
1 

An Elastic Demand Model for Locating Electric Vehicle Charging Stations 

Xu Ouyanga, Min Xua, Bojian Zhoub 

a Department of Industrial and Systems Engineering, The Hong Kong Polytechnic 

University, Hung Hom, Hong Kong 

b School of Transportation, Southeast University, Nanjing 210096, China 

Abstract 

In this study, we aim to optimally locate multiple types of charging stations, e.g., fast-charging stations 

and slow-charging stations, for maximizing the covered flows under a limited budget while taking driv-

ers’ partial charging behavior and nonlinear demand elasticity into account. This problem is first for-

mulated as a mixed-integer nonlinear programming model. Instead of generating paths and charging 

patterns, we develop a compact formulation to model the partial charging logic. The proposed model is 

then approximated and reformulated by a mixed-integer linear programming model by piecewise linear 

approximation. To improve the computational efficiency, we employ a refined formulation using an 

efficient Gray code method, which reduces the number of constraints and binary auxiliary variables in 

the formulation of the piecewise linear approximate function effectively. The -optimal solution to the 

proposed problem can be therefore obtained by state-of-the-art MIP solvers. Finally, a case study based 

on the highway network of Zhejiang Province of China is conducted to assess the model performance 

and analyze the impact of the budget on flow coverage and optimal station selection.  

Keywords: Charging station location, partial charging, nonlinear elastic demand, piecewise linear ap-

proximation, Gray code 

1. Introduction

Electric vehicles (EVs) have gained much attention from the public over the past decades. As 

a green transport mode, EVs have high energy efficiency and generate significantly fewer emissions 

compared to traditional transport modes such as gasoline vehicles, yielding a variety of environmental 

and social benefits. However, the limited driving range and scarce charging facilities hinder the wide 

adoption of EVs, especially for long-distance trips, during which drivers may need to charge several 

times to ensure the journey. In addition, steep roads, the variation of driving speed, and the use of auto 

electrical parts, etc. would lead to more energy consumption and thus call for more frequent charging 

than normal (De Cauwer et al., 2015). To promote the adoption of EVs, many governments have 
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substantially invested in building public charging facilities. The State Power Grid of China, for example, 

plans to invest RMB ¥1.1 billion in the charging station construction in Zhejiang Province by the end 

of 2020 (XinhuaNet, 2018). 

There are multiple types of charging facilities in the market. These charging stations can be 

classified into two main types by the power rate used, i.e., fast-charging stations and slow charging 

stations (Morrow et al., 2008). Fast-charging stations usually use power of over 50kWh, while slow-

charging stations use power of less than 20kWh. Compared with a slow-charging station, a fast-charg-

ing station offers a much higher charging efficiency but incurs larger procurement and installation cost. 

For example, a fast-charging station can fully charge a 60kWh battery within an hour, while a slow-

charging station needs several hours to fully charge it (Yilmaz and Krein, 2012). As for the construction 

cost, according to the report of the U.S. Energy Department, the costs of building a fast-charging station 

and a slow-charging station are $8.5 million and $4.25 million, respectively (NREL, 2012). In light of 

the huge investment and characteristics of different types of charging stations, it is imperative to de-

velop an optimization model of deploying multiple types of charging stations so as to fulfill as many 

charging demands as possible under a limited budget. 

 

1.1 Literature review 

Over the past years, many studies have focused on the refueling facility location problem for 

EVs and other alternative fuel vehicles. Among these studies, Hodgson (1990) was the first to develop 

a flow capturing location model (FCLM) to cover as many flows as possible. A flow between an origin-

destination (OD) pair was assumed to be covered if there was at least one refueling station along its 

travel path. Kuby and Lim (2005) extended the FCLM by developing a flow refueling location model 

(FRLM) where drivers may need to refuel the energy several times to complete a journey. Both the 

FCLM and FRLM assumed that drivers would travel on the shortest path between an OD pair. Kim and 

Kuby (2012) later put forward a deviation flow refueling location model (DFRLM) to characterize 

drivers’ detour behavior for charging. Specifically, drivers were allowed to travel along any deviation 

path other than the shortest path as long as the distance of the deviation path did not exceed a pre-

specified maximal acceptable distance deviation. Since then, many follow-up studies have been con-

ducted on top of FRLM and RFRLM (Capar et al., 2013; Guo et al., 2018; He et al., 2018; Kuby and 

Lim, 2007; Lim and Kuby, 2010; Wang and Lin, 2009; Xu et al., 2020; Yang et al., 2017). 

All the aforementioned studies assumed that EVs would be fully charged upon a charging sta-

tion. This assumption is reasonable for a battery-swapping station where a depleted battery is swapped 

to a fully charged one within a few minutes but may not be so for a charging station. In the real world, 

drivers prone to partially their vehicles at visited stations along the trip. This is because fully charging 

is costly and time consuming due to the limitation of battery and charging technologies. Fully charging 

en route largely increases travel time and charging cost, likely leading to late arrival at destinations. 

Besides, waiting hours at charging stations could make drivers uncomfortable. It is more practical to 
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utilize dwelling time at origins and destinations to fully refuel the battery. These facts have been ob-

served by many empirical and analytical studies such as Lin and Greene (2011); Xu et al. (2017); Chen 

et al. (2017); Meng et al. (2019); Quirós-Tortós et al. (2018); Quirós-Tortós et al. (2015); Wang et al. 

(2021); Yuan et al. (2019). Although it is more realistic, to the best of our knowledge, so far, no studies 

have considered drivers’ partial charging behavior in the deployment of charging stations. Assuming 

fully charging provides significant convenience for modeling. In particular, all possible travel paths 

feasible to deviation tolerance are pre-generated and then a path selection model subject to station de-

ployment is established. Under the fully charging assumption, once a path is given, the total charging 

cost and travel time can be computed by tracking the change of SOC node by node, and the charging 

amount at the visited station is obtained by the criterion of fully charging. However, this is not the case 

for partial charging. Since we do not know the charging amount at each station, it is impractical to 

calculate the charging cost and charging time. On this occasion, the charging amount is a decision 

variable to be optimized and the location model cannot be developed via path pre-generation. This 

motivates us to devise a compact model to formulate partial charging behavior without resort to path 

and charging pattern generation. 

Moreover, in the real world, travel demand is generally affected by some external factors, e.g., 

travel costs. Travelers may switch to other economic transport modes if traveling with EVs is costly 

(Souche, 2010). Among the limited relevant studies, only a few studies have considered nonlinear de-

mand elasticity in the context of refueling station location problem (e.g., Capar et al. (2013); Kim and 

Kuby (2012)). However, their model is based on path pre-generation. On this occasion, the property 

(i.e., linear or nonlinear) of the elastic demand function does not affect model solving and the resultant 

model is a linear MIP model. The reason is that since all feasible travel paths are pre-generated, the 

travel cost of a particular path is also known a prior. Therefore, the flows along a path are obtained by 

substituting the travel cost of that path to the elastic demand function. The flow volume of a certain 

path is essentially a parameter in this case. On the contrary, getting rid of the enumeration method, 

formulating travel cost and flow volume as decision variables under nonlinear relationship yields a 

nonlinear MIP model. How to solve the nonlinear MIP model effectively and efficiently deserves fur-

ther investigation. 

 

1.2 Objective and contributions 

To fill the above research gaps, we investigate the multi-type charging station location (MCSL) 

problem while considering path deviation, partial charging, and nonlinear elastic demand. We consider 

a generalized travel cost (GTC) comprised of travel time on the path, charging time and charging fee at 

the traversed stations. Drivers could take a deviation path other than the shortest path as long as the 

GTC of the deviation path is within a pre-specified tolerance, which is often referred to as path deviation 

in the literature. Additionally, instead of fully charging each time, drivers are allowed to charge as much 

as needed to make the GTC as small as possible. As for the nonlinear elastic demand, the flows between 
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an OD pair are assumed to decline nonlinearly with respect to the GTC. Our goal is to maximize the 

covered flows of all OD pairs by determining the deployment of multi-type charging stations under a 

limited budget. To achieve this objective, we first formulate a mixed-integer nonlinear programming 

model. Instead of generating paths and charging patterns, we develop a compact formulation to model 

the partial charging logic. The proposed model is then approximated and reformulated by a mixed-

integer linear programming model by piecewise linear approximation. To improve the computational 

efficiency, we employ a refined formulation using Gray code method, which effectively reduces the 

number of constraints and binary auxiliary variables in the formulation of the piecewise linear approx-

imate function. The -optimal solutiona to the MCSL problem is finally obtained by solving the formu-

lation using a state-of-the-art MIP solver.  

In all, the contributions of this study are multidimensional. First, we make the first attempt to 

incorporate drivers’ partial charging behavior and nonlinear elastic demand in the charging station lo-

cation problem. Second, instead of path and charging pattern enumeration, a compact formulation is 

put forward to model the partial charging logic. Last, the nonlinearity resulting from the elastic demand 

is addressed by piecewise linear approximation formulated using an efficient Gray code method. 

The remainder of this paper is organized as follows. The related notations, assumptions, and 

problem descriptions are illustrated in Section 2. A mixed-integer nonlinear programming model is 

formulated in Section 3. Section 4 elaborates the piecewise linear approximation with a Gray code 

method. A case study based on the highway network of Zhejiang Province and impact analysis of the 

budget are presented in Section 5. Section 6 concludes the paper with recommendations for future re-

search directions. 

