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29 

Abstract 30 

Precise and fast estimation of porosity is a vital element of reservoir characterization. A new technology for fast and 31 

reliable porosity prediction of chalk samples is presented by applying machine learning methods and X-ray 32 

fluorescence (XRF) elemental analysis. Input parameters of prediction models are based on rapid and accurate 33 

elemental analysis of chalk samples obtained from Hand-held X-ray fluorescence (HH-XRF) measurements. The 34 

intelligent models, including Random Forest (RF), Multilayer perceptron (MLP), Random Forest integrated by 35 

Genetic Algorithm (GA-RF) and Multilayer Perceptron integrated by Genetic Algorithm (GA-MLP), are trained and 36 

tested based on samples consisting of outcrop chalk samples from Rørdal and Stevns Klint and core samples from 37 

Ekofisk Formation in the North Sea. Results are evaluated by sustainability index (SI), determination coefficient (R2), 38 

correlation coefficient (CC), and Willmott’s Index of agreement (WI). Results indicate that the combination of GA-39 

RF intelligent method with XRF elemental analysis successfully provides an accurate model by 0.99, 0.02, 0.995 and 40 

0.99 respectively for CC, SI, WI and R2, respectively. 41 

42 

Keywords: Porosity, Chalk, Hand-held X-ray fluorescence, Random Forest, Multilayer perceptron, Random Forest 43 

Optimized by Genetic Algorithm, Multilayer Perceptron Optimized by Genetic Algorithm 44 

45 

XRF X-ray fluorescence GA Genetic Algorithm 

HH-XRF Hand-held X-ray fluorescence WI Willmott’s Index of agreement 

RF Random Forest CC Correlation coefficient 

MLP Multilayer perceptron SI Sustainability index 

MLP-GA Multilayer Perceptron integrated by Genetic Algorithm R2 Determination coefficient 
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NMR Nuclear magnetic resonance AI Artificial intelligence 

ML Machine learning GP Genetic programming 

ANN Artificial neural network FL Fuzzy logic 

CNN Convolutional neural network  TOC Total organic carbon 

DT Decision tree EA Evolutionary algorithms 

MLP Multi layered perceptron RF Random forest 

 46 
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1 Introduction 48 

Chalk creates an economically strategic lithology, which supplies large hydrocarbon reserves across Texas and 49 

northwest Europe. Chalk consists of lithified carbonate ooze that is integrated during burial through cementation and 50 

compaction [1, 2]. More than 80% of carbonate ooze is made of cocoolite parts, nannoconids and foraminifers, with 51 

an indefinite amount of clay minerals, whose values are variable and not constant [3-5]. After deposition, much of 52 

chalk from North Sea Central Graben moved and the reworking of the chalk influences reservoirs today. The 53 

formations from which oil and gas are produced, Ekofisk, Tor and Hod Formations, display some resemblances across 54 

the basin, but also variations from field to field [6]. 55 

The porosity of rock is the ratio between the pore space volume to the bulk volume of the rock and is expressed as a 56 

percentage [7, 8]. Interconnected or effective porosity, which is defined as the volume of connected pores to total bulk 57 

rock volume, is generally interested in reservoir engineering [9]. Typical porosity values generally vary from 5 to 58 

30%. 15% porosity is a very typical value [10]. The chalk porosity can be closely related to the initial sediment 59 

composition and diagenetic background [11]. The high porosity of chalk in North Sea mines has made it famous and 60 

popular (about 20 to 40%) [9]. The Tor Formation has better porosity conditions than other chalk Formations [12]. 61 

Due to the over-pressured nature of the basin in North Sea of Denmark, depth reduction cannot be a factor in reducing 62 

the chalk porosity [13]. But generally, the chalk porosity decreases substantially with depth. Diagenetic variations 63 

would usually reason porosity reduction from around 70-80% at the surface to about 10% at burial depths of 2 km. 64 

Several features such as the presence of hydrocarbons, halokinesis, overpressure, the burial depth and post-65 

depositional tectonics have prevented diagenesis from applying its maximum potential in the North Sea. Therefore, 66 

chalk reservoirs have reserved their high porosities [14, 15]. 67 

Rock effective porosity can be achieved from conducting laboratory measurements through core sample analysis. A 68 

range of laboratory methods such as imbibition, mercury injection and gas expansion methods is available for 69 

determination of sample pore space volume in core analysis [16, 17]. The great majority of pore volume determinations 70 

on North Sea chalk samples during the last approximately 30 years have been measured by gas expansion method 71 

