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Abstract  10 

The patents of information and communication technology (ICT) in construction are valuable 11 

sources of technological solutions to communication problems in the construction practice. 12 

However, it is often difficult for practitioners and stakeholders to identify the key communication 13 

functionalities from complicated expressions in the patent documents. Addressing such challenges, 14 

this study develops a deep learning model to enable automatic recognition of communication-15 

oriented entities (CEs) from patent documents. The proposed model is structured based on the 16 

Transformer, consisting of feed-forward and self-attention neural networks to better recognize 17 
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ambiguous and unknown entities by utilizing contextual information. The validation results 18 

showed that the proposed model has superior performance in CE recognition than traditional 19 

recurrent neural networks (RNN)-based models, especially in recognizing ambiguous and 20 

unknown entities. Moreover, experimental results on some research literature and a real-life project 21 

report showed satisfactory performance of the model in CE recognition across different document 22 

types.  23 

Keyword: Information and communications technology (ICT); Construction industry; Entity 24 

recognition; Deep learning; Transformer; Contextual information 25 

1. Introduction 26 

Information and communication technology (ICT) is an extensional concept, incorporating a wide 27 

range of technical approaches that mainly concentrate on communication functionalities [1]. The 28 

core benefit of ICT application in the construction industry is to enable and enhance 29 

communication, improving the coordination of data in the whole life cycle of construction projects 30 

[2,3]. Successful adoption of ICT relies on appropriate choices of technologies to enable desired 31 

communication functionalities according to specific objectives in construction practice [4,5]. In 32 

order to choose the right technologies for the confronting problems, practitioners and stakeholders 33 

need to fully comprehend the communication functionalities embedded in ICTs [2]. Patents are a 34 

common source for up-to-date technologies, from which 95% inventions can be found. The 35 

information of communication functionalities of ICT was archived as raw texts in patent 36 

documents [6,7]. Analyzing patent documents effectively is important to acquire technological 37 

knowledge, link potential solutions to problems and inspire innovation in the industry [8]. 38 

Therefore, exploiting information underlying patent documents has gained increasing interests by 39 
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researchers, patent analysts, and practitioners [9]. 40 

 41 

In patent documents of ICT in construction, the hints of communication functionalities are hidden 42 

in complicated expressions like how construction data was transmitted through virtual or physical 43 

models and how it was coordinated among sites, users or stakeholders [5]. Examples of such 44 

expressions include “installation information was transferred from a radio frequency identification 45 

(RFID) tag to a construction item” in an RFID patent [10], and “the technology conveys geographic 46 

data to display devices that users could manipulate” in a geographic information system (GIS) 47 

patent [11]. To make this embedded information more accessible, this study seeks to develop a 48 

computer-aided system to automatically identify the communication-oriented entities (CEs) and 49 

categorize them into pre-defined types. The task is named as entity recognition in natural language 50 

processing (NLP) [12].  51 

 52 

Although some patent analysis tools (e.g., TRIZ 1 ) have been developed to process patent 53 

documents, these approaches aim for general purposes and are limited in specific problem solving 54 

[13]. Entity recognition offers a way to analyze patents based on customized problems or interests. 55 

An entity is a category of phrases that have similar properties, including rigid designators or 56 

members of a semantic class [14]. Mostly, the entities are “names” (e.g., drug names, disease 57 

names, chemical names) [14]. They usually have highly distinguishable spellings (e.g., chemistry 58 

entity “Deuterium” can be easily recognized due to its unique combination of characters and the 59 

capitalized initial letter [15]). However, recognizing CEs from the patent documents of ICT in 60 

                                                 
1 TRIZ is the acronym for the “Theory of Inventive Problem Solving” in Russian, which is a tool for patent analysis. See details 

in https://www.triz.org/triz. 
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construction is a more complicated task. There are two main technical challenges. One is the 61 

ambiguity of CEs. An entity is ambiguous if its spellings appear as an entity at one position, and 62 

appear as a different entity type at another [16]. Communication functions in the patents are 63 

expressed by not only mixtures of unique technical terms that appear with distinguishable spellings, 64 

but also words that are typically normal terms [17]. Thus, for recognizing ambiguous entities, it is 65 

important to incorporate the contextual information surrounding the candidate entities to discern 66 

their relevancy. Another challenge is the unknown of entities (entities that appear in testing set but 67 

not in training set). The previous studies attempted to address these problems by using additional 68 

linguistic materials, such as lexicons, dictionaries, gazetteers, ontologies, knowledge graphs [18-69 

21]. However, due to the unavoidable limitations in the coverage of lexical databases, these 70 

problems remain critical [22].  71 

 72 

This study resorts to deep learning techniques to utilize the contextual information for recognizing 73 

the ambiguous and unknown CEs from the patents of ICT in construction. Rather than focusing on 74 

word-level information, a deep learning method can enhance the understanding of entities by 75 

incorporating surrounding texts. As recognized deep learning approaches, the recurrent neural 76 

networks (RNN)-based models, such as long short-term memory (LSTM) and gated recurrent unit 77 

(GRU), have been widely adopted in many NLP tasks, including entity recognition, text 78 

classification, sentiment analysis, and machine translation [23,24]. In these models, bi-directional 79 

structures and convolutional neural networks (CNN) were adopted to achieve improved 80 

performance [25]. However, despite the elaborate architectures, the RNN-based models have 81 

limitations in addressing long-term dependencies. A deep learning model of the Transformer-based 82 

neural networks (TBNN) was adopted instead in this study to remedy this deficiency. Proposed in 83 
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2017 by Google AI team [26], the Transformer can enable the so-called “self-attention” mechanism 84 

that computes the contextual representations in parallel rather than in sequence [27], enabling a 85 

more effective approach to memorize both long and short term dependencies compared with the 86 

