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Abstract—Sharing up-to-date environment information col-
lected by intelligent connected vehicles is critical in achieving
travel comfort, convenience, and safety in vehicular networks.
Individually collected information should be made available
to other vehicular nodes, adjacent or distant, to achieve an
informed and well-managed vehicular traffic. The coverage reach
of sharing these road data can be maximized by allocating
roadside units in strategic positions. In this work, we propose
an Enhanced Information SHAring via Roadside Unit Allocation
(EISHA–RSU) scheme that strategically determines where RSUs
must be deployed from all spatial candidate locations. The urban
area is irregularly partitioned into effective regions of movement
(ERM) according to vehicular capacity with priority. For each
ERM, EISHA–RSU greedily allocates the initial RSU to an
effective position and optimally assigns the remaining RSUs to
spatial locations that capture the maximum I2V/V2I information
sharing based on the area’s average road speed. In effect,
the proposed deployment scheme addresses both the issues of
coverage and connectivity among vehicles and the infrastructure.
We evaluate the proposed RSU allocation scheme by employing
three urban empirical mobility datasets and compare its network
starvation fairness, effectiveness, and efficiency performance
measures with three other deployment benchmarks. Overall,
EISHA–RSU reduces the number of required RSUs to cover a
certain area, exhibits higher connectivity, and achieves maximum
I2V/V2I information sharing among the evaluated schemes.

Index Terms—Roadside Unit Allocation, Information Sharing,
Vehicular Networks, Spatiotemporal Coverage, Efficiency and
Effectiveness, Starvation and Fairness

I. INTRODUCTION

An urban transportation network is comprised mainly
of public and private vehicles, as well as infrastructure
such as buildings, roads, highways, and roadside facilities.
With the support of vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications, these vehicles and
infrastructure can communicate and exchange important en-
vironment data and control messages to provide comfortable,
time-efficient, safe, environment- and energy-friendly travel.
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This interconnection among vehicles and infrastructure has
transformed the transport network into an intelligent trans-
portation system (ITS). Years from now, intelligent connected
vehicles, as well as autonomous ones, are envisioned to be
found more on the urban and rural roads, distributed over a
region, and driving with other regular transportation modes [1].
As the number of vehicles plying the road and prevalence of
useful road data increases, the need to enhance the information
sharing in the vehicular network becomes significant.

Widely distributed in the vehicular network, intelligent
vehicles sense their current surroundings, process the raw road
data to provide a set of beneficial and dynamic collections
of environment information, and then store them in their
memory for a limited amount of time. However, these pieces of
environment information are only useful when shared among
vehicles, pedestrians, road users, and policy makers, which
the data dissemination problem in vehicular networks tries to
solve. Various concerns and issues have limited the efficient in-
formation sharing between/among vehicles and infrastructures,
e.g., limited wireless bandwidth and intermittent connectivity
due to the high mobility of vehicular nodes.

One solution to address these issues is to strategically
deploy static roadside units (RSUs) to provide reliable connec-
tivity and wider coverage for time-critical data download and
upload, while considering deployment and maintenance costs.
Intelligent vehicles can upload their relevant road information
to the RSUs they encounter along the way and can also
download readily available data that they can utilize in their
trips. For RSUs, aside from receiving, processing, and storing
vehicular uploaded information, they can also monitor their
surroundings and allow data dissemination and exchanges
between nearby passing vehicles. These information upload
and download must happen in real-time while the data being
exchanged are still valid. To support V2I and V2V com-
munications in achieving enhanced information sharing, the
RSU deployment problem must consider the structured road
network topology, sensed dynamic environment data locations,
and vehicular mobility distributions. Given these considera-
tions, candidate or optimal RSU locations on the streets are
based at intersections [2] or other locales which satisfy a set
of criteria or constraints [3]. In [4], the infrastructures are
deployed on intersections based on the amount of allowable
data delivery delay.

One important application of information sharing can be
seen in route planning. Given an urban map divided into
grids with a deployed RSU, a decentralized route planning
based on distributed routing tasks was investigated [5]. La-
tency was reduced as more grids were covered, but at the
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expense of route accuracy. Also, as the number of partitions
increased, more RSUs were needed to be deployed. In [6],
the route planning through information sharing was improved
by adding infrastructures such as vehicular traffic servers and
base stations. RSU deployment was also done on intersections,
but simulations involved only a small-scale setup. Perhaps,
the most common use-case setup of information sharing in
vehicular networks can be seen in emergency and safety
scenarios [7], [8]. Both works approached the allocation
scheme from the distance perspective to minimize the delay
caused by traveling, thereby, promoting quick transmission of
emergency warnings. From these examples, it is imperative
that road data must be shared in real-time, as the information
sharing in a vehicular network can influence the behavior
of traffic flow, emergency response, and driving decisions.
This can be addressed by RSUs that have data upload and
download capabilities. The majority of upload comes from
nearby intelligent vehicles, while the optimally deployed RSUs
should be able to enhance information sharing in an optimal
manner [9].

This study targets to maximize the spatiotemporal infor-
mation coverage in vehicular networks. The huge amount
of static (e.g., building and road topology) and dynamic
(e.g., pedestrians, accidents, and road routing changes) road
information must be collected and processed in real-time to
aid vehicles and the transport system in performing up-to-date
and appropriate decisions. This can be addressed by allowing
intelligent vehicles and roadside units to capture road data
and stay connected to enable enhanced information exchanges
between them. However, a strategic method must be developed
to optimally locate the effective positions where stationary
roadside units should be deployed.

Fig. 1. Proposed block diagram of deriving the optimal RSU locations in an
urban map utilizing the EISHA-RSU scheme from empirical mobility dataset,
network characteristics, and constraints.

To accomplish this, we propose an Enhanced Information
SHAring via RSU (EISHA-RSU) allocation scheme that will
tackle the on-time collection and dissemination of road data
by strategically positioning RSUs in an urban scenario while
at the same time, ensuring the stable connectivity among
vehicles and the infrastructure in the network. The framework
of our proposed methodology to permit enhanced information
exchanges between vehicles and RSUs is depicted in Fig. 1.
Since empirical mobility datasets are varying both in space
and time, we initially partition the urban map uniformly and
compute for its spatiotemporal stable network characteristics.

From this step, we can now identify the major contributions
of the research work as summarized below.

1) We introduce the concept of Effective Regions of Move-
ment (ERMs) to irregularly partition an urban city based
on an area’s vehicular capacity threshold. (We note that
other vehicular network characteristics such as velocity
and density profiles can be used to form ERMs.) ERMs
automatically determine the priority of different urban
locations and their corresponding coverage areas.

