
1

Layered Decoding for Protograph-Based
Low-Density Parity-Check Hadamard Codes
Peng W. Zhang, Francis C.M. Lau, Fellow, IEEE, and Chiu-W. Sham, Senior Member, IEEE

Abstract—In this paper, we propose a layered decoding algo-
rithm for protograph-based low-density parity-check Hadamard
codes (PLDPC-HCs), which have been shown to be ultimate-
Shannon-limit approaching. Compared with the standard de-
coding algorithm, the layered decoding algorithm improves the
convergence rate by about two times. At a bit error rate of
2.0 × 10−5, the layered decoder using 20 decoding iterations
shows a very small degradation of 0.03 dB compared with the
standard decoder using 40 decoding iterations. Moreover, the
layered decoder using 21 decoding iterations shows the same
error performance as the standard decoder using 41 decoding
iterations.

Index Terms—convergence rate, layered decoding, protograph-
based LDPC-Hadamard codes, ultimate Shannon limit

I. INTRODUCTION

Turbo codes [1] and low-density parity-check (LDPC)
codes [2] are well-known error correction codes. Besides
being used in wireless communication systems (3G/4G/5G,
WiFi) and satellite communications, they have been used
together with Hadamard codes to form ultimate-Shannon-
limit-approaching codes, i.e., low bit error rate (BER) even
approaching Eb/N0 = −1.59 dB. In [3], a low-rate turbo-
Hadamard code, in which the turbo concept is used in
concatenation with Hadamard codes, has been proposed. In
[4], a generalized LDPC code called LDPC-Hadamard code
(LDPC-HC) has been proposed. It is formed by replacing the
single-parity checks of an LDPC code with Hadamard codes
accompanied by additional degree-1 Hadamard check bits.

To find a good LDPC-HC, an extrinsic information transfer
(EXIT) chart method is used to optimize the degree distribu-
tions of the code in [5]. However, the method cannot analyze
codes with degree-1 or punctured variable nodes (VNs). In
[6], [7], [8], a protograph-based EXIT (PEXIT) method has
been proposed to analyze and design protograph-based LDPC-
Hadamard codes (PLDPC-HCs). The technique enables an-
alyzing LDPC-HCs with degree-1 and/or punctured variable
nodes. The rate-0.0494 PLDPC-HC in [6], [7] has shown
a theoretical threshold of −1.42 dB. Moreover, simulation
results show that with a maximum of 300 standard belief-
propagation (BP) decoding iterations, the code can achieve a
BER of 10−5 at Eb/N0 = −1.19 dB.

The work described in this paper was partially supported by a grant from
the RGC of the Hong Kong SAR, China (Project No. PolyU 152170/18E).

P.W. Zhang and F.C.M. Lau are with the Future Wireless Networks and
IoT Focusing Area, Department of Electronic and Information Engineer-
ing, The Hong Kong Polytechnic University, Hong Kong (e-mail: peng-
wei.zhang@connect.polyu.hk and francis-cm.lau@polyu.edu.hk).

C.-W. Sham is with the Department of Computer Science, The University
of Auckland, New Zealand (e-mail: b.sham@auckland.ac.nz).

It is well known that using layered BP decoding for LDPC
codes can accelerate the convergence and to reduce the hard-
ware requirements compared with using standard BP decoding
[9]. In [10], an efficient check-node-update scheduling has
been proposed for rate-compatible punctured LDPC codes,
and is shown to outperform conventional scheduling and
conventional BP decoding in terms of convergence speed.
In [11], an efficient dynamic scheduling scheme has been
proposed to speed up the convergence rate of LDPC decoders
at medium to high signal-to-noise (SNR) region. In [12], a
safe early termination strategy has been developed for layered
LDPC decoding in order to help saving resources such as
power and processing time. Yet layered decoding algorithms
for generalized LDPC codes such as PLDPC-HCs are lacking.