[17]. Bulk volume can be measured by submersing the sample in a mercury bath, or by using a mercury displacement 72 

pump, or by caliper techniques [16, 17]. Porosity can also be estimated using open-hole well logs such as sonic, 73 

density, neutron and nuclear magnetic resonance (NMR) logs [18, 19]. However, core analysis provides accurate and 74 

reproducible porosity data [20], which is relatively time consuming, expensive and not always accessible. 75 
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Hand-held X-ray fluorescence (HH-XRF) has proved to be a rapid, powerful, reliable and stable tool for field-based 76 

or laboratory, geochemical characterization [21-23]. Previously HH-XRF and principal component analysis (PCA) 77 

have been successfully used to consider the relationship between concentrations of elements and porosity of chalk 78 

samples. Nourani et al. (2019) reported that the chalk porosity can be effectively controlled by aluminum, Fe, K, 79 

calcium and silicon. Aluminum, calcium and silicon contents of chalk emanate from clay, calcite and silica, 80 

respectively [24, 25]. Chakraborty et. al (2017) [26] employed support vector machine based classifier using portable 81 

XRF to estimate the calcium concentration of 75 soils. Findings indicated that the carbonate formation staged on only 82 

22.6% of the samples. Ca content of intact aggregates had a correlation by about (r=0.89) vs. ground soil samples.  83 

With the advent of new technologies, including topics related to artificial intelligence (AI) [27], various sectors of 84 

industry, including the oil and gas industry at different levels of their performance have been greatly affected by these 85 

technologies. Machine learning (ML), as one of the popular subsets of artificial intelligence, has always been used in 86 

various topics [28]. In this way, Rostami et al (2018) employed Least-Square Support Vector Machine for providing 87 

a new platform as a correlative model for CO2 solubility. Results were evaluated by the average absolute relative 88 

deviation and coefficient of determination by comparing the predicted and target values. Accordingly, it was 89 

concluded that the proposed technique could successfully cope with the task for improving the problem statement 90 

[29]. Saghafi and Arablo (2018) proposed a novel technique using Genetic Programming (GP) platform for the 91 

estimation of the gas condensate compressibility factor in the presence of dew point pressure. The results were 92 

analyzed using sensitivity analysis based on Spearman and Pearson approaches to conclude the effect of each input 93 

parameter on the target variable [30]. Okwu and Nwachukwu (2018) developed state-of-the-art fuzzy logic 94 

applications in petroleum exploration and production operations considering non-deterministic input variables, main 95 

challenges and possible solutions using fuzzy logic analysis [31]. Sircar et al (2021) provided a comprehensive state-96 

of-the-art in the context of evaluating ML-based techniques for data processing in different terms of upstream oil and 97 

gas industries. Besides, the study discussed the main limitations, research gaps and the future perspectives for 98 

achieving a smart development in the field [32]. As it is clear, ML-methods have a deep influence in the field of oil 99 

and gas, which is due to its high reliability and accuracy in various operations. For this reason, the application of ML-100 

methods in specialized branches of oil and gas has also become important. 101 

Alnahwi and G. Loucks (2019) [33] employed ML-based artificial neural networks (ANNs) analysis of X-ray 102 

fluorescence data to estimate mineralogies and also evaluate the quality of the developed models. The online Neural 103 
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Designer software was also employed to conduct the modeling process. Quantitative laboratory-measured X-ray 104 

diffraction mineralogies and total organic carbon (TOC) were employed to perform high-resolution semiquantitative 105 

modeling, and to generate mineralogic and organic matter models. Findings indicated that the proposed method was 106 

a promising method. Zhao et al. (2020) [34] employed a ML model based on random forest algorithm to develop an 107 

analytical approach for the special core analysis dataset that illustrated a key missing feature in the prediction process. 108 