RNN-based models. Previous methods used for recognizing communication functionalities from 87 

ICT patents were mostly manual searching, which are labor-intensive and time-consuming [28,29]. 88 

The TBNN model developed in this study provides an efficient alternative. Also, It has its merits 89 

in utilizing contextual information, which is an important advancement for computer-aided 90 

systems to achieve intelligence in NLP tasks [16].  91 

 92 

The research procedure is shown in Fig. 1. First, based on the literature review, the main technical 93 

challenges were identified and the classes of CEs for recognition were illustrated. Second, the 94 

architecture of the proposed TBNN was illustrated in detail. Third, the validation of the model was 95 

conducted using the training and testing instances. Finally, the results and findings were discussed 96 

to report the performance of the proposed model compared with the baseline model.  97 

Fig. 1. Workflow of the research. 99 
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2. Review of relevant research 100 

2.1 Overview of entity recognition 101 

Entity is an NLP concept that was first introduced in 1996 [18]. An entity is a phrase representing 102 

the elements that have similar properties. Entities are rigid designators or members of a semantic 103 

class that can be characterized by specific purposes [14]. Generally, entity recognition is used to 104 

automatically identify names of people, locations, and organizations using information extraction 105 

techniques. At the beginning, such a task was called “Named Entity Recognition”. It was rapidly 106 

adopted in different fields. For instance, in the dietary research, recognizing entities of food and 107 

nutrient gained increasing interests [20]; in the chemical and life science, gene and protein are 108 

important entities [30]. Along with the proliferated applications, the ambiguity of entities was soon 109 

recognized as a central issue, which can substantially decrease the accuracy of entity recognition 110 

results [16].  111 

2.2 Entity recognition models 112 

Over the last two decades, a large and growing number of models have been developed for entity 113 

recognition, which can be mainly categorized into two groups: rule-based [20,31-35] and learning-114 

based models [14,36-39]. 115 

2.2.1 Rule-based models 116 

The rule-based models usually rely on man-made rules, including lexical attributes and 117 

vocabularies. Lexical attributes concern word-level properties [12]. Digit pattern is one typical 118 

lexical attribute. It contains information such as data, intervals, and statistics. For example, four 119 
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digits normally stand for an expression of a year. Similarly, one or two digits usually represent a 120 

date [31]. Morphological attribute is another type of lexical attributes. For example, language 121 

entities are often ended with “ish”, such as Spanish and Danish [32]. Using rules based on lexical 122 

attributes can achieve acceptable accuracy. However, the establishment of these rules requires 123 

expertise and tremendous efforts, which is expensive to accomplish [12].  124 

 125 

Using rules based on vocabularies are also called terminology-driven or dictionary-based methods 126 

[20]. These methods recognize entities through matching relevant text with a pre-defined thesaurus 127 

consisting of a range of terminologies and their relations [33]. Such approaches sometimes lead to 128 

poor performance because of the inevitable ignorance of synonyms [34]. The main problem of the 129 

vocabulary-based rules comes from the incomprehensiveness of pre-defined corpora, which can 130 

cause dissatisfactory results due to the omission of entities [20]. 131 

2.2.2 Learning-based models  132 

The learning-based models employ machine learning algorithms to automatically recognize 133 

entities using the patterns learned from training instances  [12]. Regarding entity recognition, there 134 

are two types of learning-based models: supervised and semi-supervised [14]. Over the last two 135 

decades, a number of machine learning algorithms have been used in entity recognition, such as 136 

Support Vector Machine [36], Conditional Random Field (CRF) [37], Hidden Markov Model [38], 137 

and Maximum Entropy Markov Model [39]. The main drawback associated with these algorithms 138 

was the requirement of a large amount of annotated data, which increased human intervention in 139 

feature selection [37-39]. 140 

 141 
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In response to this problem, deep learning techniques have been employed  in entity recognition. 142 

It shows prominent performance in many NLP tasks and does not need manual feature selection 143 

as machine learning. Deep learning models are generally organized as multi-layer neural networks, 144 

each of which consists of neurons, receiving signals from the former layer and passing converted 145 

signals by activation functions to the subsequent layer [40]. These layers of neural networks, as a 146 

whole, can address highly non-linear associations between representations and outputs [41]. Most 147 

of the deep learning models used for entity recognition are developed based on RNN [42,43]. Fig. 148 

2 displays the architecture of an RNN-based model for entity recognition. The model generally 149 

follows a structure framed by “word embedding”, “main recurrent neural networks” and “CRF”. 150 

151 
Fig. 2. Typical structure of RNN-based models for entity recognition. 152 

 153 

However, the performance of the RNN-based models remains unsatisfactory due to its basic nature 154 
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of sequential computation. RNN generates a sequence of hidden state values Lt according to 155 

previous hidden value Lt-1 and input value at position t (et) [25]. This sequential computation style 156 

prevents parallelization in the training process, and thus prevents further utilization of advanced 157 

hardware. Without parallelization, the computing for long sequences would take a considerable 158 

amount of time due to the limited use of batching across examples [26].  159 

2.3 Entity recognition in CEM studies 160 

In the Construction Engineering and Management (CEM) domain, an increasing number of 161 

research starts to apply entity recognition to process textual data in addressing various management 162 

issues (i.e., [44-47]). Mostly, traditional rule-based models were adopted using pre-defined digital 163 

dictionaries established by experts [48-50]. Such methods are usually labor-intensive and time-164 

consuming, as well as suffer limited coverage of pre-defined corpora [22].  165 

 166 

Several efforts have been made in the CEM domain to improve the models for entity recognition 167 

