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Abstract—Deteriorating water quality leads to the freshwater 

biodiversity crisis. The interrelationships among water quality 

parameters and the relationships between these parameters and 

taxa groups are complicated in affecting biodiversity. Never-

theless, due to the limited types of Internet of Things (IoT) sensors 

available on the market, a large number of chemical and biological 

parameters still rely on laboratory tests. With the latest 

advancement in artificial intelligence and the IoT (AIoT), this 

technique can be applied to real-time monitoring of water quality, 

and further conserving biodiversity. In this paper, we conducted a 

comprehensive literature review on water quality parameters that 

impact the biodiversity of freshwater and identified the top-10 

crucial water quality parameters. Among these parameters, the 

interrelationships between the IoT measurable parameters and 

IoT unmeasurable parameters are estimated using a general 

regression neural network model and a multivariate polynomial 

regression model based on historical water quality monitoring 

data. Conventional field water sampling and in-lab experiments, 

together with the developed IoT-based water quality monitoring 

system were jointly used to validate the estimation results along an 

urban river in Hong Kong. The general regression neural network 

model can successfully distinguish the abnormal increase of 

parameters against normal situations. For the multivariate 

polynomial regression model of degree eight, the coefficients of 

determination results are 0.89, 0.78, 0.87, and 0.81 for NO3-N, 

BOD5, PO4, and NH3-N, respectively. The effectiveness and 

efficiency of the proposed systems and models were validated 

against laboratory results and the overall performance is 

acceptable with most of the prediction errors smaller than 

0.2mg/L, which provides insights into how AIoT techniques can be 

applied to pollutant discharge monitoring and other water quality 

regulatory applications for freshwater biodiversity conservation. 

Index Terms— Artificial intelligence models, Freshwater 

biodiversity, Internet of Things, Top-10 crucial water quality 

parameters, Water quality monitoring, Water quality parameter 

estimation 

I. INTRODUCTION

Freshwater makes up only 0.01% of the global water but it

supports at least 100,000 (almost 6%) of all recorded 

biological species [1]. Since aquatic species spend at least part 

of their lifetimes in water bodies, water quality directly affects 
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their living condition, composition, distribution, and diversity 

[2, 3]. Relationships between water quality and biodiversity are 

well recorded in a variety of studies [4-7], and the deterioration 

of water quality is believed to be one of the factors contributing 

to the rapid decline in global aquatic biodiversity. To conserve 

freshwater biodiversity, water quality should be continuously 

monitored and evaluated. Conventional laboratory water 

quality tests, however, can only provide sparse data due to 

financial and time limits.   

Over the last decade, the IoT has become a fresh and 

promising technique in water quality monitoring [9], especially 

for agriculture [8] and waste management [10]. The IoT 

technology is to connect traditional objects to the Internet to 

make things smart by utilizing technologies such as sensors, 

wireless communications and networking, cloud computing, 

and so on. According to Mohammadi [11], IoT-based services 

will contribute more than $2.7 trillion to global economics 

annually in 2025. Nevertheless, real-time water quality 

monitoring of diverse Physical-Chemical-Biological (PCB) 

parameters still remains a great challenge, primarily due to the 

limited types of sensors available on the market. Consequently, 

a large number of chemical and biological parameters still rely 

on laboratory tests, which are time-consuming and not cost-

effective. To address these problems, this research aims to 

achieve the following objectives: 

(1) Identify crucial water quality parameters that affect

freshwater biodiversity; 

(2) Identify those water quality parameters that can be

measured with available IoT sensors and develop an IoT system 

to measure these parameters simultaneously; 

(3) Develop artificial intelligence (AI) models to estimate

parameters that cannot be measured by current IoT sensors 

using IoT-measurable parameters, based on a large historical 

water quality monitoring database. 

(4) Evaluate the AI models using a case study.

The rest of the paper is organized as follows. In Section II,

relationships between water quality parameters and biodiversity 

over the last two decades are reviewed and the top-10 crucial 

water quality parameters are identified. In Section III, a 
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framework for unmeasurable water quality parameter esti-

mation is proposed, a developed water quality monitoring 

system based on IoT technologies is introduced, and AI models 

to estimate unmeasurable water quality parameters are 

illustrated. In Section IV, the IoT system and estimation models 

are evaluated in a case study. Section V concludes the study and 

provides further recommendations. 