The study conducted the missing feature and proposed the proper characteristics in combination with in‐situ fluid 109 

saturations. Andrianov and Nick (2000) [35] employed ML-based analytical method along with the discrete fracture 110 

simulations to generate a dual porosity model. Accordingly, a pixelated representation technique was employed to 111 

characterize the fracture geometry. Then, a convolutional neural network (CNN), as ML-based model, was used to 112 

map the fracture parametrization and the upscaled parameters. 113 

Results of the analyzes performed by these studies showed that the application of ML-based methods (from simple to 114 

complex) had become a popular method in recent years in the field of the study. All recommendations about future 115 

perspectives have one thing in common, and that is the application of new and hybrid ML methods in different types 116 

of data using different evolutionary algorithms (EA). This action leads to increasing trust in ML-based methods and 117 

finding the strengths and weaknesses of these methods in a fully practical way. It should be noted that the use of ML-118 

based methods has no limitations in terms of dataset type and method of analysis. On the other hand, the models used 119 

should not only be more accurate and have a simpler training process, but also need to reduce the time to perform 120 

computations and analyzes as much as possible. One of the advantages of using ANN-based methods with hybrid 121 

architecture and using EA algorithms is their simplicity, less process time than deep learning-based methods and their 122 

high sustainability. Therefore, the objective of this study is to investigate the abilities of artificial intelligence 123 

techniques for rapid and accurate estimation of porosity for chalk samples. This paper deals with a comparison of 124 

different models for predicting porosity of chalk samples by coupling a ML concept and elemental analysis of chalk 125 

obtained from HH-XRF. The ML approach is calibrated and tested via outcrop chalk samples from Rørdal and Stevns 126 

Klint and core samples from Ekofisk Formation in the North Sea. In addition, different intelligent methods, namely 127 

RF, MLP, RF-GA and MLP-GA, are undertaken and their accuracies are compared. 128 

 129 

 130 

 131 
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2 Modeling techniques 132 

ANNs are mathematical/computational models for distinguishing nonlinear relationships connecting inputs to outputs 133 

in complicated systems [36-38]. This category of ML is inspired from human brain system mostly by familiarizing 134 

the conception of biological neurons [39-41]. RF, MLP, GA-RF and GA-MLP are recognized methods and applied 135 

for modeling purposes in various complicated engineering tasks [42-45]. 136 

  137 

2.1. RF method 138 

RF provides an exceptional mixture of model interpretability and prediction accuracy among famous ML methods. 139 

The random collective strategies employed in RF aid it to accomplish better generalizations in addition to accurate 140 

predictions [46, 47]. Many types of applications can be predicted by RF accurately. It can evaluate the sensitivity of 141 

each feature in model training process. In addition, the trained model can successfully evaluate and measure two-by-142 

two proximity between samples [48-50]. RF is a set of tree-based estimators ℎ(𝑥𝑥. 𝜃𝜃𝑘𝑘), k= 1.….K where 𝜃𝜃𝑘𝑘  refer to 143 

independent and identically distributed random vectors and 𝑥𝑥 denotes the target vector of length 𝑝𝑝 with associated 144 

random vector. RF-based estimation is an unweighted average over the set with the following expression ℎ(𝑥𝑥) =145 

�1
K
�∑  ℎ(𝑥𝑥,𝜃𝜃𝑘𝑘)𝐾𝐾

𝑘𝑘=1  [51]. 146 

 147 

2.2. MLP method 148 

MLP can be developed to estimate any measurable dataset and function. It proves no preliminary assumptions about 149 

the dataset. It can be developed to generalize when introduced with hidden data. MLP can estimate nonlinear functions 150 

[52-54]. It is defined by fully connected nodes in the next and previous layer, and has been considered as providing a 151 

nonlinear recognition between corresponding output and input vectors [55]. MLP can have one or more hidden layers 152 

followed by an output layer [56]. The nodes are linked by output signals and weights, which are a function of the 153 

summation of the independent variables (as input matrix) to the node implemented by an activation function, or a 154 

transfer function. It is the compliance of many nonlinear transfer functions that aids MLP to estimate non-linear 155 

functions. The result of a node is scaled by the connecting weight. Then it can be considered as a feed to the nodes in 156 