[22,51]. For example, Zhang and El-Gohary [51] developed an automatic approach to extract 168 

Building Information Modeling (BIM) entities from documents. That study integrated manual 169 

rules and a pre-defined lexical database for entity recognition. Specifically, the rules that were 170 

established based on part-of-speech patterns and an external word vocabulary were used to extract 171 

entities, and the lexical database of WordNet was employed to classify the entities. Similarly, Le 172 

and Jeong [22] developed the vocabularies as rules to recognize transportation entities. Such rule-173 

based methods can only identify pre-defined entities, but neglect unknown ones. Also, they were 174 

mostly reported with a poor performance in discerning ambiguous entities [16]. 175 

 176 
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Based on the review of relevant research, the study employed deep learning instead of the 177 

traditional machine learning algorithms for CE recognition. There are two main reasons: (1) deep 178 

learning can draw representations from unstructured text data based on the architecture of neural 179 

networks without pre-engineered features that are necessary for traditional algorithms [52,53]; and 180 

(2) it can address highly non-linear associations between representations and outputs through the 181 

neurons and activation functions in each layer of the neural networks [41].  182 

3. Definition of CE classes 183 

CEs refer to the information units that describe communication functionalities in the patents of 184 

ICT in construction. They present approaches of virtual or physical transmission of data, or of data 185 

coordination among sites, users or stakeholders [5]. For example, the sentence “sensing the 186 

material information through RFID tags” indicates that the RFID technology can be applied to 187 

timely transmit information on construction materials [4]. This communication functionality 188 

involves two important entities: “material information” and “RFID tags”. The former is the 189 

information to be transferred, and the latter is the device to send and receive the information.  190 

 191 

Based on the specific patterns of ICT in construction as well as the review of relevant literature 192 

[5], this study defines three CEs in describing communication functionalities. They are transferred 193 

information (TI), communication models (CM) and communication subjects (CS). (See Table 1 194 

for detailed descriptions and examples). Among them, TI refers to the type of information for 195 

transmission, for example, the geographic locations. CM refers to the software or equipment used 196 

to transmit the information, which can be either virtual or physical. For example, a BIM database 197 
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is a virtual platform to store, receive and send building data, while an RFID tag is a physical device 198 

to store and send information of building components. At last, CS is the people or organizations 199 

that involved in the communication process.  200 

Table 1 Description and examples of CE classes for ICT in construction. 201 
 CE classes Description & Examples 

TI 

Information the ICT mainly conveys, transmits, manipulates, or receive and always in a 
digital form  

• The apparatus for editing the 3D building data includes an input unit configured 
to obtain 3D scan data of a building 

• The building’s developer sends a design order for the building to a construction 
design office 

• An estimation engine processes the aerial image at a plurality of angles to 
automatically identify a plurality 

CM 

Software or equipment that is used to convey the transferred information. CM could be 
virtual or physical, which could be accessed and manipulated remotely. 

• The construction operation system comprises a photodetection sensor for 
receiving light beams from the rotary laser irradiating systems 

• A first hierarchical data structure generated by the mobile device is received at 
the first machine 

• Exemplary systems and methods include marking devices that generate, store 
and/or transmit electronic records of marking information 

CS 

People or organizations that participate in communication activities. CS is always the 
people the transferred information would be delivered to in the context of construction. 

• The developer of the building sends a design order for the building to a 
construction design office 

• The design environment supports multi-modal input, side-by-side layout of the 
stored documents, access permissions for users of the design environment 

• The method comprising: (a) receiving, into the computing device, an input from 
a user (either a person or an automated program interface) 

 202 

4. The proposed deep learning model 203 

4.1 The objectives of the proposed model 204 

The developed TBNN model is to utilize contextual information to automatically identify and 205 

classify CEs out of patent documents, addressing the aforementioned problems in recognizing 206 
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ambiguity and unknown of entities. As it is shown in Figure 3, two examples of CEs extractions 207 

show the utilization of contextual information in recognizing ambiguous entities.  In Fig. 3 (a), the 208 

entity “building data” was recognized as TI, because the surrounding text indicated that the 209 

“building data” is a type of information that can be transferred remotely. In another case in Fig.3(b), 210 

the “building data” was recognized as a normal phrase (labeled as “O”) because the model found 211 

it is not used for communication based on the surrounding text.  212 

213 
Fig. 3. The inputs and outputs of the desired model for CE recognition. 214 

 215 

4.2 The structure of the model 216 

The overall structure of the TBNN was presented in Fig. 4. Instead of using a sequential structure 217 

as RNN-based models, it has a parallel system [27,54]. The major components of TBNN include 218 

Wordpiece tokenization, token and position embedding, and multi-head self-attention.    219 
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220 
Fig. 4. The overall neural network structure of TBNN. 221 

 222 

4.2.1 Wordpiece tokenization  223 

Before feeding into the model, Wordpiece tokenization is used to split the words of input sequences 224 

into sub-word units (“word-pieces”) that can be small as a letter or large as a complete word [55]. 225 