 

2. Assumptions, Notations and Problem Description 

We consider an intercity road network 𝒢 = (𝑁, 𝐴), where 𝑁 and 𝐴 are sets of nodes and di-

rected links, respectively. The electricity consumption and travel time of link (𝑖, 𝑗) ∈ 𝐴, 𝑖, 𝑗 ∈ 𝑁 are 

denoted by 𝑒𝑖𝑗 and 𝑑𝑖𝑗, respectively, which are assumed to be known in advance. All OD pairs are 

grouped into a set 𝑊 . The origin and destination of an OD pair 𝑤 ∈ 𝑊  are denoted by 𝑜(𝑤) and 

𝑑(𝑤) ∈ 𝑁, respectively. Note that the traffic flows between locations A and B are often bi-directional: 

one is from A to B and the other is from B to A, referred to as a round trip. Generally, to enable round 

trips, we can use two direction-supplementary flows of an OD pair as the model input. The EVs are 

assumed to be homogeneous in terms of the battery capacity, denoted by 𝐸. For an OD pair 𝑤, the state-

of-charge (SOC) of EVs is assumed to be no more than 𝐸𝑜 before departing from 𝑜(𝑤) and no less than 

𝐸𝐷 after arriving at 𝑑(𝑤), where both 𝐸𝑜 and 𝐸𝐷 are pre-defined. Kindly note that we can set 𝐸𝑂 and 

                                                      

a The -optimal solution refers to the solution that the difference between its objective function value 

and the optimal objective function value is within the exogenously given tolerance ε > 0. 
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𝐸𝐷 to be any value and our model is still applicable as 𝐸𝑂 and 𝐸𝐷 are parameters. If EVs are of different 

types and battery capacities, from a modeling point of view, we can introduce several types of flows 

between an origin and a destination. A certain type of flows between a particular OD pair corresponds 

to a vehicle type, battery capacity, and even SOC at origins and destinations. In other words, we can 

augment the set of OD pairs by vehicle types, capacities, and even battery levels. 

We consider locating multi-type charging stations at a set of candidate locations, denoted by 

𝐼 ⊆ 𝑁. The types of stations are denoted by set 𝐾 and the cost of building type 𝑘 ∈ 𝐾 station at location 

𝑖 ∈ 𝐼 is 𝑏𝑖,𝑘. The charging efficiency and charging price of different stations vary, which will be illus-

trated in the following subsection. The total budget for building public charging stations is represented 

by 𝐵. For simplicity, we assume that the charging stations are uncapacitated and there is at most one 

type of station at a candidate location. The “uncapacitated” herein means that an EV can be charged 

upon entering a station. In other words, the drivers do not need to queue for service. With this assump-

tion, it is reasonable to define the GTC by the sum of charging cost, charging time, and travel time. 

Incorporating queueing process requires other sophisticated techniques such as queueing theory. Many 

facility location studies thus adopt “uncapacitated” assumptions for the consideration of modeling (e.g., 

Capar et al. (2013); Kim and Kuby (2012); Kuby and Lim (2007); Yang and Sun (2015)). Likewise, the 

focal point of this research is not the modeling queueing process. Therefore, we also use this assumption.  

The following subsections elaborate on the partial charging logic, the generalized travel cost, 

and the nonlinear elastic demand. The notations used throughout this study can be found in Appendix 

1. 

 

2.1 Partial charging logic 

To model drivers’ partial charging behavior without resorting to path and charging pattern enu-

meration, we need to formulate the partial charging logic explicitly. The partial charging logic refers to 

the locations chosen for charging and the corresponding charging amount at these stations for each OD 

pair. To this purpose, we define the following decision variables and auxiliary variables to specify 

where and how much to charge. Among these variables, we have three binary decision variables as 

follows: (i) 𝑦𝑖,𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 denoting whether type 𝑘 station is built at location 𝑖; (ii) 𝑟𝑖
𝑤 , ∀𝑖 ∈ 𝐼, 𝑤 ∈

𝑊 indicating whether EVs are charged at location 𝑖 for OD pair 𝑤; and (iii) 𝑥𝑖𝑗
𝑤 , ∀(𝑖, 𝑗) ∈ 𝐴,𝑤 ∈ 𝑊 

representing whether link (𝑖, 𝑗) is traversed for OD pair 𝑤. We also have a continuous decision variable 

𝑝𝑖
𝑤 , ∀𝑖 ∈ 𝐼, 𝑤 ∈ 𝑊 which represents the charging amount at location 𝑖 for OD pair 𝑤 and a continuous 

auxiliary variable 𝑒𝑖
𝑤, ∀𝑖 ∈ 𝑁,𝑤 ∈ 𝑊 that expresses the vehicle SOC of flows between OD pair 𝑤 after 

charging at location 𝑖 ∈ 𝐼 (for 𝑖 ∉ 𝐼, it represents the SOC upon arriving at location 𝑖). Given these var-

iables, drivers’ partial charging behavior can be formulated as follows. 

∑ 𝑒𝑖𝑗
𝑗∈𝑁:(𝑖,𝑗)∈𝐴

𝑥𝑖𝑗
𝑤 ≤ 𝑒𝑖

𝑤 ≤ 𝐸, ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝑁 (1) 
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𝑟𝑖
𝑤 ≤ ∑𝑦𝑖,𝑘

𝑘∈𝐾

, ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼 (2) 

𝑝𝑖
𝑤 ≤ 𝐸𝑟𝑖

𝑤 , ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼 (3) 

𝑒𝑗
𝑤 − 𝑝𝑗

𝑤 − 𝑒𝑖
𝑤 + 𝑒𝑖𝑗 {

 ≤ M(1 − 𝑥𝑖𝑗
𝑤)

 ≥ M(𝑥𝑖𝑗
𝑤 − 1)

        ∀𝑤 ∈ 𝑊, 𝑗 ∈ 𝐼, 𝑖 ∈ 𝑁: (𝑖, 𝑗) ∈ 𝐴 (4) 

𝑒𝑗
𝑤 − 𝑒𝑖

𝑤 + 𝑒𝑖𝑗 {
 ≤ M(1 − 𝑥𝑖𝑗

𝑤)

 ≥ M(𝑥𝑖𝑗
𝑤 − 1)

        ∀𝑤 ∈ 𝑊, 𝑗 ∈ 𝑁\𝐼, 𝑖 ∈ 𝑁: (𝑖, 𝑗) ∈ 𝐴 (5) 

where M is a sufficiently large positive number. 

It can be seen that Eq. (1) ensures the link feasibility. Eq. (2) suggests that drivers can only 

charge at the locations where charging stations are built. Eq. (3) indicates that the charging amount 

cannot exceed the battery capacity if any. Eq. (4) establishes the SOC relationship between a candidate 

location and its adjacent locations. Specifically, if link (𝑖, 𝑗) is traversed for OD pair 𝑤, i.e., 𝑥𝑖𝑗
𝑤 = 1, 

then Eq. (4) reduces to 𝑒𝑗
𝑤 − 𝑝𝑗

𝑤 = 𝑒𝑖
𝑤 − 𝑒𝑖𝑗, where the left-hand-side (LHS) represents the SOC before 

charging at location 𝑗 and the right-hand-side (RHS) expresses the SOC upon arriving at location 𝑗. The 

LHS and the RHS are equivalent in essence. As for the case of 𝑥𝑖𝑗
𝑤 = 0, Eq. (4) becomes redundant. 

Likewise, Eq. (5) works for the locations that are not candidate locations, i.e., 𝑁\𝐼. 

 

2.2 Generalized travel cost 

Without loss of generality, we consider a generalized travel cost (GTC) comprised of three 

components, i.e., travel time on the path, charging time and charging fee at the traversed stations. Driv-

ers are assumed to have a pre-specified value of time (VOT), denoted by 𝜈. The cost converted from 

the travel time on the path for OD pair 𝑤 using the VOT can be represented as follows: 

𝑑𝑤 =∑ ∑ 𝜈𝑑𝑖𝑗𝑥𝑖𝑗
𝑤

𝑗∈𝑁:(𝑖,𝑗)∈𝐴𝑖∈𝑁

, ∀𝑤 ∈ 𝑊 (6) 

As for the cost resulting from charging activities, we consider both a fixed charging cost and a 

variable cost. Specifically, for station type 𝑘 and charging amount 𝑝, the cost incurred by charging can 

be represented by 𝑐𝑘 + 𝜇𝑘𝑝, where 𝑐𝑘 is the fixed cost of charging at type 𝑘 station and 𝜇𝑘 is the charg-

ing-amount-dependent cost of charging at type 𝑘 station per unit amount of charging. The cost incurred 

by charging over the entire trip for OD pair 𝑤 can be represented by charging locations, charging 

amount, and station type as follows: 

𝑐𝑤 =∑∑𝑦𝑖,𝑘(𝑐𝑘𝑟𝑖
𝑤  + 𝜇𝑘𝑝𝑖

𝑤)

𝑘∈𝐾𝑖∈𝐼

, ∀𝑤 ∈ 𝑊 (7) 

Based on the above descriptions, the GTC of OD pair 𝑤 will become 

𝑡𝑤 = 𝑑𝑤 + 𝑐𝑤 , ∀𝑤 ∈ 𝑊 (8) 
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2.3 Path deviation and nonlinear elastic demand 

The drivers of an OD pair are assumed to have a pre-specified tolerance for the path cost devi-

ation. In other words, only the paths whose cost deviation from the GTC of the shortest path between 

that OD pair is within the tolerance can be chosen by the drivers. For OD pair 𝑤, let 𝑇𝑤 denote the 

GTC of the shortest path in the network and let 𝛿𝑤 represent drivers’ tolerance for path cost deviation. 