2) Based on ERM, we propose the novel vehicular-
mobility-aware EISHA-RSU deployment scheme to
capture and share the environment data in the vehicular
network. For each formed ERM, effective positions
(EPs) are located based on the amount of information
of an area and the average road speed between EPs
to ensure urban-wide connectivity and wider coverage.
Since ERMs are two-dimensional areas, all physical
locations are considered as possible EPs in the RSU
allocation.

3) Extensive simulation utilizing three urban empirical
mobility traces and locations, with different dataset
characteristics, is carried out to evaluate EISHA-RSU’s
efficiency. EISHA-RSU fairly allocates RSUs at EPs
to achieve the problem objectives via identifying loca-
tions with maximized information-rich sources and data
carriers. By comparing EISHA-RSU with three other
benchmarks, our proposed allocation scheme saves on
average 21%, 21%, and 101% less number of RSUs,
respectively, while satisfying the problem objectives.
Also, based on the Effectiveness and Network Starvation
metrics, EISHA-RSU performs the best when concern-
ing coverge area and the amount of information shared.

The paper is outlined as follows. Section II provides a
concise summary of related works to the RSU deployment
problem. Section III discusses the definitions, assumptions,
and setup considered to solve the allocation problem. Section
IV presents the novel EISHA-RSU algorithm that utilizes
the concepts of ERMs and EPs. Section V discusses the
results derived from extensive simulation employing three
urban empirical mobility traces. The summary, conclusion, and
future research directions are given in Section VI.

II. BACKGROUND AND RELATED LITERATURE

Previous studies dealt with the deployment problem of
roadside units (RSUs) according to three general objectives,
namely, (i) network connectivity or temporal coverage; (ii)
traffic or spatial coverage; and (iii) information dissemination
or spatiotemporal coverage [10].

Network connectivity or temporal coverage research focuses
on attaining stable wireless connections among vehicles and
infrastructure by minimizing V2V and V2I disconnections.
On the other hand, traffic or spatial coverage studies center
on maximizing V2I contacts in a region where an RSU is
deployed. Lastly, information dissemination or spatiotemporal
coverage literature engages in improving data exchange in a
vehicular network by minimizing delay and packet loss, while
maximizing throughput.
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The research works [11]–[13] tackled the network connec-
tivity objective. A greedy deployment scheme was proposed in
[11] for improving the connectivity of the network by formu-
lating it as a mobility clustering problem, where the clusters
formed from the union of nearby mobility traces determine
the RSU locations. In [12], a two-step solution was developed
to determine the road segment’s midpoint location where the
RSU is installed to enhance connectivity when the vehicular
density is low. A RSU scheduling algorithm was presented in
[13] where the authors assumed that all RSUs were already
deployed for maximum coverage. Their scheduler aimed at
minimizing energy consumption through selecting the set of
operating RSUs dynamically while maintaining network con-
nectivity. Different from [13], a crowdsensing middleware for
vehicular networks was proposed to opportunistically identify
and localize RSUs along a route. It enabled vehicles to
understand the network topology by allowing them to connect
to other RSU candidates that are not congested or have better
connectivity [14]. In [15], generic vehicles can localize the
nearest available RSU to connect with by using compressive
sensing and received signal strength.

The studies in [16]–[18] investigated the traffic coverage
issue. GeoCover [16] initially extracted the road’s geometry
and hotspot locations from the mobility patterns. Given these,
GeoCover then employed genetic and greedy algorithms to
determine the locations where RSUs should be placed to
achieve maximum coverage. In [17], the authors maximized
the traffic coverage by considering the number of distinct
vehicles having at least one V2I contact. They used the
migration ratios between adjacent cells to locate candidate
RSU locations. Finally, [18] maximized the number of covered
cars while achieving longer connection time for an improved
quality of service.

The papers [8], [19]–[21] analyzed the information dissem-
ination problem. [19] considered the delivery delay in the de-
ployment of RSUs while considering bi-directional movements
of vehicles and RSU capacity. [8] and [21] considered the
effect of road elements on radio signal and the minimal delay
constraints for information spreading, respectively. Lastly, [20]
presented that downloading up-to-date road data was one of the
major responsibilities of having RSUs deployed strategically
in the network.

It is also inevitable that some of these deployment objectives
have been studied altogether. The work in [22] proposed a
maximum coverage scheme based on the number of V2I
connections. In [23], a generalized profit function was used
to determine the locations of RSUs in a one-dimensional road
setup, while [24] maximized coverage, the number of vehicular
contacts and contact times for information dissemination in
vehicular networks.

We differentiate our work from these previous studies
in three distinct ways. Firstly, while most works have al-
ready identified intersections as candidate positions for as-
signing RSUs, we extend the search for candidate locations
to the whole considered area that may include landmarks
and information-rich places. [16] is a close related work
that implements a modified density-based spatial clustering
of applications with noise (DBSCAN) clustering algorithm to

determine the hotspots of an urban city but heavily relies on
the GPS traces of vehicles. If DBSCAN was applied to the
JKT and SIN traces, there will be regions that are left out
due to insufficient traces from the available datasets. When
using DBSCAN, the road structure of an urban city is auto-
matically conceived because these are the places where you
can find the vehicular traces. In our proposed EISHA-RSU
deployment scheme, determination of a possible deployment
location has encompassed the work presented in [16] and has
been modified/extended so that we can use other network
characteristics to define region homogeneity such as speed,
density, volume, wireless performance metrics, etc. In [17]
and [18], any spatial location was also considered as candidate
RSU position but only focused on one dimensional roads and
employed migration patterns, respectively.

Secondly, we irregularly group uniform area grids based
on the mobility patterns of vehicles and form homogeneous
ERMs based on the vehicular capacity. This ERM-based
model automatically discriminates information-rich locations.
The works in [11], [12], [18], [25]–[27] utilized uniform
partitioning to model and represent road networks. From these
equal grids, network graphs were developed to represent inter-
sections, important locations, and landmarks as vertices while
road segments characterizing the map were denoted as edges.
Others proceeded with defining their optimization problems to
minimize the number of RSUs needed while satisfying a set
of constraints. Our work belongs to few research studies that
utilize non-uniform partitioning, e.g., [16].

Finally, to select the effective positions where RSUs will
be deployed, we formulate the optimization problem by maxi-
mizing the information shared under the constraints of on-time
data delivery, and maintaining the connectivity presented by
the unstructured transport network.

III. EFFECTIVE REGIONS OF MOVEMENT

In this section, we discuss the irregular partitioning of
an urban map according to its vehicular distribution, thus,
automatically removing unnecessary city details and optimally
form homogeneous effective regions of movement (ERMs).