Algorithm 1 outlines the core idea of Wordpiece tokenization, which selects minimal segmented 226 

word-pieces that can make combinations of the words [56] (as for the details of the Wordpiece, 227 

please see Heinzerling and Strube [3]). It can use a relatively small size vocabulary of word-pieces 228 

to represent almost infinite words (this study selects a vocabulary of 30,522 word-pieces). Using 229 
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Wordpiece tokenization is essential for the model to process unknown entities. Those entities, 230 

although do not appear in the training dataset, can be decomposed into word-pieces and fed into 231 

the model for prediction.  232 

Algorithm 1: Wordpiece tokenization 
def statistic(vocabulary): 
    pairs_words = coll.defaultdict(int) 
    for token, count in vocabulary.items(): 
        characters = token.split() 
        for i in range(len(characters) - 1): 
            pairs_words[characters[i], characters[i + 1]] += count 
    return pairs_words 
 
def merge_pair(pair, input_vocabulary): 
    output_vocabulary = dict() 
    Byte_encoding = re.escape(' '.join(pair)) 
 
    p = re.compile(r'(?<!\S)' + Byte_encoding + r'(?!\S)') 
    for word in input_vocabulary: 
        w_out = p.sub(''.join(pair), word) 
        output_vocabulary[w_out] = input_vocabulary[word] 

return output_vocabulary 
 

Input: a token vocabulary V and the corresponding occurrence times, and the 
number for merge times.  
Begin 
1:     for i in range(num_merges): 
2:         pairs = statistic(vocabulary) 
3:         best = max(pairs, key=pairs.get) 
4:         vocabulary = merge_pair(best, vocabulary) 
5:         a = a + 1 
End 

4.2.2 Token and position embedding 233 

Token embedding concerns the information of the tokens’ identities, which was widely used in 234 

NLP studies. Each of the resulting word-pieces would be converted into numerical vectors to 235 

represent their identities through a token embedding matrix D ∈ ℝ|v|×|𝑑𝑑| (in this study, |v| = 30,522, 236 

|𝑑𝑑|= 512). Compared with RNN-based models, TBNN has to independently embed the position 237 

information due to the parallel structure of the neural networks. This study utilizes a sinusoidal 238 
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function as the positional embedding model, because it can memorize the position information for 239 

a much longer sequence by using relatively fewer parameters [26]. The position embedding 240 

algorithm is represented as Eq. (1). 241 
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� , 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑜𝑜𝑑𝑑𝑑𝑑 
   (1) 242 

where i denotes the position for the token to be embedded, and j denotes the dimension of the word 243 

embedding.  244 

4.2.3 Multi-head self-attention  245 

The 3rd to 26th
 layers are stacked 12 transformers, and each of them consists of a multi-head self-246 

attention and a point-wise feed-forward neural network. The multi-head self-attention is a linear 247 

projection of multiple self-attention neural networks. Self-attention in the Transformer plays an 248 

important role in understanding contextual information. Its key capability is to determine how 249 

much attention should be paid to useful inputs when determining an output [23,26]. An output of 250 

self-attention is called a "contextual representation", reflecting the word's meaning used in the 251 

context [26]. Moreover, self-attention enables parallel computation, effectively reducing the 252 

computation burden.  253 

  254 

To illustrate the self-attention mechanism, Fig. 5 depicts the process to compute the contextual 255 

representation for an input sequence “accessing a BIM database to obtain building data”. After 256 

tokenization by Wordpiece, the sequence splits into 12 word-pieces. A word would keep its original 257 

label for its first word-piece, and the others are labeled as "X". The outputs of self-attention are 258 
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the context matrix Z, in which each element is computed as follows: 259 

 𝑧𝑧(𝑡𝑡) = ∑ a𝑡𝑡,𝑡𝑡′(x𝑡𝑡′𝑊𝑊𝑣𝑣)𝑛𝑛
𝑡𝑡′=1    (2) 260 

 261 
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  (3) 262 
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√𝑑𝑑𝑑𝑑
 (4) 263 

where: 264 

• t is the target position that is intended to compute an output 𝑧𝑧(𝑡𝑡) corresponding to 265 

the input 𝑒𝑒(𝑡𝑡) by using self-attention.  266 

• 𝑡𝑡′  denotes the position from which the attention should be drawn to the target 267 

position t 268 

• 𝑊𝑊𝑄𝑄 ,𝑊𝑊𝐾𝐾,𝑊𝑊𝑉𝑉 ∈ ℝdm×𝑑𝑑𝑑𝑑. 𝑊𝑊𝑄𝑄 ,𝑊𝑊𝐾𝐾  𝑎𝑎𝑒𝑒𝑑𝑑 𝑊𝑊𝑉𝑉 are the query, key and value memory 269 

matrix respectively, fully connected with the whole deep learning model and the elements in 270 

the matrices are parameters to be estimated during the feed-forward and back-propagation 271 

processes via stochastic gradient descent. 272 

• r
𝑡𝑡𝑡𝑡′

  is an energy score from 𝑒𝑒(𝑡𝑡′)  to 𝑒𝑒(𝑡𝑡) , achieved by a scaled dot product 273 

operation. r
𝑡𝑡𝑡𝑡′

 reflects how much attention of the input 𝑒𝑒(𝑡𝑡′) with respect to 𝑒𝑒(𝑡𝑡). 274 

• a
𝑡𝑡,𝑡𝑡′

 refers to the normalized attention score denoting how much attention should 275 

be paid to input 𝑒𝑒(𝑡𝑡′). All the attention scores form an attention matrix A in which each row 276 
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consists of coefficients (sum up to 1) representing the normalized attention weights.   277 

 278 

279 
Fig. 5. Computation process of z11 by self-attention. 280 

 281 

The multi-head self-attention neural network would be fed into a fully connected sublayer of point-282 

wise feed-forward networks (FFN), which treats each position independently and identically. It 283 

consists of two linear transformations and an activation function:  284 

 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = max(0, 𝑥𝑥𝑊𝑊1 + 𝑏𝑏1)𝑊𝑊2 + 𝑏𝑏1  (5) 285 

