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Abstract 11 

This paper examines optimal pricing and seat allocation schemes in passenger railway 12 

systems, where ticket pricing and seat allocation (or capacity allocation) are both 13 

Origin-Destination specific. We consider that the demand is sensitive to the ticket price, 14 

and a non-concave and non-linear mixed integer optimization model is then formulated 15 

for the ticket pricing and seat allocation problem to maximize the railway ticket revenue. 16 

To find the optimal solution of the ticket revenue maximization problem effectively, the 17 

proposed non-concave and non-linear model is reformulated such that the objective 18 

function and constraints are linear with respect to the decision variables or the 19 

logarithms of the decision variables. The linearized model is then further relaxed as a 20 

mixed-integer programing problem (MILP). Based on the above linearization and 21 

relaxation techniques, a globally optimal solution can be obtained by iteratively solving 22 

the relaxed MILP and adopting the range reduction scheme. Two numerical examples 23 

are presented for illustration. 24 
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1. Introduction 1 

Railway is a high-capacity travel mode for passengers with medium-to-long distance 2 

journeys in many countries, e.g., in China with a very dense population. It is reported 3 

that China has a railway network with over 1,210,000 km track at the end of 2015, and 4 

passenger traffic volume is 3,004.7 billion passenger kilometer in 2015.1 Particularly, 5 

China has the world’s longest high-speed railway network with over 19,000 km of track 6 

in service as of January 2016.2 These facts highlight that railway systems have been 7 

playing a crucial role in passenger transportation nowadays and support social and 8 

economic activities (Jiao et al., 2020; Yang et al., 2020; Zhang et al., 2020). 9 

 10 

Given the limited resources in railway networks and costly operation (especially high-11 

speed trains), it is of significant interest for a railway operator to maximize the ticket 12 

revenue by optimizing the spatiotemporal resource allocation, such as line planning, 13 

train scheduling, pricing, and seat allocation.3  The revenue management (RM) is a 14 

long-standing problem for many transportation sectors. For comprehensive reviews of 15 

RM in transportation, one may refer to Mcgill and Van Ryzin (1999), Talluri and van 16 

Ryzin (2004). Revenue management was initially introduced after the deregulation of 17 

the airline industry of the United States in 1970s (Ciancimino et al., 1999). In the past 18 

several decades, many studies examined the airline revenue management problem 19 

(Belobaba, 1987; Subramanian et al., 1999; Tong and Topaloglu, 2014). For instance, 20 

recently, Terciyanlı and Avṣar (2019) proposed the alternative risk-averse approaches 21 

for seat inventory control in airline networks. Fard et al. (2019) developed a dynamic 22 

programming approach for solving the seat overbooking problem of airlines. Much less 23 

attention has been paid to RM in passenger railway systems. For the railway system, an 24 

itinerary is usually built up by several legs, where each leg is identified by two 25 

consecutive stations traversed by a certain train. Thus, the RM of railway system may 26 

be regarded as a multi-leg single-fare problem when compared to the airline sector 27 

(Ciancimino et al., 1999). 28 

 29 

In recent years, there is a growing literature on railway revenue management. Several 30 

empirical studies have demonstrated that the RM plays an important role in railway 31 

transportation industry (Abe, 2007; Armstrong and Meissner, 2010; Wang et al., 2012). 32 

In particular, Armstrong and Meissner (2010) provided an overview and some detailed 33 

discussions on railway RM. For railway RM, ticket pricing and seat allocation problems 34 

have been studied, while these two aspects are often treated separately (Hetrakul and 35 

                                                             
1 Transportation development in China. <http://www.gov.cn/xinwen /2016-12/29/content_5154095.htm> 
2 Chinese high speed network to double in the latest master plan. 

<http://www.railwaygazette.com/news/infrastructure/single-view/view/chinese-high-speed-network-to-

double-in-latest-master-plan.html.> 
3 Ticket prices fluctuate, allowing the railway to dock flexibly with the market. 