II. LITERATURE REVIEW

A comprehensive literature review was conducted to identify 

water quality parameters that affect freshwater biodiversity. 

The following combinations of search terms were used in 

google scholar to find relevant studies between 2000 and 2020: 

(Fish OR benthic macroinvertebrates OR (Ephemeroptera, 

Plecoptera, and Trichoptera, EPT) OR freshwater/aquatic 

insects OR freshwater/aquatic macrophyte OR phytoplankton 

OR zooplankton) AND (biodiversity/diversity) AND (water 

quality parameters). A total of 90 papers were identified2, which 

discuss important water quality parameters that affect 

freshwater biodiversity, organism distribution, and species 

composition.  

According to [12], water quality parameters can be grouped 

into three categories: physical, chemical, and biological. Based 

on the search results, 33 physical-chemical-biological water 

quality parameters were identified as core factors, including 7 

physical, 25 chemical, and 1 biological (E.coli). Apart from the 

three categories, another 5 hydrological parameters are also 

often discussed, including altitude, flow velocity, discharge, 

depth, and width. These parameters may partially contribute to 

the physical-chemical results. 

Fig. 1.  The top-10 important water quality parameters affecting freshwater 

biodiversity (References can be referred to the supplementary material2). 

*Neutral means the positive/negative relationship between the parameter and 

biodiversity is not clear, or it just shows the importance of the parameter affecting 

the species distribution and composition, or there are two completely different 

correlations for different families or species. 

Based on occurrence frequencies, the top-10 critical para-

meters are listed in Fig. 1, consisting of 3 physical and 7 

chemical parameters. The physical parameters include tem-

perature, EC (electrical conductivity), and TSS (total suspended 

solids). Seven chemical parameters are frequently emphasized 

in a large body of literature, including DO (dissolved oxygen), 

2  Reference list can be referred to the supplementary material [Online]. 
Available: https://github.com/wyhpolyu2020/WaterQualityinAIoT 

NO3-N, PO4, NO2-N, pH, NH3-N, and BOD5 (5-day 

biological oxygen demand). Total nitrogen (TN) was classified 

into its main forms: NH3-N, NO3-N, NO2-N [13, 14]. Total 

phosphorus (TP) can be divided into dissolved phosphorus (DP) 

and particulate phosphorus (PP) [15]. However, since PP is 

seldom analyzed in the lab [15], the dissolved phosphorus PO4 

is used as a surrogate [13]. Also shown in Fig. 1 are the roles of 

physicochemical properties in literature. Note that the roles 

vary from study to study because the responses of different 

species to these parameters are different. 

The 90 reviewed papers were divided into two groups: 67 

mainly concerning animals (fish, benthic macroinvertebrates, 

EPT, aquatic insect, and zooplankton) while 23 mainly 

concerning plants (aquatic macrophyte and phytoplankton). 

The proportion of papers that discuss the correlations between 

water quality parameters and animal/plant biodiversity are 

summarized in Fig. 2. As shown in Fig. 2, the same parameters 

may play different roles in animal and plant groups. For 

instance, DO generally plays a positive role in enhancing 

freshwater animal biodiversity, while the effect is not obvious 

for plants. The relationship between water quality parameters 

and freshwater biodiversity is complicated and sensitive. To 

achieve maximum diversity, multiple parameters should be 

kept in a suitable range. For example, rotifer requires optimal 

nutrient and temperature conditions, and a favorable DO range 

to achieve a higher diversity [16]. To balance the diversity 

among the animal and plant communities, some particular 

parameters should be closely monitored. For instance, nutrients 

are likely to promote plant diversity [14, 17] while curbing the 

growth of animals [14, 18]. Therefore, to provide the early 

warning of water quality conditions, and conserve freshwater 

biodiversity, real-time monitoring of water quality parameters 

is a necessity. 

Fig. 2.  The proportion of papers showing the correlation between water quality 

parameters and freshwater biodiversity. 

Over the past decades, a large number of neural network 

models have been developed to estimate and predict water 

quality indicators. The effectiveness of this technique is 

exemplified by Gazzaz et al. [19], Han et al. [20], Zhang et al. 

[21], and a case study in India [22]. The corresponding models 
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include the feed-forward three-layer neural network, empirical 

neural network efficient self-organizing RBF neural network, 

and simple artificial neural network (ANN). In addition, a 

hybrid neural network was used for time series prediction of 

water quality in [23].  