 286 

 287 
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The outputs of the Transformers would be connected with a linear and a softmax neural network 288 

to generate the possibilities for each of the labels. In the training process, the cross-entropy is used 289 

as the loss-function to compute the gross gradients for the back-propagation process.  290 

5.  Empirical validation 291 

This section reports the validation results of the proposed model compared with the baseline model. 292 

This study selected the bi-directional LSTM with CNN (abbreviated as BLC) as the baseline model, 293 

which is one of the most typical and outperformed deep learning models for entity recognition 294 

[57].  295 

5.1 Description of training and testing datasets 296 

The primary data source for model training and testing is extracted from Wu et al.’s study [58]. 297 

The paper developed a binary classifier to automatically screen patents of ICT in construction from 298 

United States Patent and Trademark Office (USPTO) 2  (please refer to [58] for details). The 299 

screened patents in the study contained not only ICT specifically designed for the construction 300 

industry, but also technologies for general communication scenarios. Therefore, the irrelevant 301 

patents were eliminated manually. A collection of 392 patents was obtained as the primary dataset. 302 

Furthermore, 180 patents out of the primary dataset were randomly selected for annotation. The 303 

patents were annotated with titles, abstracts, and first claims using a web-based tool Doccano3. 304 

The titles and abstracts provide brief and summarized specifications about the technical disclosure. 305 

The claims define the patents’ protection rights, and the first ones always describe the technical 306 

                                                 
2 https://www.uspto.gov 

3 https://github.com/chakki-works/doccano 

https://www.uspto.gov/
https://github.com/chakki-works/doccano
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boundaries [59]. Overall, 2191 CEs were tagged in the 414 sentences. Following previous 307 

literature (e.g., [60,61]) that analogously drew upon undersampling for selecting the training 308 

instances, this study randomly selected the same number of sentences without any CE tags from 309 

the database. The resulting collection comprised 824 sentences. The descriptive statistics of 310 

different items in the resulting collection is shown in Table 2.  311 

Table 2  312 
Descriptive statistics of different items in the resulting collection.  313 
ID Item Number Percent of all CEs 
1 Total sentences 824 / 
2 Annotated sentences 412 / 
3 Total words 63765 / 
4 Total labels 4392 / 
5 Total occurrence of CE 2191 / 
6 Total number of CE 1028 / 
7 Occurrence of TI 1055 49.32% 
8 Occurrence of CM 857 40.07% 
9 Occurrence of CS 227 10.61% 
10 Number of TI 571 55.54% 
11 Number of CM 375 36.48% 
12 Number of CS 82 7.98% 

 314 

This study used k-fold cross-validation to evaluate the performance by setting k as 10. All the 315 

instances were randomly divided into 10 folds. For each training round, nine folds consisting of 316 

the training and testing collections were made from the rest one, as shown in Fig. 6. In addition, 317 

in order to further validate the application of the model in a different text source, this study also 318 

retrieved literature relevant to ICT in construction from the Web of Science (WoS). The abstracts 319 

were annotated for an additional test collection.  320 
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Fig. 6. Illustration for 10-fold validation.  322 
 323 

5.2 Pre-trained parameters for Transformers 324 

This study drew upon the pre-training techniques and dumped the pre-trained parameters into the 325 

Transformers as initials to make the training process converge quickly. Pre-training techniques 326 

were recently developed and experimentally shown to improve the performance of many NLP 327 

tasks [62,63]. 328 

 329 

The pre-training phase in this study has the same structure as the 12 stacked Transformers in TBNN, 330 

performing the masked language task that predicts the next words based on the surrounding words 331 

[54]. The task follows an unsupervised manner, in which the data is not required to be labeled 332 

because the true labels are the input sentence itself in the masked positions. Therefore, a large 333 

corpus of data can be used in the pre-training model. Then the trained parameters in the self-334 

attention sublayer of the Transformers can be copied into TBNN. This study used a pre-training 335 
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model proposed by Google AI team, which contains more than 110M parameters that are learned 336 

by Wikipedia corpus4 . The primary function of the pre-training phase is to provides average 337 

contextual representations embedded in the Wikipedia corpus and fine-tunes them through the 338 

back-propagation in the training phase of CE recognition, making the TBNN converge rapidly.  339 

5.3 Experiment setup 340 

The experiment setup for training was shown in Table 3. The training programs were implemented 341 

based on a workstation with the CPU: Intel(R) Core(TM) i7-7700HQ CPU @2.80Hz 2.81GHz 342 

and 16.0G RAM, the GPU: NVIDIA Quadro P4000, 8G. GPU plays a major role in training. To 343 

make the TBNN training converge rapidly, this study set the settings based on not only previous 344 

studies, but also the nature of written language in the patents of ICT in construction and the 345 

computational capacity of the GPU. In specific, because the patents of ICT in construction contain 346 

many long sentences, the max sequence length is set as 512 to ensure that all sentences can be fed 347 

into the model. The length of the max sequence increases the computation burden for the GPU, 348 

and thus the batch size was set as 2 (which is the maximum value after trails) to reduce that burden. 349 

In addition, this study set the learning rate and training epochs as 5e-5 and 3 respectively, which 350 

were reported as the optimum values when using the pre-trained model.  351 

Table 3  352 
Experiment Setup for TBNN training. 353 
Model settings 
Number of transformers 12 
Dimension of WordPiece tokens 512 
Number of attention heads 12 
Maximum number of hidden states 768 
Training settings 
Max sequence length  512 
Batch size 2 