the next layer [57-59].  157 

 158 

 159 
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160 

2.3. GA-RF method 161 

GA-RF method principally includes two main phases: parameter tuning and RF optimization. In general, the parameter 162 

regulation mostly detects optimal values of RF’s parameters, like the maximum decision tree depth, the forest scale 163 

and the number of split features. Next, RF optimization is followed by means of GA to find an optimal combination 164 

of DTs in the optimized RF with the aim of maximizing the profit score by investigating actual and potential returns 165 

and losses [60, 61]. 166 

167 

2.4. GA-MLP method 168 

MLP is a feed-forward, supervised NN architecture. Back propagation (BP) training algorithm can be employed for 169 

reducing the error between the target value and network output. MLP structure and learning parameters are required 170 

to decide for enhancing the testing performance. As these parameters are usually selected randomly, detecting 171 

variables that produce the highest test accuracy is a time-consuming process. In GA-MLP method, network structure 172 

and learning parameter of PB algorithm are improved to achieve an efficient and faster weight-update process by 173 

employing GA [62-64]. 174 

175 

3 Data acquisition and preparation 176 

The data base includes porosity and HH-XRF experiments on core samples from Ekofisk Formation in the North Sea 177 

and outcrop chalk samples from Rørdal and Stevns Klint (ST). Plug samples are gathered from the Rørdal quarry near 178 

Aalborg, Denmark. The quarry characterizes a probable exposure for Tor organization hydrocarbon reservoirs in the 179 

North Sea [1, 65, 66]. Plugs are dried in oven at 60 °C for 40 h before conducting experiments. The grain volume is 180 

computed with Boyle’s Law and a double-chambered Helium porosity meter. The bulk volume is determined by 181 

Archimedes principle in the presence of a submerging plug in a mercury bath. The pore volume is computed by 182 

measuring bulk and grain volumes [66]. XRF experiments are performed using a NitonTMXl3tGoldd+ HH-XRF 183 

device. The used HH-XRF is implemented by an Ag anode that measures at 6–50 kV and up to 200 μA, and provides 184 

semi-quantitative element doping [21]. HH-XRF is measured for a total of 43 elements, whilst 5 of these elements are 185 

considered in this study. Porosity values and measured HH-XRF for 5 elements of outcrop and North Sea chalk 186 
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samples are listed in Tables 1 and 2, respectively [24]. In addition, a statistical summary of porosities and XRF 187 

elemental analysis data in entire, training and test datasets is given in Table 3. 188 

Table 1. Porosity and measured HH-XRF for 5 elements of outcrop chalk samples from Rørdal and ST [24]. 189 

No. Location Sample ID φ (%)     Al (%)    Si (%) Ca (%) Fe (%) K (%) 

1 Rørdal 23 43.1 0.27 2.44 44.97 0.15 0.10 

2 Rørdal 33 44.1 0.17 3.06 45.10 0.11 0.06 

3 Rørdal 45 47.5 0.26 1.29 46.55 0.11 0.05 

4 Rørdal 127 43.6 0.05 1.21 47.07 0.09 0.07 

5 Rørdal 186 44.1 0.31 3.01 44.86 0.13 0.11 

6 Rørdal 187 40.4 0.62 3.91 43.02 0.25 0.22 

7 Rørdal 192 28.8 0.88 4.68 42.01 0.25 0.26 

8 Rørdal 194 47.0 0.22 1.64 47.12 0.11 0.07 

9 Rørdal 201 45.1 0.21 3.38 44.96 0.13 0.07 

10 Rørdal 244 47.1 0.05 2.69 46.19 0.09 0.07 

11 Rørdal 246 47.6 0.30 3.58 44.68 0.10 0.07 

12 Rørdal 261 47.3 0.16 1.44 46.81 0.08 0.05 

13 Rørdal 289 45.0 0.34 3.18 44.65 0.13 0.12 

14 Rørdal 405 31.3 0.77 5.23 38.08 0.38 0.66 

15 Rørdal 466 41.2 0.53 2.49 45.26 0.23 0.16 

16 Rørdal 469 48.2 0.30 2.44 46.50 0.07 0.06 

17 ST MTB20 47.3 0.05 0.56 48.33 0.04 0.07 

18 ST MTI2 47.1 0.14 0.61 48.90 0.04 0.03 

19 ST MT7 47.0 0.19 0.95 48.09 0.07 0.07 

20 ST MTB6 47.3 0.10 0.47 48.92 0.06 0.03 

21 ST MT9 47.6 0.10 0.60 48.63 0.05 0.04 
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22 ST MT81 46.9 0.10 0.41 49.27 0.03 0.03 