A variety of statistical models are also used in water quality 

parameter estimation including multiple linear regression [24]. 

Abyaneh [25] compared the performance between statistical 

models (e.g., multivariate linear regression model) and ANN 

models in estimating the biochemical oxygen demand (BOD) 

and chemical oxygen demand (COD), which shows ANN 

performs better. However, apparently, the linear model might 

not be able to fit the interrelationship well. 

Most of the previous models aim for single parameter 

estimation and prediction. The difficulties and challenges of 

data collection and the feasibility of these models for IoT and 

other industrial applications have not been considered. 

III. RESEARCH METHODOLOGY 

The research methodology is introduced in this section. The 

framework for estimating unmeasurable water quality 

parameters is proposed in subsection A. A developed water 

quality monitoring system based on IoT technologies is 

presented in subsection B. The statistical feature analysis and 

two AI models to estimate unmeasurable water quality 

parameters are illustrated in subsection C, D, and E, res-

pectively. 

A. Problem Analysis 

 
Fig. 3.  A three-step data-driven framework for water quality parameter 

estimation. 

After the selection of the top-10 crucial water quality 

parameters in the previous section, a market survey was 

conducted to identify available sensors for developing the IoT-

based water quality monitoring system. Five different types of 

sensors were found (i.e., total dissolved solids, pH, temperature, 

dissolved oxygen, and electrical conductivity). The other five 

parameters (i.e., NO3-N, PO4, NO2-N, NH3-N, and 5-day 

biological oxygen demand), thus as unmeasurable, will be 

estimated in the following process. Note that total dissolved 

solids (TDS) are not equivalent to TSS, but TDS is chosen due 

to the availability of the IoT sensor.  

A three-step data-driven framework is proposed, as shown in 

Fig. 3. The three highlighted components are data inputs from 

three different sources. Firstly, historical data are cleaned and 

pre-processed. The models for estimating unmeasurable 

parameters are developed in the next step. The last step is the 

implementation of the case study and evaluation of the 

proposed models adopting IoT sensor data and laboratory data. 

B. Development of the IoT Water Quality Monitoring System 

Five different types of sensors were identified on the market. 

In addition to these sensors, the Wemos D1 Mini chip and a 

multiplexer were used in building this IoT system. The Wemos 

D1 Mini Chip is a portable integrated chip that has ESP8266 

Wi-Fi and Arduino functions. The casual role of the multiplexer 

in the IoT system is that most of the sensors only enable analog 

output while only one analog input pin is available in this small 

chip so the multiplexer is used for pin expansion. The IoT server 

is based on the ThingsBoard professional edition [26].  

 
Fig. 4.  The developed water quality monitoring IoT system based on a Wemos 

chip and a multiplexer. 
 

The system is embedded in a foam board for floating on the 

water surface and covered with a plastic film for waterproofing. 
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After the sketch of the system was made and the connections 

were drawn, a program in the chip was developed so that it 

could collect and send the five-parameter data to the web-server 

continuously and simultaneously via Wi-Fi to 5G gateway and 

upload to the Internet. The whole system and the server dash-

board are shown in Fig. 4 and Fig. 5 respectively.  

Fig. 5.  The ThingsBoard web-server dashboard of the developed IoT system. 

C. Statistical Feature Analysis

Prior to data modeling, the statistical features of the historical

data were examined through descriptive analysis. Except for the 

essential correlation analysis, count, mean, standard deviation, 

minimum value, maximum value, and each quartile value of the 

raw data set are analyzed in this step. These data potentially 

reveal the relationships among 10 crucial parameters, and their 

central tendencies as well as the dispersion. The Pearson’s 

correlation coefficient in (1) was applied to investigate the 

potential relationships among these parameters. The Pearson’s 

correlation can measure the magnitude of a linear relationship 

between a paired data set [27].  

𝑟 =
∑ 𝑋𝑌−

∑ 𝑋 ∑ 𝑌

𝑁

√(∑ 𝑋2−
(∑ 𝑋)2

𝑁
)(∑ 𝑌2−

(∑ 𝑌)2

𝑁
)

 .         (1) 

The correlation coefficient r ranges from -1 to 1. In general, 

a larger absolute value of r indicates a stronger linear relation-

ship. The positive value implies a positive linear correlation 

between the compared data set and vice versa. If r = 0, it means 

there is no linear correlation. 

