.00±5.57, 
4.86±7.03, 0.20±0.45 and 0.38±1.06 (TM, TW, CM, and CW). 

3.1. GHT effects on plasma hormone levels 

As anticipated, testosterone plasma levels changed over time as a 
result of GHT in TM and TW compared to cis-controls, illustrated by a 
statistically significant group by time interaction effect (F2,13=172, 
p<0.001). Post hoc analysis revealed expected increase (F1,15=8, 
p=0.014) and decrease (F1,6=58, p<0.001, see Fig. 2a and b, for means 
and SD, see Table 1), in testosterone levels in TM upon testosterone 
treatment and TW upon anti-androgen treatment, respectively, whereas 
no change was observed in controls (F1,24=1, p>0.05). Conversely, 
estradiol treatment led to a numerical increase in plasma estradiol levels 
in TW towards female levels whereas levels declined in TM (see Table 1). 
However, these changes were not statistically significant. Similarly, 
there was no significant effect of GHT on progesterone levels, although 
values changed in the expected directions in TM and TW, see Table 1. 

3.2. MAO-A VT change in TM, TW and cis-controls 

Investigating a change in MAO-A VT in TM compared to cis-controls 
in the global model revealed a three-way interaction between group, 
PET and ROI (F11,43=2, p=0.043), in addition to a main effect of ROI 
(F11,68=171, p<0.001) and an interaction between group and PET 
(F1,49=10, p=0.002). Post hoc pairwise comparisons between PET 1 and 
PET 2 for each separate ROI in TM revealed significant reductions in 
middle frontal cortex (− 10%, p=0.014), anterior cingulate cortex (− 9%, 
p=0.028), medial cingulate cortex (− 10.5%, p=0.001), insula (− 8%, 
p=0.020), amygdala (− 9%, p=0.017) and hippocampus (− 8.5%, 
p=0.002), see Fig. 2c, for means and SD, see Table 2. To validate this 
effect, we performed additional Wilcoxon Signed Rank Tests given the 
small sample size. This analysis revealed significant MAO-A VT 

Fig. 1. Triplanar sections (axial, 
sagittal, coronal) of MAO-A distribution 
volume (MAO-A VT) in cis-control sub-
jects (17 PET 1 scans) projected on a T1- 
weighted anatomical MR image in 
Montreal Neurological Institute stan-
dard space (black cross coordinates: 
x=− 2, y=− 14, z=6). Regions of interest 
used for analyses are marked with white 
borders: middle frontal cortex (MFC), 
insula (INS), anterior cingulate cortex 
(ACC), medial cingulate cortex (MCC), 
posterior cingulate cortex (PCC), hip-
pocampus (HIP), caudate (CAUD), pu-
tamen (PUT), thalamus (THAL), dorsal 
raphae nuclei (DRN) and median raphae 
nucleus (MRN).   
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reductions in the same six out of twelve ROIs as observed in the mixed 
models analysis (all p<0.05). Test-retest variability was <5% in regions 
showing statistical significance, see supplement (Table S1). Based on 
previous literature associating affective symptoms (Meyer et al., 2006) 
with MAO-A, analyses were repeated including HDRS scores as cova-
riates. This step rendered the three-way interaction between group, PET 
and ROI non-significant (F11,41=1.8, p=0.079) in the global model but 
did not change the significance of post hoc pairwise comparisons be-
tween PET 1 and PET 2 for each separate ROI in TM. 

Investigating the effect of estradiol and anti-androgen treatment on 
regional MAO-A VT in TW compared to cis-controls in the global model 
revealed a significant main effect of ROI (F11,70=99, p<0.001), an 
interaction between group and PET (F1,46=5, p=0.035) and an inter-
action between group and ROI (F11,70=3, p=0.007) but no significant 
two-way interaction between group, PET and ROI (p>0.05). Exploratory 
post hoc pairwise comparisons between PET 1 and PET 2 for each 
separate ROI in TW confirmed no significant changes in any investigated 
ROIs, for means and SD, see Table 2. 