                                                 
4 https://github.com/google-research/bert 

https://github.com/google-research/bert
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Learning rate 5e-5 
Training epochs 3 

5.4 Validation metrics 354 

This study used precision, recall, F-score [64] as the performance measurements based on true 355 

positives (TP), false positives (FP) and false negatives (FN). TP and FP represent, respectively, the 356 

numbers of instances that the model correctly and incorrectly predicts. While FN is the number of 357 

instances that the model fails to predict. Based on TP, FP and FN, the precision, recall, and F-score 358 

were computed by: 359 

 P =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  , R =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , F1 =  2×𝑇𝑇×𝑅𝑅
𝑇𝑇 + 𝑅𝑅

    (6) 360 

Since there were three CE classes to be recognized, the number of TP, FP, and FN were counted 361 

by three CE classes respectively using  the following formulations: 362 

 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇 =   𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 + 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇 =   𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 + 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇 =   𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐹𝐹𝑇𝑇𝐶𝐶𝐶𝐶

 (7) 363 

5.5 Validation results 364 

5.5.1 Overall results 365 

This study evaluates the performance of the proposed TBNN against BLC based on the 10-fold 366 

instances. BLC is built upon an RNN-based architecture, consisting of a bi-directional LSTM layer, 367 

a CNN layer, and a CRF layer. The validation results reveal a superior performance of TBNN 368 

compared with BLC (see Table 4). TBNN outperformed BLC in all the training rounds over the 369 

two different testing collections. In fact, TBNN yields better performance in all the training rounds 370 

than the best round of BLC. TBNN also outperformed BLC over almost all the CE classes (an 371 
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exception is CS in round 9 of the WoS test). 372 

Table 4  373 
Performance of TBNN against BLC over the 10 training rounds. 374 

              Baseline model: BLC   Proposed model: TBNN 
   Number of 

instances   All instances CE labels (F1)  All instances CE labels (F1) 

  Round TI CM CS All   F1 P R TI CM CS  F1 P R TI CM CS 

USPTO 

1 131 155 38 324  0.67 0.737 0.614 0.657 0.695 0.600  0.856 0.884 0.83 0.875 0.871 0.727 

2 105 86 21 212  0.713 0.739 0.689 0.687 0.788 0.541  0.854 0.836 0.873 0.843 0.898 0.723 

3 68 52 12 132  0.593 0.532 0.669 0.599 0.597 0.519  0.798 0.793 0.803 0.788 0.814 0.767 

4 125 101 24 250  0.667 0.687 0.648 0.640 0.698 0.667  0.859 0.855 0.864 0.866 0.880 0.729 

5 102 74 22 198  0.661 0.616 0.712 0.647 0.657 0.728  0.834 0.851 0.818 0.864 0.790 0.838 

6 114 75 19 208  0.693 0.675 0.712 0.717 0.656 0.700  0.86 0.874 0.846 0.823 0.906 0.907 

7 131 116 51 298  0.657 0.644 0.672 0.596 0.721 0.659  0.793 0.775 0.812 0.717 0.843 0.891 

8 71 45 18 134  0.644 0.585 0.716 0.639 0.667 0.583  0.85 0.864 0.836 0.820 0.871 0.914 

9 112 64 37 213  0.676 0.645 0.709 0.645 0.673 0.778  0.882 0.864 0.901 0.853 0.878 0.986 

10 96 89 37 222   0.657 0.665 0.649 0.674 0.675 0.539  0.823 0.822 0.824 0.828 0.855 0.740 

WoS 

1 

45 34 6 85 

 0.400 0.579 0.306 0.365 0.439 0.000   0.706 0.814 0.624 0.748 0.665 0.625 
2  0.389 0.600 0.287 0.366 0.428 0.286  0.702 0.875 0.586 0.665 0.760 0.667 
3  0.421 0.523 0.353 0.366 0.501 0.333  0.689 0.808 0.600 0.703 0.701 0.500 
4  0.393 0.594 0.294 0.369 0.463 0.000  0.732 0.842 0.647 0.762 0.719 0.625 
5  0.423 0.590 0.329 0.433 0.424 0.286  0.702 0.870 0.588 0.721 0.698 0.645 
6  0.455 0.526 0.400 0.444 0.485 0.286  0.739 0.842 0.659 0.704 0.828 0.566 
7  0.434 0.595 0.341 0.417 0.443 0.500  0.704 0.851 0.600 0.702 0.717 0.678 
8  0.455 0.492 0.424 0.438 0.514 0.000  0.862 0.933 0.800 0.867 0.846 0.909 

9  0.482 0.582 0.412 0.455 0.494 0.667  0.669 0.848 0.553 0.686 0.673 0.571 
10   0.341 0.500 0.259 0.288 0.444 0.000   0.766 0.873 0.682 0.754 0.791 0.727 

Notes: The highest values for each model over both testing collection are in bold        375 

 376 

The heat map in Fig. 7 shows the confusion matrixes of the CE classes over the two models. The 377 

numbers are obtained by combining all the testing instances in the ten training rounds, constituting 378 

the whole original annotated datasets. The sum of the row indicates the number of true labels of 379 

all the CE classes (TP+FN). The diagonal elements are the number of correctly predicted instances 380 

of the corresponding CE class. Two major findings were found. Firstly, both models have rarely 381 
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predicted a CE class incorrectly as another. This result also supports the classifications of CEs. 382 

Secondly, compared with BLC, TBNN is less likely to incorrectly predict CEs as normal words 383 