In this paper, we propose a layered decoding strategy for
PLDPC-HCs with an aim of improving the convergence rate.
The organization of the paper is as follows. Section II briefly
reviews the PLDPC-HC. Section III presents the standard
decoding algorithm and our proposed layered decoding for
PLDPC-HCs. We present the BER results for the standard and
layered decoders in Section IV and make some conclusions in
Section V.

II. PROTOGRAPH-BASED LDPC-HADAMARD CODES

Hadamard codes are formed by the column (or equivalently
row) vectors of a Hadamard matrix. An order-r Hadamard
matrix can be recursively constructed by

±Hq = {±hj} =
[
±Hq/2 ±Hq/2

±Hq/2 ∓Hq/2

]
,

where q = 2r is the Hadamard code length; ±hj (j =
0, 1, . . . , q−1) denotes the j-th column of ±Hq; and ±H1 =
[±1]. Fig. 1 shows the order-4 positive Hadamard matrix
+H16. The corresponding negative matrix −H16 can be de-
rived by multiplying +H16 with −1. Supposing +1 is mapped
to bit “0” and −1 is mapped to bit “1”, each column ±hj
(j = 0, 1, . . . , q−1) corresponds to a Hadamard codeword. We
further denote the i-th bit (i = 0, 1, . . . , q−1) of a Hadamard
codeword by cHi and consider the case where r is even1. It
has been shown that [5], [7][
cH0 ⊕ cH1 ⊕ cH2 ⊕ · · · ⊕ cH2k−1 ⊕ · · · ⊕ cH2r−1

]
⊕ cH2r−1 = 0

where ⊕ represents the XOR operator. In other words, (r+2)
code bits at specific locations of an even-order Hadamard
codeword always form a single-parity-check (SPC) code. In
the example shown in Fig. 1 where r = 4, the bits at the

1Detailed discussion can be found in [7] when r is odd

The following publication P. W. Zhang, F. C. M. Lau and C. -W. Sham, "Layered Decoding for Protograph-Based Low-Density Parity-Check Hadamard
Codes," in IEEE Communications Letters, vol. 25, no. 6, pp. 1776-1780, June 2021 is available at https://dx.doi.org/10.1109/LCOMM.2021.3057717.

This is the Pre-Published Version.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

2

h h h h h h h h h h h h h h h h

+H

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

Fig. 1. The order r = 4 positive Hadamard matrix +H16. +hTj is the
transpose of +hj .

0th, 1st, 2nd, 4th, 8th and 15th positions of a Hadamard code
always satisfies the SPC constraint. Thus, when r + 2 bits
that satisfy the SPC constraint are used as inputs to encode
a Hadamard code, a Hadamard code with order-r can be
used together with systematic encoding. Moreover, 2r − r− 2
Hadamard parity bits are generated.

The protograph of a PLDPC-HC consists of a set of
protograph variable nodes (PVNs) and a set of Hadamard
check nodes (HCNs) with (possibly parallel) edges connected
between these two sets of nodes. We denote the number of
PVNs as n and the number of HCNs as m. The protograph
can be denoted by a base matrix Bm×n of size m× n (see
Fig. 2). Each PVN corresponds to one column of Bm×n and
each HCN corresponds to one row of Bm×n. In particular, the
(i, j)-th entry of the base matrix is allowed to be greater than 1
and represents the number of edges between the i-th PVN and
j-th HCN in the protograph. The connections corresponding
to each PVN form a repeat code whereas those corresponding
to each HCN form a SPC code. Each SPC corresponding
to a HCN is further encoded into an Hadamard code such
that the protograph of a PLDPC-HC can be obtained [6],
[7]. Moreover, the Hadamard parity bits derived are denoted
as degree-1 Hadamard variable nodes (D1H-VN) and are
appended to the HCN in the protograph shown in Fig. 2.

