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Abstract

Background: Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is
considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing
in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and
its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular
biology and herbal medicine.

Methods: A literature search was performed from inception to March 2020 using following keywords: “Lycium
barbarum polysaccharide”, “DNA damage”, antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis,
chondrocytes, fibroblasts, osteoblasts, osteoclasts, and “bone mesenchymal stem cell”. The initial search yielded
2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the
authors.

Results: In literature different in vitro and in vivo ageing models are used to demonstrate LBP’s ability to reduce
oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the
evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-
associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta,
and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the
disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory
effects were reported.

Conclusion: Our findings strongly support further investigations into the senolytic effect of LBP in the context of
age-related OA.

Keywords: Lycium Barbarum polysaccharides, Reactive oxidative species, Mitochondrial dysfunction, Cellular
senescence, Osteoarthritis
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Background
Osteoarthritis (OA) is one of the fastest growing disabil-
ities worldwide and is typically associated with irregular
chronic pain which affects patients’ quality of life. OA
has attracted many scientists throughout the centuries
to explore its underlying mechanisms. However, to date
there is still no disease-modifying drug available [1].
Consequently, identifying risk factors and selecting the
right targets remain a great and unmet challenge in the
OA field [2]. Today, OA research has confirmed that
among others, hypertension, obesity and joint injury are
associated with the induction of OA [2–5].
Evidence showed that the prevalence of OA increases

with age. Different studies found that the incidence of
OA dramatically increased with age both in women and
men from all regions of the world [6, 7]. It affects an es-
timated 10% of men and 18% of women over 60 years
old [6]. At present, with the rapid ageing population, the
global incidence of OA is also rising steadily and it is es-
timated that 67 million people in the United States will
be affected by 2030 [8]. All the evidence confirms OA as
an age-related disease.
Hence, over the past decade, the role of ageing in the

pathogenesis of OA has been intensively investigated [9,
10]. According to Lopez-Otin et al., there are nine hall-
marks of ageing: genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated
nutrient-sensing, mitochondrial dysfunction, cellular
senescence, stem cell exhaustion, and altered intercellu-
lar communication. Most of them are caused by oxida-
tive stress and reactive oxygen species (ROS) whose
imbalance is a key feature of ageing [11]. In the patho-
genesis of OA, most of these hallmarks, including gen-
omic instability, mitochondrial dysfunction, and cellular
senescence, have been studied [12]. For example, rapid
increase of ROS leads to mitochondrial DNA (mtDNA)
damage and mitochondrial dysfunction, causing prema-
ture chondrocyte senescence and apoptosis, which even-
tually increases the risk of OA [13–15]. Therefore,
blocking major senescence signalling pathways in OA
pathogenesis could be a valid method in delaying the on-
set of OA meanwhile it also creates the possibility of
using anti-ageing reagents as emerging drug candidates
for OA treatment.
Lycium barbarum (LB, Gouqi, wolfberry, or Fructus

lycii) is a well-known traditional herb with widespread
distribution [16]. It is extremely important in China and
other Asian countries, not only because it can be used as
nutritional supplement in daily life, but also because
of its medicinal value [17–19]. Especially in recent
years, with the in-depth study of LB, it has been
highly valued by Chinese and foreign medical scien-
tists and dietetic health experts for its antioxidant
and anti-ageing effects [20–26].

Lycium barbarum polysaccharide (LBP), the most
abundant functional component of wolfberry [27], is an
important functional additive of dietary supplements
and plays an important role in the anti-ageing and anti-
oxidant function of LB. Xue S, et al. reported that a dose
of 220 μg/mL and a dose of 440 μg/mL LBP could re-
verse the H2O2-induced oxidative injury [28]. Another
study suggested that LBP could extend the average life
span of Drosophila melanogaster due to an increase in
antioxidant activity, i.e. an upregulation of the SOD and
CAT levels [29]. Moreover, LBP has been studied in the
reproductive system [30–37] as well as in the cells and
tissues derived from different germ layers [38–48] to
evaluate its protective value. Again, LBP performed ex-
cellently in scavenging free radicals, maintaining mito-
chondrial function and showed exquisite antioxidant
effects. Recently, numerous mice models also showed
the same results [49–53]. Overall, these findings demon-
strated that LBP has good ROS-reducing and antioxidant
properties in different in vivo and in vitro models. This
will restore the oxidative stress balance and finally at-
tenuate ageing to some extent. Based on its properties,
we hypothesized that LBP could act as an anti-ageing re-
agent that may have the potential to prevent age-related
OA.
Although the pathological mechanism of ageing-

associated OA and LBP anti-ageing effects have been
discussed for several years, the direct effects of LBP in
the treatment of OA are relatively less studied up to this
moment [54–57]. Therefore, in this review, we provided
an overview of the pathogenesis of OA focussing on the
role of genomic instability, mitochondrial dysfunction
and cellular senescence. Next, we systematically searched
the published studies for the LBP anti-ageing effects in
different models. Additionally, we attempted to postulate
the beneficial effect of LBP on the pathogenesis of OA.
Finally, we proposed LBP as a potential treatment
against OA and try to provide a new horizon for
pharmaceutical scientists.