<http://www.peoplerail.com/rail/show-466-418896-1.html.> 
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Cirillo, 2014; Qiu and Lee, 2019). The seat allocation (or capacity allocation) problem 1 

is to determine the number of seats of a train to be allocated to each Origin-Destination 2 

(OD) pair, i.e., determine the supplies for different markets, where one OD pair can be 3 

regarded as one market. The ticket pricing strategy is to manage or regulate the 4 

interaction between demand and supply. The seat allocation and pricing problems are 5 

intercorrelated and complementary to each other. This has already been recognized in 6 

RM studies (e.g., McGill and van Ryzin, 1999). 7 

8 

However, for the seat allocation problem in passenger railway systems, the ticket prices 9 

are often assumed to be fixed and only the capacity allocation is optimized. In this 10 

context, Ciancimino et al. (1999) studied a multi-leg seat inventory problem and 11 

developed both deterministic linear programming model and probabilistic nonlinear 12 

programming model for railway yield management. Following the deterministic linear 13 

programming model in Ciancimino et al. (1999), Wang et al. (2012) further proposed a 14 

mixed-integer linear optimization model for seat allocation and train dispatching in a 15 

single line high-speed railway system. Jiang et al. (2015) developed seat allocation 16 

models with dynamic adjustment based on short-term demand forecasting. More 17 

recently, Luo et al. (2016) developed an integer linear programming model for multi-18 

train seat allocation problem with different stopping patterns. Yuan et al. (2018) 19 

introduced a bid price approach for seat inventory control problem. Yan et al. (2020) 20 

further optimized the seat allocation based on the flexible train composition. Following 21 

the probabilistic nonlinear programming model in Ciancimino et al. (1999), You (2008) 22 

incorporated the pricing discount and developed an efficient heuristic approach to 23 

determine the ticket booking limits of the railway seat inventory control system. Wang 24 

et al. (2016) formulated the seat allocation problem with single-stage and multi-stage 25 

decisions as two stochastic programming models that incorporate the passenger choice 26 

behaviors. 27 

28 

The joint optimization of pricing and seat allocation in railway networks has not 29 

received sufficient attention. As far as the authors know, Ongprasert (2006) was among 30 

the earliest to examine the seat allocation problem in relation to railway RM and 31 

discussed the combination of discounted ticket fare and seat allocation. Hetrakul and 32 

Cirillo (2014) jointly optimized the pricing and seat allocation for railway systems, 33 

using multinomial logit model and latent class to capture the ticket purchasing times of 34 

passengers. Hu et al. (2020) established a nonlinear programming model for joint 35 

optimization of pricing and seat allocation in high-speed rail system, where it followed 36 

the Davidon-Fletcher-Powell method to design a gradient-based algorithm. For the joint 37 

optimization problem of ticket pricing and seat allocation, the mathematical models are 38 

often non-concave and non-linear. None has proposed a global optimization solution 39 

procedure yet. While joint optimization of railway pricing and seat allocation is studied 40 
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to a very limited extent, there are many studies on railway network passenger 1 

assignment (Xu et al., 2018a,b; Xu et al., 2021), and urban transit or rail service network 2 

design (e.g., Li et al., 2012; Li et al., 2018; Canca et al., 2019; Zhou et al., 2021), and 3 

passenger-freight integrated urban rail service design (e.g., Li et al., 2021). 4 

 5 

The joint optimization problem of pricing and seat allocation has received more 6 

attention in the airline market. For instance, Kuyumcu and Garcia-Diaz (2000) 7 

considered joint pricing and seat allocation problem for airline networks and formulated 8 

the 0-1 integer programming models to optimize the decision (accept or reject) for each 9 

passenger and the price structure for each origin-destination pair. Bertsimas and de Boer 10 

(2002) studied a joint pricing and seat allocation problem in airline revenue 11 

management, where the optimization problem is not always concave but can be concave 12 

for certain types of demand distributions and the iterative non-linear optimization 13 

algorithm adopted does not always guarantee the solution optimality. Cote et al. (2003) 14 

built a bi-level programming model to jointly solving the pricing and seat allocation 15 

problem with fixed demand, where the upper-level deals with the seat allocation and 16 

the lower-level deals with the train fares. Chew et al. (2009) developed a discrete time 17 

dynamic programming model to jointly optimizing pricing and seat allocation in order 18 

to maximize the expected revenue for a single product with a predetermined lifetime, 19 

where the stochastic demand has a mean as a linear function of price and the authors 20 

used an enumeration method to find the optimal solution. More recently, Cizaire (2011) 21 

proposed both deterministic and stochastic models to solve the joint optimization 22 

problems of airline fare and seat allocation for two products and two timeframes. 23 