Assuming that each HCN is connected to d PVNs, the order
of the Hadamard code would be r = d−2. We further assume
that r is an even number, and hence each HCN connects
2r − r − 2 D1H-VNs (when r is odd, the number of D1H-
VNs connected to each HCN is increased to 2r − 2 [5],
[7]). Fig. 2 shows the base matrix (of size 7 × 11) and the
corresponding protograph for an LDPC-HC. In addition to
fulfilling the SPC constraint, all edges connected to each HCN
(i.e., all edges from PVNs and D1H-VNs) need to satisfy a
Hadamard constraint. Note that all rows in the base matrix
in Fig. 2 have a weight of d = 6. Thus the order of the
Hadamard code equals r = d − 2 = 4 and hence all HCNs
have an additional 2r− r− 2 = 10 D1H-VNs attached. Fig. 3
shows an example in which a (6, 5) SPC codeword is encoded

into a length-16 (order r = 4) Hadamard codeword.
Once a protograph is obtained, we use the copy-and-

permute operation to lift Bm×n twice with factors z1 and
z2, respectively. During the first lifting process, the (i, j)-th
entry of Bm×n, denoted by Bm×n(i, j), is replaced by the
sum of Bm×n(i, j) different z1 × z1 permutation matrices
when Bm×n(i, j) ≥ 1; otherwise it is replaced by a z1 × z1
zero matrix. The lifted matrix, denoted by H1, has a size of
mz1×nz1. The second lifting further replaces each entry “1”
in H1 with a z2 × z2 circulant permutation matrix (CPM),
and each entry “0” with a z2 × z2 zero matrix. The overall
quasi-cyclic matrix, denoted by HM×N , has a size of M ×N
where N = nz1z2 and M = mz1z2. It has the same degree
distribution properties as the base matrix 2 and represents the
connections between the PVNs and HCNs in a PLDPC-HC.
The PLDPC-HC so formed has N PVNs and M(2r − r − 2)
D1H-VNs. The bits corresponding to PVNs and D1H-VNs
will be transmitted through a channel. Thus, the code length
l equals the summation of the numbers of PVNs and D1H-
VNs, that is, l = N +M(2r− r−2). Moreover, the code rate
of PLDPC-HC equals R = N−M

l = n−m
n+m(2r−r−2) when r is

even.

III. DECODING ALGORITHMS

The receiver obtains the channel log-likelihood-ratio (LLR)
values of the PVNs and D1H-VNs, based on which the
transmitted PLDPC-HC is decoded. We denote
• LPVN

ch (β) as the channel LLR value of the β-th PVN
(β = 1, 2, . . . , N);

• L
D1H(α)
ch as a vector consisting of the channel LLR

values of the D1H-VNs connected to the α-th HCN
(α = 1, 2, . . . ,M);

• LPVN
app (β) as the a posteriori (APP) LLR value of the β-th

PVN (β = 1, 2, . . . , N);
• LPVN

ex (α, β) as the extrinsic LLR sent from the β-th PVN
to the α-th HCN (α = 1, 2, . . . ,M ; β = 1, 2, . . . , N);

• LH
app(α, β) as the APP LLR computed by the α-th HCN

for the β-th PVN (α = 1, 2, . . . ,M ; β = 1, 2, . . . , N);
• LH

ex(α, β) as the extrinsic LLR sent from the α-th HCN
to the β-th PVN (α = 1, 2, . . . ,M ; β = 1, 2, . . . , N).

We also denote
• P(α) as the set of PVNs connected to the α-th HCN;
• H(β) as the set of HCNs connected to the β-th PVN.
The standard PLDPC-Hadamard decoder [6], [7] consists of

two component decoders, i.e., repeat decoder and Hadamard
decoder, which are shown in Fig. 4 and Fig. 5, respectively.
The repeat decoder is the same as the variable-node processor
used in an LDPC decoder. The check node processor used
in an LDPC decoder is replaced by a symbol-by-symbol
maximum a posteriori probability (MAP) Hadamard decoder.
Referring to Fig. 5, the symbol-MAP Hadamard decoder
receives d = r + 2 inputs from the repeat decoders and
2r− r−2 inputs from the D1H-VNs, and computes d outputs
and feeds them back to the repeat decoders.