Methods
The workflow of our systematic review on LBP has been
illustrated in Fig. 1. In brief, the search was performed in
March 2020 by using the keyword “Lycium barbarum
polysaccharide” combined with “DNA damage”, antioxi-
dant, anti-apoptosis, anti-inflammation, anti-ageing,
osteoarthritis, chondrocytes, fibroblasts, osteoblasts, os-
teoclasts, and “Bone Mesenchymal Stem Cell”. A total of
2287 records were identified by different databases. The
filter was set to select all articles published in peer-
reviewed journals, which were available in full text and
written in English or Chinese, excluding duplication arti-
cles, resulting in 544 articles. Next, a screening for topic
relevance through title and article abstracts was
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performed. In the end, 35 studies were selected for final
analysis, including in vitro studies, animal studies, and
clinical studies.

Results
Hallmarks of ageing in the pathogenesis of OA
OA is a degenerative joint disease characterized by car-
tilage degeneration, synovial hypertrophy and functional
ligament damage. The occurrence of OA is a complex
biological process in which multiple factors, such as gen-
etic factors, gender, diet, obesity and age, play a role
[58]. Among them, advanced age is most closely related
to OA [2]. In-depth studies showed that oxidative stress

and excessive accumulation of ROS are important fac-
tors leading to ageing and that they are involved in al-
most all hallmarks of the ageing process [11, 59, 60]. In
the following, different hallmarks of ageing, including
genomic instability (DNA damage and telomere attri-
tion), mitochondrial dysfunction, cellular senescence,
and other factors involved in cartilage degradation in the
pathogenesis of OA will be discussed.

Genomic instability (telomere attrition and DNA damage)
Genomic instability is the most direct hallmark of ageing
in OA. In the classic replicative senescence hypothesis,
telomere attrition is one of the major markers of ageing.

Fig. 1 The flowchart of literature search and systemic review
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As the cell undergoes mitosis, the telomere length grad-
ually shortens until it reaches the minimum length re-
quired for replication, eventually leading to cell cycle
stagnation [61]. As early as the beginning of the twenty-
first century, telomere erosion has been confirmed in
isolated human cartilage, and it has become more ser-
ious with age [7]. The research findings supported that
there was a partial association between OA and replica-
tive senescence [7]. However, not all elderly suffers from
OA, which means that in addition to telomere erosion
caused by replicative senescence, there are other forms
of telomere damage, which may be the main cause of
the onset of OA [62–65].
Fortunately, more and more researchers have paid at-

tention to this problem in recent years, and a large
amount of evidence has emerged to prove that exogen-
ously induced cellular senescence, also known as stress-
induced senescence, is associated with OA [59, 65–68].
There is evidence showing that a high concentration of
oxygen leads to premature senescence of human articu-
lar chondrocytes through increased telomere erosion
and mtDNA damage [66]. Telomere shortening or DNA
damage activates tumour protein p53 which later pro-
motes the expression of p21 and p16, ultimately leading
to cellular senescence [3]. Subsequently, another experi-
ment explained that ROS accelerates the senescence of
human chondrocytes by inducing telomere instability
which is responsible for the occurrence of OA [65]. Of
note, the level of ROS is a critical factor in ageing. The
sensitivity of telomere terminus to ROS plays an essen-
tial role in the pathogenesis of OA.

Mitochondrial dysfunction
Mitochondrial dysfunction, another manifestation of
ageing, occurs in response to damage, including oxida-
tive and inflammatory damage. It is also one of the im-
portant hallmarks of age-related OA.
The major cause of chondrocytes mitochondrial dys-

function is the rapid increase of ROS generation [69–
72]. In OA chondrocytes, it has been observed that
boosting ROS changed the adenosine triphosphate
(ATP) synthesis and mitochondrial respiratory chain
(MRC) activity, which ultimately lead to mitochondrial
dysfunction [72]. Recently, it has been reported that
mitochondria will rapidly release ROS and superoxide
radicals after a single, blunt-impact injury performed to
osteochondral explants in vitro, causing acute chondro-
cytes death and exacerbating OA characterization [70].
It is suggested that mitochondrial dysfunction is highly
related to OA. A rabbit model demonstrated that mito-
chondrial dysfunction caused by advanced oxidation
production products (AOPPs) could lead to chondro-
cytes apoptosis and aggravate the osteoarthritic symp-
toms of rabbit cartilage [71].

In addition, high expression of inflammatory factors in
chondrocytes was another reason for mitochondrial dys-
function. Recent studies showed that upregulation of IL-
1β and TNF-α could induce overexpression of NO
which damaged mtDNA and reduced mitochondrial
transcription [3, 73]. It also revealed that pro-
inflammatory factors contribute to the process between
mitochondrial damage and apoptosis in chondrocytes [3,
73]. Furthermore, other studies have shown that in the
absence of autophagy, mtDNA mutations and reduced
mtDNA repair capacity could also lead to mitochondrial
dysfunction in chondrocytes, exacerbating the risk of
OA [74–76].
Mitochondrial dysfunction may induce several patho-

logical processes of OA, including oxidative stress re-
sponse, chondrocyte apoptosis as well as acute
chondrocytes death [77]. Taken together, inhibiting or
repairing mitochondrial dysfunction could be an emer-
ging strategy for OA.