 24 

In airline pricing and seat allocation problems, an airplane usually only serves 25 

passengers with one leg, i.e., one origin and one destination (e.g., Cote et al., 2003; 26 

Chew et al., 2009). For railway systems, especially high-speed railways, there can be 27 

many trains serving a large number of stations (i.e., multiple OD pairs) and different 28 

trains can have different stopping patterns (i.e., each train might serve a different set of 29 

stations). Therefore, in the seat allocation problem for railway systems, one need to 30 

accommodate the train-specific and OD-specific capacity constraints resulting from the 31 

seat allocation scheme. Moreover, the pricing control and seat allocation (quantity 32 

control) jointly govern the demand and thus the railway revenue, where the seat 33 

allocation scheme constrains the demand for each OD pair and the pricing further 34 

manages the demand. More critically, in the joint optimization problem of pricing and 35 

seat allocation, we have both pricing variables and train-and-OD-specific seat 36 

allocation variables that define the capacity constraints. To solve such a problem for 37 

railway systems is challenging, given that the problem size is larger and the problem 38 

structure is more complicated when compared to aviation system. This indeed 39 

motivates the current study to propose an effective iterative algorithm to obtain the 40 
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optimal solution for pricing and seat allocation, where the joint optimization problem 1 

of pricing and seat allocation can be formulated as a non-concave and non-linear mixed 2 

integer programming model. 3 

4 

In Table 1, we present a summary of studies regarding the joint optimization of train 5 

service pricing and seat allocation that have been reviewed in this section and highlight 6 

the contribution of this paper against the existing literature. In particular, this paper 7 

develops a joint optimization modelling framework of pricing and seat allocation for 8 

railway systems. We maximize the ticket revenue of the railway system considering 9 

elastic demand and multiple trains with multiple stopping patterns.4 The demand is 10 

assumed as an exponential function of the train service price. A non-concave and non-11 

linear mixed integer model is developed for the train service pricing and seat allocation 12 

optimization problem. In order to find the optimal solution of the pricing and seat 13 

allocation problem, the proposed non-concave and non-linear model is reformulated 14 

and relaxed as a mixed-integer programing problem (MILP). An optimal solution is 15 

then obtained by iteratively solving the relaxed MILP and adopting a range reduction 16 

scheme. The method is tested and illustrated with two numerical examples: a toy 17 

network example and a real-world network of Ninghang railway. Its advantages are also 18 

shown through comparison with the solvers embedded in MATLAB. This study 19 

contributes to the literature as follows. (i) This study is the first to propose the linear 20 

relaxation technique and interval reduction scheme to solve the joint optimization 21 

problem of train service pricing and seat allocation in railway system under elastic 22 

demand, which is formulated as a non-concave and non-linear mixed integer 23 

optimization model. The effectiveness and applicability of the proposed method is 24 

demonstrated with both toy network and real-world network examples. (ii) This study 25 

illustrates how to obtain the upper and lower bounds of the railway pricing and seat 26 

allocation optimization problem. This adds further examples to the literature on how 27 

these techniques can be utilized to solve railway system optimization problems. 28 

29 

4  Railway systems might have different objectives (e.g., social welfare maximization or revenue 

maximization). This paper focuses on the case of revenue maximization. Indeed, railway revenue/yield 

management has been considered by many studies (Ciancimino et al., 1999; Hetrakul et al., 2014; Wang 

et al., 2016; Canca et al., 2019; Hu et al., 2020). Some studies considered both the railway revenue and 

social equity (Zhan et al., 2020). In China, the central government has reformed the national railway 

organization and established the China National Railway Group Co., Ltd to improve its economic 

efficiency and market competitiveness. In particular, the central government has delegated the pricing 

power of high-speed railway service to railway enterprises, enabling them to price freely within a certain 

range given by the government in response to factors such as market supply, demand and competition 

with other modes. This is the case considered in the current study. 
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Table 1. A summary of studies on joint optimization problems of pricing and seat allocation in aviation or railway systems 1 