Finally, examining the test-retest variability of MAO-A VT in controls 

revealed a main effect of ROI (F11,55=105, p<0.001) and a main effect of 
PET (F1,32=9, p=0.006) but no significant interaction between ROI and 
PET (F11,27=1, p>0.05). The main effect of PET indicated on average 
higher MAO-A VT at PET 2 compared to PET 1. However, exploratory 
post hoc pairwise comparisons between PET 1 and PET 2 showed no 
significant changes in separate ROIs except for the MRN (p=0.026), for 
means and SD, see Table 2. 

3.3. Association between testosterone increases and changes in MAO-A 
VT in TM 

Correlation analysis revealed no statistically significant association 
between GHT induced increases in testosterone plasma levels and 
changes in MAO-A VT in any investigated ROI (all p>0.05, corrected). 

4. Discussion 

Utilization of GHT of transgender individuals as an investigatory 
framework (Kranz et al., 2018, 2017, 2015, 2020; Hahn et al., 2016; 
Seiger et al., 2016; Spies et al., 2016) has provided our lab the unique 
opportunity to study the long-term effects of high dosages of testos-
terone and estradiol on the living human brain. Effects on serotonin 
neurotransmission are of particular relevance given the neurotransmit-
ter’s pathophysiologic and therapeutic role in affective and anxiety 
disorders (Spies et al., 2015). Here we demonstrate MAO-A VT reduction 
in several cortical and subcortical limbic brain regions in TM receiving 
GHT, which may be suggestive of a suppressive effect of testosterone. 

A negative effect of testosterone on MAO-A VT would be in line with 
previous animal data and human studies assessing plasma MAO activity. 
MAO-A suppression by testosterone was observed in the dorsal raphe 
nucleus of macaques (Bethea et al., 2015) while correlational research 
indicates a negative association between plasma testosterone 

Fig. 2. Bar chart showing changes in hormone plasma 
levels and regional monoamine oxidase A (MAO-A) vol-
umes of distribution over the course of gender-affirming 
hormone treatment (GHT). (a) plasma levels of testos-
terone and (b) estradiol in transmen (TM) and transwomen 
(TW) at the two PET scanning days. (c) MAO-A VT at the 
two PET scanning days in twelve a priori defined regions of 
interest. Depicted are means±SD at baseline (PET 1) and 
after four months of GHT (PET 2). MFC, middle frontal 
cortex; INS, insula; ACC, anterior cingulate cortex; MCC, 
medial cingulate cortex; PCC, posterior cingulate cortex; 
HIP, hippocampus; AMY, amygdala; CAUD, caudate; PUT, 
putamen; THAL, thalamus; DRN, dorsal raphe nucleus; 
MRN, median raphe nucleus. *indicates a significant 
change at p<0.05.   

Table 1 
Plasma hormone levels before (PET 1) and after four months (PET 2) of testos-
terone treatment in transmen (TM) and anti-androgen and estrogen treatment in 
transwomen (TW). Values represent means ±SD. *Indicates significant differ-
ence from PET 1, p<0.05. T, testosterone; E2, estradiol; P, progesterone.   

TM TW  

PET 1 PET 2 PET 1 PET 2 

N 10 6 6 4 
Testosteroneng/ml 0.9±1.6 2.9±0.8* 6.0±1.5 0.2±0.2* 
Estradiolpg/ml 107.7±58.9 75.8±70.9 34.2±7.3 183.0±237.1 
Progesteroneng/ml 4.2±6.1 2.2±4.5 0.2±0.2 0.7±0.7  
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concentration and plasma MAO activity in healthy men (Briggs and 
Briggs, 1972). However, the latter study also found a negative associa-
tion between estradiol concentration and plasma MAO activity in 
healthy females (Briggs and Briggs, 1972) raising the possibility that 
testosterone exerts its suppressive effect on MAO activity via aromati-
zation to estradiol, which is also supported by animal data (Bethea et al., 
2015). Indeed, conversion to estradiol is proposed for many of testos-
terone’s actions, including its effect on 5-HTT expression, as suggested 
in our previous study (Kranz et al., 2015). The observed MAO-A VT re-
ductions under testosterone treatment could be subject to the same 
mechanism, though this is not specifically assessed via our study design. 
However, the lack of an effect of estrogen treatment in TW speaks 
against this theory. Previous MAO-A PET studies in post-partum women 
(Sacher et al., 2010) and women in perimenopause (Rekkas et al., 2014) 
that highlight a negative association between estrogen levels and 
MAO-A also speak against this theory. These findings may be harmo-
nized by the concept that estrogen and testosterone require additional 
moderating effects specific to certain endocrinologic settings (i.e., 
perimenopause, post-partum, GHT). In addition, in theory, aromatiza-
tion dependent and independent estrogen effects are not necessarily 
mutually exclusive. 