23 ST MT10 46.0 0.20 0.81 48.19 0.07 0.05 

24 ST MT15 48.8 0.10 0.46 48.67 0.03 0.03 

25 ST MT49 47.8 0.10 0.46 49.18 0.03 0.05 

26 ST MT52 49.2 0.10 0.43 49.17 0.03 0.05 

27 ST MT64 48.1 0.10 0.38 49.36 0.03 0.05 

Table 2. Porosity and measured HH-XRF for 5 elements of chalk samples from Ekofisk 
Formation [24]. 

No. Formation Sample ID φ (%) Al (%) Si (%) Ca (%) Fe (%) K (%) 

1 Ekofisk 2 35.7 0.22 2.84 45.34 0.07 0.13 

2 Ekofisk 3 35.6 0.14 2.80 45.49 0.07 0.05 

3 Ekofisk 4 34.8 0.22 2.85 45.75 0.07 0.09 

4 Ekofisk 5 39.5 0.05 2.19 46.58 0.07 0.05 

5 Ekofisk 6 39.4 0.05 2.10 46.80 0.06 0.04 

6 Ekofisk 7 39.3 0.05 2.07 46.65 0.06 0.05 

7 Ekofisk 8 39.2 0.05 2.17 46.90 0.07 0.09 

8 Ekofisk 9 36.3 0.19 3.16 45.27 0.07 0.07 

9 Ekofisk 10 37.1 0.23 3.23 45.40 0.07 0.08 

10 Ekofisk 11 37.2 0.12 3.48 45.22 0.07 0.05 

11 Ekofisk 12 37.1 0.05 2.32 46.73 0.13 0.07 

12 Ekofisk 13 37.3 0.05 2.17 46.88 0.07 0.04 

13 Ekofisk 14 38.1 0.05 2.22 46.96 0.07 0.05 

14 Ekofisk 15 38.1 0.05 2.40 46.78 0.06 0.04 

15 Ekofisk 16 40.0 0.05 2.27 46.86 0.10 0.05 

16 Ekofisk 17 39.1 0.05 2.41 46.55 0.10 0.05 
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17 Ekofisk 18 38.8 0.05 2.59 46.35 0.12 0.05 

18 Ekofisk 19 40.7 0.05 2.22 46.94 0.10 0.05 

19 Ekofisk 20 40.3 0.05 2.39 46.66 0.11 0.04 

20 Ekofisk 21 40.5 0.05 2.51 46.69 0.11 0.05 

21 Ekofisk 22 37.8 0.24 4.13 44.47 0.13 0.08 

22 Ekofisk 23 37.7 0.27 4.13 44.61 0.14 0.06 

23 Ekofisk 24 36.1 0.11 3.79 45.30 0.12 0.04 

24 Ekofisk 25 33.6 0.22 6.20 42.46 0.13 0.05 

25 Ekofisk 26 35.6 0.13 6.44 42.42 0.09 0.05 

26 Ekofisk 27 35.1 0.24 6.45 42.06 0.10 0.05 

27 Ekofisk 28 35.1 0.05 6.51 41.99 0.11 0.05 

 190 

Table 3. Statistical characteristics of the dataset 191 

 Variable (%) Mean Minimum Maximum 
Standard 

deviation 

Coefficient 

of variation 
Skewness 

Entire 

data 

Al 

 
0.181 0.050 0.881 0.175 0.966 2.249 

Si 2.591 0.380 6.510 1.594 0.615 0.762 

Ca 46.013 38.078 49.359 2.211 0.048 -0.994 

Fe 0.099 0.029 0.379 0.062 0.624 2.296 

K 0.079 0.029 0.665 0.091 1.155 5.203 

Porosity 41.281 28.800 49.180 5.212 0.126 -0.136 

        

training 

Al 0.178 0.050 0.881 0.168 0.944 2.523 

Si 2.422 0.380 6.510 1.547 0.639 0.672 

Ca 46.230 41.994 49.359 1.994 0.043 -0.357 
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Fe 0.091 0.029 0.252 0.051 0.557 1.585 