Authors 
Travel 

mode 
Demand model 

Multiple 

legs 

Multiple 

trains 

Multiple 

stop 

patterns 

Simultaneous 

optimization 
Model Solution algorithm 

Global 

optimization 

algorithm 

Weatherford 

(1997) 
Airline 

Linear function of 

price with cross 

elasticities 

 -- -- √ 

Non-concave non-

linear programming 

model 

Spreadsheet-based nonlinear 

optimizer/Fletcher-Reeves-

Polak-Ribiere algorithm 

 

Kuyumcu and 

Garcia-Diaz 

(2000) 

Airline 

Normally 

distributed 

demand 

√ -- --  

0-1 integer non-

linear programming 

model 

Software: CPLEX  

Bertsimas and de 

Boer (2002) 
Airline Function of Price √ -- --  

Non-concave non-

linear model 

An iterative non-linear 

optimization algorithm 
 

Cote et al. (2003) Airline Fixed demand √ -- --  
Bi-level 

programming model 
Heuristics algorithm  

Ongprasert (2006) Railway Nested logit √    
Linear 

programming model 

Qprog program in GAUSS 

software 
√ 

Chew et al. 

(2008) 
Airline 

Linear function of 

price 
 -- --  

Dynamic 

programming model 

An enumeration 

algorithm/heuristics algorithm 
 

Cizaire (2011) Airline Function of price  -- -- √ 
Non-concave non-

linear model 

An interior point algorithm in 

/ Powell's algorithm/ heuristic 

algorithm 

 

Hetrakul and 

Cirillo (2014) 
Railway 

Log-linear 

demand functions 
√ √  √ 

Non-concave non-

linear model 
Software: LINGO  

Hu et al. (2020) Railway 
Exponential 

demand function 
√ √ √ √ 

Non-concave non-

linear model 

Davidon–Fletcher–Powell 

method 
 

This study Railway 
Exponential 

demand function 
√ √ √ √ 

Non-concave non-

linear mixed integer 

programming model 

A linearization-based 

optimization algorithm 
√ 

2 
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The rest of the paper is organized as follows. Section 2 summarizes the notations and 1 

the major model assumptions. Section 3 formulates the joint optimization model of train 2 

service pricing and seat allocation. Section 4 designs the solution algorithm and proves 3 

the optimality of the algorithm. Two numerical examples (on a small toy network and 4 

a real-world regional network, respectively) are provided in Section 5. Finally, Section 5 

6 concludes the paper. 6 

 7 

2. Basic considerations 8 

In this section, we firstly list the notations and then summarize the major assumptions 9 

for the joint optimization problem of railway service pricing and seat allocation.  10 

 11 

2.1 Notations 12 

We list the major notations in the following. 13 

Sets and indices 

𝑤 OD pair 

𝑊 set of OD pairs (with 𝑤 ∈ 𝑊) 

𝐾 total number of trains 

𝐾𝑤 set of trains serving the OD pair 𝑤 

𝑘 index of a train (where 𝑘 = 1,2,⋯𝐾) 

𝑊𝑘 set of OD pairs served by train 𝑘 

𝐿 total number of (rail track) sections 

𝑙 a section (where 𝑙 = 1,2,⋯𝐿), which is the rail track link between stations 

  

Parameters 

𝑝𝑤 the lower bound of rail service price for OD pair 𝑤 

�̅�𝑤 the upper bound of rail service price for OD pair 𝑤 

𝛿𝑤𝑙
𝑘  a binary variable, which equals one if OD pair 𝑤 served by train 𝑘 covers the 

rail section 𝑙 and 0 otherwise. 

𝛿𝑤
𝑘  a binary variable, which equals one if OD pair 𝑤 is served by train 𝑘 and 0 

otherwise 

�̅�𝑤 the potential demand for OD pair 𝑤 

𝑄𝑤(𝑝𝑤) elastic demand function with respect to ticket price 𝑝𝑤 for OD pair 𝑤 

𝜂𝑤 a parameter in the demand function 

𝑐𝑘 the capacity for train 𝑘 

  

Variables 

𝑝𝑤 train service price for OD pair 𝑤 

𝑏𝑤
𝑘  number of seats assigned to OD pair 𝑤 in train 𝑘 

𝑥𝑤 number of passengers purchasing the tickets between OD pair 𝑤 

 14 

2.2 Assumptions 15 

We now summarize the main assumptions for the joint optimization problem of railway 16 
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service pricing and seat allocation and briefly discuss them below. 1 