2Our lifting method keeps the code rate unchanged while other lifting
methods may result in a slightly larger code rate [13].

3

B7×11 =



1 0 0 0 0 0 1 0 3 0 1
0 1 2 0 0 0 0 0 0 2 1
2 1 0 0 1 1 0 0 0 0 1
0 1 0 3 0 0 0 0 0 2 0
2 0 0 0 0 0 0 1 0 3 0
3 0 0 2 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 2 0


Fig. 2. The base matrix and corresponding protograph of a PLDPC-Hadamard code. A circle denotes a protograph variable node (PVN), a square with “H”
denotes a Hadamard check node (HCN), and a filled circle denotes a degree-1 Hadamard variable node (D1H-VN). Row weight d = 6, r = d− 2 = 4 and
2r − r − 2 = 10 D1H-VNs are attached to each HCN. Code rate R = 0.0494.

info info info par info par par par info par par par par par par info

c c c c c c

Hc Hc
Hc Hc Hc Hc

Hc Hc Hc Hc
Hc Hc Hc Hc Hc Hc

Fig. 3. Example of encoding a length-6 SPC codeword [cµ0 cµ1 · · · cµ5]
into a length-16 (order r = 4) Hadamard codeword [cH0 cH1 · · · cH15], where
cH0 = cµ0 , cH1 = cµ1 , cH2 = cµ2 , cH4 = cµ3 , cH8 = cµ4 , cH15 = cµ5 and
10 remaining coded bits are Hadamard parity bits.

chL

appL

exL

r- r - r- r - r- r -

Fig. 4. A repeat decoder for PVN message processing.

A. Standard Decoding Algorithm

The standard decoding method is described as follows.
1) Initialization: Set LPVN

ex (α, β) = LPVN
ch (β), ∀α =

1, 2, . . . , M and β = 1, 2, . . . , N .
2) Symbol-MAP Hadamard decoder: For the α-th HCN

(α = 1, 2, . . . ,M), compute the following.
a) Compute LH

app(α, β) for the β-th PVN (β ∈ P(α))
using

LH
app(α) = {LH

app(α, β) : β ∈ P(α)}
= T

[
{LPVN

ex (α, β) : β ∈ P(α)},LD1H(α)
ch

]
(1)

where T is a transformation involving the fast
Hadamard transform (FHT) and the dual FHT (DFHT)
operations [5], [7]. Fig. 6 illustrates the arrangement
of the 2r = 16 inputs when they are fed to the FHT
block in a symbol-MAP Hadamard decoder for the
case r = 4. (The r + 2 extrinsic LLR values from
PVNs are assigned to the 1st, 2nd,. . .,(2k−1 + 1)-
th, . . ., (2r−1 + 1)-th and 2r-th positions; while the
channel LLR values of the D1H-VNs are assigned to
the remaining 2r − r − 2 positions [7].)

ch
L

ex
L

d r

r
- r -

ch
L

r

ch
L rch

L

Fig. 5. A symbol-MAP Hadamard decoder for HCN message processing.

b) Compute LH
ex(α, β) by subtracting LPVN

ex (α, β) from
LH
app(α, β), i.e.,

LH
ex(α, β) = LH

app(α, β)−LPVN
ex (α, β); ∀β ∈ P(α). (2)

3) Repeat decoder: For the β-th PVN (β = 1, 2, . . . , N),
compute the following.

a) Compute LPVN
app (β) for the β-th PVN using

LPVN
app (β) =

∑
α∈H(β)

LH
ex(α, β) + LPVN

ch (β) . (3)

b) Compute LPVN
ex (α, β) by subtracting LH

ex(α, β) from
LPVN
app (β), i.e.,

LPVN
ex (α, β) = LPVN

app (β)−LH
ex(α, β); ∀α ∈ H(β). (4)

4) Decoding: Repeat Step 2) and Step 3) I times and
make decisions based on the sign of LPVN

app (β) (β =
1, 2, . . . , N).