Cellular senescence
Cellular senescence is one of the nine recognized hall-
marks of ageing. Normally, somatic cells have a Hayflick
limit, that is a maximum of ~ 50 divisions. This is
followed by growth arrest which is called senescence
[78]. The senescent cells (SnCs) remain viable and meta-
bolically active but secrete a variety of pro-inflammatory
cytokines, growth factors, chemokines and proteinases
known as the senescence-messaging secretome or
senescence-associated secretory phenotype (SASP) [79,
80]. Senescence is a protective mechanism in various
physiological processes, for example it evokes tumour
suppression and limits fibrosis in wound healing [81].
On the other hand, senescence of stem or progenitor
cells will impair tissue regeneration, and SASP can dam-
age the surrounding tissue [79]. Over the past decade,
senescence has been linked with ageing and age-related
pathologies [82, 83], including OA [12, 68].
The number of senescent cells increases gradually with

age. Changes in signalling pathways associated with age-
ing in chondrocytes, the main cell type found in articular
cartilage, will raise the risk of OA [7]. To maintain the
normal function of joints, chondrocytes will continu-
ously synthesize new matrix molecules throughout their
lives. In addition, insulin-like growth factor-1 (IGF-1)
and transforming growth factor-β (TGF-β) are indis-
pensable signalling molecules in the synthesis and catab-
olism of articular cartilage. However, the anabolic
response of rat chondrocytes to IGF-1 worsened with
age, while the ability of chondrocytes to release IGF-1
binding protein increased [84]. It indicated that chon-
drocytes senescence would cause a dynamic imbalance
in the synthesis and degradation of articular cartilage.
Besides, chondrocytes senescence could also affect the
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TGF-β signalling pathway. An experiment showed that
the expression of TGF-β family factor receptors bAlk2,
bAlk3, bAlk4, bAlk5, and bBmpr2 decreased significantly
with age in bovine articular cartilage, which eventually
led to age-related cartilage thinning and collagen loss
[85]. Moreover, chondrocyte anabolism is also affected
by the NF-κB signalling pathway [86, 87]. Chondrocytes
senescence resulted in the accumulation of advanced
glycation end products (AGEs) [88], and the expression
of AGEs could activate the NF-κB signalling pathway, in-
crease the production of matrix metalloproteinase
(MMP) -13, and finally cause degradation of articular
cartilage [89]. Together, this demonstrated that changes
in the chondrocyte signalling pathways will have a con-
siderable impact on the incidence of OA.
The hallmark of OA is degeneration of articular cartil-

age and chondrocyte senescence is largely responsible
for this phenomenon. In human OA cartilage lesions,
SnCs were found near the cluster of chondrocytes [90],
which exhibited characteristics of progenitor cells with
increased proliferation [91, 92]. Adult articular chondro-
cytes have limited proliferation capacity. In response to
altered mechanical loading [64, 93] or oxidative stress
[65], articular chondrocytes underwent premature senes-
cence with shortening of telomeres, which provoked the
onset of OA [94]. It has been well documented that OA
chondrocytes expressed a variety of the SnCs markers
such as telomere attrition [7], activation of senescence-
associated beta-galactosidase (SAβGal) [90], overexpres-
sion of p16Ink4a [95] as well as MMP-1, 3 and 13 [96].
The percentage of SnCs cells in articular cartilage in-
creased with the severity of knee OA [97]. Moreover,
transplantation of SAβGal-positive SnCs into synovial
joint led to an OA-like lesion in rodents [13]. Further-
more, ablation of p16Ink4a-positive SnCs using a genetic-
ally modified mice model could mitigate OA [94]. All
the evidence suggests that the accumulation of SnCs im-
pairs homeostasis of articular cartilage. Thus, removal of
SnCs could be a promising therapeutic strategy for OA.

Other hallmarks of ageing in OA
Besides genomic instability, mitochondrial dysfunction
and cellular senescence, inflammaging could be the
other hallmark of ageing in OA. Inflammaging refers to
chronic low-grade inflammation that develops with ad-
vanced age. Typically inflammaging is observed both lo-
cally and systemically in OA [98]. In addition, synovial
inflammation and subchondral bone disturbance were
often involved in the initiation of OA [99, 100]. Such in-
flammation will accelerate cellular senescence and make
normal cells secrete SASP [101]. Recent studies have
identified p16Ink4a-positive SnCs in inflamed synovium
[94], cartilage surface [94] and aged bone microenviron-
ment [102]. Besides, inflammatory mediators, like COX-

