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ABSTRACT 4 

Bridges are one of the fundamental infrastructure assets that are vital for economic growth and 5 

public welfare. Over the past few decades, the numbers of deteriorating bridges have drastically 6 

escalated raising concerns for serviceable, safe and functional transportation networks. This state 7 

of affairs poses a paramount challenge especially when coupled with the need to address social 8 

and environmental constraints. Accordingly, this current research paper proposes an automated 9 

three-component model for bridge maintenance optimization at both project and network levels. 10 

The first component aims at identifying the physical characteristics of the tackled bridge 11 

inventory. The second component encompasses designing a multi-objective optimization model 12 

to determine the optimal set of maintenance plans through four principal objective functions. 13 

These functions comprise maximization of performance condition of bridge elements, 14 

minimization of agency and user costs, minimization of duration of traffic disruption and 15 

minimization of environmental impact. In the multi-objective optimization model, an exponential 16 

chaotic differential evolution (ECDE) algorithm is introduced in an attempt to circumvent the 17 

drawbacks of convergence speed and search behavior of classical meta-heuristics. The third 18 

component combines criteria importance through inter-criteria correlation (CRITIC), complex 19 

proportional assessment (COPRAS) and grey relational analysis (GRA) to select the most 20 

optimum maintenance plan for each study period. Comparison results revealed that ECDE-based 21 

Sinusoidal algorithm managed to improve the performance diagnostics of classical meta-22 

heuristics by values ranged from 49.2% to 73.1% over the multi-year maintenance plans. The 23 

results of benchmark test functions exemplified that ECDE-based Sinusoidal algorithm 24 

performed better than genetic and differential evolution algorithms by 114.2% and 79.5%, 25 

respectively. The developed integrated model is expected to assist infrastructure managers in 26 

executing optimized and sustainable maintenance budget plans within various planning 27 

scenarios.   28 
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1. INTRODUCTION  1 

In the recent few years, infrastructure asset management has been recognized as an 2 

integrated strategic approach that aims at maximizing the public safety, serviceability and 3 

functionality of the assets by making full use of limited allocated resources. It merges 4 

engineering fundamentals with sound business approaches and economic foundations 5 

endeavoring to establish cost-effective intervention decisions across the lifecycle of the asset 6 

[1,2]. Bridges are critical and vital links of transportation infrastructure that should be efficiently 7 

preserved within acceptable performance requirements over the lifetime of the bridge despite 8 

harsh operating conditions. They experience severe deterioration agents which accelerate their 9 

aging and depreciation including extreme weather conditions, freeze-thaw cycles, excessive 10 

distress loads due to traffic overload, etc. Repairing these bridges requires a significant 11 

investment, whereas the available budget cannot cover the expenses of maintaining all the 12 

networks’ bridges simultaneously. This calls for establishing bridge management systems 13 

(BMSs) that aid transportation agencies in structuring optimal programs and strategies of 14 

maintenance, repair and rehabilitation (MR&R) while satisfying their structural and resources 15 

constraints. The proper allocation of MR&R budget minimizes the accumulation of backlog of 16 

bridge intervention actions, whereas the backlog of maintenance activities can create a massive 17 

increase in the repair costs to the extent that repairing the deteriorating bridges is more expensive 18 

than building new ones [3].  19 

In Canada, the immediate and serious implications of bridge collapses have directed the public 20 

attention to the essence of managing bridge maintenance from structural, economic, societal, and 21 

environmental perspectives. Bridges encounter expeditious deterioration that necessitates urgent 22 

structural intervention to prevent them from further deterioration and to improve the bridge 23 

elements better than existing ones.  It is estimated that approximately that one third of the bridges 24 

in Canada suffer from functional or structural deficiencies. Furthermore, they consumed nearly 25 

57% of their useful lifetime, which marks the second highest consumption rate among the five 26 

main assets after the wastewater treatment infrastructures. The five main assets encompass 27 

highways and roads, bridges and overpasses, water supply systems, wastewater treatment and 28 

sewer systems [4,5].  29 
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From provincial perspective, bridges in Quebec have the highest average age followed by Nova 1 

Scotia and then Ontario. On the other hand, Prince Edward Island has the lowest average age. It 2 

can be noticed that the consumption rate of bridge in Quebec is nearly 15% higher that the 3 

consumption rate of the Canadian national bridges, which can be explained by the fact that most 4 

of the bridges in Quebec were constructed between the 1960s and 1980s [6,7]. Additionally, it is 5 

provided that the backlog of bridge maintenance, rehabilitation and replacement is estimated to 6 

be equal to $10 billion [8]. In view of above, the present research study proposes a multi-7 

objective optimization model that uses exponential chaotic differential evolution optimization 8 

algorithm for the optimum allocation of bridge MR&R actions in both project and network levels 9 

while accommodating the competing objective functions of condition, cost, environmental 10 

impact and traffic disruption.  11 

2. LITERATURE REVIEW 12 

A cost-effective maintenance schedule is necessary for delegated agencies in order to obtain 13 

the exact information about the need and timing of maintenance activities for a certain planning 14 

horizon. Additionally, it enables them enable to manage the imbalance between the extensive 15 

needs for maintenance, repair and rehabilitation actions, and the limited available funds. Several 16 

studies were carried out for bridge maintenance planning and prioritization through modeling 17 

several objective functions. The literature review is divided into three main sections, namely 18 

optimization-based models, multi-criteria decision making models and summarized research 19 

gaps. 20 

2.1 Optimization-based Models  21 

Alsharqawi et al. [9] proposed a budget optimization model to identify the most 22 

appropriate maintenance, repair and rehabilitation actions for reinforced concrete bridge decks. 23 

Genetic algorithm was implemented to find the optimum intervention actions based on satisfying 24 

cost and level of service requirements. Weibull distribution was modeled to simulate the 25 

deterioration process of bridge decks along the study period. Weighted comprehensive criteria 26 

method was used to search for the Pareto optimal solutions according to assigning relative 27 

weights to the bi-objective functions. It was shown that increasing level of services could be 28 

fulfilled by increasing the budget cost by 51%. Ghodoosi et al. [10] developed an optimization 29 

model that comprised genetic algorithm to select the cost-effective intervention actions. In the 30 

https://ascelibrary.org/author/Ghodoosi%2C+Farzad
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developed model, a biquadratic regression function was incorporated to model the reliability of 1 

the bridge superstructure across the planning horizon. The fitness function involved 2 

minimization of the equal uniform annual worth of MR&R expenditures for a composite 3 

reinforced concrete superstructure.  4 

Shim et al. [11] proposed a bi-objective optimization model for the budget allocation of MR&R 5 

decisions over six years of planning horizon. Stochastic Markov decision process was employed 6 

to predict the deterioration of the network of bridge decks based on the national bridge inventory. 7 

In the developed model, two interrelated objective functions were considered, which were 8 

minimizing the percentage area of structurally deficient deck, and minimizing the total annual 9 

MR&R expenditures. The proposed multi-objective optimization modrl was based on 10 

modification of “Normal Boundary Intersection” algorithm. They highlighted that it could better 11 

generate efficient Pareto optimal solutions when compared against normal boundary intersection, 12 

normal constraint, goal attainment and weighted sum techniques. Wu et al. [12] presented a life-13 

cycle optimization model for highway bridge maintenance. Semi-Markov decision process was 14 

deployed to simulate the deterioration of bridges of the 2012 national bridge inventory dataset 15 

for the state of Texas. Then, the optimum maintenance strategies can be identified relying on the 16 

deterioration pattern and the repair costs. They highlighted that the developed model could 17 

provide more effective decision-making plans in the light of limited repair funds for maintaining 18 

critical bridges.   19 

Badawy [13] presented a single-objective genetic algorithm to obtain the optimum maintenance 20 

plan of the expansion joints. Markovian models were used to obtain the future performance of 21 

the expansion joints, whereas the transition probability matrix was calibrated based on 22 

minimizing the differences between the predicted condition and the inspected condition. The 23 

optimum intervention actions were identified based on the maximization of the annual condition 24 

index of the expansion joints while satisfying a total budget constraint. 25 

2.2 Multi-criteria Decision Making Models   26 

Allah Bukhsh et al. [14] proposed a framework for multi-year maintenance planning for a 27 

group of bridges. Markov decision process was applied to forecast the deterioration process of 28 

the bridge, such that percentage prediction method was used to calibrate the transition probability 29 

matrices. In the developed framework, multi-attribute utility theory was utilized to rank the 30 
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bridges through a universal score that simulates the preferences of the decision makers. A five-1 

year optimal maintenance plan was established capitalizing on the genetic algorithm given a 2 

certain condition threshold and budget constraint. They pointed out that the developed 3 

framework can aid asset managers in implementing various maintenance scenarios within 4 

different performance and financial requirements. Dromey et al. [15] developed a model to rank 5 

the rehabilitation priority of bridges based on a set of characteristic attributes. Linear regression 6 

analysis was utilized to predict the annual degradation in the condition ratings of the bridges. The 7 

prioritization index was established based on ten influencing factors including: overall structural 8 

condition, number of spans, bridge material, rehabilitation cost, etc. Afterwards, stepwise 9 

multiple regression analysis was conducted to generate the best combination of independent 10 

variables that constitute the prioritization index. They highlighted that the developed model 11 

could serve as a robust process to optimize the annual investments designated for bridge network 12 

rehabilitation.   13 

Gao et al. [16] proposed a method to rank the concrete bridge repairs based on the VIKOR 14 

(VlseKriterijumska Optimizcija I Kaompromisno Resenje in Serbian). The final multi-criteria 15 

ranking index was obtained based on a set of attributes including: average daily traffic, average 16 

daily truck traffic, service years, service environment alongside the sufficiency rating attributes. 17 

The sufficiency ratings attributes encompassed the ratings of deck, substructure, superstructure, 18 

culvert, etc. The relative importance weighting of the criteria set was computed based on the 19 

criteria importance through inter-criteria correlation. They suggested that the developed ranking 20 

system could efficiently rank the bridge maintenance order. Contreras-Nieto et al. [17] 21 

introduced a geographical information system-based model for the prioritization of bridge 22 

maintenance plans. The ranking system was formed based on the average daily traffic alongside 23 

the weighted average rating that considered deck, substructure, superstructure and scour. They 24 

evaluated the bridges based on a set of four attributes, namely bridge resiliency, riding comfort, 25 

safety and serviceability, whereas their relative importance weighting was obtained using 26 

Analytical Hierarchy Process.    27 

Mahdi et al. [18] introduced a decision support system for identifying optimum maintenance plan 28 

of bridges stepping on bridge overall priority index. The evaluation of the bridge depends on 29 

three performance indicators, namely structural performance, functional performance and 30 
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external factors. The optimal maintenance budget allocation is generated through a dynamic 1 

programming-based model that aimed at minimizing the total repair cost, and subject to 2 

performance and financial constraints. Markiz and Jrade [19] introduced a stochastic fuzzy logic 3 

decision support system combined with bridge information management system (BrIMS) to 4 

predict the bridge deterioration and to sort the MR&R actions. The priority rankings of the bridge 5 

components were established using quality function deployment and technique of order 6 

preference similarity to the ideal solution (TOPSIS). The deterioration process of the bridge 7 

elements was simulated using time-dependent gamma shock models, such that the gamma 8 

function parameters were estimated through regression analysis. It was revealed that the 9 

developed deterioration model could efficiently mimic the future performance of the bridge 10 

elements with a percentage of error ranged from 10% to 15%.  11 

Nurani et al. [20] investigated the implementation of analytical hierarchy process (AHP), fuzzy 12 

AHP and technique of order preference similarity to the ideal solution for the identification of 13 

bridge maintenance priorities. The ranking platform was established based on the average daily 14 

traffic alongside the bridge damage condition, which was based on the aggregated weighted 15 

average of the condition of the different components. Results revealed that AHP and TOPSIS 16 

produced close priority rankings to each other. Rashidi et al. [21] developed a decision support 17 

system to select the optimum remediation strategies for steel bridges. Simplified analytical 18 

hierarchy process (S − AHP) was used to compute the weighting vector of the six main attributes 19 

of the decision making model, namely service life, safety, cost, environmental impact, traffic 20 

disruption and aesthetic appeal. They considered four different alternatives of rehabilitation 21 

actions: splice plates, steel plate strengthening, fiberglass reinforced plastic strengthening and 22 

partial member replacement. They concluded that safety had the highest global importance 23 

among the different attributes. Additionally, it can provide decision makers with reliable 24 

recommendations for the prioritization and selection of remediation actions of deteriorated 25 

bridges.  26 

Nurdin et al. [22] introduced a multi-criteria decision making framework for the determination of 27 

maintenance and rehabilitation priorities of bridges. In this model, AHP was applied to model the 28 

weighting vector of the relevant attributes, namely condition, traffic volume and policy. Bridge 29 

condition was found to be of the highest weight (49.1%) while traffic volume constituted the 30 
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lowest weight (18.5%). Subsequently, the intervention action, either maintenance or 1 

rehabilitation, was assigned as per the prioritization index. Yoon and Hastak [23] developed a 2 

multi-tiered method for the prioritization of bridge deck rehabilitation relying on urgency scale 3 

and total prioritization scale. The urgency scale was based on computing the timeframe that the 4 

rehabilitation process of the bridge deck can be delayed until its structural condition goes beyond 5 

the acceptable limit. The total prioritization scale integrates the normalized magnitudes of the 6 

performance, economic and criticality scales. 7 

2.3 Summarized Research Gaps  8 

Bibliometric co-occurrence map is structured for the purpose of creating a comprehensive 9 

overview of the bridge maintenance planning and prioritization. This is accomplished using 10 

VOSviewer platform which enables to extract and analyse the co-occurrences of keywords 11 

related to a given topic. Van Eck and Waltman [24] defined the number of co-occurrences of two 12 

keywords as the number of publications in which the keywords were mentioned together either 13 

in the title, abstract or the keywords list. The scientometric analysis facilitates delineating the 14 

drawbacks of the previous studies which paves the way for establishing more efficient 15 

maintenance optimization models. Figure 1 depicts a bibliometric co-occurrence map for the 16 

bridge maintenance planning and prioritization using VOSviewer 1.6.14. The created 17 

bibliometric map is used to highlight the frequencies of the developed genetic algorithm-based 18 

models. It is obtained capitalizing on a total of 101 articles published from 1997 to 2020 that 19 

induces a network of 222 keywords. In view of the previous studies, most of them supported 20 

either element-level, project-level or network-level decisions separately. Despite their 21 

interrelatedness, the previous literature lacks the integration of the different levels of decision-22 

making. This absence of integration between the different levels of decision-making process can 23 

yield inefficient maintenance budget allocation models [25]. It is worth mentioning that the 24 

integration of the different levels is a more complicated task because of the necessity to model 25 

the various deterioration patterns of the bridge components instead of dealing with one type of 26 

them, which were usually bridge decks.  27 

INSERT FIGURE 1 28 

Some studies relied on single-objective optimization models for maintenance budget allocation. 29 

Single-objective optimization models focus on one fitness function at the expense of other 30 
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functions. This induces a significant sacrifice in the performance of the optimization model and 1 

the quality of the generated optimal solutions. Most of the maintenance planning models dealt 2 

with short-term maintenance planning, whereas the previous models lack the exploration of long-3 

term strategic planning. The allocation of  MR&R decisions in short-term study periods is a 4 

simplified process and experience less interruptions when compared against the long-term 5 

maintenance planning. It is expected that the short-term maintenance models will diverge when 6 

applied to the more exhaustive nature of the combinatorial optimization model associated with 7 

long-term planning. This elicited from the amplified increase in the possible solutions of MR&R 8 

decisions. As such, the short-term periods are not sufficient to validate the performance capacity 9 

of the maintenance optimization models. Additionally, previous researches were concerned with 10 

relatively smaller number of bridge elements, which causes these models to be incomprehensive 11 

enough to model current transportation networks of large numbers of bridge elements.  12 

Some models assumed that the deterioration behavior experienced by the bridge elements after 13 

the application of the intervention action will be in the same manner as before its application. In 14 

this context, the deterioration rates of the bridge elements are predicted to decelerate when 15 

intervention action is applied. Additionally, some models optimize the MR&R actions for the 16 

entire bridge rather than the different elements of the bridge. Dealing with the bridge as a single 17 

unit regardless the physical condition of the bridge elements may create misleading maintenance 18 

schedule. This stems from the fact that different bridge elements experience different 19 

deterioration rates over the course of the study period, which implies that they will reach their 20 

critical stages at different periods. Furthermore, the maintenance decision support systems that 21 

capitalized on a universal ranking index for prioritization purposes may be inefficient because of 22 

their incapability to monitor the degradation of the various bridge elements. It can be also 23 

noticed that multi-criteria decision-making-based maintenance models are mainly concerned 24 

with prioritization of intervention actions at a certain instance of time based on the current 25 

condition ratings of bridge elements. In this regard, they fail to generate a MR&R schedule over a 26 

certain planning horizon while accommodating a set of conflicting objective functions.  27 

Some of the developed planning solutions presume deterministic unit costs and don’t deal with 28 

them as stochastic random variables. Failure to address the inherent uncertainties of the 29 

performance indices in the decision-making model can yield inferior maintenance plans. 30 
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Moreover, it was found that previous studies mostly focused on agency costs in their 1 

maintenance evaluation models and ignored the user-incurred costs. Nonetheless, user costs can 2 

substantially outweigh the direct agency costs in the bridges carrying high volumes of traffic. 3 

The accurate quantification and integration of user costs with agency cost can establish more 4 

comprehensive maintenance decision-making strategies.     5 

Besides, many previous efforts viewed the maintenance management of bridges from the 6 

perspective of traditional pillars of structural condition and cost meanwhile ignoring other 7 

important performance aspects. However, Van dam et al. [(26] suggested that infrastructure 8 

management should no longer be modeled from technical perspective solely. Furthermore, 9 

transportation networks are profoundly embedded in the community. Thus, management of 10 

existing bridges should satisfy the societal and environmental requirements in addition to the 11 

technical performance aspects. Additionally, the integration of environmental and societal 12 

principles of sustainability with the conventional pillars of asset management will provide 13 

decision-makers with a more comprehensive assessment of the implications of their maintenance 14 

decisions on the three main pillars of sustainable communities, i.e., economy, society and 15 

environment.  16 

Another shortcoming can be interpreted is that some maintenance optimization models impose 17 

constraints like the total budget and ignore the presence of annual budget constraints. In this 18 

regard, the maintenance budget is usually assigned annually. Furthermore, the maintenance 19 

optimization model may satisfy the total budget constraint and violate the annual budget 20 

constraints. This causes that the importance of assigning this constraint is better demonstrated in 21 

the presence of large numbers of bridge elements. Some of the developed maintenance 22 

optimization plans experience large number of intervention actions within small portion of the 23 

planning horizon because they overlooked the maximum number of visits when formulating the 24 

optimization model. This induces significant traffic disruption to the users of the bridge. 25 