B. Layered Decoding Algorithm

Recall in Section II that the base matrix Bm×n is lifted
twice using factors z1 and z2, respectively, to form HM×N
which has a size of M × N (= mz1z2 × nz1z2). Here we
divide HM×N into mz1 layers, where each layer is composed
of 1×nz1 CPMs each of size z2×z2 (or equivalently a block-
row of size z2×nz1z2). In other words, each layer consists of
z2 HCNs, each connected to d independent PVNs. (d = r+2
is the row weight of Bm×n and also that of HM×N .)

To improve the convergence rate of the decoder, we propose
a layered decoding algorithm. We use the same symbols as
above. Moreover, we define k as the layer number (k =

4

1 2 3 4 5 6 : 8 9 10 : 15 16

LPVN
ex (α, β1) L

PVN
ex (α, β2) L

PVN
ex (α, β3) L

D1H(α)
ch (1) LPVN

ex (α, β4) L
D1H(α)
ch (2 : 4) LPVN

ex (α, β5) L
D1H(α)
ch (5 : 10) LPVN

ex (α, β6)

Fig. 6. Arrangement of the 2r = 16 inputs when they are fed to the FHT block in a symbol-MAP Hadamard decoder for the case r = 4.
{β1, β2, β3, β4, β5, β6} = P(α).

1, 2, . . . ,mz1) and L(k) as the set of HCNs in layer k. Our
layered decoding algorithm is described as follows.

1) Initialization: Set LPVN
app (β) = LPVN

ch (β), ∀β =
1, 2, . . . , N ; and set LHex(α, β) = 0 ∀α = 1, 2, . . . , M
and β = 1, 2, . . . , N .

2) Symbol-MAP Hadamard layered decoder: Set k = 1.
a) For the α-th HCN in layer k (α ∈ L(k)), compute the

following.
i) For β ∈ P(α), compute LPVN

ex (α, β) by subtracting
LH
ex(α, β) from LPVN

app (β), i.e.,

LPVN
ex (α, β) = LPVN

app (β)−LH
ex(α, β); ∀β ∈ P(α). (5)

ii) Compute LH
app(α, β) for the β-th PVN (β ∈ P(α))

using

LH
app(α) = {LH

app(α, β) : β ∈ P(α)}
= T

[
{LPVN

ex (α, β) : β ∈ P(α)},LD1H(α)
ch

]
. (6)

iii) Update LH
ex(α, β) and LPVN

app (β) using

LH
ex(α, β) = LH

app(α, β)− LPVN
ex (α, β);
∀β ∈ P(α) (7)

LPVN
app (β) = LH

app(α, β); ∀β ∈ P(α). (8)

b) If k is smaller than the number of layers, i.e., k < mz1,
increment k by 1 and goto Step 2a).

3) Repeat Step 2) I times and make decisions based on the
sign of LPVN

app (β) (β = 1, 2, . . . , N).
Note that (8) is derived as follows. We consider the associated
PVNs in layer k. Note that each of the associated PVNs is
connected to one and only one HCN in layer k. We suppose
the β-th PVN is connected to the α-th HCN in layer k. After
this layer is processed, the updated APP for the β-th PVN is
given by

LPVN
app (β) =

∑
α∈H(β) L

H
ex(α, β) + LPVN

ch (β)

= LH
ex (α, β) +

∑
α′∈H(β)
α′ /∈L(k)

LH
ex (α

′, β) + LPVN
ch (β)

= LH
ex (α, β) + LPVN

ex (α, β) = LH
app(α, β).

(9)

C. Complexity Analysis

In this section, we compare the complexity of the pro-
posed layered decoding algorithm and the standard decoding
algorithm in terms of memory requirement and computational
logic.

1) Memory requirement: Considering the layered de-
coding algorithm in Section III-B, memory storage (i.e.,
RAM) for the following sets of LLRs is required —
{LPVN

ch (β)}, {LPVN
app (β)}, {LH

ex(α, β)} and {LD1H(α)
ch }. More-

over, {LH
app(α, β)} and {LPVN

ex (α, β)} are only intermediate

variables generated during the computation process and thus
need no storage. Note also that {LPVN

ch (β)} is only required
during the initialization process but not in the iterative process.
Thus, it can be immediately released for storing the LLRs for
the next codeword.