A. Spatiotemporal Stable Network Characteristics

Consider the uniform partitioning of an urban area under
study in Fig. 2 into N×N map grids, gp,q . Fig. 2 is a general
assumption of a grid-type urban city that has intersections
with four road segments leading to it such as Beijing [28],
Singapore [29], and Jakarta [30]. Each map grid, gp,q , is
characterized by its utility function, ζp,q , at time t and depends
on the map grid’s longitude and latitude location. The indexes
p and q ∈ {1, . . . N}. We define ζp,q as:

ζp,q = E
[
ηp,q

]
,

where E
[
•
]

is the expectation of
[
•
]
. ηp,q describes the

map grid’s current spatial network characteristic, such as the
grid’s dynamic data, δp,q , static data, γp,q , vehicular capacity,
cp,q , vehicular density, connectivity, accident rate, etc. Each
network characteristic is assumed to be independent from each
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Fig. 2. Uniform partitioning of an urban map revealing various gp,q and its
corresponding utility of network parameters (e.g., dynamic and static data,
and the number of intelligent connected vehicles) at sampling time t = iTS .

other and the utility function can be a combination of any of
these ηp,q’s. In general, there are certain network characteris-
tics that are dependent on each other, e.g., velocity and density.
However, a study in [31] showed that the independence of
these two network characteristics happens when the traffic load
is < 30 cars/min. In this work, ηp,q = cp,q .

If vehicular movements and other dynamic network charac-
teristics are disregarded, the map grid’s current spatial network
characteristic is constant, i.e., ζp,q = constant. However, when
dynamic map data, sources, and movement of vehicles are
considered, ζp,q’s vary in both space and time. Therefore,
to implement a consistent and reliable grid partitioning, the
map grid’s spatiotemporal stable ζp,q , must be determined
from available sampling times, iTS , where i ∈ {1, 2, . . . , I}.
I = 24∗60

TS
. TS denotes the sampling time of each mobility

trace measured in minutes. A map grid gp,q’s spatiotemporal
stable network characteristic, ζp,q,STS , is established accord-
ing to (1).

ζp,q,STS =

I∑
i=0

α(iTS)ω(iTS), (1)

where

α(iTS) =
ζ(iTS)−min

[
ζ(iTS)

]
max

[
ζ(iTS)

]
−min

[
ζ(iTS)

]
ω(iTS) =

ζ(iTS)

max

[
ζ(i = 0, . . . , ITS)

] .
α(iTS) is the feature scaling parameter at time t = iTS ,

while ω(iTS) is the weight correlating all the ζp,q’s, respec-
tively. Fig. 3 illustrates an example of how the spatiotemporal
stable network characteristics ζp,q,STS’s are generated as de-
fined in (1) when N = 20. ζp,q is characterized by the map
grid’s vehicular capacity, cp,q .

B. Forming Effective Regions of Movement
To divide a geographical area into various sections and

determine the possible candidate locations for deploying road-

Fig. 3. An example of how ζp,q,STS of each map grid gp,q is formed. Each
ζ(t = iTS) is characterized by its current vehicular capacity, cp,q . Darker
map grids have lower vehicular capacities (LoCap) over lighter grids (HiCap).

side units, we introduce the concept of the Effective Regions
of Movement (ERMs). An ERM is a grouping of edge-
adjacent map grids with its spatiotemporal stable network
characteristic, ζp,q,STS , that possess a unifying characteristic,
such as vehicular capacity, density, etc. The merging [32] of
spatiotemporal map grids form an ERM, ERMe, is governed
by (2a) below.

ERMe ≡ gp,q ∪ gp+∆p,q+∆q (2a)
subject to |{cgp,q} ∪ {cgp+∆p,q+∆q

}| ≤ τc (2b)
min(ρgp,q , ρgp+∆p,q+∆q

) ≥ ρ0, (2c)

where ∆p,∆q ∈ {−1, 0, 1}. cgp,q is the expected vehicular
capacity found in gp,q , while τc is the vehicular capacity
threshold of each formed ERMe. Note that only edge-adjacent
grids are considered during the merging. Constraint (2b)
allows the merging of grids gp,q and gp+∆p,q+∆q when the
merged grids have vehicular capacity less than the vehicular
capacity threshold, τc, of each formed ERMe. | • | defines the
cardinality of the union of the vehicular capacities found in
grids gp,q and gp+∆p,q+∆q . ρgp,q and ρgp+∆p,q+∆q

in Constraint
(2c) denote the outbound and inbound vehicular flow from and
to gp,q , respectively. If the minimum vehicular flow between
two map grids is ≥ ρ0, then merging proceeds; otherwise,
gp+∆p,q+∆q is dropped.

The algorithm to determine various ERMs of an area under
study is illustrated in Algorithm 1. Fig. 4 shows an illustration
of formed ERMs derived from Fig. 3 containing single- and
multiple-grid ERMs.

IV. ENHANCED INFORMATION SHARING RSU
ALLOCATION (EISHA-RSU) SCHEME

In this section, we discuss the novel Enhanced Information
SHAring RSU (EISHA-RSU) allocation technique. EISHA-
RSU maximizes information sharing and vehicular connec-
tivity in ERMs by allowing relevant and on-time information
exchange among the largest number of vehicles and infrastruc-
ture. In essence, by considering the proper spacing between
deployed RSUs, EISHA-RSU, can maximize the urban cover-
age area and achieve its goals by utilizing the effective position
(EP) concept for locating ideal RSU deployment position.
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Algorithm 1 Determining Effective Regions of Movement
(ERMs)
INPUT:
gp,q’s – List of spatiotemporal stable geographical grids
cp,q – vehicular capacity of gp,q
τc – vehicular quantity threshold,
N2 - number of grids
OUTPUT: ERM , List containing ERMs.

1: ∆p = [-1,0,1,0]; and ∆q = [0,1,0,-1];
2: ERM = 0N×N ;
3: region = 1; ▷ Initialize first ERM region to 1.
4: Lc = sort(cp,q) in descending order;
5: for i = 1 to length of Lτ do
6: [p, q] = ind2sub(index(Lτ (i)));
7: ▷ Convert linear indices to subscripts
8: ERM(p, q) = region;
9: Lc = Lc \ Lc(gp,q);

10: while Lc ̸= ∅ do
11: for k = 1 to 4 do ▷ Get edge-adjacent map grids.
12: if Constraints (2b) AND (2c) == TRUE then
13: if gp+∆p(k),q+∆q(k) is not yet visited then
14: ERM(p+∆p(k), q +∆q(k)) = region;
15: ▷ Assign gp+∆p(k),q+∆q(k) to ERM region
16: Lc = Lc \ Lc(gp+∆p(k),q+∆q(k));
17: end if
18: end if
19: end for
20: end while
21: region = region + 1; ▷ Move to next ERM
22: end for

Fig. 4. An example of various ERMs formed by following Algorithm 1.
Dark and light colors depict low and high ERM priorities, respectively. In the
formation of ERMs, single-grid (bold circle) and multi-grid (dotted circle)
ERMs are created.