2, IL-1β and TNF-α, were shown to be upregulated in
the OA group when compared to the control group
[103]. These results indicate that there is a strong associ-
ation between inflammaging, senescence and OA.
In fact, inflammation plays a crucial part in OA

development. Inflammaging in OA is caused by damage-
associated molecular patterns (DAMPs), e.g. high-
mobility group box 1 (HMGB1) protein, S100 family and
uric acid [101, 104]. The DAMPs are mainly triggered by
abnormal ROS accumulation [105]. The up-regulated
DAMPs will then promote SASP factors release, i.e.
MMPs and inflammatory cytokines, through mitogen-
activated protein kinases (MAPK) and NF-κB signalling
pathway [104, 105], which will finally provoke the OA
progress. It is noteworthy that DAMPs can cause
chronic low-grade inflammation in the joint and can ac-
celerate cellular pro-senescence by cell-to-cell communi-
cation through NF-κB pathway [106].
Stem cell exhaustion was found to be another hall-

mark of age-related OA. The expression of p16Ink4a was
found to be upregulated in aged mesenchymal stem cells
(MSCs) [107]. As bone marrow-derived mesenchymal
stem cells (bmMSC) can differentiate into osteoblasts
and chondrocytes for repair of aged cartilage, their func-
tional senescence or depletion will contribute to the de-
velopment of osteoarthritis [108]. An in vivo study has
demonstrated that metformin-stimulated adipose tissue-
derived human MSCs (Ad-hMSCs) could prevent the
degeneration of cartilage effectively and prolong the sur-
vival time of MSCs in inflamed joints [109]. Articular
cartilage stem cells (ACSCs) were known to repair ar-
ticular cartilage [110]. However, with the development
of OA, the population of ACSCs would gradually dimin-
ish [110]. As a whole, preventing stem cell exhaustion
would be an effective way to prevent OA.
In short, the pathogenesis of OA caused by ageing is

characterized by oxidative damage: DNA damage, telo-
mere attrition, mitochondrial dysfunction, cellular senes-
cence, inflammaging, and stem cell exhaustion (Fig. 2).
As age-related OA is a multifactorial disease, it is neces-
sary to utilize therapy strategies which can target mul-
tiple signalling pathways to treat OA more efficiently.

Evidence of LBP anti-ageing effects
Lycium barbarum (LB) is a traditional Chinese herbal
medicine and has a complex chemical composition with
extremely diverse targets. There are many bioactive sub-
stances in LB such as LBP, betaine, carotenoids, zeaxan-
thin, alkaloids, β-sitosterol, cerebroside, thiamine,
riboflavin, flavonoids and phenolics [27, 111]. Among
them, the polysaccharide content in LB (dried fruits)
could reach as much as 5–8% [112]. LBP, as the most
abundant one, has unique advantages: it is easy to ex-
tract, and its pharmacological characteristics are ideal
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for further research. So far, the most common isolation
techniques for LBP from LB are through leaching extrac-
tion, microwave extraction, and ultrasonic extraction, by
using water or ethanol as solvent [113]. Compared to
the other active substances of LB, LBP is favoured be-
cause of its relatively simple extraction process. More-
over, it shows good anti-ageing properties in different
experimental models (Table 1).

In vitro studies
According to literature, LBP could scavenge free radi-
cals e.g., ABTS free radical, DPPH free radical, super-
oxide anion and hydroxyl radical. This will reduce
oxidative stress and plays an important role in delay-
ing ageing [18, 27, 124]. Another study found that in-
creasing concentrations of LBP resulted in a higher

free radical scavenging rate. However, when the dose
was around 100 to 250 μg/ml, the scavenging rate
gradually reached a plateau [124].
LBP has demonstrated antioxidizing and anti-

apoptotic effects in vitro [28, 38, 39, 125]. By reducing
oxidative stress and other harmful factors related to age-
ing, LBP can reduce DNA fracture damage, strengthen
cell activity, and achieve anti-ageing effects on cells. LBP
was able to upregulate the nuclear factor E2-related fac-
tor 2 (Nrf2) [38, 39, 125] and induce translocation of
cytoplasmic Nrf2 to the nucleus to bind to the antioxi-
dant response element (ARE) [38]. Moreover, LBP could
down-regulate the expression of the transcription inhibi-
tor Bach1, reducing the competition with Nrf2 for bind-
ing to ARE. In return, it boosted the expressions of
antioxidant enzyme genes [28, 38, 125].

Fig. 2 Schematic illustration of pathogenesis of OA in the literature. ROS (reactive oxygen species); NO (nitric oxide); mtDNA (mitochondrial
deoxyribonucleic acid); TNF-α (tumor necrosis factor-α); IL-1β (interleukin-1β); IL-6 (interleukin-6); IL-8 (interleukin-8); IL-1 (interleukin-1); MMP-1
(matrix metalloproteinase-1); MMP-13 (matrix metalloproteinase-13); SA-βgal (Senescence-associated beta-galactosidase); OA (osteoarthritis)
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Table 1 Anti-aging effect of LBP

Animal studies

Authors Year Animal model Dosage of LBP Treatment approach Key findings Remarks

Tang R,
et al. [29]

2019 Drosophila
melanogaster

20 mg LBP-2, 40 mg
LBP-1, and 200mg
LBP, in 100 g of the
basal medium.