Furthermore, some of the developed annual MR&R cost profiles witness substantial fluctuations. 26 

Nonetheless, transportation agencies are interested in establishing timely maintenance plans with 27 

balanced expenditures over the planning period. In this context, a constraint needs to be assigned 28 

to stabilize the fluctuations of the annual MR&R cost profiles. As such, the critical shortcomings 29 

of previous research studies motivated the authors to create a bridge maintenance optimization 30 
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model that manages to give due consideration for the physical, economic, social and 1 

environmental impacts for the intervention actions.  2 

3. PROPOSED MODEL 3 

The main objective of the present research paper is to develop an automated platform that 4 

supports both project and network-levels decisions for maintenance budget allocation over a 5 

certain planning horizon. The framework of the proposed model is depicted in Figure 2. As can 6 

be seen, the proposed method is divided into three main components namely, data input 7 

architecturing, multi-objective optimization and hybrid multi-criteria decision-making. In the 8 

first component, the first stage is identifying the characteristics of the tackled bridge inventory, 9 

which encompasses the age, type and number of the bridge in the bridge network in addition to 10 

the type and number of bridge components in each bridge. In the present study, the lifetime 11 

performance of the bridge is demonstrated in the form of three main components, namely deck, 12 

pier and abutment. Additionally, the proposed model is designed to deal with both short-term and 13 

long-term study periods. In this context, the maintenance planning categorizes the intervention 14 

strategies into four main types which are: no intervention, minor repair, major rehabilitation and 15 

replacement.   16 

The deterioration modeling plays a monumental role in the multi-year maintenance planning at 17 

the different decision-making levels. This deterioration mechanism has to be properly captured 18 

for the different bridge components, whereas each bridge component has a different deterioration 19 

trend the other. In the present study, Markov decision process is  employed to emulate the 20 

deterioration process of the bridge elements because of its capability to handle the uncertainties 21 

and vagueness of the deterioration mechanism stemming from the presence of un-observed 22 

explanatory variables and in-accurate inspection procedures. With respect to the bridge decks, a 23 

hybrid Bayesian-based approach is adopted to calibrate the transition probability matrix, whereas 24 

the deterioration process is assumed to be non-homogenous from a realistic point of view 25 

because bridge decks follow a varying deterioration pattern over the course of their service life. 26 

In the deterioration model, the likelihood functions of the in-state probabilities were computed 27 

using Bayesian belief network capitalizing on its capability to model the dependencies between 28 

the bridge defects. Markov chain Monte Carlo Metropolis-Hastings algorithm was then 29 

employed to derive the posterior probabilities stepping on the integration of the likelihood and 30 
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prior probabilities. In the last stage, a stochastic optimization model based on genetic algorithm 1 

was used to obtain the transition probabilities for each zone. More details about this model can 2 

be adopted from Mohammed Abdelkader et al. [27]. Regarding the pier and abutment, the 3 

transition probabilities are obtained from Hasan [28].  4 

It should be mentioned that the applied MR&R decision governs both the improvement in the 5 

physical condition rating of the bridge element as well as the performance of the bridge element 6 

after the employment of the intervention action. The fundamental premise of the condition 7 

improvement functions is that the level of condition performance of the bridge element is 8 

improved by an amount that is triggered by the type of the intervention decision. Furthermore, it 9 

is worth noting that deterioration transition probability matrices of the bridge element are marked 10 

by the application of MR&R action. As such, four deterioration models corresponding to the four 11 

intervention actions are constructed for each bridge component. One of the main objectives of 12 

the present study is to address the socio-environmental implications of the maintenance 13 

intervention strategies alongside the conventional economic aspects. As such, the user costs, 14 

environmental emissions footprint and work zone duration need to be computed. In this context, 15 

the work zone duration denotes the length of a time a work activity occupies a certain location. 16 

According to the manual on uniform traffic devices (MUTCD), the work duration can be 17 

categorized into five main groups namely, mobile, short-duration, short-term stationary, 18 

intermediate-term stationary and long-term stationary. The short-duration stands for a work-zone 19 

that occupies a location up to one hour while long-term stationary refers to work-zone that 20 

occupies a location for more than three days [29]. 21 

The costs in the bridge’s lifecycle cost analysis can be divided into agency costs and user costs. 22 

Agency costs refer to the costs incurred by the agency or owner over the lifetime of the facility. 23 

User costs refer to costs incurred by the users of the facility as a result of the maintenance 24 

operation, which causes traffic disruption or congestion to the normal traffic flow in the facility 25 

[30]. The proposed model tackles both agency and user costs in order to establish a holistic 26 

analytical platform that enables decision-makers to select the lowest costing alternative. In the 27 

present study the user cost of a work zone is evaluated with respect to travel delay costs, vehicle 28 

operating costs and the accident costs [31]. Latin hypercube sampling is utilized in the developed 29 

model to emulate the encountered inherent uncertainties associated with maintenance costs, 30 
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duration of traffic disruption and environmental impact. In this regard, maintenance costs, 1 

environmental emissions footprint and work zone durations are assumed to be normally 2 

distributed with different means and standard deviations. Normal distribution is preferred due to 3 

its simplicity and accurate simulation of unforeseen conditions in construction industry 4 

[32,33,34,35]. For each candidate solution during each optimization iteration, one thousand 5 

samples were randomly picked using Lain hyper cube sampling from their respective 6 

distributions to ensure convergence [36,37,38]. The mean values of the distributions of total life-7 

cycle maintenance cost, total duration of traffic distributions and total environmental impact are 8 

computed and appended as objective function values for the designated candidate solution in the 9 

optimization iteration.   10 

Latin hypercube is stratified sampling scheme that enables better coverage and exploration of the 11 

domain of the variations of the input variables. It is preferred over Monte Carlo sampling 12 

because of its time-efficiency in addition to its higher capacity of establishing efficient 13 

probability distributions using less number of iterations and less sampling error [39]. In Latin 14 

hypercube sampling, the parameter space of the input factor is divided in to N non-overlapping 15 

bins of equal marginal probabilities 1/ N. In the first iteration, one of the bins is selected 16 

randomly to be sampled from. Till the remaining N iterations, one of the bins which was not 17 

selected from sampling is picked to be sampled from. The process continues until all the N bins 18 

are picked for sampling over the N iterations [40]. It was stated earlier that the uncertainties of 19 

the deterioration process is modeled using the Makrovian model. As such, the proposed method 20 

is capable of addressing the uncertainties of the technical, economic, societal and environmental 21 

aspects of the maintenance intervention actions, which constitute the main pillars of 22 

sustainability-based decision-making process.      23 

The second component is the multi-objective optimization, whereas the proposed model deals 24 

with multiple objective of maintenance planning. This component is designated for optimizing 25 

the MR&R plans through a set of principal objectives which encompass maximization the 26 

minimum physical condition rating of the bridge elements, minimization the total intervention 27 

costs, minimization the total duration of traffic disruption and minimization of the total 28 

environmental impact of the intervention actions. The multi-objective maintenance planning 29 

model involves a set of condition and cost constraints that comply with the technical and budget 30 
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constraints imposed by the transportation agencies. The proposed model employs exponential 1 

chaotic differential evolution optimization algorithm to optimize the MR&R actions.  2 

Several modifications were reported in the literature to improve the search behavior of multi-3 

objective optimization algorithms like the uses of hypervolume indicator coupled with local 4 

search procedures [41], multi-directional prediction strategy [42], decomposition-based archiving 5 

approach [43], preference polyhedron with interval parameters [44] and chaotic operators [45]. 6 

To the authors’ best of knowledge, chaotic optimization has not been previously investigated for 7 

maintenance budget allocation of the different assets. In the chaotic processing, the diversity and 8 

convergence of the differential evolution are optimized while preserving its original 9 

characteristics. The use of chaotic disturbance mechanism enriches the search behavior of the 10 

differential evolution capitalizing on amplifying both of its exploration and exploitation. This 11 

prevents the differential evolution algorithm from being stagnated in local minima and premature 12 

convergence especially in the presence of multimodal search spaces that encompass multiple 13 

local minima. In this regard, the multimodal search space is considered as a substantial challenge 14 

for the optimization algorithm to explore in an attempt to find the global optimum solution. The 15 

proposed method investigates nine different chaotic maps to find out the most efficient one.  16 

Another advantage of the chaotic mapping is the generated improvement in the diversity of the 17 

population. This takes place because the values of the operators are calibrated adaptively over 18 

the course of the optimization process which in turn improves the convergence of the differential 19 

evolution algorithm. Additionally, the chaotic search saves the computational time consumed in 20 

fine-tuning the algorithm’s operators to be used in improving the computational efficiency of 21 

optimization. Another competitive advantage of the optimization algorithms is that it is less 22 

sensitive than the conventional optimization algorithms to the initial setting of values which 23 

successively enhances the stability and robustness of the optimization search mechanism 24 

[46,47,48]. In the present study, the chaotic operations are employed for optimizing the 25 

initialization of population and generating chaotic variable sequence for the mutation scaling 26 

factor and crossover probability. The strategy of the exponential chaotic mutation scaling factor 27 

is formulated based on the integration of exponential distribution function and chaotic maps. The 28 

exponential scheme facilitates the efficient exploration of the search space so that the search 29 
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agents move faster and at distant positions from each other, which in turn aids in converging to 1 

the global optimum solution within less number of iterations. 2 

The proposed model investigates nine different chaotic maps to find out the most efficient one. 3 

These chaotic maps are logistic, Singer, sinusoidal, sine, iterative, Chebyshev, cubic, logistic-4 

sine and circle. The chaotic optimization algorithm is validated through comparisons against 5 

state of art meta-heuristics namely, genetic algorithm (GA), particle swarm optimization (PSO) 6 

algorithm, invasive weed optimization (IWO) algorithm, differential evolution (DE) algorithm, 7 

Jaya algorithm, teaching learning optimization (TLO) algorithm and biogeography-based 8 

optimization (BBO) algorithm. The evaluation process of the developed multi-objective 9 

optimization model is three-folded. In the first fold, the evaluation comparisons are carried out 10 

capitalizing on a set of performance metrics including: minimum and average fitness function 11 

values in addition to hypervolume indicator, generational distance, inverted generational 12 

distance, spacing and maximum Pareto front error. Hypervolume indicator measures the region 13 

in the objective space that is covered by the non-dominated solutions [49]. This size or region is 14 

bounded by a reference point and it selected to be the point associated with the worst objective 15 

function values (nadir point) [50,51]. Spacing metric calculates the relative distance between any 16 

subsequent non-dominated solutions [52]. Generational distance measures the average distance 17 

of solutions from the true Pareto front [53]. Inverted generational distance evaluates the average 18 

minimum distance from each reference point in the true Pareto front and the closest solution 19 

obtained by the optimization algorithm [54]. In the metrics of generational distance, inverted 20 

generational distance and maximum Pareto front error, a reference point set needs to be 21 

identified. In this regard, the true Pareto front of the present multi-objective optimization 22 

problem is unknown. Hence, each algorithm was run five times independently and then all non-23 

dominated solutions obtained by all the tackled conventional and exponential chaotic-based 24 

meta-heuristics over all the runs, are gathered and appended. Non-dominated sorting operators 25 

are then implemented to obtain the non-dominated reference set [55,56].  Maximum Pareto front 26 

error calculates the largest distance between any vector in the approximate Pareto front and the 27 

nearest vector in the true Pareto front [57]. These performance metrics are capable of judging 28 

three main aspects of optimization algorithms which are: diversity, accuracy and cardinality. The 29 

second fold is designed for the purpose of evaluating the significance levels of the optimal 30 

solution. In this regard, Shapiro-Wilk test is used at first to study the normality of the data at 31 
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significance level (α) of 0.05. Subsequently, parametric or non-parametric tests are performed 1 

relying on the assessment of normality of the data for statistical significance comparison. The 2 

third aims at establishing an integrative reflection on the performances of the multi-objective 3 

evolutionary algorithms (MOEA) with respect to the accuracy and stability. This is addressed 4 

though the average ranking method that is fed by the output generated from the first fold.     5 

The developed chaotic exponential chaotic differential evolurion algorithm is further validated 6 

against the classical meta-heuristics of genetic algorithm and differential evolution algorithm 7 

using the benchmark test functions of Schwefel 2.26 [58], Rastrigin [59], Griewank [60], Beale 8 

[61] and three-hump camel [62]. The used benchmark test functions include a combination of 9 

multi-modal functions such as Schwefel 2.26, Rastrigin, Griewank and three-hump camel 10 

meanwhile Beale is a uni-modal function [63,64,65]. Multi-modal functions are associated with 11 

several local extreme points, whereas they are used to reflect the exploration abilities of meta-12 

heursitics and diversity preservation which facilitate local minima entrapment. The uni-modal 13 

functions test the convergence speed and exploitation abilities of meta-heuristics [66,67].    14 

The third component is the hybrid multi-criteria decision-making which is designed for the 15 

purpose of selecting the most optimum MR&R plan for each study period among the set of Pareto 16 

optimal solutions. In this component, the weights of the performance aspects are obtained 17 

objectively based on the criteria importance through inter-criteria correlation technique to 18 

overcome the subjective preferences in the weights’ assignment. In this algorithm, the 19 

information of the criteria is signified by not only the standard deviation of the criteria but also 20 

the correlation between the attributes. In this study, a hybrid multi-criteria decision-making 21 

(MCDM) approach is proposed to provide a robust and comprehensive ranking of the Pareto 22 

optimal solutions. In this regard, complex proportional assessment (COPRAS) and grey relational 23 

analysis (GRA) are coupled to generate a final ranking of the Pareto optimal solutions using the 24 

average ranking method. COPRAS and GRA are selected because they proved their efficiency in 25 

dealing with complex problems of decision-making such as improvement of surface water 26 

distribution systems [68], sustainability assessment of cities [69], studying the characteristics of 27 

asphalt binder [70] and risk assessment of deep foundation excavation [71]. Furthermore, they 28 

require less parameters than other MCDM approaches in their computational procedures. 29 

Additionally, the two MCDM approaches are of different computational nature which paves the 30 
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way for creating a comprehensive ranking of the solutions. The multi-objective optimization 1 

model is automated using a computerized platform that encompasses a hybridization of C#.net 2 

and Matlab programming languages to facilitate the users’ implementation. It is expected that the 3 

automated paradigm is capable of exploiting the compatibility and versatility capabilities of 4 

C#.net alongside the superior computational capacity of the Matlab.  5 

    INSERT FIGURE 2 6 

4. MULTI-OBJECTIVE OPTIMIZATION MODEL 7 

The proposed multi-objective optimization model considers both project and network-level 8 

decisions in the planning of  MR&R actions while satisfying the condition rating and budget 9 

constraints. In this context, it enables to determine which bridge component to repair, what 10 

intervention action to apply and when to perform the intervention action. The solution structure 11 

of the multi-objective maintenance planning model is depicted in Figure 3. As shown in Figure 12 

3, the search agent or the candidate solution is structured in the form of a string of elements, 13 

whose length denotes the number of decision variables of the multi-objective optimization 14 

model. The variable Xijt takes integer values range from one to four depending on the type of the 15 

intervention action, whereas Xijt of 1, 2, 3 and 4 correspond to no intervention, minor repair, 16 

major rehabilitation and replacement, respectively. For instance, minor repair of bridge deck 17 

includes crack sealing, patching and removing of spalled or delaminated concrete. Major 18 

rehabilitation includes strengthening by adding additional plates or girders in addition to 19 

increasing bridge deck thickness. Additionally, it is worth noting that the proposed model can 20 

tackle project and network-level decisions by modeling the timely MR&R plans for element i in 21 

bridge j at time t. In the present study, a set of principal multiple objectives are modeled for the 22 

purpose of multi-year maintenance planning. The objective functions tend to maximize the 23 

condition performance level of the bridge elements, minimize the total life-cycle maintenance 24 

costs, minimize the duration of traffic disruption and minimize the environmental impact as 25 

displayed in Equations (1), (2) ,(3) and (4), respectively.  26 

CR = Max {

                     
min conddeck = F[Mtd, td] |for d = 1, 2, 3 … … … … … . D 

min condpier = F[Mtp, tp] |for p = 1, 2, 3 … … … … … . P

min condabutment = F[Mtab, tab]  |for ab = 1, 2, 3 … … … … … . AB

                          (1) 27 
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TLCC = Min ∑ ∑ ∑
TACijt

(1 + r)t
+

TUCijt

(1 + r)t
                                                                                          (2)

I

i=1

J

j=1

T

t=1

 1 

TDTT = Min ∑ ∑ ∑ DTTijt                  

I

i=1

J

j=1

T

t=1

                                                                                                (3) 2 

TEI = Min ∑ ∑ ∑ EIijt                  

I

i=1

J

j=1

T

t=1

                                                                                                        (4) 3 

Subject to the following constraints: 4 

CR ≥ CRmin                                                                                                                                                    (5) 5 

TLCC ≤ BUDavailable                                                                                                                                    (6) 6 

TCt ≤ BUDt                                                                                                                                                     (7) 7 

STDMC ≤ STDthre                                                                                                                                         (8) 8 

NumInterv ≤ Numthre                                                                                                                                 (9) 9 

Such that; 10 

EIijt = T1 × (
Eghg

Eghgsum
) + T2 × (

Eap

EapSum
) + T3 × (

Epm

EpmSum
) + T4 × (

Eep

EepSum
)11 

+ T5 × (
Eod

EodSum
)   12 

+ T6 × (
Es

EsSum
)                                                                                  (10) 13 

STDMC = √
∑ (AVG_MC − TCt)2N

r=1

N
                                                                                                      (11) 14 
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Where; 1 

CR represents the minimum condition rating for all bridge components in all bridges across the 2 

planning horizon. It is worth mentioning that the minimum function is adopted instead of the 3 

average function because the average function fails to capture the presence of failure in the 4 

bridge elements. min conddeck, min condpier and min condabutment represent the condition 5 

performances of deck, pier and abutment, respectively. Mtd, Mtp and Mtab represent the type of 6 

intervention action applied to deck, pier and abutment, respectively. td, tp and tab depict the 7 

time sequences of intervention action applied to deck, pier and abutment, respectively. D, P and 8 