The GTC of a feasible path cannot exceed (1 + 𝛿𝑤)𝑇𝑤. In addition, we also consider drivers’ demand 

elasticity by assuming that the flows between an OD pair decline nonlinearly with respect to the GTC. 

In the spirit of the inverse distance function proposed by Kim and Kuby (2012) to describe demand 

elasticity in the context of refueling station location problems, we employ an inverse cost function in 

this study. Specifically, the nonlinear elastic demand function for OD pair 𝑤 takes the following form: 

𝑓𝑤(𝑡𝑤) = 𝐹𝑤𝑒−𝜃
𝑤(𝑡𝑤−𝑇𝑤), ∀𝑤 ∈ 𝑊, 𝑡𝑤 ∈ [𝑇𝑤, (1 + 𝛿𝑤)𝑇𝑤] (9) 

where 𝐹𝑤 is the flow volume when the GTC equals 𝑇𝑤, i.e., the maximum flow volume. If travelers 

need to pay more than the minimum GTC to complete trips, the flow volume will decrease. The mini-

mum GTC is defined as below. First, we site fast-charging stations at all candidate locations. Then, we 

compute the GTC of each OD pair under such generous charging resources. Since the GTC cannot be 

further reduced by providing more charging resources, we define the resultant GTC in this setting as 

the minimum GTC. The parameter 𝜃𝑤 indicates the degree of drivers’ demand elasticity, and a large 

value of 𝜃𝑤 implies that the flow volume decreases fast as the GTC increases. Both  𝐹𝑤 and 𝜃𝑤 can be 

obtained by an empirical or analytical analysis of historical data. Fig. 1 illustrates the proposed nonlin-

ear elastic demand function, in which the flow volume declines nonlinearly with respect to the GTC. 

 

Fig. 1 Illustration of the nonlinear elastic demand function. 

In operations management (e.g., Wang et al. (2004) and Whitin (1955)) and marketing science 

(e.g., Noble and Gruca (1999) and Soysal and Krishnamurthi (2012)), it is prevalent to model customers’ 
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purchasing willingness and product prices by a nonlinear function, referred to as nonlinear elastic de-

mand. It captures the variation of customers’ demand regarding the change of costs. In the context of 

facility location problems, the number of travelers willing to use EVs is “demand” and the GTC is 

“cost”. Consequently, it is assumed that the flows between an OD pair are assumed to decline nonline-

arly with respect to the GTC". In fact, this assumption – nonlinear elastic demand – has been adopted 

by many studies on transportation in various problems (e.g., Cantarella (1997), Yang (1997), and Yang 

and Meng (1998)).  

The objective of the MCSL problem is to deploy multiple types of public charging stations in 

an intercity road network under a limited budget so that (i) the flows between each OD pair travel on a 

path satisfying 𝑡𝑤 ≤ (1 + 𝛿𝑤)𝑇𝑤 if any; (ii) the flow volume of an OD pair follows the nonlinear elas-

tic demand function with respect to the GTC; and (iii) the covered flow volume of all OD pairs is 

maximized. Given that the objective is to maximize the covered flows, for a particular layout of charg-

ing stations, the optimality of the model implies that drivers will travel on a range-feasible path with 

the minimal GTC among all feasible deviation paths, which aligns with the travel behavior of drivers. 

 

3. Optimization Model Building 

3.1 Model formulation 

In view of the situation in which some OD pairs may be uncovered due to the limited budget 

and driving range, we introduce a binary auxiliary variable 𝜋𝑤, ∀𝑤 ∈ 𝑊 to represent whether OD pair 

𝑤 is covered. The MCSL problem can be formulated by the following model: 

[OP ∙ I]: 

max DemandI = ∑ 𝑓𝑤(𝑡𝑤)

𝑤∈𝑊

𝜋𝑤 (10) 

subject to Eqs. (1)-(9) and 

∑∑𝑏𝑖,𝑘
𝑘∈𝐾𝑖∈𝐼

𝑦𝑖,𝑘 ≤ 𝐵 (11) 

∑𝑦𝑖,𝑘
𝑘∈𝐾

≤ 1, ∀𝑖 ∈ 𝐼 (12) 

∑ 𝑥𝑖𝑗
𝑤

𝑗∈𝑁:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖
𝑤

𝑗∈𝑁:(𝑗,𝑖)∈𝐴

= {

𝜋𝑤 , ∀𝑖 = 𝑜(𝑤)

0, ∀𝑖 ∈ 𝑁 ∖ {𝑜(𝑤), 𝑑(𝑤)}

−𝜋𝑤 , ∀𝑖 = 𝑑(𝑤)
        ∀𝑤 ∈ 𝑊 (13) 

𝑒𝑜(𝑤)
𝑤 ≤ 𝐸𝑜, ∀𝑤 ∈ 𝑊: 𝑜(𝑤) ∉ 𝐼 (14) 

𝑒𝑜(𝑤)
𝑤 − 𝑝𝑜(𝑤)

𝑤 ≤ 𝐸𝑜, ∀𝑤 ∈ 𝑊: 𝑜(𝑤) ∈ 𝐼 (15) 

𝑒𝑑(𝑤)
𝑤 ≥ 𝐸𝐷𝜋

𝑤, ∀𝑤 ∈ 𝑊 (16) 

𝑡𝑤 ≤ (1 + 𝛿𝑤)𝑇𝑤, ∀𝑤 ∈ 𝑊 (17) 

𝑥𝑖𝑗
𝑤 , 𝜋𝑤 ∈ {0, 1}, ∀𝑤 ∈ 𝑊, 𝑖, 𝑗 ∈ 𝑁: (𝑖, 𝑗) ∈ 𝐴 (18) 



 9 

𝑦𝑖,𝑘, 𝑟𝑖
𝑤 ∈ {0, 1}, ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (19) 

𝑝𝑖
𝑤 , 𝑒𝑗

𝑤 , 𝑡𝑤 ∈ ℝ+, ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝑁 (20) 

where ℝ+ denotes the set of non-negative real numbers. 

The objective function shown by Eq. (10) represents the total covered flow volume of all OD 

pairs. Constraint (11) restricts that the total cost of building charging stations cannot exceed the pre-

defined budget. Constraint (12) indicates that at most one type of station will be built at a candidate 

location. Constraint (13) is for flow conservation. Constraints (14)-(16) require that the SOC is no more 

than 𝐸𝑜 before departure and no less than 𝐸𝐷 after arrival. Note that if the origin of an OD pair is a 

candidate location, i.e., 𝑜(𝑤) ∈ 𝐼, the SOC may be replenished by the amount of 𝑝𝑜(𝑤)
𝑤  as shown in 

Constraint (15). Constraint (17) indicates drivers’ tolerance for path cost deviation. Constraints (18)-

(20) specify the domains of decision variables 𝑥𝑖𝑗
𝑤, 𝑦𝑖,𝑘, 𝑟𝑖

𝑤, 𝑝𝑖
𝑤 and auxiliary variables 𝜋𝑤, 𝑒𝑖

𝑤, 𝑡𝑤. 

 

3.2 Model properties 

The proposed formulation for drivers’ partial charging behavior explicitly models the charging 

location choices and charging amount without resorting to path and charging pattern enumeration. Fur-

thermore, it is linear and has a polynomial number of constraints. Specifically, the number of constraints 

in the formulation is fixed given a network. It overcomes the prohibitively large memory consumption 

as reported by Kim and Kuby (2012), which resulted from the exponential growth of constraints with 

respect to drivers’ tolerance and EV driving range. 

The model  [OP ∙ I] is nonlinear due to the nonlinear objective function and the bilinear terms 

in Eq. (7). Fortunately, the bilinear terms can be easily linearized by introducing two kinds of continu-

ous proxy variables (𝑐𝑤,𝑖,𝑘
1 = 𝜇𝑘𝑝𝑖

𝑤𝑦𝑖,𝑘  and 𝑐𝑤,𝑖,𝑘
2 = 𝑐𝑘𝑟𝑖

𝑤𝑦𝑖,𝑘, ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾) and imposing 

the following linear constraints: 

𝑐𝑤 =∑∑𝑐𝑤,𝑖,𝑘
1 + 𝑐𝑤,𝑖,𝑘

2

𝑘∈𝐾𝑖∈𝐼

, ∀𝑤 ∈ 𝑊 (21) 

{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
1 ≥ 0

 𝑐𝑤,𝑖,𝑘
1 ≤ 𝜇𝑘𝐸𝑦𝑖,𝑘

 𝑐𝑤,𝑖,𝑘
1 ≥ 𝜇𝑘𝑝𝑖

𝑤 + 𝜇𝑘𝐸(𝑦𝑖,𝑘 − 1)

 𝑐𝑤,𝑖,𝑘
1 ≤ 𝜇𝑘𝑝𝑖

𝑤

        ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (22) 

{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
2 ≥ 0

 𝑐𝑤,𝑖,𝑘
2 ≤ 𝑐𝑘𝑦𝑖,𝑘

 𝑐𝑤,𝑖,𝑘
2 ≥  𝑐𝑘(𝑟𝑖

𝑤 + 𝑦𝑖,𝑘 − 1)

 𝑐𝑤,𝑖,𝑘
2 ≤ 𝑐𝑘𝑟𝑖

𝑤

       ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (23) 

We shall then show that the approximation of the bilinear terms is also exact at the boundaries. 