Feeding LBP, LBP-1, and LBP-2 all signifi-
cantly extended the average
life span of drosophila melano-
gaster. Besides, LBP can in-
crease the antioxidant activity
of both 7 days and 21 days old
drosophila. It increases the level
of SOD and CAT and decreases
the level of MDA. Among
them, LBP-2 is the most effect-
ive one.

Zhang Z,
et al.
[114]

2019 C. elegans 0, 200, 300, 400,
500 μg/mL

Exposed to different
concentrations of LBP

LBP can extend the life of c.
elegans by regulating sir2.1,
daf-12 and daf-16, and the op-
timal concentration is at
300 μg/ml. LBP can increase
the expression levels of SOD
and CAT in c. elegans.

Yang L,
et al.
[115]

2019 Cryopreserved
mice embryo

50, 100, 200, 400,
800, and 1600 μg/ml

Exposed to different
concentrations of LBP

The concentration of LBP at
1600 μg/ml is too high to delay
the embryo growing. Choosing
200 μg/ml as the treatment
dosage. LBP inhibit the
mitochondria clustering, reduce
the level of ROS and increase
the mtDNA copy number,
expression of sirtuin-1 (SIRT1)
and AMPK. Besides, it can en-
hance the expression of GPX4,
SOD1 and Bcl-2.

Zhou J,
et al.
[112]

2016 X-ray induced
mice

50, 100, and 200
mg/kg

Intraperitoneal injection The rate of apoptosis in BMNC
of mice, the G0/G1 ratio and
the MDA levels are
continuously decreased after
LBP treatment, whereas SOD
activity is increased.

Compared with the normal
saline group, there was no
significant difference with
50 mg/kg LBP group, while
there was a significant
difference in the other LBP
groups.

Zhao R,
et al. [40]

2015 Sub-health
mice

10, and 20 mg/kg Gastric infusion LBP can increase the level of
SOD and GSH-px and decrease
that of MDA in skeletal muscle
tissue. After treatment, mito-
chondrial membrane potential
and the mitochondrial Ca2+

were increased. A higher con-
centration of LBP works better.

Xia G,
et al.
[116]

2014 Zebrafish
embryo

1.0, 2.0, 3.0 and 4.0
mg/ml

Continuously exposed to
different concentrations of
LBP

LBP showed significant
resistance to replicating
senescence at a concentration
of 3.0 mg/ml. It can inhibit the
expression level of p53, p21,
and Bax, increase the
expression level of Mdm2 and
TERT, inhibit the apoptosis and
death of zebrafish cells in early
development, and alleviate the
ageing of zebrafish.

Yi R, et al.
[117]

2013 D-gal ageing
mouse

LBP water solution
(10, 20, 40 ml/100
g·d) for continuous
30 days
(unspecified)

Gastric infusion LBP can increase SOD, CAT and
GSH-px levels in the blood and
reduce MDA level. LBP can im-
prove skin SOD activity, reduce
skin MDA content, and increase
Hyp content.

Xia G, 2012 Zebrafish 0.125 mg/ml Continuously exposed to LBP plays delaying senescence
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Table 1 Anti-aging effect of LBP (Continued)

et al.
[118]

embryos LBP for 3 days. and prolonging the lifespan
roles in zebrafish embryos
model according to increase
the expression of Mdm2 and
TERT gene, meanwhile
decrease the expression of Bax,
p21, and p53 gene.

Shan X,
et al.
[119]

2011 SD Rats 100, 200 and 400
mg/kg

Oral treatment After LBP treatment, the
average endurance time of the
rats was significantly
prolonged, which was also
dose dependent. Besides, LBP
decreases the level of MDA,
meanwhile increases the level
of SOD and GPx in a dose-
dependent manner.

Liang B,
et al.
[120]

2011 Aged rats 200 and 400mg/kg Oral treatment LBP increase the level of SOD,
CAT, and GSH-Px and decreases
the level of MDA in a dose-
dependent manner.

Li XM,
et al.
[121]

2007 Aged mice 200, 350 and 500
mg/kg

Gastric infusion LBP can reduce endogenous
lipid peroxidation in ageing
mice, enhance antioxidant
enzyme activity, and restore
immune function. It increased
the expression of SOD, CAT,
GSH-Px and the total antioxi-
dant capacity in the tested or-
gans and decreased the
expression of MDA and LPF.

The antioxidant activity of
LBP is like that of vitamin C,
however, at the same
dosage, LBP is much better
than vitamin C. There is a
synergy between LBP and
vitamin C

Li B, et al.
[122]

2006 Acetic lead (Pb
(Ac)2) induced
mice

10, 15 and 20 mg/kg Gastric infusion LBP could inhibit the
micronucleus rates of the
mice’s marrow cells in a dose-
dependent manner.