2 

A1. (Elastic demand) The demand for a given OD pair decreases with the rail service 3 

price. 4 

A2. (OD specific pricing) The rail service prices are OD pair specific, but not train 5 

specific.  6 

A3. Each train has only one seat class.  7 

A4. Ticket overbooking is not considered. 8 

9 

The travel demand is governed by many different factors, such as the service price, 10 

service quality (e.g., travel time, service reliability, comfort), which can be modeled as 11 

a function of the generalized travel cost (including both monetary and non-monetary 12 

costs). This paper considers that other factors such as service quality are given, and the 13 

demand is then only a function of the service price and decreases with the price 14 

(Assumption A1). This treatment is similar to some existing studies, e.g., Hu et al. (2020) 15 

and Yan et al. (2020). 16 

17 

The OD-specific pricing in Assumption A2 reflects the current practice in China, while 18 

it is noteworthy that the proposed model can be readily modified to incorporate train-19 

specific pricing. 20 

21 

While Assumption A3 assumes a single seat class for a train, for the case with multiple 22 

seat classes in one train, the proposed model is readily applicable where a train with 23 

multiple seat-classes can be regarded as multiple trains and each train has one specific 24 

seat class. 25 

26 

Assuming no overbooking in Assumption A4 reflects the current railway system 27 

practice in China. In railway passenger transportation in China, ticket purchase and seat 28 

selection are completed at the same time, and the ticket purchase is train-and-seat-29 

specific. It follows that there will be no overbooking. However, a future study may 30 

consider railway system overbooking in order to accommodate demand uncertainty and 31 

ticket cancelation issues, which are similar to the aviation market. 32 

33 

3. Problem formulation34 

In this section, we first illustrate the railway service pricing and seat allocation problem 35 

and then present the formulations for jointly optimizing service pricing and seat 36 

allocation in the railway system.  37 

3.1 Problem description 38 

This study concerns the joint optimization of pricing and seat allocation in order to 39 
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maximize railway revenue, where the train scheduling is given. The demand is sensitive 1 

to the pricing. The railway operator can adjust the number of seats in a train that is 2 

allocated to any OD pair served by this train and the corresponding price (or fare) for 3 

each OD pair in order to maximize the revenue of the railway system. 4 

5 

We use a simple example below to illustrate the necessity of jointly optimizing pricing 6 

and seat allocation in order to maximize revenue. As shown in Fig. 1, we consider a 7 

network with one train traveling from A to B and then to C with one cabin class, where 8 

the train has 20 seats in total (train capacity). There are three OD pairs: AB, BC and 9 

AC. We can see that AC and AB share the same leg AB, while AC and BC share the 10 

same leg BC. The demand for a specific OD pair decreases with the service price for 11 

this OD pair. In particular, for OD pairs AB, BC and AC, the demand functions are 12 

25−2×price, 20−1×price, 24−2×price, respectively. 13 

14 

The railway operator can adjust the number of seats assigned to each OD pair and the 15 

corresponding service price. For illustration, we consider three solutions, as 16 

summarized in Table 2. It is evident that inappropriate seat allocation and pricing will 17 

yield inefficiency in revenue and the railway operator should choose the seat allocation 18 

scheme and pricing in Case 2 in order to generate the maximal revenue, i.e., 246 CNY, 19 

among the three cases.  20 

21 

While joint optimization of pricing and seat allocation can help increase system revenue, 22 

to solve such a problem in a network with complicated stopping patterns of multiple 23 

trains is challenging, especially when pricing and seat allocation are intercorrelated. 24 

This paper aims to develop a global optimization method for pricing and seat allocation 25 

schemes in passenger railway systems. 26 

27 

28 
Fig. 1. The network with three stations: an illustrative example 29 

30 

Table 2. Three cases of service pricing and seat allocation schemes 31 

OD 

Service pricing and seat allocation schemes 

Case 1 Case 2 Case 3 

Ticket 

fare 

Seat 

allocation 

Dema

nd 

Ticket 

fare 

Seat 

allocation 

Dema

nd 

Ticket 

fare 

Seat 

allocation 

Dema

nd 

AB 5 10 15 7 11 11 8 10 9 

AC 10 10 10 11 9 9 15 10 5 

BC 6 10 12 7 11 10 10 10 4 

A B C
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Profit 

(CNY) 
 210  246  187 

 1 

3.2 Model formulation 2 

Consider a railway network with many lines and trains. We define the rail track link 3 

between two stations as the “section” and denote the set of sections by 𝐿. Denote the 4 

set of trains by 𝐾. For each section 𝑙 ∈ 𝐿, there can be multiple trains running on it. 5 