K 0.069 0.029 0.259 0.047 0.685 2.709 

Porosity 42.116 28.800 49.180 5.385 0.128 -0.452 

        

test 

Al 0.188 0.050 0.767 0.194 1.031 1.825 

Si 2.928 0.461 6.455 1.676 0.572 0.895 

Ca 45.578 38.078 49.185 2.600 0.057 -1.401 

Fe 0.115 0.030 0.379 0.079 0.688 2.279 

K 0.099 0.042 0.665 0.144 1.454 3.627 

Porosity 39.610 31.300 47.760 4.532 0.114 0.453 

 192 

As it is clear from Table 3, Ca and porosity include the highest content of the utilized data. Ca, with mean value of 193 

46.013%, varies in the range of 38.078 to 49.359 % with a standard deviation of 2.211% and coefficient of variation 194 

0.048%. Porosity, with a mean value of 41.281%, varies in the range of 29.8 to 49.18% with a standard deviation of 195 

5.212% and coefficient of variation 0.126%. K has the lowest portion of the dataset with a mean value of 0.079%, 196 

which varies in the range of 0.029 to 0.665% with a standard deviation of 0.091% and coefficient of variation of 197 

1.155%. 198 

4. Methodology 199 

Development of the models are performed by employing Al, Si, Ca, Fe and K as independent variables for the 200 

prediction of porosity. Two robust models RF and hybrid GA-RF are developed and compared with MLP and hybrid 201 

GA-MLP models in terms of accuracy. Figs.1 and 2 present flowcharts of GA-MLP and GA-RF methods, respectively. 202 

Besides, due to the fact that there is not any direct way for splitting the entire data to training and testing sets, different 203 

proportions were implemented in previous studies, e.g. Choubin (2020) utilized 63% of data for training, whereas 204 

Qasem et al., (2019) and Kargar et al., (2020) implemented 67% of data, Dodangeh et al., (2019), Asadi et al., (2020), 205 

Shabani et al., (2020) and Samadianfard et al., (2020) exploited 70% of the entire data for developing the models. 206 

Thus, for the model development is the current research, data was split into training (67%) and testing (33%). Then, 207 

the accuracy is evaluated by the most frequently used performance parameters, namely CC, SI, WI and R2. These 208 

parameters compare the target and output values and generate indexes for evaluating the model performance as well 209 



13 

as its accuracy [28]. Table 4 presents the parameters related to RF and hybrid GA-RF models, which are generated in 210 

the developing phase. Parameters A, B, C, D, E, F and G are related to Random Forest. number_of_trees, Random 211 

Forest. maximal_depth, Random Forest. confidence, Random Forest. minimal_leaf_size, Random Forest. 212 

minimal_size_for_split, Random Forest. number_of_prepruning_alternatives, and Random Forest. subset_ratio, 213 

respectively. 104 evaluations of the objective function are implemented for GA. The number of chromosomes is set as 214 

102 and the maximum number of iterations is set as 103.   215 

 217 

Fig.1. Flowchart of GA-MLP model. 218 

Fig.2. Flowchart of GA-RF model. 220 

 221 
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Table 4. Parameters of RF and GA-RF models. 

Model 
Parameter 

A1 B2 C3 D4 E5 F6 G7 

RF 100 10 0.100 2 4 3 0.200 

GA-RF 81 36 0.219 1 80 55 0.303 

1 A: Random Forest.number_of_trees. 2 B: Random Forest.maximal_depth. 3 C: Random Forest.confidence. 4 D: Random 

Forest.minimal_leaf_size. 5 E: Random Forest.minimal_size_for_split. 6 F: Random Forest.number_of_prepruning_alternatives. 7 G: 

Random Forest.subset_ratio 

 
Table 5 presents parameters related to MLP and MLP-GA models. Parameters A, B, C, D, E, F and G are related to 222 

Neural Net. training_cycles, Neural Net. learning_rate, Neural Net. Momentum, Neural Net. error_epsilon and Neural 223 