We define an EP as a physical urban location where we can
deploy an RSU for environment information collection, such
as an intersection, certain location along a road segment, a
combination of both, or any landmark.

A. Problem Formulation

The main goal of EISHA-RSU is to locate RSUs in spots
where maximized information is shared between the infras-
tructures and vehicles. These road and environment data can
be either static (landmarks and roads) or dynamic (pedestrian,
road accidents, events, etc.) in nature. Given a constraint in
the number of RSUs to be deployed, EISHA-RSU prioritizes
each effective region of movement to ensure that even the
least prioritized map grid still has a chance to obtain relevant

and on-time information from high-priority ERMs. EISHA-
RSU also assures on-time delivery and storage of dynamic
environment data collected from the surrounding vehicles.

In each ERM, the amount of information shared, ISha, is
given in (3).

ISha = Uγ + βUδ (3)

=

N∑
p=1

N∑
q=1

γgp,q + β

N∑
p=1

N∑
q=1

δgp,q (t),

where γgp,q and δgp,q (t) represent the amount of static and
dynamic environment road map data, respectively. We note
again that each gp,q is dependent on its corresponding lon-
gitude (x) and latitude (y) coordinates. β is an importance
factor we assign to dynamic road data to signify the repetitive
occurrence of instantaneous events, such as accident-prone
areas in a gp,q , where 1 ≤ β ≤ 1

ξ . ξ denotes the proportionality
constant between static and dynamic environment data such
that δgp,q = ξγgp,q , where 0 < ξ ≤ 1, i.e., dynamic
environment data are much less than static environment data.
When β = 1

ξ , it implies that the dynamic environment data
δgp,q have high importance and are treated equally as static
environment data.

EISHA-RSU addresses the maximization problem given by
(4a) subject to constraints (4b) and (4c).

maximize ISha (4a)

subject to
N2∑
l=1

EPl ≤ ΩR, EPl ∈ {0, 1} (4b)

d(EPl, EPm)

v(EPl, EPm)
≤ W ∀EPl, EPm = 1. (4c)

Constraint (4b) assures that there is only the at most ΩR

RSUs to be deployed in each ERM or the urban map under
study, located at effective positions, EPl. EPl = 1 means an
RSU can be deployed there; otherwise, EPl = 0. Constraint
(4c) dictates the network’s allowable on-time delivery delay of
information, W , between deployed RSUs found in effective
positions EPl and EPm, which is equal to the quotient of
d(EPl, EPm) and v(EPl, EPm). We note that d(EPl, EPm)
does not automatically equal to the shortest distance between
EPl and EPm. It is the travel distance with respect to the
road network. In Fig. 5, d1 = d(EPl, EPm) = 4 and d2 =
d(EPl, EPk) = 3.

B. Delay Analysis between Two Effective Positions

To achieve on-time and up-to-date delivery of environment
data, the distance between two EPs must be minimized, ac-
cording to the delivery delay W . The calculated separation be-
tween EPs will allow vehicles outside an RSU’s transmission
range to travel and carry valid and relevant road information
from one grid to another without any RSU.

The general expression for the total average delivery delay,
W , to locate two EPs, EPl and EPm found in ERMe, is
given in (5).
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W = Wg +Wa, (5)

where Wg is the average time required for a vehicle to deliver
its stored data before becoming invalid to an RSU at an
effective position while traversing road distance d on g grids
along the path. Wa is the average additional stop time the
vehicle encounters during its trip, e.g., passing an intersection
or encountering accidents. For simplicity, we assume that Wa

is constant, e.g., traffic lights operating at fixed cycles [33]. (5)
can be re-written to the expression given in (6) to determine
how much time a vehicle takes to traverse grids g along a
given path found in ERMe.

Wg = W −Wa. (6)

We adopt the delay analysis in [34], [35], and apply it to the
2D scenario in Fig. 5 to determine how far an effective position
should be situated from an initial EP, EPl. The following are
assumed to determine the effective positions where RSUs can
be allocated.

Fig. 5. Determining the effective positions in an ERM given the allowable
network data delivery delay and road parameters of the urban city.

1) When outside of an RSU transmission range, intelligent
connected vehicles can still sense environment data.
These collected vehicular data can only be shared and
forwarded to an RSU found at an effective position in the
path ahead (V2I operations only). V2V communications
are not considered here to model the worst case scenario,
i.e., a vehicle must bring its information directly to the
RSU.

2) The transmission ranges of a deployed RSU at an effec-
tive position and a vehicle are Rr and Rv , respectively.

Upon leaving an RSU at EPl, the average time for the red
vehicle as depicted in Fig. 5 to deliver its newly collected data
to a nearby effective position found in another grid, while still
being valid, is (7), given that the conditional probability of s
(the location of the vehicle with information) in [0, d] is f(s).

Wg =

∫ d

0

WTgf(s)ds. (7)

Given the assumptions above, the time needed for the red
vehicle (source vehicle) in Fig. 5 to deliver its valid data along
a road of length d, WTg , is given by (8).

WTg = ϕT (8)

ϕ = 1− (1− e−λRv )κ

T =
d− s−Rr +Rv − Ex

v
,

where

κ =
2(d− s−Rr +Rv)

E[dV ]

Ex =
E[dV ]

[
1− (κ+ 1)(1− e−λRv )κ + κ(1− e−λRv )κ+1

]
2[1− (1− e−λRv )κ]e−λRv

.

(8) is jointly characterized by the number of departing
vehicles at an RSU and the travel delay from that RSU to the
next and nearest RSU location. ϕ is the probability that the
RSU at EPm is beyond the range of the source vehicle with
transmission range Rv . T is the delivery delay from position
s to d−Rr, i.e., out of RSU’s communication range at EPm.
λ is the departing rate of vehicles from an effective position

that can overtake the source vehicle and can become a forward-
ing node. v is the space mean speed of the road segment d.
E[dV ] is the average distance of vehicles found between the
two effective positions, d is the maximum separation between
two effective positions and is not necessarily the shortest
distance but the distance defined by the road topology. s is
the location (distance traveled from EPl) of a source vehicle
having new environment data to be shared.

The worst-case scenario happens when a vehicle has real-
time environment data and has no immediate RSU to offload
its contents. This scenario also occurs when it has no leading
vehicle(s) within its transmission range, Rv , to which it can
forward its information. As such, the worst case scenario
happens where s = Rr +Rv , λ = 0, and E[dV ] = d− s−Rr.

Given the values of W and Wa, the maximum allowable
separation, d, between two effective positions is given in (9).
Note here that the conditional probability of s in [0, d] follows
a uniform distribution since there is no prior knowledge of the
locations in [0, d]. We allow all s’s in [0, d] to be equiprobable
points where a car can sense its environment [36].

d = 2Wgv +Rr. (9)

C. EISHA-RSU Algorithm

The EISHA-RSU scheme allocates RSUs to effective po-
sitions found in each ERM by satisfying the maximization
problem in (4). Its detailed operation is illustrated in the
pseudo-code in Algorithm 2.