Moreover, denote the set of OD pairs by 𝑊. For each OD pair 𝑤 ∈ 𝑊, there can be 6 

multiple trains serving it. 7 

 8 

For each OD pair 𝑤 ∈ 𝑊, denote the total potential demand as �̅�𝑤 > 0. The demand 9 

for a given OD pair (Shi et al., 2014; Yan et al., 2020; Hu et al., 2020) decreases with 10 

the rail service price for this OD pair, which is given as follows: 11 

𝑄𝑤(𝑝𝑤) = �̅�𝑤 ∙ exp(−𝜂𝑤 ∙ 𝑝𝑤),𝑤 ∈ 𝑊                                                           (1)    12 

where 𝑝𝑤 is the rail service price and 𝜂𝑤 is a coefficient for OD pair 𝑤 ∈ 𝑊. Note 13 

that the demand function should be appropriately calibrated, where many existing 14 

studies provided approaches to solve the demand calibration problem based on real-15 

world data (Sancho, 2009; Flötteröd et al., 2011; Osorio, 2019). In this paper, the 16 

coefficient 𝜂𝑤 should be calibrated, which is often related to alternative travel modes 17 

(e.g., airline or highway) and passengers’ socioeconomic attributes. As discussed in 18 

Section 2.2, we consider that other factors that affect travel demand such as service 19 

quality are given and fixed, and the demand is then only a function of the service price. 20 

Moreover, we adopt the exponential function for modeling the demand.5 Furthermore, 21 

we consider that the rail service price 𝑝𝑤 for OD pair 𝑤 ∈ 𝑊 is bounded (which is 22 

subject to local policies, e.g., the fares in China’s high-speed rail system are subject to 23 

related regulations6), i.e., 24 

𝑝𝑤 ≤ 𝑝𝑤 ≤ �̅�𝑤, ∀𝑤 ∈ 𝑊                                                                              (2) 25 

where 𝑝𝑤 and �̅�𝑤 are the lower and upper bounds and  �̅�𝑤 ≥ 𝑝𝑤 ≥ 0. 26 

 27 

We now further discuss the seat allocation scheme of trains. For train 𝑘 ∈ 𝐾, denote its 28 

seat capacity by 𝑐𝑘. We further define 𝑏𝑤
𝑘  as the number of seats assigned to OD pair 29 

                                                             
5 This study is not restricted to the proposed exponential function form for the travel demand. The main 

feature that should be respected is that the demand should decrease with respect to ticket price. In addition, 

if the demand function is linear, convex or concave with respect to the ticket price, the proposed bounding 

techniques and solution approach in Section 4 will still be applicable, while using the logarithmic 

functions in Section 3.3 might not be necessary and relevant anymore. 
6 National Railway Administration of the People’s Republic of China. 

< http://www.nra.gov.cn/jgzf/flfg/gfxwj/zt/other/201602/t20160222_21192.shtml > 
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𝑤 in train 𝑘. Then the seat capacity constraints can be described as 1 

∑ 𝛿𝑤𝑙
𝑘 ∙ 𝑏𝑤

𝑘

𝑤∈𝑊𝑘

≤ 𝑐𝑘, ∀𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾       (3) 2 

𝑏𝑤
𝑘 ≥ 0,  ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊  (4) 3 

𝑏𝑤
𝑘  integer,   ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊  (5) 4 

where 𝑊𝑘  is the set of OD pairs served by train 𝑘  and 𝛿𝑤𝑙
𝑘 is a binary variable, 5 

which equals one if OD pair 𝑤 served by train 𝑘 covers section 𝑙 and zero otherwise. 6 

It should be noted that 𝑊𝑘 is determined based on the stopping patterns of trains. The 7 

total number of seats/tickets assigned to OD pair 𝑤, i.e., 𝑏𝑤, can be given as follows: 8 