A micronucleus is a form of
chromosomal aberration,
and the study indicates that
LBP can reduce DNA
damage.

Hong-Bin
D, et al.
[123]

2003 D-gal ageing
mouse

100mg/kg Unspecified Both LBP and ABP can reduce
the level of AGE, IL-2 and in-
crease the spontaneous motor
activity, memory ability, and
learning ability. Besides, LBP
and ABP improve lymphocyte
proliferation and SOD activity.

Clinical studies

Authors Year Study Design Sample
size

Population Groups Dosage
of LBP

key findings Limitations

Amagase
H, et al.
[18]

2009 A double-
blind, placebo
controlled RCT

50 Chinses GoChi group: 60
mL of gouqi
juice twice daily
(total, 120 mL/d)
vs placebo
group

1632
mg/daily
serving
(120 mL)
of LBP

Compared with the placebo
group, serum SOD and GSH-Px
was significantly higher, and
MDA had decreased in the
GoChi group. Relative to the
preintervention levels, GoChi
group had a significant change
in the SOD, GSH-Px, and MDA
levels. Nevertheless, in the pla-
cebo group, these differences
were not statistically significant.

Li B, et al.
[122]

2006 Prospective
case series

22 Chinses Before-after
study in the
same patient

100 mg
of LBP
twice a
day
(total,
200 mg/
d).

After taking LBP, the speed of
DNA repair was significantly
improved, compared with that
before taking LBP; the
difference was very significant.

The experimental
population were all working
in a rubber factory, which
may lead to a higher risk of
DNA mutations. However,
the shortcoming is a small
sample size and short
administration period.
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The anti-ageing effect of LBP is dose dependent. The
effective dose of LBP in vitro was around 200 μg/ml. At
this dosage LBP inhibits mitochondria clustering, re-
duces the level of ROS, and increases the mtDNA copy
number and the expression of sirtuin-1 (SIRT1), AMPK,
GPX4, SOD1 and Bcl-2 [115]. However, at a concentra-
tion of 1600 μg/ml LBP delayed the growth of murine
two-cell embryos [115]. It is suggested that the dosage
was critical for the anti-ageing effects of LBP.

Animal studies
The anti-ageing effect of LBP in vivo has been widely
discussed (Table 1), with mice as most commonly used
animal model.
In ageing mouse models, studies found that LBP re-

duced the level of advanced glycation end products
(AGE) and IL-2. It also enhanced the memory and the
learning ability of ageing mice [123]. Moreover, LBP
could also promote the proliferation of lymphocytes and
the activity of SOD [123]. It was suggested that LBP was
involved in activating antioxidant enzyme activity in cells
[123]. The contents of ROS and MDA were found to be
decreased while the activities of antioxidant enzymes like
SOD, CAT and GSH-Px were found to be increased in a
dose-dependent manner in the aged mice treated with
LBP [120, 121]. This strongly suggested that LBP can
regulate the level of oxidation products and the anti-
oxidant enzyme activity. Later, some studies revealed
that LBP might delay oxidative stress induced animal
ageing [117, 119, 126]. LBP might reduce DNA dam-
age and inhibit the micronucleus rates in the mice’s
marrow cells in a dose-dependent manner [122].
Moreover, LBP could reduce the G0/G1 ratio of bone
marrow mononuclear cells (BMNC) and inhibit apop-
tosis of BMNC in mice [126].
LBP could delay senescence as well as prolong the life-

span of zebrafish embryos [116, 118]. It inhibited apop-
tosis of zebrafish embryos during early development and
alleviated the ageing of zebrafish by blocking p53 signal-
ling pathway [116, 118]. It increased the expression of
murine double minute 2 (Mdm2) while decreasing the
expression of Bax, p21, and p53 gene [116, 118]. On the
other side, LBP has been observed to enhance the ex-
pression of the telomerase reverse transcriptase (TERT)
which regulates and catalyses telomerase activity to
maintain and extend the telomere structure of the
chromosome in zebrafish embryos [116, 118]. This
strongly demonstrates that LBP can alleviate telomeres
shortening, a widely knowledgeable key factor associated
with the ageing phenomenon, to delay cellular
senescence.
Although mouse and zebrafish models are prevalent in

LBP research, the effects of LBP have recently been in-
vestigated in other in vivo models, such as Drosophila

melanogaster [29] and C. elegans [114]. All the experi-
ments confirm that LBP has the ability to extend the
average lifespan. Apart from increasing the expression
level of antioxidant enzymes and reducing the content of
MDA, LBP has also been found to regulate the lifespan
through sir2.1, daf-12, and daf-16 [114].

Clinical studies
In line with the in vitro and in vivo studies, clinical stud-
ies also demonstrated that LBP as an antioxidant re-
duced DNA damage effects. The DNA repair rate was
significantly improved for those who consumed LBP
[122]. Relative to the placebo group, serum SOD and
GSH-Px were significantly higher, while MDA decreased
in the LBP group [18]. It reveals that LBP has the same
effect on humans as on animals. This provides strong
evidence for future studies on the anti-ageing effect of
LBP in humans.
Collectively, LPB, a potent antioxidant, possesses an

anti-ageing potential through regulating the level of oxi-
dation products, the antioxidant enzyme activity, DNA
damage, mitochondrial function, and cellular senescence
(Fig. 3).