For the standard decoding algorithm in Section III-A, be-
sides {LPVN

ch (β)}, {LPVN
app (β)}, {LH

ex(α, β)} and {LD1H(α)
ch },

{LPVN
ex (α, β)} needs to be stored after the computation in

(4). On the other hand, we can observe that LH
ex(α, β),

after being used to update LPVN
ex (α, β) in (4), is no longer

needed. The memory location used to store LH
ex(α, β) can

therefore be used to store LPVN
ex (α, β). Similarly, LPVN

ex (α, β)
is no longer needed after computing (2), and its memory
location can be used to store LH

ex(α, β) afterwards. In other
words, {LH

ex(α, β)} and {LPVN
ex (α, β)} can share the same

set of memory locations. But unlike in the layered decoding
algorithm, {LPVN

ch (β)} in the standard decoding algorithm is
required throughout the iterative process (in (3)). Thus another
set of memory is required to store {LPVN

ch (β)} for the next
codeword. Note that the number of LPVN

ch (β) is equal to
number of PVNs, i.e., N = nz1z2. For the r = 4 PLDPC-HC
optimized in [6], N equals 11 × 32 × 512 = 180224, which
implies quite a large memory.

2) Computational logic: Both the layered decoding al-
gorithm and the standard decoding algorithm involve FHT,
DFHT and simple additions/subtractions. Moreover, the sum-
mation term in (3) of the standard decoding algorithm requires
the addition of all LH

ex(α, β) terms corresponding to the same
PVN. The number of terms equals the column weight and
varies from column to column. In the example given in Fig.
2, the column weight ranges from 1 to 9. When 9 values are to
be added together, more combinational logics (especially many
PVNs are processed in parallel) are required and a slightly
larger latency is needed.

In summary, the layered decoding algorithm requires less
memory storage and computational logic compared with the
standard decoding algorithm.

IV. SIMULATION RESULTS

We simulate the r = 4 and R = 0.0494 PLDPC-HC
optimized in [6] (whose base matrix and protograph are shown
in Fig. 2). We transmit all-zero codewords using binary-
phase-shift-keying modulation over an additive white Gaussian
noise channel. To compare with the BER performance of the
standard decoder in [6], we use the same lifting factors, i.e.,
z1 = 32 and z2 = 512, and the same code length, i.e.,
l = 1, 327, 104 (See Appendix C in [7] for details of the code
structure after the lifting process). Fig. 7 plots the bit error
rate (BER) results of the standard and layered decoders. We
denote the maximum number of decoding iterations used by
the layered decoder as I . When I = 30, 40, 50, 60, 75, 150, the

5

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5

10
−5

10
−4

10
−3

10
−2

300

150

150

75

120

60

100

50

80

40
60

30

40

20

41

21

Eb/N0 (dB)

B
E
R

standard decoder

layered decoder

Fig. 7. Comparison of BER performance of the standard PLDPC-Hadamard
decoder and the layered PLDPC-Hadamard decoder. The maximum number
of decoding iterations ranges from 40 to 300 for the standard decoder; and
ranges from 20 to 150 for the layered decoder. r = 4 and R = 0.0494.