Regarding the mechanism via which sex hormones affect MAO-A 
expression, both specific modulation via genomic processes, as illus-
trated by animal studies (Gundlahet al, 2002), as well as secondary ef-
fects resulting from other monoaminergic changes should be discussed. 
In animal studies, estrogen and testosterone impact expression or 
function of several serotonergic proteins (Spies et al., 2020). A human in 
vivo PET study shows MAO-A expression to be dependent on levels of its 
substrates serotonin and dopamine (Sacher et al., 2012). Thus, the effect 
we observed may, in fact, be secondary to other changes within the 
monoamine systems. For example, we previously demonstrated 
increased 5-HTT under high-dose testosterone treatment (Kranz et al., 
2015). 5-HTT regulates extracellular 5-HT levels and 5-HT tone (Spies 
et al., 2015) and thus, based on (Sacher et al., 2012), potentially MAO-A 
expression. In addition, membrane 5-HTT levels are positively related to 
synaptic 5-HT levels because 5-HT inhibits 5-HTT downregulation 
(Ramamoorthy and Blakely, 1999). Thus, changes to MAO-A VT may 
also impact on 5-HTT levels. 

Clinical studies speak towards antidepressant efficacy for testos-
terone. For example, recent correlational evidence from a large cross- 
sectional trial shows a negative association between bioavailable 
testosterone and subjective depressive symptoms (Chen et al., 2020). 
Testosterone replacement therapy results in a modest improvement of 
depressive symptoms in older men with low testosterone levels (Dos 
Santos and Bhasin, 2020). In addition, low-dose testosterone augmen-
tation of antidepressant-resistant MDD may also improve depressive 

symptoms in women (Miller et al., 2009). On the other hand, increased 
MAO-A is considered an endophenotype of depression (Meyer et al., 
2006). We postulate that testosterone’s effects on MAO-A might serve as 
a mechanism via which it exerts antidepressant properties. However, 
our study design, which does not assess depressed individuals or track 
depressive symptoms, only allows for cautious proposition of this 
concept, which would require further evaluation in a clinical setting. 

In addition to a potential testosterone mediated effect, MAO-A 
reduction under GHT may also reflect improvement of gender 
dysphoria. If the latter is understood as tangent to a depressive state and 
increased MAO-A is found in depression (Meyer et al., 2006), 
improvement of the depressive symptoms exhibited in gender dysphoria 
could be accompanied by a reduction in MAO-A. This theory is, how-
ever, contradicted by findings of increased MAO-A even after antide-
pressant treatment and response (Meyer et al., 2006). We utilized HAMD 
for assessment of depressive symptoms. However, scores were generally 
low, suggesting that HAMD may insufficiently assess symptoms specific 
to gender dysphoria. This point remains to be elucidated by further 
studies utilizing scales tailored to assessment of gender dysphoria. 