𝑏𝑤 = ∑ 𝑏𝑤
𝑘

𝑘∈𝐾𝑤

,  ∀𝑤 ∈ 𝑊  (6) 9 

where 𝐾𝑤 is the set of trains serving the OD pair 𝑤. It is noteworthy that the above 10 

OD pair specific and train specific seat allocation is an important feature of railway 11 

systems when compared to aviation systems. 12 

13 

For each OD pair 𝑤 ∈ 𝑊, the demand 𝑄𝑤(𝑝𝑤) given in Eq. (1) is further constrained14 

by 𝑏𝑤 in Eq. (6). The realized demand between OD pair 𝑤, i.e., 𝑥𝑤, can be given as 15 

follows:  16 

𝑥𝑤 = min{⌊𝑄𝑤(𝑝𝑤)⌋, 𝑏𝑤}  (7) 17 

or 18 

{
𝑥𝑤 = 𝑏𝑤 ,        𝑖𝑓 𝑄𝑤(𝑝𝑤) − 𝑏𝑤 > 0

𝑥𝑤 = ⌊𝑄𝑤(𝑝𝑤)⌋,   𝑖𝑓 𝑄𝑤(𝑝𝑤) − 𝑏𝑤 ≤ 0
 (8) 19 

where ⌊𝑥⌋ is equal to the largest integer that is no greater than 𝑥. The ticket revenue 20 

from OD pair 𝑤 then can be calculated as (𝑝𝑤 ∙ 𝑥𝑤).21 

22 

We are now ready to formulate the rail service pricing and seat allocation problem. The 23 

objective is to maximize the total ticket revenue. The “Mathematical Programming 24 

model of Pricing and Seat allocation optimization” (MPPS) can be written as follows: 25 

max𝑍 = ∑ 𝑝𝑤 ∙ 𝑥𝑤
𝑤∈𝑊

  (9) 26 

s.t. Eqs. (1) − (7) 27 

where the objective function in Eq. (9) is the ticket revenue from all OD pairs. Similar 28 

revenue function has been adopted in many existing studies (Ciancimino et al., 1999; 29 

Hetrakul et al., 2014; Wang et al., 2016; Canca et al., 2019; Hu et al., 2020). 30 
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 1 

Furthermore, the constraint in Eq. (7) can be replaced by the following: 2 

−𝐿 ∙ 𝜎𝑤 ≤ 𝑄𝑤(𝑝𝑤) − 𝑏𝑤 ≤ 𝐿 ∙ (1 − 𝜎𝑤)                                                       (10) 3 

−𝐿 ∙ (1 − 𝜎𝑤) ≤ 𝑥𝑤 − ⌊𝑄𝑤(𝑝𝑤)⌋ ≤ 𝐿 ∙ (1 − 𝜎𝑤)                                        (11) 4 

−𝐿 ∙ 𝜎𝑤 ≤ 𝑥𝑤 − 𝑏𝑤 ≤ 𝐿 ∙ 𝜎𝑤                                                                            (12) 5 

where 𝐿 is a large positive constant and 𝜎𝑤 is a binary variable indicating whether 6 

𝑄𝑤(𝑝𝑤) is greater than 𝑏𝑤, i.e., if 𝜎𝑤 = 1, then 𝑄𝑤(𝑝𝑤) ≤ 𝑏𝑤 and 𝑥𝑤 = ⌊𝑄𝑤(𝑝𝑤)⌋; 7 

otherwise, 𝑄𝑤(𝑝𝑤) ≥ 𝑏𝑤  and 𝑥𝑤 = 𝑏𝑤 . Alternatively, we can simply add the 8 

following three constraints to replace Eq. (7) 9 

𝑥𝑤 ≤ 𝑄𝑤(𝑝𝑤)                                                                                                       (13) 10 

𝑥𝑤 ≤ 𝑏𝑤                                                                                                                 (14) 11 

𝑥𝑤  integer                                                                                                            (15) 12 