The term 𝑐𝑤,𝑖,𝑘
1 = 𝜇𝑘𝑝𝑖

𝑤𝑦𝑖,𝑘 contains a continuous variable 𝑝𝑖
𝑤 and a binary variable 𝑦𝑖,𝑘. If 𝑦𝑖,𝑘 = 0, 

then 𝑐𝑤,𝑖,𝑘
1 = 0. In this case, Eq. (22) becomes 
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{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
1 ≥ 0

 𝑐𝑤,𝑖,𝑘
1 ≤ 0

 𝑐𝑤,𝑖,𝑘
1 ≥ 𝜇𝑘𝑝𝑖

𝑤 − 𝜇𝑘𝐸

 𝑐𝑤,𝑖,𝑘
1 ≤ 𝜇𝑘𝑝𝑖

𝑤

 

which indicates 𝑐𝑤,𝑖,𝑘
1 = 0. If 𝑦𝑖,𝑘 = 1, then 𝑐𝑤,𝑖,𝑘

1 = 𝜇𝑘𝑝𝑖
𝑤. On this occasion, Eq. (22) is 

{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
1 ≥ 0

 𝑐𝑤,𝑖,𝑘
1 ≤ 𝜇𝑘𝐸

 𝑐𝑤,𝑖,𝑘
1 ≥ 𝜇𝑘𝑝𝑖

𝑤

 𝑐𝑤,𝑖,𝑘
1 ≤ 𝜇𝑘𝑝𝑖

𝑤

 

which implies that 𝑐𝑤,𝑖,𝑘
1 = 𝜇𝑘𝑝𝑖

𝑤. Clearly, Eq (22) is identical to 𝑐𝑤,𝑖,𝑘
1 = 𝜇𝑘𝑝𝑖

𝑤𝑦𝑖,𝑘. With a similar 

approach, we can prove Eq. (23) is equivalent to 𝑐𝑤,𝑖,𝑘
2 = 𝑐𝑘𝑟𝑖

𝑤𝑦𝑖,𝑘. Particularly, when 𝑦𝑖,𝑘 = 0, we 

have  

{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
2 ≥ 0

 𝑐𝑤,𝑖,𝑘
2 ≤ 0

 𝑐𝑤,𝑖,𝑘
2 ≥  𝑐𝑘(𝑟𝑖

𝑤 − 1)

 𝑐𝑤,𝑖,𝑘
2 ≤ 𝑐𝑘𝑟𝑖

𝑤

 

suggesting 𝑐𝑤,𝑖,𝑘
2 = 0; when 𝑦𝑖,𝑘 = 1, we have 

{
 
 

 
 
 𝑐𝑤,𝑖,𝑘
2 ≥ 0

 𝑐𝑤,𝑖,𝑘
2 ≤ 𝑐𝑘

 𝑐𝑤,𝑖,𝑘
2 ≥  𝑐𝑘𝑟𝑖

𝑤

 𝑐𝑤,𝑖,𝑘
2 ≤ 𝑐𝑘𝑟𝑖

𝑤

 

which means 𝑐𝑤,𝑖,𝑘
2 = 𝑐𝑘𝑟𝑖

𝑤. 

As for the nonlinear objective function, we will employ a piecewise linear approximation method to 

address its nonlinearity, which will be elaborated in the next section. 

 

4. Solution Approach 

In this section, we employ a piecewise linear approximation method to address the nonlinearity 

in the objective function of the model [OP ∙ I]. A Gray code method is employed to establish the ap-

proximation function. Compared with the traditional piecewise linear formulation to approximate non-

linear function, the Gray code method uses significantly fewer binary auxiliary variables and constraints, 

thereby improving computational efficiency. 

 

4.1 Piecewise linear approximation 

Piecewise linear approximation is a classic solution approach to nonlinear optimization prob-

lems, which has been applied in many transportation problems (Daganzo and Laval, 2005; Ekström et 

al., 2012; Farhi, 2012; Przybyla et al., 2015). In particular, a univariate continuous function can be 
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approximated by a piecewise linear function with the approximation error being controlled by the num-

ber of linear segments (Wolsey and Nemhauser, 1999). For instance, we consider the nonlinear elastic 

demand function for OD pair 𝑤, i.e., 𝑓𝑤(𝑡𝑤), 𝑡𝑤 ∈ [𝑇𝑤, (1 + 𝛿𝑤)𝑇𝑤], which is to be approximated 

by a piecewise linear function 𝑓́𝑤(𝑡𝑤) as shown in Fig. 2. To this end, we need to first generate 𝑉(𝑤) 

breakpoints, denoted by 𝑡𝑛
𝑤 , 𝑛 = 1,… , 𝑉(𝑤), based on the required solution quality to specify the 

piecewise linear function 𝑓́𝑤(𝑡𝑤) (see Subsection 4.2). The flow volumes corresponding to each break-

point are 𝑓𝑤(𝑡𝑛
𝑤), 𝑛 = 1,… , 𝑉(𝑤). Then it follows that any 𝑡𝑤 ∈ [𝑇𝑤, (1 + 𝛿𝑤)𝑇𝑤] can be repre-

sented by 

𝑡𝑤 =∑ 𝜆𝑛
𝑤𝑡𝑛

𝑤
𝑉(𝑤)

𝑛=1
(24) 

∑ 𝜆𝑛
𝑤 = 1

𝑉(𝑤)

𝑛=1
(25) 

𝜆𝑛
𝑤 ∈ ℝ+, 𝑛 = 1,… , 𝑉(𝑤) (26) 

 

Fig. 2 Illustration of the piecewise linear approximate function 

Notice that in Eqs. (24)-(26) the values of 𝜆𝑛
𝑤  are not unique. However, if we have 𝑡𝑤 ∈

[𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ]  and 𝜆𝑛
𝑤  such that 𝑡𝑤 = 𝜆𝑛

𝑤𝑡𝑛
𝑤 + 𝜆𝑛+1

𝑤 𝑡𝑛+1
𝑤  and 𝜆𝑛

𝑤 + 𝜆𝑛+1
𝑤 = 1 , then it follows that 

𝑓́𝑤(𝑡𝑤) = 𝜆𝑛
𝑤𝑓𝑤(𝑡𝑛

𝑤) + 𝜆𝑛+1
𝑤 𝑓𝑤(𝑡𝑛+1

𝑤 ). In other words, 

𝑓́𝑤(𝑡𝑤) =∑ 𝜆𝑛
𝑤𝑓𝑤(𝑡𝑛

𝑤)
𝑉(𝑤)

𝑛=1
(27) 

if at most two of 𝜆𝑛
𝑤 are positive and if two of 𝜆𝑛

𝑤 are positive, they must be adjacent. This condition is 

referred to as SOS2 condition in the literature. The SOS2 condition is often formulated by introducing 

the binary auxiliary variables 𝜉𝑛, 𝑛 = 1,… , 𝑉(𝑤) − 1 (where 𝜉𝑛 equals 1 if 𝑡𝑤 ∈ [𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ] and 0 oth-

erwise) as shown in Fig. 2 and imposing the following constraints: 

𝜆1
𝑤 ≤ 𝜉1 (28) 
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𝜆𝑛
𝑤 ≤ 𝜉𝑛−1 + 𝜉𝑛, 𝑛 = 2,… , 𝑉(𝑤) − 1 (29) 

𝜆𝑉(𝑤)
𝑤 ≤ 𝜉𝑉(𝑤)−1 (30) 

∑ 𝜉𝑛
𝑉(𝑤)−1

𝑛=1
= 1 (31) 

𝜉𝑛 ∈ {0,1}, 𝑛 = 1,… , 𝑉(𝑤) − 1 (32) 

Although the piecewise linear approximation is easy to apply to various nonlinear problems, 

its low computational efficiency is widely criticized due to introducing too many additional binary 

auxiliary variables and constraints in the formulation of SOS2 condition. Specifically, if we use 𝑉(𝑤) 

breakpoints to specify a piecewise linear approximate function, then 𝑉(𝑤) − 1 binary auxiliary varia-

bles and 𝑉(𝑤) + 1 constraints are required to formulate SOS2 condition. Many studies have been con-

ducted to find more efficient reformulation of SOS2 condition, among which the Gray code method is 

very promising. The Gray-code method was developed by Vielma and Nemhauser (2011). It approxi-

mates nonlinear functions with significantly fewer auxiliary binary variables and constraints in com-

parison with the classic formulation of piecewise linear approximation. In fact, their reformulation of 

SOS2 condition using Gray code method requires only ⌈log2(𝑉(𝑤) − 1)⌉ binary auxiliary variables 

and 2⌈log2(𝑉(𝑤) − 1)⌉ linear constraints. Thus, we will employ the Gray code method to address the 

nonlinearity of the objective function. 

 

Fig. 3 Example of Gray codes. 