AB stand for the total numbers of decks, piers and abutments, respectively.  9 

TLCC depicts the total life-cycle maintenance costs and it is equal to the summation of the 10 

discounted maintenance costs applied at time instant t. TACijt and TUCijt depict the total agency 11 

and user costs of the intervention action for element i in bridge j at time t. r stands for the 12 

monetary discount rate and it is assumed 6% [72]. TDTT represents the total duration of traffic 13 

disruption. DTTijt stands for the duration of traffic disruption encountered from the MR&R action 14 

performed to element i in bridge j at time t. The work zone durations for the different 15 

intervention actions are derived from Lindly and Clark [73] and resource planning developed in 16 

the previous section.    17 

 TEI is the total environmental impact from the intervention action. EIijt stands for the 18 

environmental impact of the MR&R action performed to element i in bridge j at time t. It is equal 19 

to the weighted aggregation of the potentials of the various environmental emissions produced 20 

during the intervention process. T1, T2, T3, T4, T5 and T6 indicate the severity percentages of 21 

greenhouse gases, sulfur dioxide, particular matter, eutrophication particles, ozone depleting 22 

particles and smog, respectively. Eghg, Eap, Epm, Eep, Eod and Es represent potentials of 23 

greenhouse gases, sulfur dioxide, particular matter, eutrophication particles, ozone depleting 24 

particles, and smog, respectively. Eghgsum, EapSum, EpmSum, EepSum, EodSum, and EsSum 25 

represent potential sum of the greenhouse gases, sulfur dioxide, particular matter, eutrophication 26 

particles, ozone depleting particles, and smog, respectively. T1, T2, T3, T4, T5 and T6 are 27 

assumed 0.3, 0.1, 0.1, 0.1, 0.3 and 0.1, respectively. The potentials of the six environmental 28 

emissions are obtained Athena impact Estimator 5.4.0103 and the developed resource planning 29 
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method. More information about the modeling of the environmental emissions can be found in 1 

Marzouk et al. [74]. 2 

CRmin is the minimum allowable condition rating any bridge element is allowed to reach. 3 

BUDavailable denotes the available budget limit for all intervention actions of all bridge elements. 4 

TCt denotes the total maintenance cost at instant t. BUDt is the yearly budget limit of the 5 

intervention actions. STDMC represents the standard deviation of the MR&R expenditures over 6 

the planning horizon. STDthre is a threshold that corresponds to the maximum allowable 7 

standard deviation of the MR&R costs. AVG_MC is the average maintenance costs over the 8 

planning horizon. This constraint is imposed to establish a balanced MR&R cost profile as much 9 

as possible through minimizing the variations and fluctuations of the MR&R expenditures over 10 

the course of the study period. NumInterv is the number of intervention actions for all bridge 11 

elements. Numthre is the maximum allowable number of visits over the time horizon. This 12 

constraint is assigned to decrease the number of intervention visits, which in turn minimizes the 13 

traffic disruption. It is worth mentioning that all the afore-mentioned constraints are imposed as 14 

hard ones so that any solution which doesn’t satisfy the constraint’s requirements during the 15 

optimization process is filtered out.     16 

INSERT FIGURE 3 17 

4.1 Maximization of Bridge’s Condition Rating  18 

In the developed multi-objective optimization model, deterioration modeling is essential to 19 

forecast the future condition of decks, abutments and girders over the designated planning 20 

horizon. The used deterioration model in this research paper was presented in a previous 21 

publication by the authors which can be found in Mohammed Abdelkader et al. [27]. The inputs 22 

to this model are the inspection records and the outputs are the transition probabilities and 23 

deterioration curve. It is a stochastic time-based model that was formulated to alleviate the 24 

shortcomings of deterministic and state-based models. In this model, a Bayesian belief networks 25 

were utilized to the degree of influence of the bridge defects on the condition rating and 26 

degradation process of bridge element. It considered five types of bridge defects, namely 27 

corrosion, delamination, cracking, spalling and scaling. Transition times were assumed to follow 28 

probability distributions and they were used to calculate the conditional probabilities in the 29 
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Bayesian belief network. The output of the Bayesian belief network was the likelihood functions 1 

of the in-state probabilities. Markov chain Monte Carlo Metropolis-Hastings algorithm was then 2 

employed to derive the posterior distributions of in-state probabilities by integrating their 3 

likelihood and prior probabilities. The deterioration process was assumed to be non-4 

homogenous, whereas the entire service life was divided into zones and transition probability 5 

matrix was assigned to each zone. A stochastic optimization model was designed to compute the 6 

optimum transition probability matrices for each zone which were appended and used in the 7 

present research paper.  8 

As mentioned earlier, one of the key objectives of the multi-objective optimization model is to 9 

maximize the performance condition rating of the bridge elements. This is accomplished through 10 

the deterioration modeling of the bridge elements, which enables to emulate the condition rating 11 

of the bridge element over time. In this context, the transition probabilities of the deterioration 12 

model are mapped according to the preventive or corrective MR&R action. If the bridge deck 13 

undergoes no MR&R action, the transition probability matrix can be defined using Equation (12). 14 

The transition probability matrices of minor repair, major rehabilitation and replacement are 15 

displayed in Equations (13), (14) and (15), respectively [75].  16 

Pt,t+1 = [

P11 1 − P11 0 0
0 P22 1 − P2 0
0 0 P33 1 − P33

0 0 0 100%

]                                                                                          (12) 17 

Pt,t+1 = [

P11 1 − P11 0 0
P11 1 − P11 0 0
0 P22 1 − P22 0
0 0 P33 1 − P33

]                                                                                         (13) 18 

Pt,t+1 = [

P11 1 − P11 0 0
P11 1 − P11 0 0
P11 1 − P11 0 0
0 P22 1 − P22 0

]                                                                                                    (14) 19 

Pt,t+1 = [

P11 1 − P11 0 0
P11 1 − P11 0 0
P11 1 − P11 0 0
0 P11 1 − P11 0

]                                                                                                    (15) 20 

Where; 21 
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P11, P22 and P33 represent the probabilities that a bridge element remain in condition state 1, 1 

condition state 2 and condition state 3, respectively.  2 

The condition improvement functions are mapped stepping on the type of MR&R action. After 3 

applying the minor repair, the condition states 2, 3 and 4 are improved to the condition states 1, 2 4 

and 3, respectively. . After the implementation of major rehabilitation, the condition states 2, 3 5 

and 4 are enhanced to the condition states 1, 1 and 2, respectively. If the bridge element is 6 

replaced, it will return to its condition state [75,76]. 7 

4.2  Minimization of Maintenance Costs  8 

The maintenance cost is divided into two main components, namely agency and user costs. 9 

Agency costs are monetary values incurred by the agency as a result of applying the intervention 10 

actions. They are usually estimated as cost per unit area. Table 1 represents the agency cost of 11 

the intervention actions for the bridge deck [77]. The second component of the maintenance 12 

costs is the user cost, which represents the cost incurred by the users or the travelling public 13 

during the maintenance activity. This cost is fundamentally attributable to the restriction imposed 14 

on the use of the bridge as a result of the MR&R action. This restriction or construction work 15 

induces additional costs and delays because of the additional travel time and vehicle operating 16 

costs. The user costs depend primarily on the duration of work zone, average daily traffic and the 17 

increase in the accident rate because of the work zone, whereas the increase in the pre-mentioned 18 

parameters can result in as substantial increase in the user costs. In the case of bridges associated 19 

with high volumes of traffic, the user cost may exceed the agency costs. In the present study the 20 

user cost of a work zone is evaluated with respect to travel delay costs, vehicle operating costs 21 

and the accident costs [31].  22 

INSERT TABLE 1 23 

 Travel delay costs  24 

The first component of the users cost is the travel delay cost, which refers to the cost incurred by 25 

users as a result of the traffic disruption caused by the MR&R activities. The travel delay costs 26 

usually occur because of the increase in travel time due to congestion delays and speed 27 

reductions. The travel delay cost can be computed as follows.  28 
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TDC = (
L

Sa
−

L

Sn
) × tmrr × [((ADT − ADTT] × Cpass) + ((ADTT] × Ctru)]                              (16) 1 

Where; 2 

TDC represents the travel delay costs. L indicates the length of the affected bridge. Sa represents 3 

the traffic speed during the work zone. Sn represents the normal traffic speed. ADT and ADTT 4 

indicate the average daily traffic and average daily truck traffic. Cpass and Ctru represent the 5 

hourly time value of passenger car driver and truck driver per vehicle. tmrr indicates the duration 6 

of the work zone. 7 

 Vehicle operating cost 8 

Vehicle operating cost refers to the cost incurred by the vehicle drivers as a result of the 9 

additional time of operating the vehicle because of the traffic disruption created by the work 10 

zone. The vehicle operating cost includes: acceleration in the vehicle deprecation, the increase in 11 

vehicle operating cost, increase in the fuel consumption and the increase in the tire wear. The 12 

vehicle operating cost can be expressed as follows. 13 

VOC = (
L

Sa
−

L

Sn
) × tmrr × [((ADT − ADTT] × Cvov_pass) + ((ADTT] × Cvoc_tru)]                (17) 14 

Where; 15 

VOC represents the vehicle operating costs. Cvov_pass and Cvoc_tru denote the operating cost of 16 

passenger car and truck, respectively. 17 

 Accident cost 18 

Accident cost is the cost incurred due to the increase in the accident rate as a result of the MR&R 19 

activities. It encompasses the cost of injuries and damage to properties. The accident cost can be 20 

obtained using Equation (18). 21 

AC = L × ADT × [((Aa − An] × tmrr × Cacc)]                                                                                    (18) 22 

Where; 23 

AC indicates the accident costs. Cacc represents the average cost per accident. An and Aa denote 24 

the normal accident rate and accident rate during the work zone, respectively.  25 
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 Traffic growth rate  1 

The average daily traffic can be subjected to an annual increase rate because of the economic 2 

prosperity and population growth. By assuming a constant increase in the average daily traffic, 3 

the ADT at time instant t can be computed using Equation (19). 4 

ADTt = ADT × (1 + g)t                                                                                                                           (19) 5 

Where; 6 

ADTt represents the average daily traffic at a certain time t. g refers to the annual increase rate in 7 

the average daily traffic.  8 

5. Exponential Chaotic Differential Evolution Algorithm  9 

A revised algorithm that integrates a chaotic and exponential search mechanism with the 10 

differential evolution algorithm is proposed to circumvent the shortcomings of the classical 11 

meta-heuristic optimization algorithms. In the recent years, chaotic variable sequences generated 12 

from chaotic mapping mechanisms have been successfully applied in partial applications. Chaos 13 

can be defined as ubiquitous a dynamic non-linear phenomenon that exhibits infinite periodic 14 

movements in non-linear systems, and it is characterized by its irregularity, intrinsic stochastic 15 

property, randomicity and ergodicity.  16 

Ergodicity property is an outstanding feature of chaotic systems that describes dynamical 17 

systems that has the same behavior averaged over time as averaged over space of all the system’s 18 

space. This property enables to transit and search every state and node in the finite search space 19 

within certain range without repetition through a deterministic formulation. Chaos can be also 20 

viewed as a highly unpredictable and unstable motion of dynamical systems in a finite search 21 

plane. Thus, a non-linear system can be called chaotic if it exhibits sensitive-dependence on the 22 

initial conditions of the chaotic processing, and experiences infinite unstable periodic motions 23 

across the non-linear system. This is expected to amplify the search behavior and diversity of the 24 

generated solutions in the multimodal objective search space, which in turn prevents the 25 

differential evolution from premature convergence to local optimum solutions [78,79,80].. The 26 

basic procedures of differential evolution algorithm are described first then the chaotic control 27 

mechanism of the parameters of differential evolution algorithm is described.   28 
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5.1 Basic Procedures of Multi-objective Differential Evolution Algorithm  1 

The developed multi-objective optimization model employs exponential chaotic 2 

differential evolution algorithm to create an optimal maintenance schedule over the multi-year 3 

planning horizon. The developed model uses the process of non-dominated sorting to compare 4 

individuals and select the most optimal ones [81]. Differential evolution algorithm is a 5 

population-based meta-heuristic algorithm that was first proposed by Storn and Price in 1997 to 6 

solve non-differentiable and non-linear global optimization problems [82]. The basic procedures 7 

of differential evolution are similar to genetic algorithm. However, they differ in the mechanisms 8 

of crossover and mutation [83,84]. The basic strategy of non-dominated sorting differential 9 

evolution algorithm is presented in the following lines. 10 

The first step is the random generation of initial population in the search space using Equation 11 

(10). 12 

Xi,G = LB + rand[0, 1] × (UB − LB)                                                                                                     (20) 13 

Where; 14 

i and G stande for the population and generation, respectively. UB and LB are the upper and 15 

lower bounds of the design parameter vector. rand[0, 1] is a random number uniformly 16 

distributed between 0 and 1. 17 

The second step in functioning the differential evolution algorithm is the mutation. Mutation is 18 

applied to all vectors in the population, whereas three randomly selected vectors from the 19 

population are picked and combined to form the mutation vector. The mutation vector is created 20 

by adding the difference between two randomly selected vectors to the third vector. A target 21 

vector is chosen from the current population such that a mutation vector is generated for each 22 

target vector. The mutation vector is defined using Equation (2).  23 

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G)         such that r1 ≠ r2 ≠  r3                                                       (21) 24 

Where; 25 

r1, r2, and r3 are three randomly selected integer indices (r1, r2, and r3 ϵ {1, 2, 3………. NP}), 26 

and they are different from the index of the target vector. F is called a mutation scale factor that 27 
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controls the amplification of differential variation between the vectors of Xr2,G, and Xr3,G, and it 1 

is a real number between 0 and 1. 2 

Crossover is applied after mutation to increase the diversity of the perturbed parameter vectors 3 

through exchanging the components of the target vector with the mutation vector. The trial 4 

vector is generated using Equation (11). In this regard, if the crossover rate is larger than a 5 

uniformly generated number. Hence, Xj,i,G in the target vector sent to the trial vector. Otherwise, 6 

Vj,i,G+1 in the mutant vector is sent to the trial vector.   7 

Uj,i,G+1 = {
Vj,i,G+1            if CR ≥ randj 

Xj,i,G,                 if CR < randj   
                                                                                            (22) 8 

Where; 9 

Uj,i,G+1 is the trial vector. CR is a crossover probability between 0 and 1. j denotes index of the 10 

element in the vector. randj is a uniform random number between [0,1].  11 

The selection operator is used to determine whether or not the trial vector should be a member of 12 

the population in the next generation, whereas the trial vector is compared against the target 13 

vector and the vector with a better objective function value, is picked to be copied to the next 14 

generation. The selection operator is expressed using Equation (23). In the case of minimization 15 

cost functions, if the objective function value of the trial vector is less than the target vector then 16 

the trial vector is selected over the target vector. Otherwise, the target vector is retained.  ≤ 17 

Xi,G+1 = {
Ui,G+1       if (Ui,G+1) > (Xi,G) 

Xi,G,          if(Ui,G+1) > (Xi,G)   
                                                                                             (23) 18 

Where; 19 

(Ui,G+1) > (Xi,G) means that the solution of the trial vector dominates the target vector in the 20 

multi-objective optimization sense, and (Ui,G+1) ≤ (Xi,G) means that the target vector dominates 21 

the trial vector. The operators of non-domination rank and crowding distance adopted from Deb 22 

et al. (2002) are utilized to compare between fitness functions of trial and target vectors and 23 

select the best solutions in the forthcoming generations. In the non-domination rank, the 24 

individuals in the population are divided into fronts, and the individuals that are not dominated 25 
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by another solution constitute the front of rank 1. Then, the individuals which are only 1 

dominated by the first front are assigned a rank 2, and the recursive process is iterated until all 2 

individuals are assigned to a front with a designated rank. Crowding distance aims at 3 

diversifying the population’s distribution and it is used to compare solutions belonging to the 4 

same front, and the solutions with higher crowding distance are consider as higher than the 5 

solutions with lower crowding distance.  6 

The three operators of crossover, mutation and selection are implemented sequentially at each 7 

generation until stopping criteria is satisfied, i.e., reaching maximum number of generations.  8 

5.2 Types of Chaotic Maps  9 

In this research, nine different types of chaotic map sequences are experimented, namely logistic 10 

map, sine map, sinusoidal map, singer map, circle map, cubic map, iterative map, Chebyshev 11 

map, logistic-sine map. 12 

 Logistic map 13 

Logistic map is one of the most well-known chaotic functions, which was introduced by Robert 14 

May in 1976. This chaotic mechanism is usually featured in non-linear dynamics of biological 15 

population witnessing chaotic behavior. Additionally, this mechanism generates chaotic 16 

sequences in the range (0, 1). Logistic chaotic map can be expressed as follows [85].  17 

xk+1 = β × xk × (1 − xk)                                                                                                                        (24) 18 

Where; 19 

xk is the chaotic number at iteration k. β is a control parameter equal to 4.  20 

 Sine map 21 

Sine map is a unimodal chaotic mapping mechanism that can be mathematically expressed as 22 

follows [86]. 23 

 xk+124 

=
β

4
× sin (πxk)                                                                                                                                (25) 25 

Where; 26 
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β is a control parameter such that 0 ≤ β ≤4. 1 

 Sinusoidal map 2 

The sinusoidal chaotic sequence ensures that the chaotic behavior with the span (0, 1). Sinusoidal 3 

map can be formally defined as follows [87].   4 

xk+1 = β × x2
k5 

× sin (πxk)                                                                                                                      (26) 6 

Where; 7 

β is 2.3 to better simulate the variations of the chaotic variable. 8 

 Singer map  9 

Singer is a one-dimensional chaotic system that can be mathematically expressed as follows [46]. 10 

xk+1 = β × (7.86xk − 23.31x2
k + 28.75x3

k − 13.302875x4
k)                                                   (27) 11 

Where; 12 

β ∈ (0.9, 1.08) 13 

 Circle map  14 

Circle chaotic mapping function was proposed by Andrey Kolmogorov in the form of a 15 

simplified model for driven mechanical rotors. It delineates a model of phase locked loop in 16 

electronics. Circle mapping mechanism generates chaotic sequences within the range (0, 1). It 17 

can be mathematically defined as follows [78].  18 

xk+1 = xk + b −
a

2π
× sin(2πxk)mod(1)                                                                                           (28) 19 

Where; 20 

b=0.2 and a=0.5. mod(1) refers to a remainder operator of the division of the chaotic number by 21 

1.  22 
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 Cubic map  1 

Cubic map is one of the most common mapping mechanisms in generating chaotic sequences in 2 

several applications such as cryptography. It is a polynomial function of degree 2. This mapping 3 

function generates sequences within the range (0, 1). It can be formally defined as follows [87].  4 

xk+1 = β × xk × (1 − x2
k)                                                                                                                      (29) 5 

Where; 6 

β is equal to 2.59.  7 

 Iterative map 8 

Iterative map with infinite collapses maps (ICMIC) generates variable sequence within the range 9 

(-1, 1). It can be mathematically represented as follows [46].  10 

xk+111 

= sin (
β × π

xk
)                                                                                                                                      (30) 12 

Where; 13 

β ∈ (0, 1) and it is usually selected greater than 0.6 to create good chaotic sequences. The results 14 

are then normalized to generate a chaotic sequence within the range (0, 1).   15 

 Chebyshev map  16 

Chebyshev map is a common symmetric that is normally utilized in the applications of digital 17 

communication, security problems and neural network. Chebyshev map creates variable 18 

sequence within the range (-1, 1), and it can be formally expressed using Equation (31) [88].   19 

xk+120 

= cos (β × cos−1(xk))                                                                                                                    (31) 21 