D. General Regression Neural Network

Artificial Neural Network (ANN) models were utilized in

estimating unmeasurable water quality parameters. General 

regression neural network (GRNN) is a single-pass associative 

memory feed-forward type ANN and was employed in this 

study due to its quick training approach and high accuracy. 

However, the disadvantage of GRNN is its growth of the hidden 

layer size [30]. MSE (mean squared error) generally is a 

conspicuous measurement of GRNN. According to an existing 

study [30], GRNN has less training time and higher accuracy 

than back-propagation ANN.  

E. Multivariate Polynomial Regression Model

According to Ostertagová [28], polynomial regression (PR)

is a special case of multiple regression in the machine learning 

domain. It fits the data using least-square methods, which could 

minimize the variance of the unbiased coefficient estimators, 

under the Gauss-Markov theorem. The PR method is used when 

the response variable is non-linear and the general equation for 

PR is 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀,       (2) 

where 𝜀 denotes the random error term which follows normal 

distribution  𝜀~𝑁(0, 𝜎2) and𝛽𝑖 , 𝑥, 𝑦  are coefficient parameter,

independent variable, and dependent variable respectively. 

When PR is applied to multiple regression variables, it could 

be regarded as multivariate polynomial regression (MPR) [29]. 

For example, the expression of a second-order MPR is  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝜀,  (3)

where 𝛽𝑖 , 𝛽𝑖𝑖  and 𝛽𝑖𝑗  are called linear effect, quadratic effect,

and interaction effect parameters separately. With an increase 

in the number of independent variables, the number of 

polynomial parameters will jump exponentially. MPR can also 

be represented in a matrix form which is employed in our 

model: 

𝒀 = 𝜷𝑿 +  𝜺.          (4) 

In this paper, the PolynomialFeatures transformer of the 

scikit-learn machine learning library in Python was used to 

construct the polynomial variables as input to linear regression 

to train on the non-linear functions. The major problem of MPR 

is multicollinearity because the parameters are highly likely to 

be interdependent on each other and this could cause poor 

performance on model fitting. Possible solutions to this 

problem are curvilinear distance analysis, Sammon’s mapping, 

and kernel principal component analysis [29]. 

IV. CASE STUDY AND RESULTS

A. Background

Lam Tsuen River is a major river in the Eastern New

Territories in Hong Kong. From the Hong Kong government 

online database (https://data.gov.hk/en/), we utilized 30 years 

of historical river water quality data at different monitoring 

stations from 1986 to 2018 to develop the MPR and GRNN 

models for the estimation of the other five unmeasurable crucial 

parameters (i.e., NO3-N, PO4, NO2-N, NH3-N, and 5-day 

biological oxygen demand). A total of 34,650 pieces of 

historical data were obtained after data pre-processing for 

subsequent analysis. All of these 10 parameters are included in 

the historical data set. As mentioned before, because there is no 

TSS sensor available on the market, we used a TDS sensor 

instead. When developing the GRNN model and MPR model 
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based on the historical data set, we obtained TDS data using 

total solids minus TSS. 

B. Deployment of the IoT system 

Four sampling sites along the Lam Tsuen River were selected 

as experiment sites, as shown in Fig. 6. The developed IoT 

water quality monitoring system was set up on these four 

sampling sites to collect the data of the five measurable 

parameters (i.e., TDS, pH, temperature, dissolved oxygen, and 

electrical conductivity). Moreover, water samples were collect-

ed and analyzed using conventional lab methods to validate the 

models. The first sampling site is located at the most upstream 

natural place. The second sampling site is located almost 500 m 

downstream of the first site, which is just flowing through a 

small village and farmland. Additionally, the third and fourth 

sites are the upstream and downstream of an ecological 

restoration site of the lower reach. The lower reach, called 

Lower Lam Tsuen River, passes through the urban area of Tai 

Po [31]. Restoration efforts began in 2016, and the ecologically 

‘enhanced’ section (N22°27'0.492'' E114°9'30.478'') spans 

approximately 40 meters. Concerning the top-10 important 

water quality parameters, the measurement methods can be 

referred to [32]. Due to the nitrification process, the volume of 

NO2-N was not measured in this research [33]. 

 
Fig. 6.  Sketch of the four sampling sites along the Lam Tsuen River. 