(manifested by higher numbers in the last column in Fig. 7(b)), nor incorrectly predict normal 384 

words as CEs (manifested by higher numbers in the last row in Fig. 7(b)). This result validates a 385 

superior performance of TBNN in discerning CEs in patent documents.  386 

387 
Fig. 7. Heat maps for confusion matrixes: (a) TBNN, (b) BLC. The value vij corresponds to the number of 388 

CE class i that were predicted as CE class j. 389 
 390 

Table 5 compares TBNN with BLC in terms of the average validation values of all the training 391 

rounds. All the validation indexes of TBNN yielded at least 15% higher than BLC over UPSTO 392 

data. Table 5 shows a greater performance of TBNN in testing the WoS literature, indicating that 393 

TBNN is more compatible when the training and testing data were from different sources (e.g., 394 

training instances from UPSTO and testing instances from WoS).  395 

Table 5  396 
Comparison of BLC and TBNN over the average performance value over the 10 training rounds. 397 

  Baseline model: BLC   Proposed model: TBNN  
  F1 P R   F1 P R 
USPTO 0.654 0.631 0.683  0.841 0.842 0.841 
     (+18.7%) (+21.1%) (+15.8%) 
WoS 0.42 0.558 0.341  0.727 0.855 0.634 
          (+30.7%) (+29.7%) (+29.3%) 

 398 

In addition, for validating TBNN over real project cases, this study also implemented TBNN to 399 
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recognize CEs from an industry report named “RFID-Enabled BIM Platform for Prefabrication 400 

Housing Production in Hong Kong”. The report describes the applications of RIFD-related 401 

techniques to enable communication in a public housing project at Tuen Mun, Hong Kong (See Li, 402 

et al. [65] for detailed information). The report (6181 words in total) was input into TBNN for CE 403 

prediction. The authors manually examined all the CE prediction results. The precision values are 404 

shown in Table 6. It can be observed that TBNN got similar performance in real-project reports 405 

with the WoS literature. This test validated that the proposed model performs well in recognizing 406 

CEs from documents of real problem scenarios.  407 

Table 6  408 
Precision of CE predictions over the report by TBNN.  409 

  TI CM CS All 
TP 13 4 21 38 
FP 0 3 4 7 

TP+FP 13 7 25 45 
Precision 1.000 0.571 0.840 0.844 

 410 

5.5.2 Validation results in recognizing ambiguous entities  411 

As was mentioned in section 1, a CE can be an ambiguous entity if it appears as a CE at one 412 

position and a common noun at another, or appears as different CE types. Table 7 reports the 413 

validation results over ambiguous entities. It was found that TBNN performed better in predicting 414 

ambiguous entities. The precisions and recall values were higher than BLC by over 13%. 415 

Table 7  416 
Performance TBNN and BLC for ambiguous entities. 417 

Precision   Recall Number of instances 
of ambiguous entities TBNN BLC 

 
TBNN BLC 

0.875 0.753   0.844 0.717 1219 
 418 

Fig. 8 displays the performance in predicting entities of different ambiguous levels. The horizontal 419 
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axis describes the CE appearance rate, measured by CE appearance times / total appearance times. 420 

The CE appearance times denote the number of times that an ambiguous entity appeared as CEs, 421 

and total appearance times represent the total appearance times of the entity. A smaller CE 422 

appearance rate indicates a higher ambiguity level. For example, as it is shown in Fig. 9, “image” 423 

appears 291 times in the database, only 19 (less than 1%) of them appear as a TI. It has a relatively 424 

low CE appearance rate, which means high ambiguity. It leads to lower chances to learn how the 425 

surrounding texts determine “image” as a TI. In Fig.8, it shows the change of prediction 426 

performance of the two models along with the cumulative percentage of CE appearance rate. The 427 

red line represents CE appearance times. It can be found that the smaller CE appearance rate leads 428 

to a lower accuracy of both models. Moreover, the gap between the performance of the two models 429 

increases as the CE appearance rate decreases. This indicates the superiority of TBNN compared 430 

with BLC becomes greater as the ambiguity of entities increased.  431 

Fig. 8. Performance of TBNN and BLC for ambiguous entities towards different percentages of CE 433 
appearance rate. 434 

 435 
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Fig. 9 plots the performance of the specific ambiguous entities. Three trends can be detected: (1) 436 

the ambiguous entities with lower CE appearance rate (i.e., “computer”, “sensor”, “image”, and 437 

“display”) tend to cause the two models to make incorrect predictions. These entities are much 438 

more ambiguous, most of which appear as normal expressions but not CEs in the database. This 439 

leads to an extra burden for the two models to discern what contextual information can determine 440 

the entity as a CE; (2) the CEs with more specific expressions (i.e., “display device”, “facilities 441 

map information”, “project management system”, “user interface”, and “location information”) 442 

tend to experience higher accuracy in both models. More specific expressions convey more word-443 

level and contextual information; (3) TBNN is much better for recognizing ambiguous entities, 444 

with higher accuracy in terms of precision and recall.  445 

446 
Fig. 9. Performance of TBNN and BLC over the ambiguous entities. 447 

 448 
To better illustrate the difference between the recognition process of the two models, Fig. 10 shows 449 

three sentences containing the ambiguous entity “user”, which may or may not be a CS depending 450 
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on the contextual information. The ambiguous entity “user” is a CS if the surrounding text indicates 451 

that it is involved in a communication context. In case 1, it is not difficult to identify that “user” is 452 

a CS, because the former part of this sentence expresses a communication activity involving 453 

transferred digital data and communication apparatus. Both models correctly recognized it. Case 454 

2 and case 3 are more complicated, in which TBNN correctly predicted but BLC did not. The word 455 

“user” in case 2 is a common word instead of a CS. But when the surrounding context incorporates 456 