Where; 22 

β is equal to 5 23 
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 Logistic-sine map 1 

Logistc-sine map is a chaotic model that utilizes both logistic map and sine map to generate 2 

chaotic variable sequences. Logistic-sine chaotic model can be mathematically represented as 3 

follows [89].    4 

xk+1 = (β × xk × (1 − xk) +
(4 − β)

4
× sin(πxk)) mod(1)                                                          (32) 5 

Where; 6 

β is a chaotic multiplier that is assumed 0.86.  7 

5.3 Differential Evolution with Chaotic Sequences  8 

The population initialization, mutation scaling factor and crossover probability are key 9 

factors affecting the convergence of the differential evolution algorithm and quality of final 10 

solutions. As such, the developed method adopts chaotic population initialization and chaotic 11 

operators to alleviate the shortcomings of conventional meta-heuristics through amplifying the 12 

search mechanism of the differential evolution optimization algorithm. This due to the fact the 13 

chaotic variables can travel ergodically over the whole search space of interest. Random 14 

initialization is the most commonly-utilized approach to generate initial population. However, 15 

this approach may lead search agents to be far away from the population. In this context, chaotic 16 

population initialization is at first carried out to enhance the diversity of the initial population 17 

which enables the differential evolution to prevent local optimum solutions and find global 18 

optimum solutions. This is accomplished by generating an D-Dimensional vector Z0 =19 

[Z01, Z02, Z03 … … … Z0D], such that each of its elements is random number in the range [0, 1]. 20 

Then, chaotic queues [Z1, Z2, Z3 … … … ZNP] are generated based on the designated chaotic map. 21 

Then, the chaotic queues are mapped to the desired optimized parameters’ range. 22 

With respect to the crossover probability and mutation scaling factor, the chaotic dynamics is 23 

incorporated for the purpose of their tuning. As mentioned earlier, the search performance of the 24 

differential evolution is significantly influenced by the control parameters of crossover 25 

probability and mutation scaling factor, whereas proper setting of their values plays a 26 

monumental role in the success of their important. The difficulty arises from the methods of 27 

selection of optimum parameter values which are usually capitalized on empirical evidence and 28 
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practical experience. These trial and fine-tuning-based methods require high computational effort 1 

because of the large number of runs needed for the optimum setting of parameters of differential 2 

evolution scheme. Additionally, these control parameters are constant across the whole 3 

exploration process. Thus, the mutation scaling factor and crossover probability can’t guarantee 4 

the optimization’s ergodicity in the search space. In the light of forgoing, the crossover 5 

probability and mutation scaling factor are modeled and tuned as chaotic variables to substitute 6 

the random numbers of the classical algorithm through establishing a self-adaptive dynamic 7 

parameter control mechanism. It is expected that this chaotic dynamics-based mechanism is 8 

capable of amplifying the search behaviour by improving the balance between the exploration 9 

and exploitation during the disturbance process. The chaotic sequences of the crossover 10 

probability based on the circle map can be formally expressed as follows.  11 

CRG+1 = CRG + b −
a

2π
× sin(2πCRG)mod(1)   such that G = [1,2, 3 … … … Gmax]               (33)         12 

With respect to the mutation scaling factor, it is tuned based on hybridization of the merits of 13 

both chaotic sequences and exponential distribution. From one side, the nature of exponential 14 

scheme presents a faster mechanism to explore the design space. From the other side, chaotic 15 

behavior avoids optimization problems from stagnation in local optimum. This in turn is 16 

expected to accomplish faster convergence and better solutions. The strategy of exponentially-17 

decreasing chaotic mutation scaling factor based on the logistic-sine map is formulated as 18 

follows.     19 

FG+1 = [(е
−2G

Gmax)  × ( Fmax − Fmin)]20 

+ [[(β × FG × (1 − FG) +
(4 − β)

4
× sin(πFG)) mod(1)]  21 

× Fmin]                                                                                                                               (34) 22 

Where; 23 

Fmin and  Fmax stand for the initial and final mutation scaling factors, respectively. mod(. ) is the 24 

modulus operator.  25 
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6. Hybrid Multi-criteria Decision-making 1 

Hybrid multi-criteria decision-making algorithm is designed for selecting the best solutions 2 

among the set of Pareto optimal solutions. In this context, CRITIC technique is utilized to 3 

compute the weighting importance vector of the condition performance level, total life-cycle 4 

maintenance costs, the duration of traffic disruption and the environmental impact [90]. This 5 

objective weighting approach is data dependent, and deals directly with the decision matrix when 6 

deriving the weights of attributes. Thus, it doesn’t need pairwise comparison matrices or 7 

decision-maker’s judgements like subjective referencing-based techniques.  The objective weight 8 

of the attributes signifies the real features and amount of information stored in each one. This 9 

technique is based on two dimensions generated from the measures of performance of criteria in 10 

the multi-criteria decision analysis, namely comparative intensity and conflict. The first 11 

dimension is captured by the standard deviation which analyzes the measure performance of the 12 

evaluated alternatives in each criteria separately. The second dimension is tackled by the 13 

correlation coefficient between each pair of attributes. COPRAS and GRA are incorporated to sort 14 

the optimal solutions based on a different theoretical concept, whereas COPRAS relies on the 15 

utility degrees of the different alternatives for their ranking. On the other hand, GRA is 16 

established based on the grey theory, and it utilizes the grey relational grade to analyze the 17 

reference series and the alternative series. Each technique produces a distinct ranking from the 18 

other. Thus, average ranking (AR) method is applied to derive the final global ranking of the 19 

optimal solutions for the sake of accurate and comprehensive assessment. It provides an 20 

integrative view of the performances of an algorithm from the perspectives of accuracy and 21 

robustness. This is accomplished through computing the mean and standard deviation of the 22 

ranks of the optimal solutions obtained from the two multi-criteria decision making techniques 23 

[91]. 24 

6.1 Criteria Importance through Inter-criteria Correlation 25 

The computational procedures of the CRITIC technique are discussed in the following lines 26 

[90]. The first stage is to normalize the decision matrix where the purpose of this step is to 27 

convert the measures of performance into non-dimensional ones since the dimensions and 28 

attributes of different attributes are different. The normalized decision matrix is computed using 29 

Equation (35).  30 
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yij1 

=
xij − min {xij, i = 1,2, … … … m}

max{xij, i = 1,2, … … … m} − min {xij, i = 1,2, … … … m}
                                                      (35) 2 

Where; 3 

xij represents the measure of performance of the i − th  alternative with respect to j − th 4 

attribute. 5 

As mentioned earlier, this method relies on the contrast intensity and conflict to compute the 6 

weights of attributes. Equation (36) is utilized to quantify the amount of information of each 7 

attribute stored in the decision matrix based on the contrast intensity and conflict.   8 

Qj = σj ∑(1 −  rjk)

m

j=1

                                                                                                                                 (36) 9 

Where; 10 

σj represents the standard deviation of the j − th attribute. rjk indicates the linear correlation 11 

coefficient between the j − th and k − th attributes. It is worth mentioning that a criteria with a 12 

high standard deviation and lower correlation coefficient with the other implies a higher weight 13 

of the criteria because a higher value of  Qj indicates more importance assigned to the j − th 14 

criteria. 15 

The final weights of the attributes are obtained by normalizing the amount of information 16 

transmitted by the attributes as follows.    17 

Wj =
Qj

∑ Qj
m
j=1

                                                                                                                                               (37) 18 

Where; 19 

Wj stands for the weight of the attribute. 20 

6.2 Complex Proportional Assessment  21 

COPRAS algorithm was first proposed by Zavadskas et al. in 1994 [92], and it is able to 22 

evaluate design attributes and assign priorities in the light of presence of conflicting criteria. It 23 
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presumes direct and proportional dependencies of significance and utility degrees of the 1 

investigated decision alternatives on a system of design attributes. The significance of 2 

investigated design alternatives is identified based on analyzing their positive and negative 3 

characteristics while taking into consideration the mutually conflicting criteria [93,94]. Its 4 

computational steps are presented in the following lines [92].    5 

The first step is the normalization process in order to transform the performance scores of the 6 

input decision matrix into comparable dimensionless values as shown in Equation (38). 7 

dij =
xij

∑ xij
m
i=1

                                                                                                                                               (38) 8 

Where; 9 

dij is the normalized performance score of the i − th alternative and j − th attribute. xij is the 10 

performance score of the i − th alternative and j − th attribute. m is the number of decision 11 

alternatives. m stands for number of decision alternatives. 12 

The second step is to derive the weighted normalized decision matrix by multiplying the 13 

performance scores of decision alternative by their respective weighting values as expressed in 14 

Equation (39). 15 

vij = pij ×  wj                                                                                                                                             (39)  16 

Where; 17 

vij denotes the weighted normalized value of the i − th alternative and j − th attribute.  18 

The third step is to compute the sums of weighted normalized values for both the beneficial and 19 

cost attributes by applying Equations (3) and (4). 20 

s +i=   ∑ v+
ij                                                                                                                                           (40)

n

j=1

 21 

s −i=   ∑ v−
ij                                                                                                                                           (41)

n

j=1

 22 

Where; 23 
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Higher values are more desirable in the case of beneficial criteria (s +i), and lower values are 1 

preferred in the case of cost criteria (s −i).  2 

 The fourth step is to calculate the relative priority or significance of each decision alternative on 3 

the basis of their positive and negative characteristics using Equation (42). 4 

Qi = s +i+
s−min×∑ s−i

m
i=1

s−i×∑ (s−min/s−i)m
i=1

  = s +i+
∑ s−i

m
i=1

s−i×∑ (1/s−i)m
i=1

                                                                  (42)  5 

The fifth step is to calculate the utility degree for each alternative which is used to generate a 6 

complete ranking of design alternatives. The quantitative utility degrees can be obtained using 7 

Equation (6).  8 

Ni =
Qi

Qmax
× 100%                                                                                                                                   (43) 9 

Where; 10 

Qmax denotes the maximum utility degree accomplished by all the decision alternatives. The 11 

values of utility degree vary from 0% to 100%, whereas higher values of Qi imply a better 12 

decision alternative.  13 

6.3 Grey Relational Analysis  14 

Grey relational analysis is inspired by grey system theory which was introduced to address 15 

uncertainties, incomplete and imprecise information in grey systems [95].The main procedures 16 

of grey relational analysis are described in the following lines [96]. 17 

The first step is grey relation generation in order to obtain the comparability sequence. The 18 

normalization of performance values for the benefit and cost criteria is conducted using 19 

Equations (44) and (45), respectively. 20 

yij =
xij − min{xij, i = 1,2, … … … m}

max{xij, i = 1,2, … … … m} − min{xij, i = 1,2, … … … m}
                                                      (44) 21 

yij =
max{xij, i = 1,2, … … … m} − xij

max{xij, i = 1,2, … … … m} − min{xij, i = 1,2, … … … m}
                                                      (45) 22 

 The second step is the definition of reference sequence which lies with the range of [0, 1]. The 23 

reference sequence is the largest normalized performance value in the case of benefit criteria, 24 
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and it is the smallest normalized performance value in the case of cost criteria. In this regard, a 1 

closer sequence to the reference sequence indicates a better sequence.  2 

The third step is to compute the grey relational coefficient using Equation (46). 3 

γ(y0j, yij) =
∆min + ξ∆max

∆ij + ξ∆max
                                                                                                                      (46) 4 

Where; 5 

∆ij= |y0j − yij|  6 

∆min= min {∆ij, i = 1,2, … … … m; j = 1,2, … … … n} 7 

∆max= max {∆ij, i = 1,2, … … … m; j = 1,2, … … … n} 8 

ξ is a distinguishing coefficient between 0 and 1, and it is assumed 0.5 in this research study 9 

[97,98].    10 

The fourth step is to calculate the grey relational grade as shown in Equation (47).  11 

r(y0, yi) =    ∑ wj ×

n

j=1

γ(y0j, yij)                                                                                                              (47) 12 

Where; 13 

Grey relational grade signifies the closeness between the comparability sequence and reference 14 

(ideal) sequence. In this context, an alternative associated with higher value of grey relational 15 

grade is a better one.   16 

7. MODEL IMPLEMENTATION 17 

The developed model is performed for optimum maintenance planning of a group of bridge 18 

elements in Quebec. The targeted bridge elements encompass ten bridge decks, seven piers and 19 

five abutments that were selected from seventeen bridges. A five-year, twenty five-year and 20 

thirty-five year maintenance plans are created for the sake of testing the capacity of the 21 

developed maintenance planning model to handle both short-term and long-term strategic 22 

planning. The age of the bridge elements ranges from 1970 to 2004 with average age of 27.05 23 

years for the five-year and twenty five-year study periods. More deteriorated bridges of average 24 

33.09 years are considered in the case of thirty-five year study period to better experiment with 25 

the capabilities of the developed maintenance optimization method. The parameters of the user 26 

costs are as follows. The affected length per bridge is 600 meters. The normal traffic speed is 27 
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100 km/hr. The reduced traffic speeds in the case of minor repair, major repair and replacement 1 

are 80, 50 and 30, respectively. The initial average daily traffic is 10,000 vehicles per day. The 2 

percentage of trucks from average daily traffic is 3.1%. The traffic growth is selected to be 3 

1.1%/year. Hourly time value of passenger car driver and truck driver are assumed $14.21/hr and 4 

$29.22/hr, respectively. The operating costs of passenger car and truck are 17.24/hr and 5 

$39.67/hr, respectively. The normal accident rate and accident rate during the work zone are 6 

assumed 1.56% and 2.58%, respectively. The average cost per accident is assumed $126,120.  7 

After the definition and quantification of the performance aspects of maintenance management 8 

of bridges, the second model is a multi-objective optimization model that exploits the use of 9 

exponential chaotic differential evolution algorithm for the sake of structuring optimum 10 

maintenance schedule of bridges over the multi-year planning period while accommodating the 11 

multiple performance constraints. The initial value of all chaotic maps is assumed 0.7 (Sayed et 12 

al., 2018; Saxena et al., 2018). Figures 4 and 5 describe the behavior of the nine chaotic maps for 13 

500 iterations. As can be seen, the chaotic dynamics enable the chaotic operators to travel 14 

ergodically across the search space. For instance, the chaotic sequences of control parameters in 15 

the singer map exhibit rapid transitions within close number of iterations. In the sinusoidal map, 16 

the chaotic variable sequences vary from 0.5 to 0.95. This provides an advantage over constant 17 

control parameters through providing full and efficient exploration of the search space. Figure 6 18 

demonstrates the interface designated for the multi-objective maintenance model. In it, the user 19 

is asked to define the length of study period, maximum number of visits for each element, 20 

minimum acceptable performance condition of element, maximum available budget, maximum 21 

yearly-budget and maximum standard deviation of costs. With respect to the parameters of the 22 

exponential chaotic differential evolution algorithm, the user is asked to specify the initial 23 

population size, maximum number of iterations, minimum and maximum scaling factors, value 24 

of initial chaotic number, and type of chaotic mechanism.        25 

INSERT FIGURE 4 26 

INSERT FIGURE 5 27 

INSERT FIGURE 6 28 
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In order to provide a fair comparison between the different meta-heuristic optimization 1 

algorithms, the initial population size is assumed 50. The numbers of iterations for the five-year, 2 

twenty five-year and thirty-five year study periods are assumed 1000, 1500 and 1700, 3 

respectively. Different initializations of parameters were experimented for the different meta-4 

heuristics in order to search for their optimum setting of values. Each meta-heuristic was run five 5 

times independently in order to avoid unstable solutions due to random initialization of 6 

population. The set of optimal solutions obtained from the multi-objective optimization model 7 

based on ECDE-based logistic sine map, differential evolution and teaching learning optimization 8 

for the twenty five-year study horizon are depicted in Figures 7 and 8. The variables “CI”, “TC” 9 

“EI” and “TD” denote performance condition index, maintenance costs, duration of traffic 10 

disruption and environmental impact, respectively. Four figures are generated to cover all 11 

possible combinations of the four performance aspects of the multi-objective optimization 12 

model. The generated maintenance plans should satisfy a minimum performance condition 13 

threshold of 64.04. The maximum available budget is $1,000,000 in five-year study plan, and 14 

$2,000,000 for the twenty five-year and thirty five-year study plans. Furthermore, the maximum 15 

yearly-budget and maximum standard deviation of costs are set to $250,000 and $20,000, 16 

respectively in the five-year period. In the twenty five-year and thirty five-year periods, the 17 

maximum yearly-budget and maximum standard deviation of costs are $1,000,000 and $500,000, 18 

respectively. As can be seen, the ECDE algorithm is capable of achieving significant reduction in 19 

the maintenance expenditures, traffic disruption and adverse environmental implications when 20 

compared against the classical meta-heuristics meanwhile fulfilling designated performance 21 

condition requirements. For the thirty five-year maintenance plan, the optimal solutions of the 22 

ECDE-based cubic, ECDE-based logistic-sine, ECDE-based circle and ECDE-based sine 23 

algorithms are presented in Figure 9. It should be mentioned that all the exponential chaotic 24 

optimization models achieved environmental impact of zero. Thus, the performance aspects of 25 

condition, maintenance cost and traffic disruption are displayed. In this context, it can be inferred 26 

that the exponential chaotic differential evolution algorithms attained promising results in terms 27 

of the four governing performance metrics. Furthermore, it should be reported that the classical 28 

optimization algorithms failed to find the optimum solutions within the boundaries and 29 

constraints for the maintenance planning model of thirty five-year study period.    30 

INSERT FIGURE 7 31 
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INSERT FIGURE 8  1 

INSERT FIGURE 9 2 

Tables 2 and 3 are presented to establish an in-depth comparison between the different meta-3 

heuristic algorithms for the maintenance planning of the thirty five-year study period. They are 4 

evaluated capitalizing on the minimum fitness function values (Min), average fitness function 5 

values (Avg), hypervolume indicator (HV), generational distance (GD), inverted generational 6 

distance (IGD), spacing (S) and maximum Pareto front error (MPFE). It should be mentioned that 7 

the best performing meta-heuristic optimization algorithm is the one which yields higher values 8 

of hypervolume indicator, in addition to lower values of generational distance, inverted 9 

generational distance, spacing and maximum Pareto front error. The bold values represent the 10 

best achieved values of the performance indicators. It can be interpreted that the ECDE-based 11 

logistic algorithm achieved the highest minimum condition rating, ECDE-based Chebyshev 12 

algorithm achieved the lowest minimum total maintenance cost. Additionally, ECDE-based 13 

sinusoidal algorithm, ECDE-based cubic algorithm, ECDE-based logistic-sine algorithm and 14 