 

The sampling frequency of the developed IoT system is 

around 5 seconds so that about 360 groups of data are collected 

at each sampling site. Because of only one group of data 

available in the laboratory result, we use the mean value of the 

IoT parameter data as the input of validation. Finally, the water 

quality results listed in Table I are used to evaluate the model 

performance. The five measurable parameters are the mean 

value of the data obtained by the IoT system at each location 

whereas the four unmeasurable parameters are laboratory 

results of the collected water sample. 

 

 

 
TABLE I 

WATER QUALITY PARAMETER RESULTS FOR MODEL VALIDATION 

 

C. Statistical Feature Analysis of Historical Data 

Some basic statistic description numbers of the 10 crucial 

parameters from the historical dataset are shown in Table II. 

Fig. 7 demonstrates the overall Pearson’s correlation matrix. 

The larger the circle is, the stronger the correlation there is. The 

motivation behind using the Pearson’s correlation analysis is 

that before utilizing the following models, we need to check the 

strength of linear correlation between the independent variables 

to avoid perfect linear correlated variables. The water dissolved 

oxygen is almost negatively correlated with all the other 

parameters while positively with pH, and the strengths of 

correlations are comparatively high. The strengths of dissolved 

oxygen and orthophosphate phosphorus are relatively greater 

than others. The strengths among 5-day biochemical oxygen 

demand, ammonia-nitrogen, and orthophosphate phosphorus 

are very large, and they are positively correlated with each other 

while negatively correlated with dissolved oxygen. 

 
Fig. 7.  The correlation analysis of the top-10 crucial parameters. 
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TABLE II 

BASIC STATISTIC DESCRIPTION NUMBERS OF THE TOP-10 CRUCIAL PARAMETERS FROM THE HISTORICAL DATA SET
 

D. General Regression Neural Network 

As mentioned in the previous section, NO2-N cannot be 

validated using laboratory data and thus the other four 

unmeasurable parameters (i.e., NO3-N, PO4, NH3-N, and 5-

day biological oxygen demand) are estimated in the GRNN 

model. Before the modeling process, the input data were 

standardized using the scale function of the scikit-learn 

machine learning library (centered to the mean and component-

wise scaled to unit variance).  

The GRNN model is a network with five standardized input 

variables, a hidden layer with 30 processing neurons. The loss 

function is MSE and the optimizer is Adam. The historical data 

set is separated into a 90% training set and 10% validation set. 

The modeling work was accomplished on TensorFlow version 

2.3.0. Fig. 8 shows the goodness of fit of the standardized NO3-

N. We can see from the figure that the model approximately fits 

with the dataset except for some local peaks. The total MSEs of 

this model are 0.9148, 0.9331, 1.1060, and 1.0125 for BOD5, 

NH3-N, NO3-N, and PO4, respectively. Since this is a 

regression problem rather than a classification problem, the 

MSE values are relatively large. Another reason is that the 

Nitrate-Nitrogen has a small mean value of 1.12 mg/L but an 

extremely large maximum value of 480 mg/L according to 

Table II. The 75% quartile value is 1.10 mg/L which is less than 

the mean value. This indicates that the distribution of Nitrate-

Nitrogen data has a long tail skewness along the x-axis direction, 

thus generating larger errors. 

 
Fig. 8.  The fitting performance of the GRNN model. 

However, Fig. 8 indicates that when the actual data remain 

steady, the model estimation results also remain relatively 

constant with good performance. On the other hand, when there 

is a sharp increase in the value of the actual data, the model 

estimation result has a jump as well. This suggests that our 

model has strong potential in classifying the normal situation 

against the abnormal cases. Such a classifier can be applied to 

pollutant discharge monitoring and other water quality 

regulatory applications for conserving biodiversity.  
 

E. Multivariate Polynomial Regression Model 

Based on the correlation analysis, among the IoT measurable 

parameters, the largest correlation value is 0.3 which is between 

DO and pH. This means the absence of perfect multicollinearity 

(i.e., an exact but no stochastic linear relationship) between 

each independent variables. However, such moderate 

multicollinearity does not affect the precision of the predictions 

and the goodness of fit statistics, and hence the problem can be 

ignored in the MPR model. The MPR models are fitted using 

the historical data set. The coefficient of determination is often 

denoted 𝑟2 which is applied to evaluate the performance of the 

MPR model.  