CEs, BLC predicted it incorrectly as a CS. Case 3 expresses a communication scenario where the 457 

user is a participant. The difficulty lies in the vague expression of the communication environment. 458 

There are no other CEs in the sentence to provide contextual information. This also misled BLC 459 

to an incorrect prediction.  460 

  461 
Fig. 10. Examples of recognition of ambiguous entities. 462 
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5.5.3 Validation results in recognizing unknown entities 463 

Table 8 reports the validation results over unknown CEs, which were measured by recall values. 464 

Other validation measurements, including F-score and precision, are not measurable according to 465 

Eq.(6). Because FP is incalculable for unknown entities that appear in testing set but did not in 466 

training set. The results show that the performance of both models decreased in predicting 467 

unknown CEs. But TBNN’s recall value remains as 0.741, which is almost 20% larger than BLC.   468 

Table 8  469 
Recall value of TBNN and BLC for unknown CEs. 470 
TBNN   BLC Number of 

instances of 
unknown CEs Total Unknown CEs Total Unknown CEs 

0.841 0.741071   0.683 0.544642857 112 
 471 

5.5.4 Summary 472 

The tests validated a better capacity of TBNN to utilize the contextual information in recognizing 473 

CEs compared with BLC. It can be explained that TBNN has a deeper and thinner neural structure 474 

where the dependencies among the input tokens are addressed only by the self-attention 475 

mechanism, while the RNN-based structure has only one or two layers of neural networks. In 476 

addition, TBNN is found more effective in transmitting gradients, leading to a better learning 477 

ability than the RNN-based models. Compared with BLC that sequentially receives and transfers 478 

dependencies from a recurrence to the next, TBNN structure draws them parallelly. Furthermore, 479 

we also found that TBNN is robust in processing real-life documents other than patents. The paper 480 

showed superior performance of TBNN in recognizing CEs from a report of ICT applications in a 481 

public housing project.  482 

 483 
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Compared with similar NLP tasks in previous research, the performance of TBNN proposed in this 484 

study is above satisfactory. Especially, using unstructured data as training instances can increase 485 

the learning burden for NLP approaches. For example, Baker, et al. [66] used machine learning 486 

methods to predict safety outcomes from incident reports and obtained F-score of 0.85. Zhong, et 487 

al. [67] developed a deep learning model to classify construction accident narratives and reached 488 

F-score of 0.67, whereas Goh and Ubeynarayana [68] employed text mining techniques and got F-489 

score of 0.63 for the same task. As for entity recognition tasks in real-world cases, especially when 490 

the raw texts involve a large number of ambiguous entities, the general performance level is 491 

relatively low. For example, Zhu and Iglesias [16] developed an approach based on external 492 

linguistic materials and achieved F-score range from 0.529 to 0.765 according to different testing 493 

datasets. Although some research achieved acceptable precision scores, the proposed model also 494 

has its notable performance in dealing with ambiguous and unknown entities.  495 

6.  Conclusion  496 

This study proposed a TBNN model to recognize CEs from patents of ICT in construction. It 497 

provides an efficient alternative for construction practitioners and stakeholders to better access and 498 

comprehend the complex specifications of communication functionalities embedded in the patent 499 

documents. The deep learning techniques were employed to overcome the challenges in 500 

recognizing ambiguous and unknown entities. The proposed model was based on the Transformer 501 

as the basic neural networks to form the self-attention mechanism. It enables the utilization of 502 

contextual information. The TBNN structure enables parallel computation for the neurons and the 503 

parameters in the same layer, thus being expected with performance improvements compared with 504 

traditional RNN-based models. The validation results of multiple empirical tests confirmed this 505 
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expectation. It can be safely concluded that TBNN has higher performance in CE recognition 506 

compared with BLC, especially in the ones with ambiguous and unknown entities.  507 

 508 

The model presented in this study offers an effective approach to extract essential information on 509 

communication functionalities from the patent documents of ICT in construction. Regardless of 510 

diverse writing genres, it can automatically convert an unstructured document into structured and 511 

easy-to-perceive units which shows clearly how the ICT can be utilized in construction practices. 512 

The recognized CEs, similar to other entity recognition studies, can be used for further NLP 513 

applications, such as question answering, text summarization, and information retrieval. Moreover, 514 

the model provides an improved approach in applying entity recognition in the field of CEM. As 515 

an information extraction approach, entity recognition has not yet been widely adopted to real-516 

world cases like other NLP approaches. Because obtaining satisfactory accuracy entails a large 517 

corpus of linguistic materials, especially in the rule-based methods and traditional machine 518 

learning models. As for recognizing CEs from patents, such preconditions are too difficult to obtain. 519 

The proposed TBNN model, alternatively, utilized contextual information of the input sequences 520 

to identify and classify CEs out of common words. The model draws representations from the 521 

original input texts based on the architecture of neural networks without any need for pre-522 

engineered features. It also addresses highly non-linear associations between the representations 523 

and the outputs (the annotated CE tags) through the nouns and activation functions in each neural 524 

network layer.  525 

 526 

Two limitations to the presenting study are needed to be acknowledged. First, the deep learning 527 

model could automatically identify and classify CEs into pre-defined classes but cannot extract the 528 
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relations between the recognized CEs. These relations can provide further knowledge on 529 

communication functionalities underlying the patent documents. Second, this study employed the 530 

pre-training parameters based on Wikipedia materials. Although these pre-trained parameters can 531 

draw contextual representations from a widely covered corpus, the specific contexts of ICTs in 532 

construction might be overlooked. The model performance could be improved if using materials 533 

closely related to ICTs or CEM. 534 
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