ECDE-based circle algorithm yielded the lowest minimum environmental impact. With respect to 15 

the average performance of the objective function values, ECDE-based circle algorithm provided 16 

the highest average condition rating. Moreover, ECDE-based sinusoidal algorithm achieved the 17 

lowest average maintenance cost and environmental impact.   18 

In terms of hypervolume indicator, ECDE-based sinusoidal algorithm provided the largest 19 

hypervolume indicator (98.4%). On the other hand, ECDE-based cubic algorithm attained the 20 

lowest hypervolume indicator (96.4%). ECDE-based logistic, ECDE-based sinusoidal and ECDE-21 

based Chebyshev algorithms provided the best generational distance, inverted generational 22 

distance and maximum Pareto front error. On the other hand, ECDE-based cubic algorithm 23 

provided the highest generational distance and inverted generational distance. Additionally, 24 

ECDE-based circle algorithm attained the worst maximum Pareto front error. With respect to 25 

spacing metric, ECDE-based logistic, ECDE-based sinusoidal, ECDE-based sine, ECDE-based 26 

iterative, ECDE-based Chebyshev and ECDE-based circle algorithms provided the lowest 27 

spacing. Nonetheless, ECDE-based logistic-sine algorithm provided the highest spacing. It can be 28 

also noticed that different ECDE-based algorithms obtain different optimization results. This is 29 

due to that each ECDE-based algorithm incorporate different chaotic sequence function to find 30 
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the global optimum solution which causes their exploration-exploitation search behavior to be 1 

different from each other.       2 

INSERT TABLE 2 3 

INSERT TABLE 3 4 

The average ranking method is utilized to establish a comprehensive and unified comparison 5 

between the meta-heuristic optimization algorithms. This comparison integrates their 6 

performances with respect to the three study periods. The results of the average ranking method 7 

are recorded in Table 4 and displayed in Figure 10. As shown in Figure 10, there is significant 8 

improvement in both the mean of rankings and standard deviation of rankings attained by the 9 

exponential chaotic differential evolution algorithm when compared against the conventional 10 

optimization algorithms. According to the results listed in Table 4, it can be found that ECDE-11 

based sinusoidal algorithm achieved the first rank followed by the ECDE-based logistic algorithm 12 

and then the ECDE-based iterative algorithm. In this context, ECDE-based sinusoidal algorithm 13 

achieved µ𝐚 and σa of 2.41 and 2.03, respectively. With respect to the conventional optimization 14 

algorithms, DE provided the tenth rank followed by the 15 

TLO and then IWO while Jaya attained the least ranking. The rankings of GA and PSO are 16 

fourteenth and fifteenth, respectively. Furthermore, GA exhibited the highest unstable 17 

performance across the different multi-objective optimization problems. In this regard, µ𝐚 and σa 18 

of GA are 7.45 and 3.87, respectively. In addition, µ𝐚 and σa of PSO are 7.55 and 3.61, 19 

respectively. This evinces that the exponential chaotic differential evolution optimization 20 

algorithm substantially outranks classical meta-heuristics and it demonstrates more stable 21 

performance than them.    22 

INSERT TABLE 4 23 

INSERT FIGURE 10 24 

A hybrid multi-criteria decision-making algorithm is designed to select the most compromise 25 

solution among the set of Pareto optimal solutions. In this context, CRITIC technique is used for 26 

deriving the weights of the attributes CR, TLCC, TDTT and TEI. Table 5 reports the quantity of 27 

information and final weights of each criterion. It was concluded that CR has the highest relative 28 

weight, and the remaining attributes of TLCC, TDTT and TEI exhibit approximately equal 29 
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weights. In this regard, the final weights of CR, TLCC, TDTT and TEI are 30.07%, 20.03%, 1 

26.68% and 23.22%, respectively. Furthermore, COPRAS and GRA are applied to rank the Pareto 2 

optimal solutions. Each type of the multi-criteria decision-making induces a distinct ranking 3 

from the other. In this regard, AR method is employed to formulate a consensus ranking of the 4 

Pareto optimal solutions Sample of the optimal solutions for the five-year, twenty five-year and 5 

thirty five-year maintenance planning horizons are recorded in Tables 6, 7 and 8, respectively. 6 

The best maintenance plan for the five-year study period induces CR, TLCC, TDTT and TEI of 7 

72.87, $388,05.06, 0 and 11.89, respectively. For the twenty five-year planning horizon, the best 8 

solution comprises CR, TLCC, TDTT and TEI of 64.09, $363,20.8, 0 and 11.89, respectively. 9 

Additionally, The most optimum maintenance plan for the thirty five-year study period induces 10 

CR, TLCC, TDTT and TEI of 64.09, $100,148.4, 0 and 33.68, respectively. By analyzing the 11 

rankings of the optimum solutions, it can be inferred that the disagreement between the rankings 12 

of the optimum solutions increases with the increase in the complexity of the multi-objective 13 

optimization model, i.e., more lengthy planning horizon. This state of affair necessitates the 14 

employment of the AR method for the purpose of obtaining compromise solution. 15 

INSERT TABLE 5 16 

INSERT TABLE 6 17 

INSERT TABLE 7 18 

INSERT TABLE 8 19 

The profile of the twenty five-year maintenance plans of a bridge deck obtained from the ECDE-20 

based logistic-sine algorithm and the ECDE-based sinusoidal algorithm are presented in Figure 21 

11. As shown in Figure 11, the exponential chaotic differential evolution algorithms are capable 22 

of formulating efficient maintenance plans that can accommodate the different performance 23 

aspects. Additionally, it is capable of establishing maintenance profiles with minimum 24 

interruptions and cost-effective profile with balanced expenditures over the planning horizon. 25 

The maintenance profiles of maintenance plans generated from the ECDE-based singer algorithm 26 

and TLO algorithms are presented in Figure 12. These schedules are designated for maintenance 27 

planning of a bridge deck over a study period of thirty five years. It can be inferred that the 28 

ECDE-based singer algorithm experience significant less traffic disruption when compared 29 
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against the TLO algorithm, whereas ECDE-based singer and TLO algorithms induce 1 and 4 1 

interruptions, respectively along the planning horizon. Furthermore, the ECDE-based singer 2 

algorithm is capable of formulating better cost-effective profiles with less perturbations and 3 

variations.    4 

INSERT FIGURE 11 5 

INSERT FIGURE 12 6 

Figure 13 show maintenance cash flow of the bridge network over the five-year planning 7 

horizon. The cash flow is generated based on the optimum maintenance plan obtained by ECDE-8 

based sinusoidal algorithm. The optimum maintenance plan comprised carrying out six 9 

intervention actions: five minor repair actions for the bridge decks in 2021 and one minor repair 10 

action for the bridge deck in 2022.  In this regard, the total cost of the maintenance plan was 11 

valued to be $38,805.1. The maintenance cash flow of the bridge network over twenty five-year 12 

planning horizon is presented in Figure 14. The ECDE-based sinusoidal algorithm selected to 13 

conduct six minor repair actions for the bridge decks: two minor repair actions at 2028, and four 14 

minor repair actions at 2026, 2029, 2031 and 2033. The cost of intervention actions was valued 15 

to worth $36,320.8. The maintenance cash flow over the thirty five-year study period is depicted 16 

in Figure 15. The optimum maintenance schedule encompassed seventeen minor repair actions 17 

for the bridge decks: seven minor repair actions at 2022, 2038, 2041, 2042, 2045, 2047 and 2052 18 

in addition two minor repair actions at each of 2024, 2025, 2026, 2029 and 2031. It is worth 19 

mentioning that no intervention action was applied to abutments and piers because of their low 20 

deterioration rate when compared against decks so there condition rating was far away minimum 21 

allowable performance condition threshold value.       22 

INSERT FIGURE 13 23 

INSERT FIGURE 14 24 

INSERT FIGURE 15 25 

In order to further validate the developed model, the multi-objective optimization model is re-26 

designed to accommodate seven girders rather than the piers. More deteriorated bridges were 27 

considered such that their age was 33.5 years. The minimum allowable condition was raised to 28 
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85.5 to better demonstrate the features of the developed maintenance optimization model in 1 

abutments and piers. The maximum available budget was $ 10,000,000, and the maximum yearly 2 

budget was valued to be $ 2,000,000. The maximum standard deviation of maintenance costs 3 

was set to be $5,000,000. Figure 16 depicts the cash flow of the bridge network over the five-4 

year study period. Based on the ECDE-based sinusoidal algorithm, the optimum maintenance 5 

plan incorporated ten intervention actions to be performed at the first year. This included six 6 

major rehabilitation actions for decks, one minor repair action for abutment and three major 7 

rehabilitation actions for girders. The total cost of intervention actions was valued to be 8 

$493,551.56.     9 

INSERT FIGURE 16 10 

Table 9 reports the performances of ECDE-based sinusoidal, differential evolution and genetic 11 

algorithms over the five-year study. It can be noticed that the developed ECDE-based sinusoidal 12 

algorithm was able to satisfy the performance condition requirements while maintaining lower 13 

total life-cycle maintenance cost, total duration of traffic disruption and total environmental 14 

impact. In addition, the number of intervention actions of the developed ECDE-based sinusoidal 15 

algorithm was less than differential evolution and genetic algorithm. Differential evolution 16 

exhibited the second highest performance while genetic algorithm had the least performance and 17 

it was accompanied by the largest number of intervention actions. In this regard, the values of 18 

CR, TLCC, TDTT, TEI and number of intervention actions were 86.41, $493,551.56, 0, 126.14 19 

and 10, respectively. Based on the genetic algorithm, the respective values of CR, TLCC, TDTT, 20 

TEI and number of intervention actions were 90.62, $4,453,917.27, 2.89, 466.63 and 96, 21 

respectively. 22 

INSERT TABLE 9 23 

Figures 17 to 21 display the convergence curves of the ECDE-based sinusoidal, genetic and 24 

differential evolution algorithms for the benchmark functions of Schwefel 2.26, Rastrigin, 25 

Griewank, Beale and three-hump camel. In this regard, the plotted convergence curves are 26 

undertaken for the best performance histories obtained over the multiple runs. The global 27 

optimum solutions of Rastrigin, Griewank, Beale and three-hump camel are zero, and the global 28 

optimum solution of Schwefel 2.26 is -12569.49. The numbers of iterations and search agents 29 
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over all meta-heuristics are fixed to 1000 and 50, respectively. In addition, the number of 1 

dimensions is set to 30 for all test functions. In Schwefel 2.26 function, ECDE -based sinusoidal 2 

algorithm accomplished superior results over differential evolution and genetic algorithms, 3 

whereas it converged to a very near global optimum solution of -12569.49 at iteration 503. In 4 

addition, differential evolution converged to a relatively close global solution of -12568.32 at 5 

iteration 998, and genetic algorithm got stagnated in local optimum solution. With regards to 6 

Rastrigin function, ECDE -based sinusoidal algorithm obtained the best objective function 7 

values, whereas it reached the value 3.6E-03 at iteration 992. Genetic algorithm performed better 8 

than differential evolution algorithm, whereas they got stuck in the values 19.9 and 55.72 at 9 

iterations 380 and 949, respectively. For the Griewank function, it is noticed that ECDE -based 10 

sinusoidal algorithm managed to reach the global optimum solution at iteration 851. Differential 11 

evolution reached an objective function value of 1.12E-11 at iteration 998, and genetic algorithm 12 

prematurely converged to a local optimum solution.  13 

In Beale function, ECDE -based sinusoidal algorithm was able to converge fast to the global 14 

optimum solution at iteration 208. Differential evolution and genetic algorithm failed to visit the 15 

global optimum point. In this regard, differential evolution stabilized at the value of 6.53E-22 at 16 

the iteration 987, and genetic algorithm got stuck at the value 3.02E-11 early at the iteration 48. 17 

With respect to three-hump camel function, ECDE -based sinusoidal algorithm was able to 18 

perform much better than differential evolution and genetic algorithm whereas it managed to find 19 

a very close global solution of 2.59E-244 at iteration 991. In this regard, differential evolution 20 

and genetic algorithm stabilized at the values of 4.13E-73 and 1.96E-73 at the iterations 997 and 21 

168, respectively. In view of the above, it can be observed that the ECDE -based sinusoidal 22 

algorithm substantially converged faster than genetic algorithm and differential evolution 23 

algorithm in both multi-modal and uni-modal test function, and it managed to accurately find the 24 

global optimum solution in almost all of them. However, genetic and differential evolution 25 

algorithms failed to converge to the actual global optimum solution and they were rapidly getting 26 

trapped in premature convergence more clearly in the benchmark functions of Rastrigin, 27 

Griewank and three-hump camel.       28 

INSERT FIGURE 17 29 

INSERT FIGURE 18 30 
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INSERT FIGURE 19 1 

INSERT FIGURE 20 2 

INSERT FIGURE 21 3 

Table 10 summarizes the best, worst, average and standard deviation of the objective function 4 

values. These values are reported based on five independent runs. It can be noticed that ECDE -5 

based sinusoidal algorithm precisely reached the global optimum solution in the test functions of 6 

Griewank and Beale. ECDE -based sinusoidal algorithm produced very close values to the global 7 

optimum solution in the test functions of Schwefel 2.26, Rastrigin and three-hump camel. In this 8 

regard, the best objective function values scored by the ECDE -based sinusoidal algorithm differ 9 

by 1.34E-02, 3.6E-03 and 4.13E-73 in the functions of Schwefel 2.26, Rastrigin and three-hump 10 

camel, respectively. It can be also seen that the developed ECDE -based sinusoidal algorithm 11 

significantly outperformed genetic and differential evolution algorithm across the five test 12 

functions such that it accomplished lower best, worst and average objective function value in 13 

addition to a lower standard deviation. The average objective function value of ECDE -based 14 

sinusoidal algorithm was better by 114.26% and 79.51% when compared against genetic and 15 

differential evolution algorithms, respectively. In addition, it is found that the best objective 16 

function values of ECDE -based sinusoidal algorithm was lower by 106.54% and 80% than the 17 

ones of genetic and differential evolution algorithms, respectively. Hence, it can be argued that 18 

the developed ECDE -based sinusoidal algorithm exhibits high exploration and exploitation 19 

search abilities which improved its convergence speed, population diversity and prevented it 20 

from being trapped in local minima solutions. Nevertheless, classical meta-heuristics failed to 21 

solve efficiently the multi-modal and uni-modal functions because they are highly susceptible to 22 

be stagnated in local minima and premature convergence With regards to standard deviation, it 23 

can be derived that the developed ECDE -based sinusoidal algorithm obtained lower standard 24 

deviation by 94.89% and 96.72% with respect to the genetic and differential evolution 25 

algorithms, respectively. This superiority illustrates the robustness of the developed ECDE -based 26 

sinusoidal algorithm since it is experiences very few perturbations in its performance across the 27 

different runs. At the level of classical meta-heuristics, it can be inferred that differential 28 

evolution algorithm yielded better optimum solutions than genetic algorithm in the functions of 29 

Schwefel 2.26, Griewank and Beale. However, it is outperformed by it in Rastrigin and three-30 
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hump camel functions. This demonstrates the higher variations in the performance of classical 1 

meta-heuristics and their case-dependency nature mostly when attempting to solve higher-2 

dimension optimization problem accompanied by the presence of several local minima points.   3 

INSERT TABLE 10 4 

Four experiments are carried out to validate the performance of the developed ECDE -based 5 

sinusoidal algorithm against some of the existing research works. These experiments comprise 6 

different numbers of iterations, population sizes, benchmark functions and multiple dimensions 7 

to better test the developed algorithm. In the first experiment, the developed ECDE -based 8 

sinusoidal algorithm is compared against the improved clonal selection algorithm (ICSAT) 9 

proposed by Ülker [99]. In this experiment, the number of iterations, population size and 10 

dimension size are assumed as 5000, 30 and 30, respectively. Figure 22 shows the convergence 11 

curves of ECDE -based sinusoidal algorithm for Rastrigin and Schwefel 2.26 functions. These 12 

curves are plotted for the best performance histories among the thirty independent runs. It is 13 

found that the ECDE -based sinusoidal algorithm converged to the global optimum solution of 14 

zero at iteration 2390 in the Rastrigin function. In addition, they reached a very near global 15 

solution of -12569.49 at iteration 920 in the Schwefel 2.26 function. The average and best 16 

objective function values of the thirty runs are given in Table 11. It can be inferred that the ECDE 17 

-based sinusoidal algorithm outperformed ICSAT algorithm providing lower best and average 18 

objective function values in both Rastrigin and Schwefel 2.26 functions. For instance, the best 19 

objective function values of ECDE -based sinusoidal and ICSAT algorithms in the Rastrigin 20 

function are 0 and 9.84, respectively. In the Schwefel 2.26 function, the average objectives 21 

function values of  ECDE -based sinusoidal and ICSAT algorithms are -12569.49 and 1.49E-5, 22 

respectively.  23 

INSERT FIGURE 22 24 

INSERT TABLE 11 25 

In the second experiment, the developed ECDE -based sinusoidal algorithm is compared against 26 

the Jaya-Bat algorithm introduced by Kaur et al. [100]. The comparative analysis is performed 27 

using Rastrigin and Griewank functions, and the population size is set to 40. In the Rastrigin 28 

function, the numbers of dimensions and iterations are 10 and 2000, respectively. With regards 29 
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to the Griewank function, the numbers of dimensions and iterations are 30 and 1000, 1 

respectively. Figure 23 demonstrate the convergence of  ECDE -based sinusoidal algorithm in the 2 

Rastrigin and Griewank functions. The ECDE -based sinusoidal algorithm found the global 3 

optimum solution in the Rastrigin function at iteration 529. It was also found a very near global 4 

optimum solution of 1.11E-16 in the Griewank function at iteration 846. The best, worst, average 5 

and standard deviation of objective function values are presented in Table 12. It is revealed that 6 

ECDE -based sinusoidal algorithm accomplished better objective function values with lower 7 

standard deviation than Jaya-bat algorithm in both Rastrigin and Griewank functions. In 8 

Rastrigin function, the average objective function values of ECDE -based sinusoidal algorithm 9 

and Jaya-bat algorithm are 7.79E-06 and 4.94, respectively. With respect to the Griewank 10 

function, the values of standard deviation of ECDE -based sinusoidal algorithm and Jaya-bat 11 

algorithm are 1.27E-13 and 1.9E-03, respectively.    12 

INSERT FIGURE 23 13 

INSERT TABLE 12 14 

The third experiment encompasses verifying the performances of the developed ECDE -based 15 

sinusoidal algorithm against the improved particle swarm optimization (IPSO) algorithm 16 

presented by Xia et al. [101]. A set of thirty independent runs are undertaken, and the population 17 

size, number of dimensions and number of iterations are 40, 20 and 5000, respectively. Figure 24 18 

illustrate the convergence of the developed ECDE -based sinusoidal algorithm in Rastrigin and 19 

Griewank functions. As can be seen, ECDE -based sinusoidal algorithm converged to zero in 20 

both Rastrigin and Griewank functions at iterations 1503 and 987, respectively. Table 13 21 

provides the average objective function values of ECDE -based sinusoidal and IPSO algorithms. 22 

The average objective function values of ECDE -based sinusoidal in Rastrigin and Griewank 23 

functions are zero while the average objective function values obtained by IPSO algorithm are 24 