Potential anti-OA effect of LBP
In recent years, LBP proved to have a beneficial effect
on OA through its anti-inflammatory effects (Table 2). It
was reported that LBP significantly reduced the levels of
IL-1 β, TNF-α, iNOS and NF-κB p65 in the supernatant
of OA chondrocytes [56]. LBP could upregulate miR-124
to reverse IL-1β induced upregulation of Cox-2 and in-
flammatory cytokines such as IL-6 and IL-8 [54]. This
supported the notion that LBP could inhibit NF- κB sig-
nalling pathway and IL-1β evoked inflammatory injury
in vitro. When LBP was added to palmitate-induced
MC3T3-E1 osteoblast cells, the apoptosis was signifi-
cantly reduced in a dose-dependent manner [55]. It was
revealed that LBP could decrease the expression of
Caspase-3, Caspase-9, Caspase-12, GRP78 and CHOP
[55]. The above results showed that LBP exerted anti-
inflammatory effects by inhibiting the JNK and NF-κB
signalling pathways. Moreover, LBP could reduce paw
thickness and protect bone integrity [57].
To date, LBP treatment has rarely been applied to OA

models in vivo. In the murine collagen type II-induced
arthritis model, it was found that LBP decreased the ex-
pression of inflammatory mediators TNF-α, IL-6 and IL-
17 in a dose-dependent manner. Additionally, it could
reduce the expression of matrix-degrading enzymes
MMP-1 and MMP-3 [57]. Therefore, LBP can protect
the skeletal integrity of mice by reducing inflammation,
significantly alleviating collagen type II-induced arthritis
in mice.
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In brief, LBP potentially exerts an anti-inflammatory
effect against age-related OA, which is achieved by inhi-
biting the JNK and NF-κB signalling pathways as well as
by down-regulating inflammatory factors (Fig. 4). The
LBP treatment was found to be effective in OA.

Discussion
Osteoarthritis is a degenerative disease accompanied by
chronic pain which seriously affects patients’ life quality.
There are several factors that promote the onset of OA
such as joint injury, ageing and obesity. According to the
previous research, cellular apoptosis and abnormal au-
tophagy are also factors that mainly respond to OA oc-
currence [127–129]. In addition, many findings have
also studied the key role of metabolism in OA progress
[130–132]. However, the whole pathogenesis of OA de-
velopment is still largely unknown at this moment.
Current treatment of OA relies on pain killers for pain
relief, there are no disease-modifying drugs up till today.
This review mainly focused on the pathogenesis of OA
caused by ageing, including mitochondrial dysfunction,
cellular senescence, and inflammaging [12, 101], trying
to find a novel trend for OA therapy.

Recently, researchers tried to specifically block ageing-
related hallmarks to prevent joint damage, for example,
by removing senescent chondrocytes [94]. This approach
showed promising results and might be the new trend
for OA therapy. Based on this approach, LBP, an anti-
ageing component, could be used to mitigate OA pro-
gression. With its anti-oxidizing and anti-inflammatory
ability, LBP can lower oxidative stress and inflammation
both locally and systemically which can improve OA
progression [57]. The beneficial effect of LBP on OA
could potentially be achieved through a synergistic inter-
action of multiple pathways. However, more research is
needed to further deepen the knowledge on the senolytic
pathways of LBP in OA joints.
To date, LBP has been studied extensively and there is

a growing body of evidence indicating that LBP exerted
anti-ageing properties. It has been largely studied in the
treatment of glaucoma, macular degradation, and other
age-related disorders in liver, kidney and heart [17],
whereas the role of LBP on OA remains poorly under-
stood. Current understanding of LBP in OA treatment is
limited to its anti-inflammatory effects [57]. The effects
of LBP on other ageing hallmarks in OA have seldomly

Fig. 3 Schematic illustration of anti-ageing effects of LBP in the literature. LBP (Lycium barbarum polysaccharide); Nrf2 (nuclear factor E2-related
factor 2); Bach1 (BTB domain and CNC homolog 1); Bcl-2 (B-cell lymphoma 2); GSH-Px (glutathione peroxidase); SOD (superoxide dismutase); CAT
(catalase); ROS (reactive oxygen species); DPPH (2,2-Diphenyl-1-picrylhydrazyl); MDA (malondialdehyde); DNA (deoxyribonucleic acid); MDM2
(murine double minute 2); TERT (telomerase reverse transcriptase)
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been explored. In the existing studies, the underlying
mechanism has not been explored, nor have appropriate
experimental models been selected. Whether LBP can
also be used as a potential treatment drug for OA is still
unknown and worth further research.
Here we summarise the characteristics of LBP and OA