Net. local_random_seed 224 

 225 

Table 5. Parameters of MLP and GA-MLP models. 226 

Model 
Parameter 

A B C D E 

MLP 200 0.0100 0.9000 0.0001 1992 

GA-MLP-1 77 0.3992 0.5456 Infinity 77 

      
1 A: Neural Net.training_cycles. 2 B: Neural Net.learning_rate. 3 C: Neural Net.momentum. 4 D: Random Forest.minimal_leaf_size. 5 E: 227 

Neural Net.error_epsilon.  228 

 229 

5 Results and Discussion 230 

In order to inspect realizations of the suggested intelligent models and to make comparison between their accuracies, 231 

graphical error assessment and statistical analysis criteria are computed. Correlation coefficient (CC), Willmott’s 232 

Index of agreement (WI), Scattered Index (SI), and coefficient of determination (R2), which are normally applied in 233 
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regression analysis, are considered in this research. The mathematical formulas of these statistical criteria are enclosed 234 

in Appendix A. A comprehensive assessment of the performances of the suggested models using CC, SI, WI and R2 235 

coefficients are collected in Table 6. Cross plots of the predicted chalk porosity by the intelligent models against the 236 

real data from the measurements are demonstrated in Fig. 3. More points close to the unit slope line shows lower 237 

deviations between the real data and model predictions in this type of plot.  Fig. 3 shows that most of the data points 238 

estimated by RF and GA-RF intelligent methods are located close to the unit slope line, verifying their high degree of 239 

accuracy to predict chalk porosity.  240 

 241 

Table 6. General results of computations for the studied models. 242 

 

Model 

Statistical parameters 

CC SI WI R2 

RF 0.99 0.02 0.997 
0.98 

 

 

 

MLP 0.90 0.05 0.943 0.82 

GA-RF 0.99 0.02 0.995 0.99 

GA-MLP 0.93 0.04 0.964 0.87 
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Fig.3. Scatter plots of target and estimated values. 244 

In addition, the developed smart models is compared with Nourani et al. [24]. The previous research has established 245 

an empirical index, I index, based on multivariate descriptor relationships to link Ca, Si, Al, Fe and K elements in 246 

outcrop chalk samples to porosity as follows: 247 

I𝐼𝐼 = Ca + Si − 20 𝐴𝐴𝐴𝐴4.7 − 4.7𝐹𝐹𝐹𝐹 + 2.7𝐾𝐾1.4                 (1) 248 

where Ca, Si, Al, Fe and K are percentages of calcium, silicon, aluminum, iron and potassium elements in chalk 249 

samples, measured by HH-XRF. Moreover, Nourani et al. showed that a three-component Partial Least Square (PLS) 250 

model can predict chalk porosity with high satisfactory validation results. Fig. 4 shows bar plots of R2 for six different 251 

models including the developed smart models in this study, and PLS and empirical models from the previous research. 252 

It should be noted that in order to ensure the fairness of the comparison, the considered R2 value (0.95) for empirical 253 
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I index is only valid for outcrop chalk samples, whereas R2 values for the rest of models involve both outcrop and 254 

reservoir chalk samples. Statistical criteria in Table 6 show high degree of performances for both GA-RF and RF 255 

methods. However, according to Table 6 and Fig. 4, GA-RF shows slightly higher R2 coefficient than RF.  Therefore, 256 

GA-RF is the most reliable model considering its lowest SI (0.02) and highest R2 (0.99) values. Similarly, it can be 257 

concluded from Fig. 4 and Tables 6 that the discussed models for predicting chalk porosity follow the accuracy ranking 258 

shown below: 259 

GA-RF > RF > I index > PLS > GA-MLP > MLP 260 

 261 

Fig. 4. Bar graphs of R2 values. 263 

 264 

For the purpose of getting a profound insight into the accuracy of model predictions, Figs 5 and 6 demonstrate a 265 

comparison between the experimental porosity data and the predicted chalk porosity for testing phase. A very good 266 

agreement between experimental and predicted data by GA-RF and RF methods is obtained in testing phase, as shown 267 

in Fig. 5. Besides, Fig. 6 shows fairly good predictions by GA-MLP and MLP methods.  268 

 269 
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Fig. 5. Observed and estimated values of studied parameters with RF and GA-RF models. 271 