3.54 and 2.53E-03 in Rastrigin and Griewank functions, respectively.    25 

INSERT FIGURE 24 26 

INSERT TABLE 13 27 

In the fourth experiment the efficiency of the developed ECDE -based sinusoidal algorithm is 28 

investigated through its comparison against the golden eagle optimizer (GEO) introduced by 29 
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Mohammadi-Balani et al. [102]. Thirty runs were executed and the number of iterations and 1 

population size are assumed 1000 and 50, respectively. The performance comparison is done 2 

based on Beale, three-hump camel, Rastrigin and Griewank functions. In this context, the 3 

numbers of dimensions are two in Beale and three-hump camel functions, and they are thirty in 4 

Rastrigin and Griewank functions. Figures 25 and 26 show the convergence curves of the ECDE -5 

based sinusoidal algorithm in Beale, three-hump camel, Rastrigin and Griewank functions. It is 6 

derived that ECDE -based sinusoidal algorithm found the global optimum solution of zero in both 7 

Beale and Griewank functions at iterations 152 and 824, respectively. It also converged to close 8 

global optimum solutions of 1.9E-286 and 3.7E-12 in three-hump camel and Rastrigin functions 9 

at iterations 984 and 976, respectively. The average and standard deviation of objective function 10 

values are provided in Table 14. It can be inferred that the ECDE -based sinusoidal algorithm 11 

outperformed the GEO algorithm in terms of quality and consistency of solutions. Both 12 

algorithms generated same average and standard deviation of objective function vales in Beale 13 

function while ECDE -based sinusoidal algorithm obtained superior results in three-hump camel, 14 

Rastrigin and Griewank functions. In the three-hump camel function, the average objective 15 

function values of ECDE -based sinusoidal and GEO algorithms are 8.88E-284 and 6.28E-126, 16 

respectively. In addition, the average objective function values ECDE -based sinusoidal and GEO 17 

algorithms in Rastrigin function are 2.08E-01 and 1.09E01, respectively. It is also noticed that 18 

ECDE -based sinusoidal and GEO algorithms scored standard deviation values in Griewank 19 

function are equal to 1.99E-17 and 5.53E-03, respectively.       20 

INSERT FIGURE 25 21 

INSERT FIGURE 26 22 

INSERT TABLE 14 23 

8. CONCLUSION 24 

With the increase of percentage of deterioration bridges meanwhile maintenance costs are 25 

trending upwards. This calls for proper bridge management systems for the purpose of 26 

establishing timely-intervention plans. In this context, this paper introduces a three-tier 27 

automated platform for maintenance budget allocation of bridges at both project and network-28 

levels. This study also tackles short-term and long-term strategic planning at the different 29 
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decision-making levels of BMSs. The developed multi-objective optimization model uses 1 

exponential chaotic differential evolution algorithm for the purpose of optimizing the MR&R 2 

plans through a set of principal objectives under performance condition and cost constraints. The 3 

objective functions are constructed to maximize the condition performance level of the bridge 4 

elements, minimize the total life-cycle maintenance costs, minimize the duration of traffic 5 

disruption and minimize the environmental impact. Additionally, the developed multi-objective 6 

optimization model is designed to ensure balanced cost profiles with less fluctuations as possible.  7 

The applicability of the developed model was tested using a set of various bridge elements and 8 

different study periods. Results obtained from the numerical example demonstrated that the 9 

developed ECDE-based Sinusoidal algorithm managed to improve the optimization performance 10 

aspects by 49.16% with respect to the multi-objective genetic algorithm in the five-year study 11 

period. In the twenty five-year study period, ECDE-based logistic algorithm enabled an 12 

enhancement of performance aspects by 72.19% with respect to differential evolution algorithm. 13 

At the level of thirty five-year study period, classical meta-heuristics failed to find feasible 14 

solutions within the assigned constraints of the maintenance planning model. In this regard, 15 

ECDE-based logistic-sine algorithm achieved a thirty five-year maintenance plan of CR, TLCC, 16 

TDTT and TEI of 68.65, 101866.48, 0 and 33.68, respectively. The results of  AR technique 17 

revealed that ECDE-based sinusoidal algorithm outranked other meta-heuristics accomplishing 18 

the highest and most stable ranking (µ𝐚=2.41, σa=2.03). Classical meta-heuristics obtained 19 

significant lower rankings than exponential chaotic differential evolution algorithms. In addition, 20 

they experienced high perturbations in their performance across the different study periods (σa of 21 

GA is 3.87 and σa of PSO is 3.61).   22 

In the high-dimensional benchmark test functions, it was derived that the developed ECDE -23 

based sinusoidal algorithm obtained better average objective function values than genetic and 24 

differential evolution algorithms by 114.26% and 79.51%., respectively. They were highly 25 

vulnerable to premature convergence and local minima entrapment which caused them to fail in 26 

finding the global optimum solutions. As such, it is expected that the developed multi-objective 27 

optimization model can structure cost-effective and well-balanced maintenance plans which 28 

guarantee decision-makers satisfactory healthy condition of bridge elements while 29 

accommodating tight budget constraints.       30 



49 

 

REFERENCES  1 

1. Tao, Z., Zophy, F. G., & Wiegmann, J. (2000). Asset management model and systems 2 

integration approach. Transportation Research Record, 1719(1), 191–199. 3 

https://doi.org/10.3141/1719-25.  4 

2. Flintsch, G. W., & Bryant, J. W. (2006). Asset Management Data Collection for Supporting 5 

Decision Processes. Washington, DC. 6 

https://www.fhwa.dot.gov/asset/dataintegration/if08018/assetmgmt_web.pdf (accessed 7 

December 20, 2018). 8 

3. Miyamoto, A., Kawamura, K., & Nakamura, H. (2001). Development of a bridge 9 

management system for existing bridges. Advances in Engineering Software, 32, 821–833. 10 

https://doi.org/10.1016/S0965-9978(01)00034-5. 11 

4. National Research Council Canada. (2013). “Critical Concrete Infrastructure: Extending the 12 

Life of Canada’s Bridge Network”. http://www.nrc-cnrc.gc.ca/ci-ic/article/v18n1-5 (accessed 13 

December 20, 2018). 14 

5. Statistics Canada. (2009). “Age of Public Infrastructure: A Provincial Perspective”.  15 

http://www.statcan.gc.ca/pub/11-621-m/11-621-m2008067-eng.htm (accessed December 20, 16 

2018). 17 

6. Farzam, A., Nollet, M.-J., & Khaled, A. (2016). “Integration of site conditions information 18 

using geographic information system for the seismic evaluation of bridges.” Canadian 19 

Society of Civil Engineering Annual Conference: Resilient Infrastructure, London,Canada, 1-20 

4 June, 1-10. https://doi.org/10.1080/17499518.2021.1952609. 21 

7. Viami International Inc. and the Technology Strategies Group. (2013). “Market Study for 22 

Aluminium Use in Roadway Bridges”, Montreal, Canada. 23 

https://aluminium.ca/uploader/publications/aluminumuseinroadwaybridges-finalreport28-05-24 

13.pdf (accessed December 25, 2018). 25 

8. Sennah, K., Juette, B., Witt, C., & Combar, P. M. (2011). Vehicle Crash Testing On a GFRP-26 

Reinforced PL-3 Concrete Bridge Barrier. Proceedings of the 4th International Conference 27 

on Durability and Sustainability of Fibre Reinforced Polymer Composites for Construction 28 

and Rehabilitation,  Québec City, Canada, 20-22 June. http://conf.tac-29 

atc.ca/english/annualconference/tac2011/docs/s1/sennah.pdf (accessed October 10, 2018). 30 

9. Alsharqawi, M., Abu Dabous, S., Zayed, T., & Hamdan, S. (2021). Budget Optimization of 31 

https://www.fhwa.dot.gov/asset/dataintegration/if08018/assetmgmt_web.pdf
http://www.nrc-cnrc.gc.ca/ci-ic/article/v18n1-5
http://www.statcan.gc.ca/pub/11-621-m/11-621-m2008067-eng.htm
https://aluminium.ca/uploader/publications/aluminumuseinroadwaybridges-finalreport28-05-13.pdf
https://aluminium.ca/uploader/publications/aluminumuseinroadwaybridges-finalreport28-05-13.pdf
http://conf.tac-atc.ca/english/annualconference/tac2011/docs/s1/sennah.pdf
http://conf.tac-atc.ca/english/annualconference/tac2011/docs/s1/sennah.pdf


50 

 

Concrete Bridge Decks under Performance-Based Contract Settings. Journal of Construction 1 

Engineering and Management, 147(6), 1–13. https://doi.org/10.1061/(ASCE)CO.1943-2 

7862.0002043.  3 

10. Ghodoosi, F., Abu-Samra, S., Zeynalian, M., & Zayed, T. (2018). Maintenance cost 4 

optimization for bridge structures using system reliability analysis and genetic algorithms. 5 

Journal of Construction Engineering and Management, 144(2), 1–10. 6 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001435. 7 

11. Shim, H. S., Lee, S. H., & Kang, B. S. (2017). Pareto front generation for bridge deck 8 

management system using bi-objective optimization. KSCE Journal of Civil Engineering, 9 

21(5), 1563–1572. https://doi.org/10.1007/s12205-016-2569-8.  10 

12. Wu, D., Yuan, C., Kumfer, W., & Liu, H. (2017). A life-cycle optimization model using 11 

semi-markov process for highway bridge maintenance. Applied Mathematical Modelling., 12 

43, 45–60. https://doi.org/10.1016/j.apm.2016.10.038. 13 

13. Badawy, A. M. (2017). Assessment of Bridges’ Expansion Joints In Egypt. M.Sc. thesis, 14 

American University in Cairo, Egypt. http://dar.aucegypt.edu/handle/10526/5204 (accessed 15 

October 10, 2020).  16 

14. Allah Bukhsh, Z., Stipanovic, I., & Doree, A. G. (2020). Multi-year maintenance planning 17 

framework using multi-attribute utility theory and genetic algorithms. European Transport 18 

Research Review, 12(1), 1-13. https://doi.org/10.1186/s12544-019-0388-y.  19 

15. Dromey, L., Ruane, K., Murphy, J. J., O’Rourke, B., & Lacey, S. (2020). A bridge-20 

rehabilitation strategy based on the analysis of a bridge-inspection data set. Infrastructure 21 

Asset Management, 7(1), 25–35. https://doi.org/10.1680/jinam.18.00028. 22 

16. Gao, Z., Liang, R. Y., & Xuan, T. (2019). VIKOR method for ranking concrete bridge repair 23 

projects with target-based criteria. Results in Engineering, 3, 1–9. 24 

https://doi.org/10.1016/j.rineng.2019.100018.  25 

17. Contreras-nieto, C., Shan, Y., Lewis, P., & Ann, J. (2019). Bridge maintenance prioritization 26 

using analytic hierarchy process and fusion tables. Automation in Construction, 101, 99–110. 27 

https://doi.org/10.1016/j.autcon.2019.01.016.  28 

18. Mahdi, I. M., Khalil, A. H., Mahdi, H. A., & Dina, M. M. (2019). Decision support system 29 

for optimal bridge’ maintenance. International Journal of Construction Management, 1–15. 30 

https://doi.org/10.1080/15623599.2019.1623991. 31 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002043
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002043
https://doi.org/10.1007/s12205-016-2569-8
http://dar.aucegypt.edu/handle/10526/5204
https://doi.org/10.1186/s12544-019-0388-y
https://doi.org/10.1680/jinam.18.00028


51 

 

19. Markiz, N., & Jrade, A. (2018). Integrating Fuzzy-Logic Decision Support With A Bridge 1 

Information Management System ( BRIMS ) at The Conceptual Stage Of Bridge Design. 2 

Journal of Information Technology in Construction, 23, 92–121. 3 

http://www.itcon.org/2018/5 (accessed January 10, 2020).   4 

20. Nurani, A. I., Pramudyaningrum, A. T., & Fadhila, S. R. (2017). Analytical Hierarchy 5 

Process (AHP), Fuzzy AHP , and TOPSIS for Determining Bridge Maintenance Priority 6 

Scale in Banjarsari , Surakarta. International Journal of Science and Applied Science: 7 

Conference Series, 2(1), 60–71. https://doi.org/10.20961/ijsascs.v2i1.16680. 8 

21. Rashidi, M., Ghodrat, M., Samali, B., Kendall, B., & Zhang, C. (2017). Remedial Modelling 9 

of Steel Bridges through Application of Analytical Hierarchy Process (AHP). Applied 10 

Sciences, 7(2), 1–20. https://doi.org/10.3390/app7020168.   11 

22. Nurdin, A., Kristiawan, S. A., & Handayani, D. (2017). Determination of the bridge 12 

maintenance and rehabilitation priority scale in kabupaten Pinrang. Journal of Physics: 13 

Conference Series, 795, 1–7. https://doi.org/10.1088/1742-6596/795/1/012070.  14 

23. Yoon, Y., & Hastak, M. (2016). Condition Improvement Measurement Using the Condition 15 

Evaluation Criteria of Concrete Bridge Decks. Journal of Transportation Engineering, 16 

142(11), 1–8. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000883.  17 

24. Van Eck, N. J., & Waltman, L. (2010). Software survey : VOSviewer , a computer program 18 

or bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-19 

0146-3.  20 

25. Thompson, P. D., Sobanjo, J. O., & Kerr, R. (2003). Florida DOT project-level bridge 21 

management models. Journal of Bridge Engineering, 8(6), 345–352. 22 

https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(345).  23 

26. Van Dam, K. H., Nikolic, I., & Lukszo, Z. (2012). Agent-Based Modelling of Socio-24 

Technical Systems. Springer. https://doi.org/10.1007/978-94-007-4933-7.   25 

27. Mohammed Abdelkader,  E., Zayed,  T., & Marzouk, M. (2019). A Computerized Hybrid 26 

Bayesian-Based Approach for Modeling the Deterioration of Concrete Bridge Decks. 27 

Structure and Infrastructure Engineering, 25(19), 1178-1199. 28 

https://doi.org/10.1080/15732479.2019.1619782.  29 

28. Hasan, M. S. (2015). Deterioration Prediction of Concrete Bridge Components Using 30 

Artificial Intelligence and Stochastic Methods. M.Sc. thesis, RMIT University, Australia. 31 

http://www.itcon.org/2018/5
https://doi.org/10.3390/app7020168
https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(345)
https://doi.org/10.1080/15732479.2019.1619782


52 

 

https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Deterioration-prediction-of 1 

concrete-bridge-components-using-artificial-intelligence-and-stochastic-2 

methods/9921863935901341 (accessed November 10, 2020).  3 

29. Datta, T., Gates, T., Savolainen, P., Kay, J., Parajuli, S., & Nicita, N. (2016). A Guide to 4 

Short ‐ Term Stationary, Short ‐ Duration, and Mobile Work Zone Traffic Control, 5 

Washington, D.C. 6 

https://www.workzonesafety.org/files/documents/training/fhwa_wz_grant/wsu_STSDM_gui7 

de.pdf (accessed November 10, 2020). 8 

30. Singh, D., & Tiong, R. L. K. (2005). Development of life cycle costing framework for 9 

highway bridges in Myanmar. International Journal of Project Management, 23(1), 37–44. 10 

https://doi.org/10.1016/j.ijproman.2004.05.010.  11 

31. Ehlen, M. A., & Marshall, H. E. (1996). The Economics of New-Technology Materials: A 12 

Case Study of FRP Bridge Decking, Gaithersburg. https://doi.org/10.6028/NIST.IR.5864. 13 

32. Younes, T., Ni, F. M. W., & Tighe, S. (2020). Risk analysis in paving operations using 14 

discrete event simulation: a case study of Taiwan permeable asphalt concrete pavement pilot 15 

road project. International Journal of Pavement Engineering, 21(7), 830–840. 16 

https://doi.org/10.1080/10298436.2018.1511785. 17 

33. Shang, H., & Sun, L. (2018). Research on Life-Cycle Cost of Bridge Based on the Method of 18 

Monte Carlo Simulation. In International Conference on Construction and Real Estate 19 

Management 2018, 125–131. https://doi.org/10.1061/9780784481752.006.  20 

34. Ökmen, Ö., & Öztas, A. (2010). Construction cost analysis under uncertainty with correlated 21 

cost risk analysis model. Construction Management and Economics, 28(2), 203–212. 22 

https://doi.org/10.1080/01446190903468923. 23 

35. Cheah, C. Y. J., & Liu, J. (2006). Valuing governmental support in infrastructure projects as 24 

real options using Monte Carlo simulation. Construction Management and Economics, 24(5), 25 

545–554. https://doi.org/10.1080/01446190500435572. 26 

36. Aarthipriya, V., Chitra, G., & Poomozhi, J. S. (2020). Risk and its impacts on time and cost 27 

in construction projects. Journal of Project Management, 5, 245–254. 28 

https://doi.org/10.5267/j.jpm.2020.6.002.  29 

https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Deterioration-prediction-of%20concrete-bridge-components-using-artificial-intelligence-and-stochastic-methods/9921863935901341
https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Deterioration-prediction-of%20concrete-bridge-components-using-artificial-intelligence-and-stochastic-methods/9921863935901341
https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Deterioration-prediction-of%20concrete-bridge-components-using-artificial-intelligence-and-stochastic-methods/9921863935901341
https://www.workzonesafety.org/files/documents/training/fhwa_wz_grant/wsu_STSDM_guide.pdf
https://www.workzonesafety.org/files/documents/training/fhwa_wz_grant/wsu_STSDM_guide.pdf
https://doi.org/10.1016/j.ijproman.2004.05.010
https://doi.org/10.6028/NIST.IR.5864
https://doi.org/10.1061/9780784481752.006
https://doi.org/10.1080/01446190903468923
https://doi.org/10.1080/01446190500435572
http://dx.doi.org/10.5267/j.jpm.2020.6.002


53 

 

37. Pehlivan, S., & Öztemir, A. E. (2018). Integrated Risk of Progress-Based Costs and Schedule 1 

Delays in Construction Projects. Engineering Management Journal, 30(2), 108–116. 2 

https://doi.org/10.1080/10429247.2018.1439636. 3 

38. Sakka, Z. I., & El-Sayegh, S. M. (2007). Float Consumption Impact on Cost and Schedule in 4 

the Construction Industry. Journal of Construction Engineering and Management, 133(2), 5 

124–130. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:2(124). 6 

39. García-Alfonso, H., & Córdova-Esparza, D.-M. (2018). Comparison of uncertainty analysis 7 

of the Montecarlo and Latin Hypercube algorithms in a camera calibration model. 2018 IEEE 8 

2nd Colombian Conference on Robotics and Automation (CCRA), 1-5, Barranquilla. 9 

https://doi.org/10.1109/CCRA.2018.8588138. 10 

40. Li, J., Li, A., & Feng, M. Q. (2013). Sensitivity and Reliability Analysis of a Self-Anchored 11 

Suspension Bridge. Journal of Bridge Engineering, 18(8), 703–711. 12 

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000424. 13 

41. Sun, J., Miao, Z., Gong, D., Zeng, X. J., Li, J., & Wang, G. (2020). Interval Multiobjective 14 

Optimization with Memetic Algorithms. IEEE Transactions on Cybernetics, 50(8), 3444–15 