To reformulate SOS2 condition by Gray code method, we need to introduce a type of special 

parameters, i.e., Gray code. It is a class of specially ordered multi-digit vectors with binary elements 

such that any two adjacent Gray codes differ in only one digit. Fig. 3 illustrates Gray codes with a 
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different number of digits, e.g., 4 two-digit Gray codes and 16 four-digit Gray codes. It can be seen that 

any adjacent Gray codes, e.g., the eighth four-digit Gray code {0, 1, 0, 0}.  and the ninth four-digit Gray 

code {1, 1, 0, 0}, only differ in one digit. 

To apply the Gray code method, the feasible path cost range of OD pair 𝑤 , i.e., 

[𝑇𝑤 , (1 + 𝛿𝑤)𝑇𝑤], is first partitioned into 𝑉(𝑤) − 1  intervals by 𝑉(𝑤) pre-generated breakpoints. 

Each interval is then labeled by a Gray code in sequence. Therefore, we need a total of 𝑉(𝑤) − 1 Gray 

codes. To have such number of Gray codes, we need to generate these Gray codes with at least 

⌈log2(𝑉(𝑤) − 1)⌉  digits. Let 𝐺𝑛, 𝑛 = 1,… , 𝑉(𝑤) − 1  denote the sequential Gray codes with 

⌈log2(𝑉(𝑤) − 1)⌉ digits that we generated. For the 𝑛𝑡ℎ interval, which is specified by the breakpoints 

𝑡𝑛
𝑤 and 𝑡𝑛+1

𝑤 , this interval is labeled by the Gray code 𝐺𝑛 as shown in Fig. 2. 

To reformulate SOS2 condition using the Gray code method, we need to further introduce a 

binary auxiliary variable 𝜉𝑧
𝑤 and two sets 𝐻+(𝑧, 𝑤) and 𝐻−(𝑧, 𝑤) for each OD pair and each digit, i.e., 

∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉, which are defined as follows:   

𝐻+(𝑧, 𝑤) = {𝑛 = 1,… , 𝑉(𝑤)|
(𝑛 = 1 ∧ 𝐺2,𝑧

𝑤 = 1) ∪ (𝐺𝑛−1,𝑧
𝑤 = 1 ∧ 𝐺𝑛,𝑧

𝑤 = 1)

∪ (𝑛 = 𝑉(𝑤) ∧ 𝐺𝑉(𝑤)−1,𝑧
𝑤 = 1)

} ,

∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (33)

 

𝐻−(𝑧, 𝑤) = {𝑛 = 1,… , 𝑉(𝑤)|
(𝑛 = 1 ∧ 𝐺2,𝑧

𝑤 = 0) ∪ (𝐺𝑛−1,𝑧
𝑤 = 0 ∧ 𝐺𝑛,𝑧

𝑤 = 0)

∪ (𝑛 = 𝑉(𝑤) ∧ 𝐺𝑉(𝑤)−1,𝑧
𝑤 = 0)

} ,

∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (34)

 

where 𝐺𝑛,𝑧
𝑤  denotes the value of the 𝑧𝑡ℎ digit of the 𝑛𝑡ℎ Gray code for OD pair 𝑤. Then SOS2 condition 

can be enforced by the following inequalities: 

∑ 𝜆𝑛
𝑤

𝑛∈𝐻+(𝑧,𝑤)

≤ 𝜉𝑧
𝑤 , ∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (35) 

∑ 𝜆𝑛
𝑤

𝑛∈𝐻−(𝑧,𝑤)

≤ 1 − 𝜉𝑧
𝑤 , ∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (36) 

𝜉𝑧
𝑤 ∈ {0, 1}, ∀𝑤 ∈ 𝑊, 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (37) 

Hereafter, we use a sample example to illustrate the Gray code method. Suppose we use 10 pre-

generated breakpoints to specify a piecewise linear approximate function, the feasible path cost range 

is first partitioned into 9 intervals and each interval is then labeled by a Gray code. Therefore, we need 

at least 4 digits for these 9 Gray codes. The generation of Gray code is a recursive procedure. To gen-

erate the four-digit Gray codes, we need to first generate all three-digit Gray codes. Specifically, given 

the two-digit Gray codes {0, 0}, {0, 1}, {1, 1}, and {1, 0} as shown in Fig. 3, the first 4 three-digit Gray 

codes can be obtained by adding “0” to the heads of {0, 0}, {0, 1}, {1, 1}, and {1, 0}, i.e., {0, 0, 0}, 

{0, 0, 1}, {0, 1, 1}, and {0, 1, 0}. By rearranging the two-digit Gray codes in inverse order, we get {1, 0}, 

{1, 1}, {0, 1}, and {0, 0}. The last 4 three-digit Gray codes can be obtained by adding “1” to the heads 

of {1, 0}, {1, 1}, {0, 1}, and {0, 0}, i.e., {1, 1, 0}, {1, 1, 1}, {1, 0, 1}, and {1, 0, 0}. Since we use four-digit 
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Gray codes to label the intervals, 4 binary auxiliary variables are required. According to Eqs. (33) and 

(34), we have 𝐻+(1) = {10} , 𝐻−(1) = {1, 2, 3, 4, 5, 6, 7, 8} , 𝐻+(2) = {6, 7, 8, 9, 10} , 𝐻−(2) =

{1, 2, 3, 4}, 𝐻+(3) = {4, 5, 6}, 𝐻−(4) = {1, 2, 8, 9, 10}, 𝐻+(4) = {3, 7}, and 𝐻−(4) = {1, 5, 9, 10}. In 

this case, Constraints (35) and (36) can be represented by: 

{
 
 
 
 

 
 
 
 
 𝜆10 ≤ 𝜉1
 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8 ≤ 1 − 𝜉1
 𝜆6 + 𝜆7 + 𝜆8 + 𝜆9 + 𝜆10 ≤ 𝜉2
 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 ≤ 1 − 𝜉2
 𝜆4 + 𝜆5 + 𝜆6 ≤ 𝜉3
 𝜆1 + 𝜆2 + 𝜆8 + 𝜆9 + 𝜆10 ≤ 1 − 𝜉3
 𝜆3 + 𝜆7 ≤ 𝜉4
 𝜆1 + 𝜆5 + 𝜆9 + 𝜆10 ≤ 1 − 𝜉4

(38) 

Based on the above discussions, the model [OP ∙ I] can be approximated and reformulated by 

the piecewise linear approximation using the reformulation of SOS2 condition as follows: 

[OP ∙ II] : 

maxDemandII = ∑ 𝑓́𝑤

𝑤∈𝑊

(39) 

subject to Eqs. (1)-(6), (8), (9), (11)-(23), (33)-(36), and 

𝑓́𝑤 =∑ 𝜆𝑛
𝑤𝑓𝑤(𝑡𝑛

𝑤)
𝑉(𝑤)

𝑛=1
, ∀𝑤 ∈ 𝑊 (40) 

𝑡𝑤 =∑ 𝜆𝑛
𝑤𝑡𝑛

𝑤
𝑉(𝑤)

𝑛=1
, ∀𝑤 ∈ 𝑊 (41) 

∑ 𝜆𝑛
𝑤

𝑉(𝑤)

𝑛=1
≤ 𝜋𝑤 , ∀𝑤 ∈ 𝑊 (42) 

𝜆𝑛
𝑤 ∈ ℝ+, 𝜉𝑧

𝑤 ∈ {0, 1}, ∀𝑤 ∈ 𝑊, 𝑛 = 1,… , 𝑉(𝑤), 𝑧 = 1,… , ⌈log2(𝑉(𝑤) − 1)⌉ (43) 

The objective function shown by Eq. (39) represents the approximate covered flow volume of 

all OD pairs. Constraints (40)-(42) follow the traditional formulation of the piecewise linear approxi-

mation except that the sum of 𝜆𝑛
𝑤 is upper bounded by 𝜋𝑤 as shown in Eq. (42). The domains of varia-

bles 𝜆𝑛
𝑤 and 𝜉𝑧

𝑤 are defined by Constraint (43). 

It can be seen that the model [OP ∙ II] is a mixed-integer linear programming model and there-

fore, can be readily solved by state-of-the-art MIP solvers like CPLEX. In the following subsection, we 

will elaborate on how to generate the breakpoints based on the required solution quality. 

 

4.2 Breakpoint generation 

In the aforementioned approximation method, a piecewise linear curve overestimating the cov-

ered flow volume is generated for each OD pair. In theory, with sufficiently many breakpoints, the 

approximate curve will be very close to the objective function curve and the error can be controlled as 

small as possible. However, this will result in more linear segments and more variables in the expression 

of SOS2 condition, and in turn an over enlarged model that is computationally intensive. To balance 
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the computational efficiency and solution quality, in this subsection, we illustrate how to generate a 

reasonably sized set of breakpoints to obtain the -optimal solution to the problem.  

The idea that underlies the generation of a reasonably sized set of breakpoints is the solution 

quality of the model [OP ∙ II] can be calibrated by controlling the approximation error of each piecewise 

linear approximate function 𝑓́𝑤(𝑡𝑤),𝑤 ∈ 𝑊, which can be summarized by the following proposition: 

Proposition 1. Let DemandI
∗
 and DemandII

∗
 denote the optimal objective values of the models 

[OP ∙ I] and [OP ∙ II], respectively. Given a pre-defined positive tolerance ε, the ε-optimal solution to 

the model [OP ∙ I] can be obtained by solving the model [OP ∙ II], i.e.,  

DemandI
∗
≤ DemandII

∗
≤ DemandI

∗
+ ε (44) 

if the generated breakpoints satisfy 

𝜀𝑛
𝑤 ≤

ε

|𝑊|
, ∀𝑤 ∈ 𝑊, 𝑛 = 1,… , 𝑉(𝑤) − 1 (45) 

where 𝜀𝑛
𝑤 represents the approximation error in the interval [𝑡𝑛

𝑤 , 𝑡𝑛+1
𝑤 ] for OD pair 𝑤. 