Our study has several limitations, first and foremost its limited 
sample size. Results therefore remain preliminary and await further 
validation from replication studies in considerably larger samples. The 
small sample size in our study may also underlie the absence of a sta-
tistically significant correlation between GHT-induced testosterone 
plasma level changes and changes in MAO-A VT. GHT did not have a 
statistically significant effect on estradiol plasma levels in TW and range 
in values under GHT was broad, potentially attributable to treatment in 
a real world clinical setting. Another limitation pertains to the gener-
alizability of results given that our findings were observed in trans-
gender individuals who may exhibit neural features that are specific to 
their condition. Indeed, such specific neural features have been observed 
by us and others, including alterations within the serotonergic system 
(Kranz et al., 2014a, 2014b). Furthermore, we recognize that we are not 
able to address additional clinical and behavioral characteristics that 
have been associated with MAO-A including personality traits, partic-
ularly aggression (Soliman et al., 2011), nor MAO-A’s role in moderating 
the effects of childhood maltreatment (Ouellet-Morin et al., 2016). In 
addition, we were not able to correct for smoking which (Fowler et al., 
1996; Leroy et al., 2009), together with nicotine-withdrawal, have been 
shown to impact on cerebral MAO-A (Bacher et al., 2011). Furthermore, 
because psychiatric comorbidities were excluded in our sample, caution 
is warranted when interpreting the observed effects of testosterone on 
MAO-A VT as an underpinning for the hormone’s clinical effects in 
depression. 

Table 2 
Gender-affirming hormone treatment (GHT)-induced MAO-A VT changes over time in twelve a priori regions of interest (ROI) in transmen (TM), transwomen (TW) and 
cis-gender controls. Values represent means±SD at baseline (PET 1) and four months after (PET 2) start of GHT. *indicates significant changes from PET 1 at p<0.05. 
MFC, middle frontal cortex; INS, insular cortex; ACC, MCC, PCC, anterior, middle and posterior cingulate cortex, resp.; HIP, hippocampus; AMY, amygdala; CAUD, 
caudate; PUT, putamen; THAL, thalamus; DRN, dorsal raphe nucleus; MRN, median raphe nucleus.   

TM TW Cis-controls  

PET 1 PET 2 PET 1 PET 2 PET 1 PET 2 

N 10 6 6 4 17 9 
MFC 15.1±2.2 13.7±1.7* 13.1±2.7 13.1±1.7 14.2±2.2 15.8±1.9 
INS 16.7±2.1 15.4±2.2* 14.7±2.7 14.6±2.4 15.7±2.1 17.4±2.5 
ACC 17.5±2.3 15.9±2.1* 15.1±3.0 15.0±2.1 16.2±2.4 18.0±2.3 
MCC 17.2±2.5 15.4±2.2* 14.7±3.0 14.6±2.0 16.1±2.3 18.0±2.6 
PCC 15.7±2.6 13.9±2.2 13.5±2.2 13.8±3.0 15.2±2.2 17.4±3.1 
HIP 15.3±2.0 14.0±1.8* 13.3±2.8 12.7±2.4 14.5±1.9 16.2±2.9 
AMY 15.5±2.7 14.1±1.6* 13.1±2.6 12.5±2.0 14.7±2.2 16.4±2.9 
CAUD 15.5±2.2 14.4±1.8 14.3±2.4 14.3±3.0 14.±2.0 16.1±2.4 
PUT 15.8±2.4 15.0±2.0 14.5±2.4 14.7±3.1 15.1±2.0 16.7±2.6 
THAL 22.5±3.1 20.7±2.6 19.2±3.7 19.4±3.0 21.0±2.9 23.7±3.9 
DRN 19.8±2.6 17.5±2.4 16.7±3.1 16.8±2.6 19.5±3.0 21.5±4.0 
MRN 14.9±2.4 13.8±2.0 13.7±2.9 12.8±1.9 14.4±2.2 16.7±2.6  
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4.1. Conclusion 

We observed regional MAO-A VT reduction in TM under GHT, 
pointing towards a potential suppressive effect of long-term high-dosage 
testosterone treatment. These findings might in theory be interpreted in 
the context of MAO-A’s role within the serotonergic hypothesis of 
depression and testosterone’s antidepressant properties. Further studies 
should investigate whether modulation of MAO-A may serve as a 
mechanism by which testosterone exerts its antidepressant effects. 
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