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
0

50

100

150

200

250

300

150

150

75

120

60

100

50

80

40

60

30

40

20

Eb/N0 (dB)

A
v
e
ra

g
e
n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

standard decoder

layered decoder

Fig. 8. Average number of iterations required for a standard PLDPC-
Hadamard decoder and a layered PLDPC-Hadamard decoder to decode a
codeword. The maximum numbers of iterations allowed are given next to
the curves.

layered decoding algorithm using I iterations has almost the
same error rate as the standard decoder using 2I iterations.
When I = 20, there is a 0.03 dB difference between the
layered decoding algorithm using I = 20 iterations and the
standard decoder using 2I = 40 iterations at a bit error
rate of 2.0 × 10−5. Note that in most scenarios, a 0.03 dB
difference is considered as insignificant, but has been shown

in our figure to be a relatively large gap due to the scale being
used. We further find that when I = 21, the layered decoding
algorithm outperforms the standard decoder using 40 iterations
and has the same performance of the standard decoder using
41 iterations. Thus we can conclude that compared with the
standard decoding algorithm, the layered decoding algorithm
improves the convergence rate by about two times. Fig. 8
plots the corresponding average number of iterations required
to decode a codeword. At a given Eb/N0, the average number
of iterations required by the layered decoder is about half of
that required by the standard decoder.

V. CONCLUSION

This paper has proposed a layered decoding algo-
rithm for the ultimate-Shannon-limit-approaching PLDPC-
Hadamard code. Simulation results have verified that the
layered decoding method can speed up the PLDPC-Hadamard
decoder by about two times compared with the standard
decoder. Though an even-order PLDPC-HC is illustrated,
the proposed algorithm can be readily applied to odd-order
PLDPC-HCs and other generalized LDPC codes by mak-
ing appropriate modifications. The algorithm is also suitable
for hardware decoder design. When multiple symbol-MAP
Hadamard decoders are used, multiple HCNs in the same layer
can be processed simultaneously so as to increase the overall
throughput.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit
Error-Correcting Coding and Decoding: Turbo-Codes,” in Proc. IEEE
ICC, vol. 2, pp. 1064–1070, May 1993.

[2] R. G. Gallager, Low-Density Parity-Check Codes. PhD thesis, Cam-
bridge, MA, USA, 1963.

[3] P. Li, W. K. Leung, and K. Y. Wu, “Low-Rate Turbo-Hadamard Codes,”
IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3213–3224, Dec. 2003.

[4] G. Yue, L. Ping, and X. Wang, “Low-rate generalized low-density parity-
check codes with Hadamard constraints,” in Proc. IEEE ISIT, pp. 1377–
1381, 2005.

[5] G. Yue, L. Ping, and X. Wang, “Generalized low-density parity-check
codes based on Hadamard constraints,” IEEE Trans. Inf. Theory, vol. 53,
no. 3, pp. 1058–1079, 2007.

[6] P. W. Zhang, F. C. M. Lau, and C.-W. Sham, “Protograph-based LDPC-
Hadamard Codes,” in 2020 IEEE WCNC, pp. 1–6, 2020.

[7] P. W. Zhang, F. C. M. Lau, and C.-W. Sham, “Protograph-Based Low-
Density Parity-Check Hadamard Codes,” in arXiv:2010.08285, 2020,
available at https://arxiv.org/abs/2010.08285.

[8] P. W. Zhang, F. C. M. Lau, and C.-W. Sham, “Protograph-Based Low-
Density Parity-Check Hadamard Codes,” submitted to IEEE Trans. on
Communications.

[9] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in 2004 IEEE SIPS, pp. 107–112, 2004.

[10] J. Ha, D. Klinc, J. Kwon, and S. W. Mclaughlin, “Layered BP decoding
for rate-compatible punctured LDPC codes,” IEEE Commun. Lett.,
vol. 11, no. 5, pp. 440–442, 2007.

[11] G. Han and X. Liu, “An efficient dynamic schedule for layered belief-
propagation decoding of LDPC codes,” IEEE Commun. Lett., vol. 13,
no. 12, pp. 950–952, 2009.

[12] M. Ferrari, S. Bellini, and A. Tomasoni, “Safe early stopping for layered
LDPC decoding,” IEEE Commun. Lett., vol. 19, no. 3, pp. 315–318,
2015.

[13] M. Gholami, M. Esmaeili, and M. Samadieh, “Quasi-cyclic low-
density parity-check codes based on finite set systems”. IET commun.,
vol. 8, no. 10, pp.1837-1849, 2014.