Fig. 6. Target and estimated values of studied parameters with MLP and GA-MLP models. 273 

 274 

According to Fig. 6, it can be observed that the deviation of the developed method from observed data (as target 275 

values) is small except number 2, 4, 9, 11, 13 and 16. However, the difference between target and predicted values for 276 

Ga-MLP is lower than that of the single MLP. This can be due to the characteristics of GA-MLP, which employs GA 277 

for forming the weight and bias values of MLP and in fact plays as a training algorithm role [67] and sets the weight 278 

and bias values to reduce the training error. In fact, it considers the weight and bias values as a cost-function and 279 

optimizes the problem to reduce the cost-function. The main reason for reducing error values of GA-MLP in 280 

comparison with those of MLP model is the capability of GA in setting the weights and bias values in a proper way 281 
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compared with the training algorithm of the single MLP model. RRelief-F algorithm [68] is applied to evaluate the 282 

weight of each element in porosity prediction as listed in Table 7. 283 

Table 7. Weight of elements in porosity prediction by RReliefF algorithm. 284 

Variable (%) Weight (%) 

Al 19 

Si 33 

Ca 23 

Fe 17 

K 8 

 285 

Among five elements in Table 7, silicon plays the most substantial role in chalk porosity prediction. According to 286 

RReliefF algorithm analysis, calcium and aluminum are the second and third significant elements contributing in 287 

prediction of chalk porosity, respectively. Aluminum, calcium and silicon are the main elements present in clay, calcite 288 

and silica, respectively [24, 25]. Therefore, the quantities of these elements are proportional to the corresponding 289 

chemical compounds, such as clay, calcite and silica, which are present in chalk samples. Higher weights of Al, Ca 290 

and Si in predicting of chalk porosity are in accord with the facts that the matrix of chalk is composed mainly of 291 

calcium carbonate [69, 70], and the relatively low porosity of chalk is related to the contents of nano-quartz and clay 292 

minerals [11, 71, 72].  293 

As it turns out, the proposed methods are able to successfully increase the accuracy of forecasting and estimation, and 294 

this leads to less network error and simulation for future applications and more accurate studies. Finding an accurate 295 

simulated model for a particular experiment reduces the cost and time of the experiment for the same experiment in 296 

the same system if the same experiment needs to be repeated. Simulation in this system also furnishes the strengths 297 

and weaknesses of the employed variables with focused and credible evidence. This is one of the reasons why 298 

researchers are always looking to produce more accurate, faster, and more reliable models in all competing scientific 299 

fields, and they are evolving over time. 300 

6 Conclusions 301 

Intelligent methods are suggested to provide accurate, robust and reliable models to predict the porosity of chalk 302 

samples by four ML methods, namely GA-RF, RF, GA-MLP and MLP, and using XRF elemental analysis data. Real 303 
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porosity and XRF elemental analysis on outcrop chalk samples from Rørdal and Stevns Klint and core samples from 304 

Ekofisk Formation in the North Sea are used to figure out accuracy and effectiveness of the suggested predictive 305 

techniques. Results indicate that GA-RF is the most accurate model for predicting the chalk porosity in comparison 306 

with existing methods applied in this study.  GA-RF demonstrates a high coefficient of determination (0.99) and very 307 

low SI value of 0.02. However, the application of ML-based methods, in addition to being successful in terms of 308 

accuracy and appropriateness of the problem, must be able to cope with challenges and disadvantages of using ML-309 

based techniques. Challenges in applying the ML-based techniques include over-fitting and uncertainty in contact 310 

with data changes and unstructured data set. In addition, there are other challenges such as the need for ML-based 311 

techniques to have a complete data set and the need for sufficient time to complete the process. Each of these 312 

challenges needs to be addressed, which can be considered as a challenge in future studies.  313 

 314 

Appendix A. Statistical formulas 315 

 316 

I: Correlation coefficient (CC), expressed as: 317 
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II: Scattered Index (SI) follows as: 319 
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III: Willmott’s Index of agreement (WI) expressed as: 321 
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where Oi and Pi are the observed and predicted ith value. 323 

Ⅳ: Coefficient of determination (R2), expressed as: 324 
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