The first inequality suggests the lower bound and the upper bound on the optimal objective. In 

particular, it is no smaller than the optimal objective value and meanwhile is no bigger than a pre-

specified error plus the optimal objective. For the lower bound, as shown in Fig. 2, it is trivial to find 

that the piecewise linear approximate function is above the nonlinear curve except at breakpoints. Re-

garding the upper bound, we note that the total approximation error is the sum of errors on all elastic 

demand functions. The second inequality limits the approximation error on each elastic demand func-

tion within a given threshold. Hence, once Eq. (45) holds, we can conclude that the total approximation 

error is also bounded by a given threshold. We then formally prove Proposition 1 as below. 

Proof. Let 𝑊̅ denote the set of covered OD pairs. Without loss of generality, we assume that for an OD 

pair 𝑤 ∈ 𝑊̅ its real GTC 𝑡𝑤 falls into the interval specified by the breakpoints 𝑡𝑛∗
𝑤  and 𝑡𝑛∗+1

𝑤 , i.e., 𝑡𝑤 ∈

[𝑡𝑛∗
𝑤 , 𝑡𝑛∗+1

𝑤 ]. Then we have 

DemandI
∗
= ∑ 𝑓𝑤(𝑡𝑤)

𝑤∈𝑊̅

≤ ∑ 𝑓́𝑤(𝑡𝑤)  

𝑤∈𝑊̅

= DemandII
∗

= ∑ (𝑓𝑤(𝑡𝑤) + 𝜀𝑛∗
𝑤 ) 

𝑤∈𝑊̅

≤ ∑ (𝑓𝑤(𝑡𝑤)  +
ε

|𝑊|
)

𝑤∈𝑊̅

= DemandI
∗
+
|𝑊̅|

|𝑊|
ε ≤ DemandI

∗
+ ε (46)

 

This concludes the proof. □ 

To generate a certain number of breakpoints that satisfy Condition (45) we will employ an 

iterative procedure to search for new breakpoints one by one. Let 𝒮𝑤 denote the set of breakpoints for 

OD pair 𝑤. First, we initialize 𝒮𝑤 by adding the endpoints of the feasible path cost range, i.e., 𝑇𝑤 and 

(1 + 𝛿𝑤)𝑇𝑤, into it. Then, we search the interval that is specified by two adjacent breakpoints for a 

new breakpoint, which is associated with the maximum approximation error in the interval. Specifically, 



 16 

given interval [𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ], the maximum error in this interval can be obtained by solving the following 

problem: 

max
𝑡𝑛
𝑤≤𝑡𝑤≤𝑡𝑛+1

𝑤
𝑓́𝑤(𝑡𝑤) − 𝐹𝑤𝑒−𝜃

𝑤(𝑡𝑤−𝑇𝑤) (47) 

It is easy to find that the target breakpoint is 

𝑡̂𝑛
𝑤 = 𝑇𝑤 −

1

𝜃𝑤
ln
−𝜛𝑛

𝑤

𝐹𝑤𝜃𝑤
(48) 

and the maximum approximation error in the interval is 

𝜀𝑛̂
𝑤 = (𝜛𝑛

𝑤𝑡̂𝑛
𝑤 + 𝜎𝑛

𝑤) − 𝐹𝑤𝑒−𝜃
𝑤(𝑡̂𝑛

𝑤−𝑇𝑤) (49)  

where 𝜛𝑛
𝑤 and 𝜎𝑛

𝑤 denote the slope and intercept of the linear function of 𝑓́𝑤(𝑡𝑤) in interval [𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ]. 

If 𝜀𝑛̂
𝑤 ≤ ε/|𝑊|, this interval is labeled as qualified and will not be examined anymore; otherwise, the 

point 𝑡̂𝑛
𝑤 will be added into the set 𝒮𝑤 and the interval is then divided into two parts by 𝑡̂𝑛

𝑤, i.e., [𝑡𝑛
𝑤 , 𝑡̂𝑛

𝑤] 

and [𝑡̂𝑛
𝑤 , 𝑡𝑛+1

𝑤 ], both of which will be examined in a similar way next. The above procedure iteratively 

examines all existing intervals until no new breakpoints can be found. The pseudo-code of the break-

point generation is outlined as follows: 

Algorithm 1. Pseudo-code of the breakpoint generation. 

1 Initialization: 𝒮𝑤 ← {𝑡𝐿 , 𝑡𝑅}; // 𝒮𝑤 denotes the set of breakpoints for OD pair 𝑤; 𝑇𝑤  and 

(1 + 𝛿𝑤)𝑇𝑤 are initial values of endpoints 𝑡𝐿 and 𝑡𝑅, respectively. 

2 Function [𝒮𝑤]= Breakpoint (𝑡𝐿 , 𝑡𝑅 , 𝒮𝑤) ; // recursive function iteratively searching for 

breakpoints in interval [𝑡𝐿 , 𝑡𝑅]. 

3 

 

[𝜛, 𝜎] = Line(𝑡𝐿 , 𝑡𝑅); // 𝜛 and 𝜎 are the slope and intercept of the linear function cross 

points (𝑡𝐿 , 𝐹𝑤𝑒−𝜃
𝑤(𝑡𝐿−𝑇𝑤)) and (𝑡𝑅 , 𝐹𝑤𝑒−𝜃

𝑤(𝑡𝑅−𝑇𝑤)). 

4  𝑡𝐵 = 𝑇𝑤 −
1

𝜃𝑤
ln

−𝜛

𝐹𝑤𝜃𝑤
; // the point corresponding to the maximum error. 

5  Error = (𝜛𝑡𝐵 + 𝜎) − 𝐹𝑤𝑒−𝜃
𝑤(𝑡𝐵−𝑇𝑤); // the maximum approximation error. 

6  If Error > ε/|𝑊| 

7   𝒮𝑤 ← 𝑡𝐵; 

8   [𝒮𝑤] = Breakpoint (𝑡𝐿 , 𝑡𝐵, 𝒮𝑤); 

9   [𝒮𝑤] = Breakpoint (𝑡𝐵, 𝑡𝑅 , 𝒮𝑤); 

10  End if 

11 End function 

 

5. Case Study 

In this section, a case study based on the highway network of Zhejiang Province of China is 

conducted to examine the applicability of the proposed model and solution approach. The impact anal-

ysis of the budget on flow coverage and optimal station selections is also performed. The model is 
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coded in MATLAB 2019a calling IBM ILOG CPLEX 12.9 on a personal desktop with Intel Core i7 

4.0 GHz CPU. 

 

5.1 Highway network of Zhejiang Province and parameter settings 

As reported by XinhuaNet (2018), the State Power Grid of China plans to invest RMB ¥1.1 

billion in building public charging facilities in Zhejiang Province by the end of 2020. The proposed 

MCSL problem is expected to provide some practical insights into deploying public charging stations 

for the investor. The highway network of Zhejiang Province can be represented by a graph consisting 

of 34 nodes and 96 directed links as shown in Fig. 4. The parameters of EVs are based on BYD-EV6, 

which is popular with the Chinese market. Specifically, the EV battery capacity is 60kWh and the elec-

tricity consumption rate is 0.2kWh/km (BYD, 2018). According to the electricity consumption rate, the 

speed of 120km/hr, and link distances, we can obtain the electricity consumption and travel time of 

each link. Following the convention in the literature, the initial/final SOC before/after departure/arrival 

is set to be no bigger/smaller than half of the battery capacity, i.e., 30kWh. The reason for assuming the 

initial/final SOC no bigger/smaller than 50% of battery capacity is that this SOC setting enables round 

trips. In particular, the drivers can travel from the destination to the origin along the same route of the 

inbound trip if the aforesaid SOC condition is fulfilled. Many previous studies also adopted this SOC 

setting to conduct numerical experiments, e.g., Kim and Kuby (2012), Kuby and Lim (2005; 2007), and 

Lim and Kuby (2010).  

 

Fig. 4 Highway network of Zhejiang Province of China. 

All 34 nodes in the network are candidate locations for building charging stations. The con-

struction cost of a slow-/fast- charging station is set to be one/two unit cost for simplicity. The drivers’ 

value of time is assumed to be $10/hour. For slow-/fast- charging stations, the charging-amount-de-

pendent cost and the fixed charging cost are $0.5/kWh/$1.8/kWh and $1/$1, respectively The largest 
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20 cities (more than one million people) of Zhejiang Province are chosen as origins and destinations for 

generating OD pairs and then 190 OD pairs are obtained. The flow volume of each OD pair is obtained 

in the gravity model (Hodgson, 1990) with the city population. To reduce trivial and unrealistic cases, 

we exclude the cases of few flows and less electricity consumption (no more than 30kWh). Finally, we 

remain 50 OD pairs with 23,497 flows, which account for 88.7% of total flows. As for the degree of 

drivers’ demand elasticity 𝜃𝑤, it is obtained by assuming the flow volume declines from 𝐹𝑤 to 0.2𝐹𝑤as 

the GTC rises from 𝑇𝑤 to 1.5𝑇𝑤. 