ERMs can be categorized into two configurations, namely:
(1) single-grid and (2) multiple-grid. We discuss for each
configuration how the EPs are identified.

1) Single-Grid ERMs: For single-grid ERMs, an example
is shown in Fig. 6, where its static environment data, γgp,q , is
represented by the blue shade. The grid is further sub-divided
into k = 1, 2, . . . ,K sub-grids to introduce additional dynamic

data, δgp,q =

K∑
k=1

µkδk,gp,q , where µk ∈ {0, 1} and is used to
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Algorithm 2 EISHA-RSU Algorithm
INPUT:
ERM ’s – Formed ERMs with its priority
ΩR – maximum number of RSU’s to be deployed
Wg – Waiting time for data to be considered valid
Rr and Rv – transmission ranges of RSU’s and vehicles, respectively
K – number of sub-grids

OUTPUT: EPList, List containing EPs of each ERM.
1: Determine ERM ascending priority list, ERMList;
2: Divide each grid of ERMe into K sub-grids.
3: ΩREP = ceil(ΩR/ERMList); ▷ # of EPs for high-priority

ERMs
4: EPList = ∅.
5: ΩRctr = ΩR;
6: for e = 1 : max(ERMList) do
7: if ERMe is single-grid ERM then
8: if ΩRctr > 0 then
9: EPtemp = [x∗, y∗];

10: EPList = EPList ∪ EPtemp;
11: ΩRctr = ΩRctr − 1;
12: end if
13: else
14: Determine how many ΩREP for ERMe.
15: if ΩREP > 0 then
16: M = Convolve ERMe with 1√

K×
√

K

17: MList = nchoosek(M,ΩREP );
18: ctr = 1;
19: while size(EPList) ̸= ΩREP do
20: Compute distances in MList(ctr).
21: EPtemp = center locations of MList(ctr).
22: if (9) is satisfied then
23: EPList = EPList ∪ EPtemp;
24: end if
25: ctr = ctr + 1;
26: end while
27: end if
28: ΩRctr = ΩRctr − ΩREP ;
29: end if
30: end for
31: Output EPList.

reduce the computation cost for dynamic data. A sub-grid k
contributes dynamic data when µk = 1, else zero.

(4a) reduces to an optimization problem requiring only one
RSU to be deployed, since this is the least deployable number
of RSUs. The effective position where the RSU is located is at
the point where maximum static and dynamic data are shared,
as defined in (10). We set β = 1.

ISha =

∫ x1+∆x+Rr

x1

∫ y1+∆y+Rr

y1

γgp,q (x, y)dxdy

+

K∑
k=1

∫ ∆x2,k

∆x1,k

∫ ∆y2,k

∆y1,k

µkδk,gp,q (x, y)dxdy.

(10)

The center of an RSU with transmission range Rr is moved
from the corner point x1, y1 by ∆x,∆y until maximum static
data are covered. By doing this, the maximum static data are
shared when ∆x = x2−x1

2 and ∆y = y2−y1

2 , i.e., the center
of the grid. Thus, the location of the effective position EP to
cover static data in a single grid is:

xγ = x1 +∆x and yγ = y1 +∆y. (11)

Likewise, for covering all K sub-grids of an ERM contain-
ing dynamic data, the location is at:

xδ =

K∑
k=1

µkδk,gp,q (x, y)
K∑

k=1

µkδk,gp,q (x, y)

εk. (12)

yδ =

K∑
k=1

µkδk,gp,q (x, y)
K∑

k=1

µkδk,gp,q (x, y)

ζk. (13)

εk and ζk are the centroid coordinates of sub-grid k with
available dynamic data, where εk =

∆x2,k−∆x1,k

2 and ζk =
∆y2,k−∆y1,k

2 .
x1 ≤ xγ , xδ ≤ x2 and y1 ≤ yγ , yδ ≤ y2. Given these

two possible EP locations, the maximum static and dynamic
information shared is achieved when the RSU is situated at
an EP having coordinates in (14), i.e., at the center of the
single-grid ERM.

x∗ = xγ and y∗ = yγ . (14)

under the constraint that x2 − x1 = y2 − y1 ≤
√
2Rr.

Fig. 6. Determining the effective position in a single-grid ERM, given the
grid’s static and dynamic data.

2) Multiple-Grid ERMs: There are two cases for multiple-
grid ERMs, 1) the number of map grids is equal to ΩR, and
2) the number of map grids is greater than ΩR. For case
1), locating EPs follows the single-grid ERM deployment,
where each map grid of the ERM has an effective position
at the center. However, if the number of grids is higher than
the desired number of deployable RSUs, then the EPs are
heuristically searched.

Given ΩR RSUs to be deployed in an urban setup, EISHA-
RSU allocates an RSU to all ERMs by following a round-
robin procedure. If ΩR is higher than the lowest priority ERM,
then all ERMs are guaranteed to have at least one effective
position where an RSU can be deployed. Another round robin
deployment ensues and ends until the target number ΩR has
been reached.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

Fig. 7. Spatiotemporal stable ERMs with N = 20 sampled at TS = 10 min for (a) Beijing, (b) Jakarta, and (c) Singapore. Dark color ERMs have lower
priorities over lighter ERMs.

After calculating the number of RSUs needed to be de-
ployed in each ERM, ΩREP

, then EISHA-RSU follows a
greedy heuristic method for finding these ΩREP

EPs. When
ΩR is not exactly divisible by the number of ERMs, higher
priority ERMs will have ΩREP

EPs, while lower priority
ERMs will have (ΩREP

−1) EPs. A map grid is further divided
into K sub-grids to accommodate the presence of dynamic
data, if any. K = 9 sub-grids is considered for the results in
this paper. The ERM is then convolved with a 1√

K×
√

K filter
to determine how much information can be shared when one
vehicle travels from one sub-grid to another in the ERM. With
respect to Algorithm 2, the convolution results are stored in M.
From MList, EISHA-RSU selects the first ΩREP

locations
with maximum shared information. Their distances should be
equal to (9) to avoid overlapping between RSU coverage and
prevent invalid data delivery. If their separations do not satisfy
(9), then the next maximum information location combination
is considered until the optimization problem in (4a) is satisfied.
The discussion of this is seen in lines 13–25 of Algorithm 2.