3457. https://doi.org/10.1109/TCYB.2019.2908485.  16 

42. Rong, M., Gong, D., Zhang, Y., Jin, Y., & Pedrycz, W. (2019). Multidirectional Prediction 17 

Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on 18 

Cybernetics, 49(9), 3362–3374. https://doi.org/10.1109/TCYB.2018.2842158.  19 

43. Zhang, Y., Gong, D. wei, Sun, J. yong, & Qu, B. yang. (2018). A decomposition-based 20 

archiving approach for multi-objective evolutionary optimization. Information Sciences, 21 

430–431, 397–413. https://doi.org/10.1016/j.ins.2017.11.052.  22 

44. Sun, J., Gong, D., & Sun, X. (2011). Solving interval multi-objective optimization problems 23 

using evolutionary algorithms with preference polyhedron. Genetic and Evolutionary 24 

Computation Conference, GECCO’11, 729–736. https://doi.org/10.1145/2001576.2001676.  25 

45. Zhou, Q., He, Y., Zhao, D., Li, J., Li, Y., Williams, H., & Xu, H. (2021). Modified Particle 26 

Swarm Optimization with Chaotic Attraction Strategy for Modular Design of Hybrid 27 

Powertrains. IEEE Transactions on Transportation Electrification, 7(2), 616–625. 28 

https://doi.org/10.1109/TTE.2020.3014688.  29 

46. Anter, A. M., & Ali, M. (2020). Feature selection strategy based on hybrid crow search 30 

optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for 31 

https://doi.org/10.1080/10429247.2018.1439636
https://doi.org/10.1061/(ASCE)0733-9364(2007)133:2(124)
https://doi.org/10.1109/CCRA.2018.8588138
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000424
https://doi.org/10.1109/TCYB.2019.2908485
https://doi.org/10.1109/TCYB.2018.2842158
https://doi.org/10.1016/j.ins.2017.11.052
https://doi.org/10.1145/2001576.2001676
https://doi.org/10.1109/TTE.2020.3014688


54 

 

medical diagnosis problems. Soft Computing, 24(3), 1565–1584. 1 

https://doi.org/10.1007/s00500-019-03988-3.  2 

47. Hekimoğlu, B. (2019). Optimal Tuning of Fractional Order PID Controller for DC Motor 3 

Speed Control via Chaotic Atom Search Optimization Algorithm. IEEE Access, 7, 38100–4 

38114. https://doi.org/10.1109/ACCESS.2019.2905961.  5 

48. Mirjalili, S., & Gandomi, A. H. (2017). Chaotic gravitational constants for the gravitational 6 

search algorithm. Applied Soft Computing Journal, 53, 407–419. 7 

https://doi.org/10.1016/j.asoc.2017.01.008.  8 

49. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case 9 

study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 10 

3(4), 257–271. https://doi.org/10.1109/4235.797969.  11 

50. Duman, S., Akbel, M., & Kahraman, H. T. (2021). Development of the Multi-Objective 12 

Adaptive Guided Differential Evolution and optimization of the MO-ACOPF for 13 

wind/PV/tidal energy sources. Applied Soft Computing Journal, 112, 1-35. 14 

https://doi.org/10.1016/j.asoc.2021.107814.  15 

51. Boufellouh, R., & Belkaid, F. (2020). Bi-objective optimization algorithms for joint 16 

production and maintenance scheduling under a global resource constraint: Application to the 17 

permutation flow shop problem. Computers and Operations Research, 122, 1-25. 18 

https://doi.org/10.1016/j.cor.2020.104943.  19 

52. Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm 20 

optimization. M.SC thesis, Massachusetts Institute of Technology, United States of America. 21 

http://hdl.handle.net/1721.1/11582 (accessed November 20, 2018).  22 

53. Shenfield, A., & Fleming, P. J. (2014). Multi-objective evolutionary design of robust 23 

controllers on the grid. Engineering Applications of Artificial Intelligence, 27, 17–27. 24 

https://doi.org/10.1016/j.engappai.2013.09.015.   25 

54. Liu, Y., Zhu, N., Li, K., Li, M., Zheng, J., & Li, K. (2020). An angle dominance criterion for 26 

evolutionary many-objective optimization. Information Sciences, 509, 376–399. 27 

https://doi.org/10.1016/j.ins.2018.12.078.  28 

55. Yu, C., Andreotti, P., & Semeraro, Q. (2020). Multi-objective scheduling in hybrid flow 29 

shop: Evolutionary algorithms using multi-decoding framework. Computers and Industrial 30 

Engineering, 147, 1–19. https://doi.org/10.1016/j.cie.2020.106570.  31 

https://doi.org/10.1007/s00500-019-03988-3
https://doi.org/10.1109/ACCESS.2019.2905961
https://doi.org/10.1016/j.asoc.2017.01.008
https://doi.org/10.1109/4235.797969
https://doi.org/10.1016/j.asoc.2021.107814
https://doi.org/10.1016/j.cor.2020.104943
http://hdl.handle.net/1721.1/11582
https://doi.org/10.1016/j.engappai.2013.09.015
https://doi.org/10.1016/j.ins.2018.12.078
https://doi.org/10.1016/j.cie.2020.106570


55 

 

56. Bi, X., Yu, D., Liu, J., & Hu, Y. (2020). A preference-based multi-objective algorithm for 1 

optimal service composition selection in cloud manufacturing. International Journal of 2 

Computer Integrated Manufacturing, 33(8), 751–768. 3 

https://doi.org/10.1080/0951192X.2020.1775298. 4 

57. Massaro, A., & Benini, E. (2015). A surrogate-assisted evolutionary algorithm based on the 5 

genetic diversity objective. Applied Soft Computing Journal, 36, 87–100. 6 

https://doi.org/10.1016/j.asoc.2015.06.026.  7 

58. Sun, Y., Yang, T., & Liu, Z. (2019). A whale optimization algorithm based on quadratic 8 

interpolation for high-dimensional global optimization problems. Applied Soft Computing 9 

Journal, 85, 1–20. https://doi.org/10.1016/j.asoc.2019.105744.  10 

59. Cheng, L., Wu, X. H., & Wang, Y. (2018). Artificial flora (AF) optimization algorithm. 11 

Applied Sciences, 8(3), 1–21. https://doi.org/10.3390/app8030329.  12 

60. Griewank, A. O. (1981). Generalized descent for global optimization. Journal of 13 

Optimization Theory and Applications, 34(1), 11–39. https://doi.org/10.1007/BF00933356.  14 

61. Jamil, M., & Yang, X. S. (2013). A literature survey of benchmark functions for global 15 

optimisation problems. International Journal of Mathematical Modelling and Numerical 16 

Optimisation, 4(2), 150–194. https://doi.org/10.1504/ijmmno.2013.055204. 17 

62. Wu, J., Wang, Y., Burrage, K., Tian, Y., Lawson, B., & Ding, Z. (2020). An improved firefly 18 

algorithm for global continuous optimization problems. Expert Systems With Applications, 19 

149, 1–12. https://doi.org/10.1016/j.eswa.2020.113340.  20 

63. Li, Y., Zhao, Y., & Liu, J. (2021). Dynamic sine cosine algorithm for large-scale global 21 

optimization problems. Expert Systems with Applications, 177, 1–14. 22 

https://doi.org/10.1016/j.eswa.2021.114950.  23 

64. Shah, H., Tairan, N., Garg, H., & Ghazali, R. (2018). Global gbest guided-artificial bee 24 

colony algorithm for numerical function optimization. Computers, 7(4), 1-17. 25 

https://doi.org/10.3390/computers7040069.  26 

65. El-Sherbiny, A., Elhosseini, M. A., & Haikal, A. Y. (2018). A new ABC variant for solving 27 

inverse kinematics problem in 5 DOF robot arm. Applied Soft Computing Journal, 73, 24–38. 28 

https://doi.org/10.1016/j.asoc.2018.08.028.  29 

66. Li, G., Shuang, F., Zhao, P., & Le, C. (2019). An improved butterfly optimization algorithm 30 

for engineering design problems using the cross-entropy method. Symmetry, 11(8), 1–20. 31 

https://doi.org/10.1016/j.asoc.2015.06.026
https://doi.org/10.1016/j.asoc.2019.105744
https://doi.org/10.3390/app8030329
https://doi.org/10.1007/BF00933356
https://doi.org/10.1016/j.eswa.2020.113340
https://doi.org/10.1016/j.eswa.2021.114950
https://doi.org/10.3390/computers7040069
https://doi.org/10.1016/j.asoc.2018.08.028


56 

 

https://doi.org/10.3390/sym11081049.  1 

67. Mirjalili, S., & Lewis, A. (2016). Obstacles and difficulties for robust benchmark problems: 2 

A novel penalty-based robust optimisation method. Information Sciences, 328, 485–509. 3 

https://doi.org/10.1016/j.ins.2015.08.041.  4 

68. Tork, H., Javadi, S., & Hashemy Shahdany, S. M. (2021). A new framework of a multi-5 

criteria decision making for agriculture water distribution system. Journal of Cleaner 6 

Production, 306, 1–14. https://doi.org/10.1016/j.jclepro.2021.127178.  7 

69. Yi, P., Dong, Q., Li, W., & Wang, L. (2021). Measurement of city sustainability based on the 8 

grey relational analysis: The case of 15 sub-provincial cities in China. Sustainable Cities and 9 

Society, 73, 1–11. https://doi.org/10.1016/j.scs.2021.103143.  10 

70. Ma, X., Chen, H., Zhang, X., Xing, M., & Yang, P. (2019). Effect of Asphalt Binder 11 

Characteristics on Filler-Asphalt Interactions and Asphalt Mastic Creep Properties. Journal 12 

of Materials in Civil Engineering, 31(8), 1–11. https://doi.org/10.1061/(ASCE)MT.1943-13 

5533.0002773.  14 

71. Valipour, A., Yahaya, N., Md Noor, N., Antuchevičienė, J., & Tamošaitienė, J. (2017). 15 

Hybrid SWARA-COPRAS method for risk assessment in deep foundation excavation 16 

project: an Iranian case study. Journal of Civil Engineering and Management, 23(4), 524–17 

532. https://doi.org/10.3846/13923730.2017.1281842.   18 

72. Xie, H. B., Wu, W. J., & Wang, Y. F. (2018). Life-time reliability based optimization of 19 

bridge maintenance strategy considering LCA and LCC.Journal of Cleaner Production, 176, 20 

36–45. https://doi.org/10.1016/j.jclepro.2017.12.123.  21 

73. Lindly, J. K., & Clark, P. R. (2004). Characterizing Work Zone Configurations and Effects. 22 

Alabama. http://utca.eng.ua.edu/files/2011/08/04406fnl.pdf (accessed November 20, 2018). 23 

74. Marzouk, M., Mohammed Abdelkader, E., & Al-Gahtani, K. (2017). Building information 24 

modeling-based model for calculating direct and indirect emissions in construction projects. 25 

Journal of cleaner production, 152, 351-363. https://doi.org/10.1016/j.jclepro.2017.03.138.  26 

75. Hong, T., Chae, M. J., Kim, D., Koo, C., Lee, K. S., & Chin, K. H. (2013). Infrastructure 27 

Asset Management System for Bridge Projects in South Korea. KSCE Journal of Civil 28 

Engineering, 17(7), 1551–1561.  29 

https://doi.org/10.1007/s12205-013-0408-8.  30 

https://doi.org/10.3390/sym11081049
https://doi.org/10.1016/j.ins.2015.08.041
https://doi.org/10.1016/j.jclepro.2021.127178
https://doi.org/10.1016/j.scs.2021.103143
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002773
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002773
https://doi.org/10.3846/13923730.2017.1281842
https://doi.org/10.1016/j.jclepro.2017.12.123
http://utca.eng.ua.edu/files/2011/08/04406fnl.pdf
https://doi.org/10.1016/j.jclepro.2017.03.138
https://doi.org/10.1007/s12205-013-0408-8


57 

 

76. Lee, S., Park, W., Ok, S., & Koh, H. (2011). Preference-based Maintenance Planning for 1 

Deteriorating Bridges under Multi-objective Optimisation Framework. Structure and 2 

Infrastructure Engineering, 7(8), 633–644. https://doi.org/10.1080/15732479.2010.501565.  3 

77. Shim, H. S., & Lee, S. H. (2017). Balanced Allocation of Bridge Deck Maintenance Budget 4 

Through multi-objective optimization . KSCE Journal of Civil Engineering, 21(4), 1039-5 

1046. https://doi.org/10.1007/s12205-016-0591-5.  6 

78. Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2019). Intelligent 7 

Bézier curve-based path planning model using Chaotic Particle Swarm Optimization 8 

algorithm. Cluster Computing, 22(s2), 4745–4766. https://doi.org/10.1007/s10586-018-2360-9 

3.  10 

79. Sayed, G. I., Darwish, A., & Hassanien, A. E. (2018). A New Chaotic Whale Optimization 11 

Algorithm for Features Selection. Journal of Classification, 35(2), 300–344. 12 

https://doi.org/10.1007/s00357-018-9261-2.  13 

80. Li, C., Chen, M. Z. Q., & Lam, J. (2012). On Exponential Almost Sure Stability of Random 14 

Jump Systems. IEEE Transactions on Automatic Control, 57(12), 3064–3077. 15 

https://doi.org/10.1109/TAC.2012.2200369.  16 

81. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective 17 

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–18 

197. https://doi.org/10.1109/4235.996017. 19 

82. Storn, R., & Price, K. (1997). Differential Evolution - A simple and efficient adaptive 20 

scheme for global optimization over continuous spaces. Journal of Global Optimization, 21 

11(4),341-359. https://doi.org/10.1023/A:1008202821328.  22 

83. Nilakantan, J. M., Nielsen, I., Ponnambalam, S. G., & Venkataramanaiah, S. (2017). 23 

Differential evolution algorithm for solving RALB problem using cost- and time-based 24 

models. International Journal of Advanced Manufacturing Technology, 89, 311–332. 25 

https://doi.org/10.1007/s00170-016-9086-2.  26 

84. Han, F., Guo, X., & Gao, H. (2013). Bearing parameter identification of rotor-bearing system 27 

based on Kriging surrogate model and evolutionary algorithm. Journal of Sound and 28 

Vibration, 332(11), 2659–2671. https://doi.org/10.1016/j.jsv.2012.12.025.  29 

85. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 30 

261(5560), 459–467. https://doi.org/10.1038/261459a0.  31 

https://doi.org/10.1080/15732479.2010.501565
https://doi.org/10.1007/s12205-016-0591-5
https://doi.org/10.1007/s10586-018-2360-3
https://doi.org/10.1007/s10586-018-2360-3
https://doi.org/10.1007/s00357-018-9261-2
https://doi.org/10.1109/TAC.2012.2200369
https://doi.org/10.1109/4235.996017
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00170-016-9086-2
https://doi.org/10.1016/j.jsv.2012.12.025
https://doi.org/10.1038/261459a0


58 

 

86. Arora, S., & Anand, P. (2019). Chaotic grasshopper optimization algorithm for global 1 

optimization. Neural Computing and Applications, 31(8), 4385–4405. 2 

https://doi.org/10.1007/s00521-018-3343-2.  3 

87. Arasomwan, A. M., & Adewumi, A. O. (2015). Comment on “an investigation into the 4 

performance of particle swarm optimization with various chaotic Maps. Mathematical 5 

Problems in Engineering, 2015, Article ID 178959, 17 pages. 6 

https://doi.org/10.1155/2015/815370.  7 

88. Yuan, X., Zhao, J., Yang, Y., & Wang, Y. (2014). Hybrid parallel chaos optimization 8 

algorithm with harmony search algorithm. Applied Soft Computing, 17, 12–22. 9 

https://doi.org/10.1016/j.asoc.2013.12.016.  10 

89. Demir, F. B., Tuncer, T., & Kocamaz, A. F. (2020). A chaotic optimization method based on 11 

logistic-sine map for numerical function optimization. Neural Computing and Applications, 12 

9, 1-13. https://doi.org/10.1007/s00521-020-04815-9.  13 

90. Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in 14 

multiple criteria problems: The critic method. Computers and Operations Research, 22(7), 15 

763–770. https://doi.org/10.1016/0305-0548(94)00059-H.  16 

91. Yu, D., Hong, J., Zhang, J., & Niu, Q. (2018). Multi-Objective Individualized-Instruction 17 

Teaching-Learning-Based Optimization Algorithm. Applied Soft Computing, 62, 288–314. 18 

https://doi.org/10.1016/j.asoc.2017.08.056.  19 

92. Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. 20 

(2017). A new hybrid simulation-based assignment approach for evaluating airlines with 21 

multiple service quality criteria. Journal of Air Transport Management, 63, 45–60. 22 

https://doi.org/10.1016/j.jairtraman.2017.05.008.  23 

93. Mahdiraji, H. A., Arzaghi, S., Stauskis, G., & Zavadskas, E. K. (2018). A hybrid fuzzy 24 

BWM-COPRAS method for analyzing key factors of sustainable architecture. Sustainability, 25 

10(5), 1–26. https://doi.org/10.3390/su10051626.  26 

94. Mulliner, E., Smallbone, K., & Maliene, V. (2013). An assessment of sustainable housing 27 

affordability using a multiple criteria decision making method. Omega, 41(2), 270–279. 28 

95. Ju-Long, D. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 29 

288–294. https://doi.org/10.1016/S0167-6911(82)80025-X.  30 

https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1155/2015/815370
https://doi.org/10.1016/j.asoc.2013.12.016
https://doi.org/10.1007/s00521-020-04815-9
https://doi.org/10.1016/0305-0548(94)00059-H
https://doi.org/10.1016/j.asoc.2017.08.056
https://doi.org/10.1016/j.jairtraman.2017.05.008
https://doi.org/10.3390/su10051626
https://doi.org/10.1016/S0167-6911(82)80025-X


59 

 

96. Kuo, Y., Yang, T., & Huang, G. W. (2008). The use of grey relational analysis in solving 1 

multiple attribute decision-making problems. Computers and Industrial Engineering, 55(1), 2 

80–93. https://doi.org/10.1016/j.cie.2007.12.002.  3 

97. Kou, G., Yang, P., Peng, Y., Xiao, F., Chen, Y., & Alsaadi, F. E. (2020). Evaluation of 4 

feature selection methods for text classification with small datasets using multiple criteria 5 

decision-making methods. Applied Soft Computing Journal, 86, 1-14. 6 

https://doi.org/10.1016/j.asoc.2019.105836. 7 

98. Acır, A., Canlı, M. E., Ata, İ., & Çakıroğlu, R. (2017). Parametric optimization of energy and 8 

exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal 9 

Engineering, 122, 330–338. https://doi.org/10.1016/j.applthermaleng.2017.05.018.  10 