The approximation error in the piecewise linear approximation using the Gray code method is 

set to be 50, i.e., less than one for each OD pair. Based on this error tolerance, the required numbers of 

breakpoints, Gray codes, digits of Gray codes, continuous auxiliary variables, binary auxiliary variables, 

and linear constraints are shown by Columns 2-7 of Appendix 2. The numbers of saved binary auxiliary 

variables and constraints are presented by Columns 8 and 9 of Appendix 2. To analyze the impact of 

budget on covered flows of all OD pairs, we set the budget to be {2, 4, 6, 8, … , 28}. To further investi-

gate the influence of drivers’ tolerance for path cost deviation, the tolerance is set to be {0, 20%, 50%}. 

The computational time limit (elapsed time) of each instance is set to be 24 hr. The experimental results 

of the 42 instances are displayed in Appendix 3. 

 

5.2 Impact analysis of budget on flow coverage and covered OD pairs 

Fig. 5 and Fig. 6 present the flow coverage and the number of covered OD pairs under three 

tolerances as the budget varying from 2 to 28 unit cost. When the tolerance equals zero, drivers will 

travel on the shortest path in the network. When the tolerance becomes 20% and 50%, drivers could 

take a deviation path as long as the path cost deviation is within the tolerance. It can be seen that in Fig. 

5 the flow coverage follows an upward trend and has a near-concave shape, suggesting that the incre-

ment rate of flow coverage decreases gradually, i.e., the marginal benefit of investment is declining. In 

addition, given the same budget available, the flow coverage under a high tolerance is usually bigger 

than that under a low tolerance. For example, given 10 unit cost, the flow coverage under zero tolerance 

is only 49.03%, while these numbers under 20% and 50% tolerances are 55.83% and 60.99%, respec-

tively. From another point of view, the planner needs less investment to attain the same flow coverage 

if drivers accept a higher path cost deviation. For instance, if the target flow coverage is 60%, only 10 

unit cost is required under 50% tolerance while 12 unit cost is required under zero tolerance. As for the 

number of covered OD pairs, it also embraces an upward trend but displays fluctuation. It can be seen 

that in Fig. 6 the fluctuation is especially obvious under 50% tolerance. Like the relationship of flow 

coverage under different tolerances, the number of covered OD pairs under a high tolerance is usually 

bigger than that under a low tolerance. Based on the above analysis, we can get some practical insights, 

i.e., a good understanding of drivers’ tolerance for path cost deviation contributes to saving the budget 

or satisfying more charging demands. 
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Fig. 5 Flow coverage. 
 

Fig. 6 Covered OD pairs. 

 

5.3 Impact analysis of budget on optimal station selection 

The number of slow-/fast- charging stations as the budget rises from 2 to 28 unit cost under 

three tolerances is displayed by Fig. 7, Fig. 8, and Fig. 9. The number of fast-charging stations increases 

with respect to the budget and tends to be stable after the budget exceeds 16 unit cost. By contrast, the 

number of slow-charging stations fluctuates as the budget varies from 2 to 16 unit cost and then rises 

almost linearly after the budget goes beyond 16 unit cost. Moreover, under three tolerances, the numbers 

of two types of stations go across several times, yielding many intersection points. For instance, under 

20% tolerance as shown in Fig. 8, there are 3 intersection points, i.e., 6, 9, and 18 unit cost. The planner 

needs to locate more slow-charging stations if the budget is smaller than 9 unit cost or bigger than 18 

unit cost; otherwise, more fast-charging stations should be built. In practice, the planner may prefer to 

build more slow-charging stations since fast-charging stations generally call for more maintenance and 

operation costs. Fortunately, the above results suggest that even if they need to cover all flows, only 7 

fast-charging stations are required. 

 

Fig. 7 No. of stations under zero tolerance. 

 

Fig. 8 No. of stations under 20% tolerance. 
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Fig. 9 No. of stations under 50% tolerance. 

 

 

5.4 Impact analysis of driving ranges on flow coverage and station deployment 

In this section, we aim to investigate how the driving range (also battery capacity) of EVs af-

fects the covered flow volume as well as the deployment of sited charging stations. To this end, we let 

the driving ranges of EVs be three values, namely 300km, 400km, and 500km. The drivers’ tolerance 

for travel cost deviation is assumed to be 0.5% of their minimum GTC and we then vary the total budget 

from 2 unit cost to 28 unit cost (increasing 2 unit cost sequentially). To vividly showcase the impact of 

driving ranges on flow coverage, we visualize the experimental results under the three given ranges on 

the same figure as follows (P.S.: FC_D300 denotes the curve of flow coverage under the driving range 

of 300km). 

 

Fig. 10 Variations of flow coverage under three driving ranges as the growth of budget. 

Basically, the three curves perform a near-concave shape as the available budget increases. In 

particular, they all first rise stably and then tend to be a constant, i.e., 100% of flow coverage. The 

interesting point is that the flow coverage under a higher driving range attains 100% of flow coverage 

more early, that is, all travelers’ charging demand is fulfilled with a smaller investment. This fact aligns 
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with our expectation that with a longer driving range, there is no need for governments to build too 

many charging facilities as EVs can cruise a long distance without being replenished en route. This 

observation also provides valuable insights for governments into promoting green transportation. Ad-

vancing battery technologies not only boosts the development and adoption of EVs but also saves in-

vestment in building charging facilities, which is green for the environment and economy. We also 

present the charging station distributions under driving ranges of 300km and 400km and 14 unit budget 

below to see how stations are sited under different driving ranges. 

  

Fig. 11 Station deployment under range 300km Fig. 12 Station deployment under range 400km 

The blue circles denote fast-charging stations; the green circles represent slow-charging stations; 

the black circles imply no charging stations at that node. Under the driving range of 300km, we site five 

fast-charging stations at locations 1, 2, 3, 4, 5, and four slow-charging stations at locations 6, 8, 9, 23, 

while under the driving range of 400km, we have four fast-charging stations located at 1, 2, 3, 22, and 

five slow-charging stations located at 4, 5, 6, 8, 9, 23. All locations that fast-charging stations locate 

are big cities of Zhejiang Province. For example, locations 1, 2, 3, 4, 5 are the biggest five cities of 

Zhejiang, and locations 6, 8, 9, 23 are also med-size cities. This observation coincides with our experi-

ence that fast-charging stations are generally sited in big cities. Interestingly, when a larger driving 

range is accessible, we only have four fast-charging stations and use the saved budget to build two 

additional slow-charging stations. This could attribute to that when EVs can cruise a longer distance, 

drivers do not need to refuel energy multiple times and slow-charging stations are also welcome for 

them. This is an encouraging finding since slow-charging stations have less burden on the electricity 

grid and incur fewer operational costs in the long run. This finding also motivates the governments to 

explore more cutting-edge battery technologies. 
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6. Conclusions 

In this study, we aim to optimally locate multi-type charging stations, e.g., fast-charging sta-

tions and slow-charging stations, for maximizing the covered flows while taking into account path de-

viation, partial charging, and nonlinear elastic demand. This problem is first formulated as a mixed-

integer nonlinear programming model and then reformulated as a mixed-integer linear programming 

model by the piecewise linear approximation. In addition, a compact formulation is put forward to 

model the partial charging logic instead of generating paths and charging patterns. To improve the 

computational efficiency, we employ a refined formulation of SOS2 condition using Gray code method, 

which effectively reduces the number of constraints and binary auxiliary variables in the formulation 

of the piecewise linear approximate function. A breakpoint generation scheme is finally proposed ac-

cording to the requirement of solution quality. Finally, the applicability of the proposed model and the 

impact of the budget on flow coverage and optimal station selections are examined based on the high-

way network of Zhejiang Province of China. 

Future studies may be undertaken in several directions. First, the efficiency of the proposed 

model depends on the network size and the number of OD pairs. It is thus necessary to develop an 

efficient algorithm applicable to large networks. For instance, as pointed out by Vielma and Nemhauser 

(2011), a branch-and-cut algorithm could be developed in which the Eqs. (35) and (36) play the role of 

valid inequalities. Second, drivers may need to wait for charging due to limited charging spots. A queue-

ing model can be useful to incorporate waiting costs into the present model. Last, the fear of batteries 

running out of power en-route, namely range anxiety, will affect drivers’ charging and routing behaviors. 

Hence, it is worthwhile to investigate the impact of range anxiety in the future. 

 

Acknowledgments 

This research is supported by the National Natural Science Foundation of China (No. 71901189, 

No. 72071041) , the Research Grants Council of the Hong Kong Special Administrative Region, China 

(PolyU 25207319), the National Key Research and Development Program of China (No. 

2018YFB1600900) and the Hong Kong Polytechnic University (1-BE1V).  



 23 

Appendix 1 Notation table. 