Let us consider the partitioning and ERM formations de-
picted in Fig. 4. For simplicity, let us consider only the two
formed ERMs highlighted by the circles and let Ω = 3. The
ERM with the dotted circle has the higher priority over the
ERM with the bold circle, therefore, two effective positions
must be determined in this ERM, ΩREP = 2. Since there is a
single-grid ERM, the effective position is determined by line 9
in Algorithm 2. On the other hand, the multiple-grid ERM has
seven grids that contain vehicular environment information.
Lines 16 to 17 determine all the possible combinations of
locating the two optimal effective positions. For example, if the
grid combination of (5, 12) and (5, 14) is compared to the grid
combination of (4, 14) and (5, 14), and both combinations have
the same information content (denoted in Line 17), EISHA-
RSU picks grids (5, 12) and (5, 14) as the optimal effective
positions because it satisfies the required distance between the
chosen effective positions over the other combination. RSU
placements at (5, 12) and (5, 14) also provide a wider coverage
between the two.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present extensive simulation results
employing empirical mobility traces and city locations to eval-

uate the performance of the proposed EISHA-RSU allocation
scheme.

A. Simulation Setup

We utilize three public transport mobility trace datasets,
namely, (1) Beijing (BJS) [37], (2) Singapore (SIN) [38], and
(3) Jakarta (JKT) [38]. The statistics of these three mobility
traces, as well as the simulation parameters, are summarized
in Table I. Note that the number of vehicles in the JKT and
SIN mobility traces also correspond to the number of trips, i.e.,
each of the 28,000 and 16,174 vehicles has only one trajectory
happening at a certain time interval of the day. On the other
hand, the 24,845 taxis found in the BJS dataset has more than
one trip per vehicle occurring throughout the day.

TABLE I
EMPIRICAL MOBILITY TRACES ATTRIBUTES AND SIMULATION

PARAMETERS

Urban City Parameter BJS JKT SIN
Total Area (in ≈ km2) 51 51 51
Grid Area (in ≈ m2) 125,000 125,000 125,000
Total number of vehicles 24,845 28,000 16,174
Rv = Rr (in m) 250 250 250
τc (#of vehicles) 993 560 485
Sampling Time TS (in min) 10 10 10
ρ0 0.25 0.25 0.25
W g (in min) 2.8070 2.8070 2.8070
v (in m/s) 5.5556 5.5556 5.5556

The generation of the static environment data (in MB) for
each gp,q is governed by:

γgp,q = 5000
(
sin(150y + 15) cos(150x+ 20) + 1

)
, (15)

where x and y are the corresponding longitude and latitude
coordinates of each gp,q , respectively. On the other hand, we
generate dynamic data by further subdividing a map grid into
nine smaller grids. We then perform uniform selection across
all sub-grids to randomly select locations where ‘accidents’
happen, since we do not have enough accident data of BJS,
JKT, or SIN. Thus, the generation of additional dynamic
environment data is governed by:
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δgp,q = ξγgp,q . (16)

To represent the dynamic environment data available in each
gp,q , we let ξ = 0.01, thus, the importance factor 1 ≤ β ≤ 100.

B. Effect of Vehicular Capacity in the Formation of ERMs

By implementing Algorithm 2 in the three empirical mo-
bility traces, the ERMs formed per city is shown in Fig.
7. By appropriately selecting the values of τc and ρ0, there
are approximately 50 spatiotemporal ERMs found in each
urban map, both having single- and multiple-grid ERMs.
As the value of τc becomes smaller and the value of ρ0
increases, the number of ERMs employed by EISHA-RSU in
determining where to optimally deploy the RSUs approaches
the number of grids used in the three baseline schemes, i.e.,
more single-grid ERMs are present. As more single-grid ERMs
are formed, priority takes place and the determining of EP
locations will be hastened, i.e., found at the center of the
single-grid ERMs. The worst case scenario for EISHA-RSU
deployment happens when the ERM priority matches those of
the MaxInfo grid selection, i.e., single-grids with the highest
available information. On the other hand, when the value of
τc becomes larger and the value of ρ0 decreases, larger ERMs
are formed implying less distinctions in the given urban map.
At the limit, EISHA-RSU will perform like the CityWide
baseline scheme if and only if the chosen effective positions
correspond to lines 19 to 26 in Algorithm 2 and if the linear
interval between effective positions is defined as in (9). In Fig.
8, the τc values are equal to the percentage with respect to the
number of vehicles in the urban city under study. A system
designer can refer to this figure when the number of formed
ERMs is critical.

Fig. 8. The effect of varying τc and ρ0 in the formation of ERMs.

C. Stationarity of ERMs

Determining the appropriate sampling time in establishing
the ERMs is the first step. Faster sampling time yields a higher
number of mobility traces and can depict the movement within
the area under study, at the expense of high computational
cost. On the other hand, slower sampling time reduces the

mobility traces under study and may reduce vehicular network
information necessary to provide valid results. To measure
ERM stationarity, the root-mean-squared-error (RMSE) (17)
of a formed ERM at sampling time TS is compared to the
ERM formed at a reference sampling time, TSref

= 60 min.

RMSE =

√√√√ 1

N2

N∑
p=1

N∑
q=1

[
ERMp,q(TSref

)− ERMp,q(TS)
]2
.

(17)
Fig. 9 illustrates the effect of varying the sampling time

from 2 to 30 min. Notice that as we decrease the value of
the sampling time, there is an approximate flat response. If
the ERMs are dynamic, the RMSE value should approach 400
(i.e., N×N , N = 20), signifying that the vehicular trajectories
change hastily. However, from Fig. 9, the average RMSE value
is only six. The small average RMSE value implies that formed
ERMs with sampling times TS = 5, 10, 15, 20, and 30 min
have minimal differences with TSref

= 60 min and can be
regarded as stationary. With this finding, we can use any of
these sampling times, and still be able to form approximately
the same ERMs. We note that TS = 5, 10, 15, 20, and 30 min
are practical sampling times to sense the environment data.

Fig. 9. Determining stationarity of ERMs by varying the sampling time
where each gp,q,STS is determined. TSref

= 60 min is the reference to
test stationarity.

D. Deployment Performance Evaluation

We compare the performance of the EISHA-RSU allocation
scheme with the following benchmarks, as described below.

1) Uniform Deployment (UnifDep) [39] allocates the effec-
tive positions ΩR by following the uniform distribution
to allow all places to be equally chosen since there
are no prior information of each of the spatial location.
However, this model can be changed to another distri-
bution function once the selection probability of places
is defined, e.g., putting more weight on intersections,
bus stops, popular landmarks, etc. For this deployment
strategy, simulations are run for 1000 times to capture
uniformity.

2) Citywide Deployment (CityWide) [40] chooses the ef-
fective positions ΩR based on maximum urban area
coverage. As the coverage is maximized, the greater
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amount of information can be sensed and disseminated
in the network. This represents the deployment based on
the road topology of a certain urban locations. In this
work, we simply represent the maximum coverage by
following linearly-spaced locations.