in terms of ageing, propose a hypothesis of how LBP can
improve OA and postulate the Chinese herb, i.e., LBP, as
a novel disease-modifying drug for OA therapy.
Collectively, all listed works support the hypothesis

that LBP could modify age-related OA and after careful
study of the available research the potential underlying
mechanism could be identified (Fig. 5). LBP can upregu-
late Nrf2, induce translocation of Nrf2 from cytoplasm
to nucleus, and bind with ARE to promote the expres-
sion of antioxidant enzyme genes. Due to the presence
of a large number of antioxidant enzymes (SOD, GSH-
Px, CAT), ROS are eliminated. Consequently, LBP can
alleviate the condition of OA by inhibiting the conse-
quences related to oxidative damage i.e., DNA damage,
telomere attrition, mitochondrial dysfunction, cellular
senescence and inflammaging. First, LBP may block the
p53-induced cellular senescence pathway and inhibit the
development of OA by improving the DNA repair levels
and protecting telomere integrity. Second, LBP may help

Table 2 Potential anti-OA effects of LBP

Cellular studies

Authors Year Model Dosage of
LBP

Measured approach Key findings Limitations

Ni H,
et al.
[54]

2019 IL-1β evoked
inflammatory
injury in ATDC5
cell

300lg/mL
LBP

The expression of TNF-α, IL-6, IL-8,
Cox-2 and miR-124

LBP could decrease the expression of TNF-α,
IL-6 and IL-8, and inhibit the expression of
Cox-2, which evoked by IL-1β. LBP could in-
crease the concentration of miR-124, then
inhibited the activation of JNK and NF-κB
pathways.

Jing L,
et al.
[55]

2018 Palmitate-induced
apoptosis in
MC3T3-E1 osteo-
blasts cells

0, 50, 100,
200, 400
and
800 μg/ml

Cell viability, apoptotic rate and the
expression of apoptosis-related genes.

LBP could inhibit palmitate-induced apoptosis
which is in a dose-dependent manner, and the
activation of the JNK pathway. LBP could de-
crease the expression of Caspase-3, Caspase-9,
Caspase-12, GRP78 and CHOP.

Cai ST,
et al.
[56]

2018 Human OA
chondrocytes

0, 100,
200, 400
and
800 μg/mL

Expression of inflammatory cytokines
of OA chondrocytes

LBP could inhibit the proliferation of OA
chondrocytes in a concentration-dependent
manner. 400 μg/mL LBP significantly reduced
the levels of IL-1 β, TNF-α, iNOS and NF-κBp65
in the supernatant of OA chondrocytes and in-
creased TGF-β expression. LBP could inhibit
NF- κ B signal pathway and the inflammatory
response of OA chondrocytes cultured in vitro.

Animal studies

Authors Year Animal model Dosage of
LBP

Treatment approach Key findings Limitations

Liu Y,
et al.
[57]

2015 collagen type II-
induced arthritis
mouse model

25, 50 and
100mg/kg

Intraperitoneal injection for
continuous10 days, once daily.
The expression of TNF-α, IL-6, IL-17,
MMP-1 and MMP-3. To observe the
bone morphology and measure the
paw diameter.

LBP could reduce the paw thickness, protect
the bone integrity, and decrease the
expression of TNF-α, IL-6 and IL-17, which are
all in a dose-dependent manner. LBP could re-
duce the expression of MMP-1 and MMP-3 but
not in a dose-dependent manner.

Fig. 4 Schematic illustration of potential anti-OA effects of LBP in
the literature. LBP (Lycium barbarum polysaccharide); TNF-α (tumour
necrosis factor-α); iNOS (inducible nitric oxide synthase); NF-κBp65
(nuclear factor kappa-B); OA (osteoarthritis); miR-124 (microRNA-124);
IL-1β (interleukin-1β); Cox-2 (cyclooxygenase-2); IL-6 (interleukin-6);
IL-8 (interleukin-8); MMP-1 (matrix metalloproteinase-1); MMP-3
(matrix metalloproteinase-3)
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to maintain the integrity of articular cartilage by protect-
ing the function of mitochondria and reducing the deg-
radation of the cartilage matrix. Third, LBP may inhibit
caspase-3 expression, which is involved in chondrocyte
apoptosis, to reverse the OA phenomenon. Fourth, LBP
can trigger inflammatory protection mechanisms that re-
duce inflammatory cytokine levels, thereby relieving the
symptoms of OA.
Given the above results, LBP theoretically has a posi-

tive effect on OA. Therefore, in the future, the focus will
be on how to construct suitable experimental models to
study the effect of LBP on OA.

Conclusions
In conclusion, this review clarified the potential inter-
action between the basic pathological mechanism of OA

and the anti-ageing effect of LBP. LBP showed a poten-
tial advantage in the treatment of OA due to its impact
on multiple signalling pathways leading to lowering oxi-
dative stress, restoring mitochondrial function, mitigat-
ing DNA damage, and preventing cellular senescence.
Hence, we have a strong reason to believe that LBP, not
only has well-documented antioxidant and anti-ageing
effects but also may exert beneficial effects on OA
treatment.
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