𝑖, 𝑗 indices for locations 

𝑤 index for OD pair 

𝑘 index for station type 

𝑜(𝑤) index for the origin of OD pair 𝑤 

𝑑(𝑤) index for the destination of OD pair 𝑤 

(𝑖, 𝑗) directed link from location 𝑖 to location 𝑗 

𝑁 set of nodes 

𝐼 set of candidate locations for building charging stations 

𝐴 set of directed links 

𝑊 set of OD pairs 

𝐸 battery capacity 

𝐵 total budget 

𝑒𝑖𝑗 electricity consumption of link (𝑖, 𝑗) 

𝑑𝑖𝑗 travel time on link (𝑖, 𝑗) 

𝐸𝑜 SOC upper bound before departing from origins 

𝐸𝐷 SOC lower bound after arriving at destinations 

𝑏𝑖,𝑘 cost of building type 𝑘 station at location 𝑖 

𝑐𝑘 fixed cost of charging at type 𝑘 station 

𝜇𝑘 charging-amount-dependent cost per unit amount of charging at type 𝑘 station 

𝜈 drivers’ value of time 

𝐹𝑤 maximum flow volume of OD pair 𝑤 

𝑇𝑤 minimum GTC of OD pair 𝑤 

𝜃𝑤 degree of demand elasticity for drivers of OD pair 𝑤 

𝛿𝑤 tolerance for path cost deviation for drivers of OD pair 𝑤 

M a sufficiently large positive number 

𝑥𝑖𝑗
𝑤 

a binary decision variable which equals 1 if link (𝑖, 𝑗)  is traversed for OD pair 𝑤 and 0 

otherwise 

𝑦𝑖,𝑘 
a binary decision variable which equals 1 if type 𝑘 station is built at location 𝑖 and 0 oth-

erwise 

𝑝𝑖
𝑤 charging amount at location 𝑖 for OD pair 𝑤 

𝜋𝑤 a binary auxiliary variable which equals 1 if OD pair 𝑤 is covered and 0 otherwise 

𝑟𝑖
𝑤 

a binary auxiliary variable which equals 1 if drivers of OD pair 𝑤 charge at location 𝑖 and 

0 otherwise 

𝑒𝑖
𝑤 SOC upon arriving at location 𝑖 ∈ 𝐼 or SOC after charging at 𝑖 ∉ 𝐼 for OD pair 𝑤 
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𝑡𝑤 GTC of OD pair 𝑤 

𝑓́𝑤(𝑡𝑤) piecewise linear approximate function for OD pair 𝑤 

𝑉(𝑤) number of breakpoints for OD pair 𝑤 

𝑛 index for breakpoints 

𝑡𝑛
𝑤 the 𝑛𝑡ℎ breakpoint for OD pair 𝑤 

𝑓𝑛
𝑤(𝑡𝑛

𝑤) flow volume corresponding to 𝑡𝑛
𝑤, i.e., 𝐹𝑤𝑒−𝜃

𝑤(𝑡𝑛
𝑤−𝑇𝑤) 

𝜆𝑛
𝑤 a continuous auxiliary variable associated with 𝑡𝑛

𝑤 

𝜉𝑧
𝑤 a binary auxiliary variable to reformulate SOS2 condition 

𝐺𝑛,𝑧
𝑤  value of the 𝑧𝑡ℎ digit of the 𝑛𝑡ℎ Gray code for OD pair 𝑤 

ε error tolerance in the piecewise linear approximation 

𝒮𝑤 set of breakpoints for OD pair 𝑤 

𝜛𝑛
𝑤 slope of the linear function of 𝑓́𝑤(𝑡𝑛

𝑤) in interval [𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ] 

𝜎𝑛
𝑤 intercept of the linear function of 𝑓́𝑤(𝑡𝑛

𝑤) in interval [𝑡𝑛
𝑤 , 𝑡𝑛+1

𝑤 ] 

𝑡̂𝑛
𝑤 point corresponding to the maximum error in interval [𝑡𝑛

𝑤 , 𝑡𝑛+1
𝑤 ] 

𝜀𝑛̂
𝑤 maximum approximation error in interval [𝑡𝑛

𝑤 , 𝑡𝑛+1
𝑤 ]  
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Appendix 2 The information on the model inputs. 

OD 
No. of 

BP 

No. of 

GC 

No. of 

DGC 

No. of 

CAV 

No. of 

BAV 

No. of 

LC 

No. of 

SBAV 

No. of 

SC 

01 29 28 5 29 5 10 24 20 

02 21 20 5 21 5 10 16 12 

03 15 14 4 15 4 8 11 8 

04 15 14 4 15 4 8 11 8 

05 13 12 4 13 4 8 9 6 

06 12 11 4 12 4 8 8 5 

07 12 11 4 12 4 8 8 5 

08 9 8 3 9 3 6 6 4 

09 9 8 3 9 3 6 6 4 

10 23 22 5 23 5 10 18 14 

11 19 18 5 19 5 10 14 10 

12 18 17 5 18 5 10 13 9 

13 16 15 4 16 4 8 12 9 

14 11 10 4 11 4 8 7 4 

15 11 10 4 11 4 8 7 4 

16 9 8 3 9 3 6 6 4 

17 9 8 3 9 3 6 6 4 

18 8 7 3 8 3 6 5 3 

19 8 7 3 8 3 6 5 3 

20 8 7 3 8 3 6 5 3 

21 8 7 3 8 3 6 5 3 

22 18 17 5 18 5 10 13 9 

23 13 12 4 13 4 8 9 6 

24 11 10 4 11 4 8 7 4 

25 10 9 4 10 4 8 6 3 

26 9 8 3 9 3 6 6 4 

27 8 7 3 8 3 6 5 3 

28 8 7 3 8 3 6 5 3 

29 8 7 3 8 3 6 5 3 

30 16 15 4 16 4 8 12 9 

31 14 13 4 14 4 8 10 7 

32 14 13 4 14 4 8 10 7 

33 13 12 4 13 4 8 9 6 

34 10 9 4 10 4 8 6 3 

35 9 8 3 9 3 6 6 4 

36 8 7 3 8 3 6 5 3 

37 8 7 3 8 3 6 5 3 

38 8 7 3 8 3 6 5 3 

39 12 11 4 12 4 8 8 5 

40 11 10 4 11 4 8 7 4 

41 11 10 4 11 4 8 7 4 

42 10 9 4 10 4 8 6 3 

43 9 8 3 9 3 6 6 4 

44 8 7 3 8 3 6 5 3 

45 8 7 3 8 3 6 5 3 

46 7 6 3 7 3 6 4 2 

47 11 10 4 11 4 8 7 4 

48 9 8 3 9 3 6 6 4 

49 10 9 4 10 4 8 6 3 

50 8 7 3 8 3 6 5 3 

Total 582 532 184 582 184 368 348 264 

Aabbreviations: BP (breakpoints), GC (Gray codes), DGC (digits of Gray codes), CAV (continuous 

auxiliary variables), BAV (binary auxiliary variables), LC (linear constraints), SBAV (saved binary 

auxiliary variables), and SC (saved constraints).
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Appendix 3 Experimental results. 

B 

No Tolerance 20% Tolerance 50% Tolerance 

CF 
FC 

(%) 

No. of 

COD 

No. of 

SCS 

No. of 

FCS 

GAP 

(%) 
CF 

FC 

(%) 

No. of 

COD 

No. of 

SCS 

No. of 

FCS 

GAP 

(%) 
CF 

FC 

(%) 

No. of 

COD 

No. of 

SCS 

No. of 

FCS 

GAP 

(%) 

2 0 0.00 0 0 1 0.00 335 1.43 1 2 0 0.00 588 2.50 1 2 0 0.38 

4 3839 16.34 2 2 1 3.36 4174 17.76 3 2 1 0.00 4250 18.09 4 2 1 1.36 

6 7004 29.81 6 2 2 1.64 7339 31.23 7 2 2 0.17 7721 32.86 12 2 2 1.08 

8 9424 40.11 9 4 2 0.14 10322 43.93 11 4 2 0.62 12110 51.54 25 2 3 1.08 

10 11521 49.03 13 2 4 1.23 13118 55.83 16 2 4 0.24 14331 60.99 29 2 4 9.74 

12 14510 61.75 19 4 4 0.18 14908 63.45 21 2 5 0.03 16242 69.12 36 2 5 11.31 

14 16459 70.05 23 4 5 1.12 16824 71.60 28 4 5 5.17 17941 76.35 40 4 5 8.16 

16 18230 77.58 30 4 6 0.04 18544 78.92 31 4 6 0.03 19305 82.16 44 6 5 7.02 

18 19664 83.69 35 6 6 1.04 19978 85.02 36 6 6 1.76 20493 87.22 44 6 6 4.36 

20 20937 89.10 41 8 6 1.05 21251 90.44 42 8 6 0.03 21571 91.80 47 8 6 2.78 

22 21975 93.52 44 10 6 1.09 22289 94.86 45 10 6 1.01 22436 95.48 48 10 6 1.00 

24 22752 96.83 47 12 6 1.03 23011 97.93 48 12 6 0.01 23106 98.34 50 12 6 1.01 

26 23306 99.19 49 14 6 0.82 23405 99.61 50 14 6 0.05 23405 99.61 50 14 6 0.10 

28 23497 100.0 50 14 7 0.00 23497 100.0 50 14 7 0.00 23497 100.0 50 14 7 0.00 

Abbreviations: B (budget measured by unit cost), CF (covered flows), FC (flow coverage), COD (covered OD pairs), SCS (slow-charging stations), FCS (fast-

charging stations), and GAP = (best upper bound – best objective value)∕ best objective value. 
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