3) Maximum Information Deployment (MaxInfo) [27] pin-
points the effective positions ΩR as the locations that
have maximum information. The strategy of [27] to
place static RSU in locations with the highest weights
is comparable to our baseline method MAXINFO which
deploys RSUs to locations with the highest amount of
information that can be sensed and disseminated.

References [12], [22], and [25] fall under the UnifDep
benchmark. The RSU deployment in [12] depicts the char-
acterization (distribution) of urban locations based on connec-
tivity probability. [22] models the urban setup according to the
location’s importance factor or deployment priority determined
by connectivity robustness and vehicular capacity. [25] also
works the same way as [22] but added connectivity duration
in its optimization problem. On the other hand, previous
studies [4], [8], and [21] are closely related to the CityWide
benchmark. The work in [4] explored a 2D road network sce-
nario with intersections equally spaced apart but discriminated
by road densities. Simulations done in [8] placed candidate
locations in linearly-spaced and prioritized intersections. [21]
also follows this setup but considered RSU placement based
on intersection radio signal spreading. Lastly, literatures [26],
[27], and [41] are categorized under the MaxInfo benchmark
that focuses on deterministic properties. The RSUs in [26]
were placed on locations that minimizes both the capital and
operating expenses. A comprehensive RSU deployment based
on fixed locations, structured, and unstructured transportation
modes have been studied in [27]. Finally, the study presented
here is also an extension of [41] that does not only focus on
V2I information exchanges. This is summarized in Fig. 10.

Fig. 10. Summary of state-of-the-art methods used in the benchmarks.

The amount of information shared by the four allocation
schemes is illustrated in Fig. 11. This covers information
within the RSU coverage area and those carried by vehicles
beyond the RSU transmission range but within the allowable
distance dictated by (9). For all deployment schemes, it is

noticeable that as more effective positions are selected, more
information is gathered and exchanged in the vehicular net-
work. EISHA-RSU also performs the best by correctly placing
effective positions in the urban area, therefore, enhancing the
amount of information shared.

One may argue that the MaxInfo strategy should collect the
most data, as its name implies. However, we note that once
we placed the RSUs at locations where there is maximum
information shared, we observed that the RSUs’ transmission
ranges are overlapping or at least adjacent to one another,
thus, there is redundancy in shared information among RSUs
in MaxInfo. This type of deployment allows EPs to be very
close to each other, e.g., several meters, leading to the reduced
coverage area and vehicular connectivity. Therefore, there will
be less or no information-carrying vehicles found within a
distance ≤ d that will arrive at an EP to deliver additional con-
tents. On the other hand, the other three allocation schemes,
especially EISHA-RSU, are able to accurately discriminate
grid locations as possible effective positions to sense more
environment data.

For all allocation methods, there is an assumption that RSUs
are not connected. However, if all RSUs have a wireless or
wired connection, then, EISHA-RSU will still be the scheme
with the highest amount of shared information in the network.
This is attributed to fact that the RSU allocation done by
EISHA-RSU is well-positioned in the urban area to collect
more base information, when compared to the other three
benchmarks.

In addition, the fairness of the network’s starvation is
measured. To measure how fairly the installed RSUs collect
information over the urban map, we relate the proportional
fairness [42] to the average throughput, Si, for each RSU
assuming equal data upload and download rate. According to
[42], proportional fairness happens when the deployed RSUs
receive an equal amount of environment information. We then
calculate the Jain’s Network Starvation Fairness Index (18)
to evaluate the performance of the deployment scheme as the
number of deployed RSUs increases [43]. ΩR is equal to the
total number of deployed RSUs.

J(Si) =

( ΩR∑
i=1

Si

)2

ΩR

ΩR∑
i=1

S2
i

. (18)

A higher value of the Jain’s starvation fairness index implies
that there is almost an equal average amount of information
collected by the RSUs allocated on EPs across the urban map
under study. Interpreting this index reveals that EISHA-RSU
fairly allocates effective positions to allow RSUs to capture
approximately equal amount of environment information, as
shown in Fig. 12. As the number of deployed RSUs (>
40 deployed RSUs) increases, it is noticeable that the other
three deployment schemes have a fast rate of decreasing
Jain’s starvation fairness index when compared to EISHA-
RSU. This decline in index value highlights that there is a
huge discrepancy in the collected data among deployed RSUs.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

Fig. 11. The amount of information shared in (a) Beijing, (b) Jakarta, and (c) Singapore by utilizing UnifDep, CityWide, MaxInfo, and EISHA-RSU
deployment schemes.

Fig. 12. The Jain’s network starvation fairness index indicates how much equal the average throughput there is per deployed RSU by each deployment scheme
for (a) Beijing, (b) Jakarta, and (c) Singapore.

Fig. 13. Performance comparison of each deployment scheme on the cities of (a) Beijing, (b) Jakarta, and (3) Singapore based on Effectiveness.

Though EISHA-RSU also experiences the index decline, the
deployment method still achieves a higher value compared to
the three, signifying a more balanced data collection.

We compare the performance of the deployment schemes
according to its Effectiveness [44]. Let I(Di) and C(Di)
denote the amount of information shared and coverage area of
a deployment scheme i for a given number of deployed RSUs,
respectively. The effectiveness of a deployment scheme i is
defined by E(Di) =

[
I(Di), C(Di)

]
. If E(D1) ≻ E(D2),

then we say that any of these three conditions is true: 1)[
I(D1) > I(D2) and C(D1) > C(D2)

]
, 2)

[
I(D1) > I(D2)

and C(D1) = C(D2)
]
, or 3)

[
I(D1) = I(D2) and C(D1) >

C(D2)
]
.

Fig. 13 shows the Effectiveness plot against the amount of
information shared and coverage area of all the deployment
strategies for a given RSU deployment density. From Fig. 13,
MaxInfo is the least effective in terms of the amount of infor-
mation shared and coverage area. Given any RSU deployment
density, i.e., 20, 40, or 60 deployed RSUs, it is evident that
EISHA-RSU is the most effective since it captures the most
amount of information with the widest coverage urban area.
Hence, I(EISHA-RSU)> I(UnifDep) and C(EISHA-RSU)>
C(UnifDep), I(EISHA-RSU)> I(CityWide) and C(EISHA-
RSU)> C(CityWide), and I(EISHA-RSU)> I(MaxInfo)
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and C(EISHA-RSU)> C(MaxInfo). This result implies that
EISHA-RSU properly allocates RSUs in effective positions
that will both capture directly-sensed (either by RSU or
vehicle) and single-hop environment data. In some cases, a
lower deployment density while employing EISHA-RSU has
more shared information than other deployment schemes at
a higher deployment density, e.g., RSU20 vs RSU40 in the
Jakarta and Singapore datasets.