99. Ülker, E. D. (2017). An improved clonal selection algorithm using a tournament selection 11 

operator and its application to microstrip coupler design. Turkish Journal of Electrical 12 

Engineering and Computer Sciences, 25(3), 1751–1761. https://doi.org/10.3906/elk-1603-73.  13 

100. Kaur, A., Sharma, S., & Mishra, A. (2019). A Novel Jaya-BAT Algorithm Based Power 14 

Consumption Minimization in Cognitive Radio Network. Wireless Personal 15 

Communications, 108(4), 2059–2075. https://doi.org/10.1007/s11277-019-06509-5. 16 

101. Xia, C., Jiang, T., & Chen, W. (2017). Particle Swarm Optimization of Aerodynamic 17 

Shapes with Nonuniform Shape Parameter–Based Radial Basis Function. Journal of 18 

Aerospace Engineering, 30(3), 1–12. https://doi.org/10.1061/(ASCE)AS.1943-19 

5525.0000686.  20 

102. Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A., & Taghizadeh-Yazdi, M. (2021). 21 

Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Computers and 22 

Industrial Engineering, 152, 1–30. https://doi.org/10.1016/j.cie.2020.107050.   23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

https://doi.org/10.1016/j.cie.2007.12.002
https://doi.org/10.1016/j.asoc.2019.105836
https://doi.org/10.1016/j.applthermaleng.2017.05.018
https://doi.org/10.1007/s11277-019-06509-5
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000686
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000686
https://doi.org/10.1016/j.cie.2020.107050


60 

 

List of Figures 1 

Figure 1: Bibliometric co-occurrence map of the maintenance planning models bridges 2 

Figure 2:  Framework of the proposed bridge maintenance planning model 3 

Figure 3: Schematic representation of a solution structure for a typical bridge network 4 

Figure 4: Behavior of different chaotic maps 5 

Figure 5: Behavior of different chaotic maps (Continued) 6 

Figure 6: Interface of the proposed 𝐄𝐂𝐃𝐄-based models for maintenance planning of 7 

bridge network 8 

Figure 7: Optimum maintenance plans of the twenty five-year study period 9 

Figure 8: Optimum maintenance plans of the twenty five year-study period (Continued) 10 

Figure 9: Optimum maintenance plans of the thirty five-year study period 11 

Figure 10: Plot of the average and standard deviation of rankings of the meta-heuristic-12 

based optimization models 13 

Figure 11: Maintenance profile of a bridge deck over a thirty five-year planning horizon 14 

Figure 12: Maintenance profile of a bridge deck over a twenty five-year planning horizon 15 

Figure 13: Cash flow of bridge network over a five-year planning horizon 16 

Figure 14: Cash flow of bridge network over a twenty five-year planning horizon 17 

Figure 15: Cash flow of bridge network over a twenty five-year planning horizon 18 

Figure 16: Cash flow of bridge network over a five-year planning horizon (girder case) 19 

Figure 17: Convergence curves of the best performance histories accomplished by genetic, 20 

differential evolution and ECDE-based sinusoidal algorithms in Schwefel 2.26 function 21 

Figure 18: Convergence curves of the best performance histories accomplished by genetic, 22 

differential evolution and ECDE-based sinusoidal algorithms in Rastrigin function 23 

Figure 19: Convergence curves of the best performance histories accomplished by genetic, 24 

differential evolution and ECDE-based sinusoidal algorithms in Griewank function 25 

Figure 20: Convergence curves of the best performance histories accomplished by genetic, 26 

differential evolution and ECDE-based sinusoidal algorithms in Beale function 27 

Figure 21: Convergence curves of the best performance histories accomplished by genetic, 28 

differential evolution and ECDE-based sinusoidal algorithms in three-hump camel function 29 



61 

 

Figure 22: Convergence curves of best performance histories accomplished by ECDE-1 

based sinusoidal algorithm in Rastrigin and Schwefel 2.26 functions in experiment 1 2 

Figure 13: Convergence curves of best performance histories accomplished by ECDE-3 

based sinusoidal algorithm in Rastrigin and Griewank functions in experiment 2 4 

Figure 24: Convergence curves of best performance histories accomplished by ECDE-5 

based sinusoidal algorithm in Rastrigin and Griewank functions in experiment 3 6 

Figure 25: Convergence curves of best performance histories accomplished by ECDE-7 

based sinusoidal algorithm in Beale and three-hump camel functions in experiment 4 8 

Figure 26: Convergence curves of best performance histories accomplished by ECDE-9 

based sinusoidal algorithm in Beale and three-hump camel functions in experiment 5 10 

 11 

 12 



62 

 

 

Figure 1: Bibliometric co-occurrence map of the maintenance planning models bridges 
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Figure 2: Framework of the proposed bridge maintenance planning method 
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Figure 3: Schematic representation of a solution structure for a typical bridge network 
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Figure 4: Behavior of different chaotic maps 
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Figure 5: Behavior of different chaotic maps (Continued) 
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Figure 6: Interface of the proposed 𝐄𝐂𝐃𝐄-based models for maintenance planning of 

bridge network 
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Figure 7: Optimum maintenance plans of the twenty five-year study period 
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Figure 8: Optimum maintenance plans of the twenty five year-study period (Continued) 
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Figure 9: Optimum maintenance plans of the thirty five-year study period 
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Figure 10: Plot of the average and standard deviation of rankings of the meta-heuristic-

based optimization models 
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(a) Maintenance profile of bridge deck based on ECDE-based logistic-sine model 
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(b) Maintenance profile of bridge deck based on ECDE-based sinusoidal model 

Figure 11: Maintenance profile of a bridge deck over a thirty five-year planning horizon 
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Figure 12: Maintenance profile of a bridge deck over a twenty five-year planning horizon 
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Figure 13: Cash flow of bridge network over a five-year planning horizon 
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Figure 14: Cash flow of bridge network over a twenty five-year planning horizon
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Figure 15: Cash flow of bridge network over a twenty five-year planning horizon 
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Figure 16: Cash flow of bridge network over a five-year planning horizon (girder case) 
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Figure 17: Convergence curves of the best performance histories accomplished by genetic, 

differential evolution and ECDE-based sinusoidal algorithms in Schwefel 2.26 function 
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Figure 18: Convergence curves of the best performance histories accomplished by genetic, 

differential evolution and ECDE-based sinusoidal algorithms in Rastrigin function 
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(a) Genetic, differential evolution and ECDE-based sinusoidal algorithms 

(b) ECDE-based sinusoidal algorithm 
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Figure 19: Convergence curves of the best performance histories accomplished by genetic, 

differential evolution and ECDE-based sinusoidal algorithms in Griewank function 
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Figure 20: Convergence curves of the best performance histories accomplished by genetic, 

differential evolution and ECDE-based sinusoidal algorithms in Beale function 
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(a) Genetic, differential evolution and ECDE-based sinusoidal algorithms 

(b) ECDE-based sinusoidal algorithm 
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Figure 21: Convergence curves of the best performance histories accomplished by genetic, 

differential evolution and ECDE-based sinusoidal algorithms in three-hump camel function 
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Figure 22: Convergence curves of best performance histories accomplished by ECDE-

based sinusoidal algorithm in Rastrigin and Schwefel 2.26 functions in experiment 1 
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Figure 23: Convergence curves of best performance histories accomplished by ECDE-

based sinusoidal algorithm in Rastrigin and Griewank functions in experiment 2 
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Figure 24: Convergence curves of best performance histories accomplished by ECDE-

based sinusoidal algorithm in Rastrigin and Griewank functions in experiment 3 
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Figure 252: Convergence curves of best performance histories accomplished by ECDE-

based sinusoidal algorithm in Beale and three-hump camel functions in experiment 4 
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Figure 26: Convergence curves of best performance histories accomplished by ECDE-

based sinusoidal algorithm in Beale and three-hump camel functions in experiment 5 
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Table 1: Intervention actions and their corresponding unit costs for bridge deck 

Type of intervention action Unit cost ($/m2) 

Minor repair 107.19 

Major rehabilitation 238.86 

Replacement 695.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

Table 2: Performance comparison between the different multi-objective meta-heuristics for 

maintenance planning of the thirty five-year study period 

Performance 

metric  

Object. 

function 

𝐌𝐎𝐄𝐃𝐄 

Logistic 

𝐌𝐎𝐄𝐃𝐄 

Singer 

𝐌𝐎𝐄𝐃𝐄 

Sinusoidal 

𝐌𝐎𝐄𝐃𝐄 

Sine 

𝐌𝐎𝐄𝐃𝐄 

Iterative 

Minimum 

CR 66.02 64.3 65.11 64.81 65.85 

TLCC 108450.79 163632.75 99495.98 104997.22 109656.6 

TDTT 0 0 0 0 0 

TEI 37.65 39.63 33.68 35.67 37.65 

Average 

CR 66.02 64.3 65.11 65.2 65.85 

TLCC 108450.79 163925.64 99495.98 107554.82 109672.74 

TDTT 0 0 0 0 0 

TEI 37.65 39.63 33.68 36.06 37.65 

Hypervolume 

indicator 
……. 98 98 98.4 97.7 98 

Generational 

distance 
……. 0 79.17 0 451.25 5.91 

Inverted 

generational 

distance 

……. 0 292.89 0 2557.6 16.14 

Spacing ……. 0 4.75×10-4 0 0 0 

Maximum 

Pareto front 

error 

……. 0 2005.07 0 9020.5 138.19 
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Table 3: Performance comparison between the different multi-objective meta-heuristics for 

maintenance planning of the thirty five-year study period (Continued) 

Performance 

metric  

Objective 

function 

𝐌𝐎𝐄𝐃𝐄 

Chebyshev 

𝐌𝐎𝐄𝐃𝐄 

Cubic 

𝐌𝐎𝐄𝐃𝐄 

Logistic-

sine 

𝐌𝐎𝐄𝐃𝐄 

Circle 

Minimum 

CR 64.81 64.1 64.08 64.81 

TLCC 882308.26 99394.74 , 110148.4 99810.6 

TDTT 0 0 0 0 

TEI 55.48 33.68 33.68 33.68 

Average 

CR 64.81 64.71 64.08 66.12 

TLCC 882308.26 110403.66 , 110148.4 111667.16 

TDTT 0 0 0 0 

TEI 55.48 37.65 34.56 37.93 

Hypervolume 

indicator 
……. 97.4 96.4 98 97.1 

Generational 

distance 
……. 0 1163.2 595.52 1120.3 

Inverted 

generational 

distance 

……. 0 6579.7 3214.05 5939.33 

Spacing ……. 0 2.7×10-3 1.8×10-2 0 

Maximum Pareto 

front error 
……. 0 16866 12118 21382 
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Table 4: Final rankings of meta-heuristic optimization algorithms  

Meta-heuristic 

algorithm 

Mean ranking 

(µ𝐚) 

Standard deviation 

of ranking 

(𝛔𝐚) 

Final ranking 

ECDE-based logistic 2.45 2.49 2 

ECDE-based singer 3.17 2.44 6 

ECDE-based 

sinusoidal 
2.41 2.03 1 

ECDE-based sine 2.97 2.50 5 

ECDE-based iterative 2.52 2.39 3 

ECDE-based 

Chebyshev 
2.90 2.94 4 

ECDE-based cubic 3.52 2.77 7 

ECDE-based logistic-

sine 
3.69 2.65 8 

ECDE-based circle 4.07 2.98 9 

DE 6.17 3.54 10 

IWO 7.34 3.71 12 

BBO 7.45 3.64 13 

TLO 6.76 3.40 11 

GA 7.45 3.87 14 

Jaya 7.72 3.61 16 

PSO 7.55 3.61 15 



93 

 

Table 5: Quantity of information and final weights of attributes based on CRITIC 1 

algorithm 2 

Index CR TLCC TDTT TEI 

Qj 0.3 0.2 0.26 0.23 

Wj 30.07% 20.03% 26.68% 23.22% 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Table 6: Sample of the solutions’ rankings obtained from 𝐂𝐎𝐏𝐑𝐀𝐒, 𝐆𝐑𝐀 and 𝐀𝐑 for the 1 

maintenance planning of five-year study period 2 

Objective function values 

[𝐂𝐑, 𝐓𝐋𝐂𝐂, 𝐓𝐃𝐓𝐓, 𝐓𝐄𝐈] 

Utility degree Grey 

relational 

grade 

Mean 

ranking 

(µ𝐚) 

Final 

ranking 

[72.87, 38805.06, 0, 11.89] 100 71.8 1 1 

[73.28, 99628.99, 0, 33.83] 88.13 67.13 6 6 

[73.72, 899921.57, 0, 41.6] 30.24 60.97 7 7 

[74.15,  

1313327.1, 0, 179.64] 
47.34 48.86 8 8 

[74.58, 374606.95, 0, 263.74] 20.83 47.3 9 9 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 7: Sample of the solutions’ rankings obtained from 𝐂𝐎𝐏𝐑𝐀𝐒, 𝐆𝐑𝐀 and 𝐀𝐑 for the 1 

maintenance planning of twenty five-year study period 2 

Objective function values 

[𝐂𝐑, 𝐓𝐋𝐂𝐂, 𝐓𝐃𝐓𝐓, 𝐓𝐄𝐈] 

Utility degree Grey 

relational 

grade 

Mean 

ranking 

(µ𝐚) 

Final 

ranking 

[64.09, 36320.8, 0, 11.89] 99.81 86.13 2 1 

[64.21, 36784.8, 0, 11.89] 99.63 86.04 6 5 

[72.02, 2793796.51, 6, 81.68] 14.85 61.82 102.5 104 

[65.86, 810025.81, 0, 194.91] 15.61 60.76 104 105 

[72.45, 3927176.3, 6, 101.64] 14.15 57.92 116 116 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 8: Sample of the solutions’ rankings obtained from 𝐂𝐎𝐏𝐑𝐀𝐒, 𝐆𝐑𝐀 and 𝐀𝐑 for the 1 

maintenance planning of thirty five-year study period 2 

Objective function values 

[𝐂𝐑, 𝐓𝐋𝐂𝐂, 𝐓𝐃𝐓𝐓, 𝐓𝐄𝐈] 

Utility degree Grey 

relational 

grade 

Mean 

ranking 

(µ𝐚) 

Final 

ranking 

[64.08, 110148.4, 0, 33.68] 100 74.69 1.5 1 

[64.34, 100570.04, 0, 33.68] 98.72 71.85 24.5 24 

[64.81, 106738.61, 0, 35.67] 94.72 66.27 104.5 106 

[65.86, 109656, 0, 37.64] 92.09 62.65 141 141 

[66.37, 114017.76, 0, 37.67] 66.92 62.75 154 152 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 9: Comparison between meta-heuristics in optimizing bridge maintenance plans over 1 

five-year study period (girder case) 2 

Meta-heuristic 

Minimum 

condition 

rating 

Total life-

cycle 

maintenance 

cost 

Total 

duration 

of traffic 

disruption 

Total 

environmental 

impact 

Number of 

intervention 

actions 

ECDE-based 

sinusoidal 
86.41 $493,551.56 0 126.14 10 

DE 86.41 $1,0297,74.36 282.20 86.41 12 

GA 90.62 $4,453,917.27 2.89 466.63 96 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table 10: Results of the 𝐄𝐂𝐃𝐄-based sinusoidal, 𝐆𝐀 and 𝐃𝐄 algorithms for benchmark test 1 

functions 2 

Test function 
Search 

space 

Global 

optimum 

solution 

Metric 

𝐄𝐂𝐃𝐄 -

based 

sinusoidal 

𝐆𝐀 𝐃𝐄 

Schwefel 2.26 [-500, 500] -12569.5 

Best -12569.49 -5400.67 -12568.32 

Worst -12569.49 -3258.75 -12449.04 

Average -12569.49 -4509.28 -12531.73 

Standard 

deviation 
0 864.44 45.61 

Rastrigin 
[-5.12, 

5.12] 
0 

Best 3.6E-03 19.9 55.72 

Worst 2.13 27.86 68.05 

Average 1.7 22.88 61.81 

Standard 

deviation 
0.85 3.33 5.18 

Griewank [-600, 600] 0 

Best 0 6.11 1.12E-11 

Worst 5.55E-16 10.69 7.56E-11 

Average 1.11E-16 8.53 4.28E-11 

Standard 

deviation 
2.22E-16 1.85 2.73E-11 

Beale [-4.5, 4.5] 0 

Best 0 3.02E-11 6.53E-22 

Worst 0 8.40E-04 2.43E-19 

Average 0 2.30E-04 9.23E-20 

Standard 

deviation 
0 3.22E-04 1.06E-19 

Three-hump 

camel 
[-5, 5] 0 

Best 2.59E-244 1.96E-73 4.13E-73 

Worst 5.29E-239 8.99E-10 1.56E-66 
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Average 1.06E-239 1.80E-10 3.36E-67 

Standard 

deviation 
0 3.60E-10 6.12E-67 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table 11: Performance comparison of meta-heuristics in experiment 1 1 

Test function Metric 
𝐄𝐂𝐃𝐄 -based 

sinusoidal 
𝐈𝐂𝐒𝐀𝐓 

Rastrigin 

Best 0 9.84 

Average 1.33E-13 11.04 

Schwefel 2.26 

Best -12569.49 3.76E-7 

Average -12569.49 1.49E-5 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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Table 12: Performance comparison of meta-heuristics in experiment 2 1 

Test function Metric 
𝐄𝐂𝐃𝐄 -based 

sinusoidal 
𝐉𝐚𝐲𝐚 − 𝐁𝐚𝐭 

Rastrigin 

Best 0 1.17E-04 

Worst 2.34E-04 13.92 

Average 7.79E-06 4.94 

Standard 

deviation 
4.2E-05 3.48 

Griewank 

Best 1.11E-16 2.9E-11 

Worst 5.53E-13 7.4E-03 

Average 4.03E-14 4.93E-04 

Standard 

deviation 
1.27E-13 1.9E-03 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
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Table 13: Performance comparison of meta-heuristics in experiment 3 1 

Test function Metric 
𝐄𝐂𝐃𝐄 -based 

sinusoidal 
𝐈𝐏𝐒𝐎 

Rastrigin Average 0 3.54 

Griewank Average 0 2.53E-03 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Table 14: Performance comparison of meta-heuristics in experiment 4 1 

Test function Metric 
𝐄𝐂𝐃𝐄 -based 

sinusoidal 
𝐆𝐄𝐎 

Beale 

Average 0 0 

Standard 

deviation 
0 0 

Three-hump camel 

Average 8.88E-284 6.28E-126 

Standard 

deviation 
0 1.73E-125 

Rastrigin 

Average 2.08E-01 1.09E01 

Standard 

deviation 
5.53E-01 3.28 

Griewank 

Average 3.7E-18 5.01E-03 

Standard 

deviation 
1.99E-17 5.53E-03 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 