𝑟2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 ,                              (5) 

where  𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals and 𝑆𝑆𝑡𝑜𝑡 is 

the total sum of squares according to each value and mean 

value. We use 𝑟2 to examine the fitting performance between 

each unmeasurable parameter and the 5 measurable parameters.   

 

 
Fig. 9.  R_squared value of multivariate polynomial regression. 

Fig. 9 shows that there is a gradual increase in the value of 

the coefficient of determination 𝑟2  with the increasing of the 
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MPR degree. It also indicates that the growth trend has three 

stages for those four unmeasurable parameters: steady increase 

before the first five degrees, sharp rising from degree 6 to 9, and 

steady again after degree 10 which could be due to overfitting. 

The fluctuations of PO4 and 5DayBOD after degree 10 could 

be due to the fitting ability changes with the increase of the 

degree. Each dependent variable has a different sensitivity to 

the MPR degree because of its statistical characteristics. 

Overall, the model still has a growing fitting ability trend with 

a rising MPR degree. The observed sharp rising in 𝑟2 could be 

attributed to the increasing fitting ability of the MPR model.  

 

 

 
Fig. 10.  Mean average errors of multivariate polynomial regression. 

 

Fig. 10 reveals that with the increase in degree, the Mean 

Absolute Errors (MAEs) decrease steadily with some fluctua-

tions after degree 8 for the three parameters other than NO3-N. 

NO3-N has the smallest MAE when the model degree is 1. A 

possible explanation for this abnormal result might be that 

NO3-N has a relatively large standard deviation according to 

Table II and a significant maximum value compared with its 

quartile values. This might lead to a flat distribution which 

means a smaller MAE when the degree of the MPR model is 

small. 

Table III compares the estimated results with the lab results at 

four different sampling sites. Most of the errors are smaller than 

0.2 mg/L which suggests that the satisfactory performance of 

the model. However, significant differences have been found in 

the BOD5 estimation. The error is significantly larger than 

other parameters while others are less than 0.2 mg/L except for 

NO3-N at the first site. This discrepancy may be attributed to 

the time interval between the sample was collected and tested. 

It is noticed that the errors in LT3 and LT4 are relatively smaller 

than LT1 and LT2. There are more pollutants downstream of 

the river, making the IoT sensors more sensitive. In addition, 

most data in the historical database used for model development 

were collected in more polluted sites than LT1 and LT2, where 

water is much cleaner. Therefore, the developed models and 

methods appear to be more suitable to monitor polluted river 

sites. 

 
 
 

 

TABLE III 

COMPARISON BETWEEN MODEL RESULTS AND LABORATORY RESULTS 

 

V. CONCLUSION 

Real-time water quality monitoring using IoT-connected 

sensors provides a promising method to monitor water quality 

for conserving freshwater biodiversity. However, monitoring a 

full spectrum of physical-chemical-biological parameters 

remains a challenge, due to the limited types of sensors 

available on the market.  

This paper firstly identified crucial water quality parameters 

from the perspective of biodiversity conservation. A data-

driven framework for estimating unmeasurable water quality 

parameters was subsequently proposed, and a real-time water 

quality monitoring IoT system was developed. Specifically, we 

have proposed the GRNN model and the MPR model to detect 

abnormal discharge of pollutants and estimate unmeasurable 

critical water quality parameters from measurable ones by the 

IoT system respectively. The GRNN model was found to be 

able to distinguish abnormal increase of parameters against 

normal situations, while the MPR model of degree eight has 

coefficient of determination values of 0.89, 0.78, 0.87, and 0.81 

for NO3-N, BOD5, PO4, and NH3-N, respectively. We have 

also evaluated the proposed systems and models via an 

experimental study along the Lam Tsuen River in Hong Kong. 

The performance of the proposed models was validated against 

laboratory results, and the overall performance appears to be 

acceptable and adequate, with most of the error values less than 

0.2 mg/L for NO3-N, PO4, and NH3-N estimation. In addition, 

the prediction performs better at river sites with a relatively 

higher level of pollutants. 

In the long term, the proposed framework needs to be further 

enhanced and fine-tuned to gain a good balance between 

accuracy and timeliness. Further machine learning techniques 

will also be studied for real-time water quality parameter 

estimation. For example, recurrent neural networks (e.g., long 

short-term memory) can be used for sequential water quality 

data prediction. 
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