However, the CityWide and UnifDep allocation methods
provide contrasting results between each other. As noticed,
CityWide offers higher amount of information shared but at
a less coverage area than UnifDep. Though, it can be said
that these small changes may denote that these two allocation
techniques are interchangeable.

In Table II, we investigate the three urban cities using
the same number of sub-grids, i.e., 2500. Such results can
be attributed to the nature of the dataset. Table I shows the
number of taxis per mobility dataset, i.e., row 4. Since the
Beijing dataset (BJS) has more taxis and number of trips per
taxi, more GPS traces are provided that allows the user to
visualize trips/trajectories undertaken by the taxi throughout
the day. However, in the Singapore (SIN) and Jakarta (JKT)
traces, each taxi ID has one trip/trajectory and happens only
in one time interval of the day. This means that some roads
are not covered by the datasets, thus, more RSUs are needed
to cover the urban map to sense the environment and share the
information with other vehicles. For each urban map, EISHA-
RSU, on the average, saves up to 21%, 21%, and 101% of
RSUs when compared to UnifDep, CityWide, and MaxInfo,
respectively.

TABLE II
REQUIRED NUMBER OF RSUS TO BE INSTALLED BY EACH ALLOCATION
SCHEME GIVEN A DESIRED COVERAGE AREA AND AMOUNT OF SHARED

INFORMATION.

RSU Allocation
Scheme BJS % Diff JKT % Diff SIN % Diff

UnifDep 49 45.00 105 11.06 171 7.90
CityWide 50 46.91 104 10.10 170 7.32
MaxInfo 265 158.11 253 91.64 275 54.04

EISHA-RSU 31 94 158

To evaluate network connectivity, we only consider how
many vehicles are within the single-hop transmission range
of its nearest EP, without the consideration of V2V commu-
nication. Fig. 14 displays the number of one-hop vehicles
for each ΩR deployment constraint. Because EISHA-RSU
considers the appropriate spacing between EPs, the results
show that EISHA-RSU captures more single-hop vehicles in
the network, when compared to the other deployment schemes
for all cities. We emphasize that this spacing between EPs
covers the worst-case scenario when there are no leading
vehicles. Hence, if V2V is allowed in areas without RSU
coverage, data delivery time will be further reduced and would
provide fresher and more up-to-date environment data.

In summary and supported by Figs. 11–14, our extensive
simulation involving three empirical mobility traces have
demonstrated that the proposed EISHA-RSU has enhanced
information sharing by accurately selecting effective positions

that can provide broader and fairer coverage, stable network
connectivity, and maximum shared information. It is also ev-
ident that EISHA-RSU has outperformed the three presented
benchmarks.

E. Effect of β in EISHA-RSU
Previous results have used β = 1 as the importance

level of all dynamic data, implying equal importance and no
prior information on each of the sensed location. However,
if dynamic data such as the frequency of accidents and
roadblocks/constructions are known in an urban city through
intensive monitoring, then, β can be changed accordingly.
Since EISHA-RSU locates the maximum information location
for initial RSU deployment, changing β will affect how the
algorithm will deploy RSUs to achieve maximum coverage
and high vehicular connectivity.

We provide an example in Fig. 15(b) where we highlight
the sub-grids with dynamic data importance values β = 100
(lighter color) and β = 1 (dark color). When these importance
factors are multiplied with the dynamic data in Fig. 15(a),
the normalized results are shown in Fig. 15(c). For example,
if only 20 RSUs are to be deployed in an urban map with
20 ERMs each encompassing one of these sub-grids, then
these 20 RSUs will be deployed on those sub-grids with
high dynamic data importance. However, if ERMs cover more
than one sub-grid, the lighter sub-grid, i.e., with a higher
importance value, will automatically be chosen by EISHA-
RSU. Therefore, β greatly affects the deployment method and
must be used when accurate and correct data distribution is
available.
F. Time Complexity Analysis of RSU Deployment Schemes

We evaluate the time complexity, O(•), of each deployment
scheme. To evaluate the schemes, four major processes have
been identified, namely, 1) Partitioning of the urban map
into N × N uniform grids, 2) Getting the spatiotemporal
stable network characteristics ζSTS of each grid, 3) Forming
ERMs, and 4) Deploying RSUs. The time complexities of each
process are shown in Table III.

TABLE III
TIME COMPLEXITY COMPARISON OF THE RSU DEPLOYMENT SCHEMES

Partitioning Getting
ζSTS

Forming
ERMs

Deploying
RSUs

UnifDep O(N2) – – O(ΩR)
CityWide O(N2) – – O(ΩR)
MaxInfo O(N2) O(N2) – O(ΩR)
EISHA-RSU O(N2) O(N2) O(N2) O(ΩR)

For optimal deployment, EISHA-RSU takes additional
time, i.e., 2O(N2), in characterizing each grid with respect
to its spatiotemporal stable network characteristics, ζSTS , and
then forming the effective regions of movement (ERM). As
the value of N increases, the resolution of the urban location
becomes high, allowing more distinctions and discriminations
between grids, e.g., road topology, environment information
content, vehicular capacity, density, etc. The grid’s spatiotem-
poral stable network characteristics also become more pro-
nounced and will create some empty grids, which allows the
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Fig. 14. The amount of vehicles within single hop from an effective position in (a) Beijing, (b) Jakarta, and (c) Singapore that are still capable of delivering
valid and up-to-date environment information.

Fig. 15. (a) The amount of static and dynamic information (β = 1) in each
grid, (b) Assigning β = 100 (lighter color) and β = 1 (darker color) for
dynamic data importance at specific sub-grids, and (c) the resulting possible
initial RSU location in an ERM where these sub-grids are found.

formation of higher detailed ERMs. On the other hand, the
effect of increasing the value of ΩR does not really affect the
computational complexity, since ΩR is always much smaller
than N2, especially when the magnitude of ΩR is close to the
number of ERMs.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented an Enhanced Information
SHAring RSU (EISHA-RSU) allocation scheme that targets
maximal area coverage and vehicular connectivity, resulting
to an enhanced amount of information shared between RSUs
and vehicles in a vehicular network. To achieve these objec-
tives, an urban map is partitioned according to its Effective
Regions of Movement (ERMs) based on its vehicular capacity.
EISHA-RSU then locates the effective positions (EPs) that
are separated by an optimal distance where RSUs should be
deployed to allow maximum information sharing and delivery
of vehicular data. The performance of the proposed RSU
allocation scheme has been validated by employing three urban
empirical mobility traces. Simulation results have verified the
fairness, effectiveness, and efficiency of EISHA-RSU when
compared to three other benchmarks. In summary, EISHA-
RSU allocates fewer RSUs to maximize information sharing,
provides wider coverage, and improves connectivity in urban
vehicular networks.
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