We can either adopt Eqs. (10)-(12) or Eqs. (13)-(15) to replace the original constraint 13 

in Eq. (7). In this paper, we adopt Eqs. (13)-(15) since less variables and inequalities 14 

are involved. Therefore, the MPPS can be rewritten as follows: 15 

max𝑍 = ∑ 𝑝𝑤 ∙ 𝑥𝑤
𝑤∈𝑊

                                                                                        (16) 16 

s.t.      Eqs. (1) − (6) and (13) − (15). 17 

As the objective function is quadratic and the constraint in Eq. (1) is non-linear, the 18 

above MPPS model is a non-concave and non-linear model, where the non-concavity 19 

is further illustrated in Appendix A. 20 

 21 

3.3 Model reformulation with logarithmic functions 22 

We now introduce the linearization techniques adopted to facilitate solving the MPPS 23 

model. In particular, this subsection will first reformulate the MPPS model such that 24 

the objective function and many of the constraints will be linear with respect to the 25 

decision variables, and only a few constraints will be nonlinear (but is linear with 26 

respect to the logarithms of the decision variables). It can be seen below that, given the 27 

exponential demand function, using logarithm is a simple and straightforward way to 28 

reduce the nonlinearity involved in the model formulation, especially in the objective 29 

function (Section 4 will further discuss how to deal with the remaining nonlinearity in 30 

the constraints of the proposed model). 31 

 32 

For the non-linear objective function in Eq. (16), we define 𝑦𝑤 = 𝑝𝑤 ∙ 𝑥𝑤, then the 33 

objective function in Eq. (16) can be represented by 34 
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𝑍 = ∑ 𝑦𝑤
𝑤∈𝑊

                                                                                                          (17) 1 

𝑦𝑤 = 𝑝𝑤 ∙ 𝑥𝑤,           ∀𝑤 ∈ 𝑊                                                                            (18) 2 

By applying logarithm on both sides of Eq. (18), we have  3 

ln(𝑦𝑤) = ln(𝑝𝑤) + ln(𝑥𝑤),          ∀𝑤 ∈ 𝑊                                                    (19) 4 

Let 𝐿𝑥𝑤 =  ln(𝑥𝑤), 𝐿𝑦𝑤= ln(𝑦𝑤), and 𝐿𝑝𝑤 = ln(𝑝𝑤), then  5 

𝐿𝑦𝑤 = 𝐿𝑝𝑤 + 𝐿𝑥𝑤,                          ∀𝑤 ∈ 𝑊                                                    (20) 6 

With the demand function in Eq. (1), by applying logarithm on both sides of Eq. (13), 7 

we have  8 

ln(𝑥𝑤) ≤ ln(𝑄𝑤(𝑝𝑤)) = ln(�̅�𝑤) − 𝜂𝑤 ∙ 𝑝𝑤, ∀𝑤 ∈ 𝑊                      (21) 9 

Eqs. (1) and (13) then can be replaced by Eq. (21), where Eq. (21) can be rewritten as  10 

𝐿𝑥𝑤 ≤ ln(�̅�𝑤) − 𝜂𝑤 ∙ 𝑝𝑤, ∀𝑤 ∈ 𝑊                                                        (22) 11 

In summary, the original MPPS model can be reformulated (termed as RMPPS model) 12 

as follows: 13 

max𝑍 = ∑ 𝑦𝑤
𝑤∈𝑊

                                                                                                (23) 14 

s.t. 15 

𝐿𝑦𝑤 = 𝐿𝑝𝑤 + 𝐿𝑥𝑤,                          ∀𝑤 ∈ 𝑊                                                     (24) 16 

𝐿𝑥𝑤 ≤ ln(�̅�𝑤) − 𝜂𝑤 ∙ 𝑝𝑤,              ∀𝑤 ∈ 𝑊                                                    (25) 17 

𝐿𝑥𝑤 =  ln(𝑥𝑤),                                 ∀𝑤 ∈ 𝑊                                                    (26) 18 

𝐿𝑦𝑤= ln(𝑦𝑤),                                     ∀𝑤 ∈ 𝑊                                                   (27) 19 

𝐿𝑝𝑤 = ln(𝑝𝑤),                                   ∀𝑤 ∈ 𝑊                                                   (28) 20 

𝑝𝑤 ≤ 𝑝𝑤 ≤ �̅�𝑤,                                 ∀𝑤 ∈ 𝑊                                                   (29) 21 

∑ 𝛿𝑤𝑙
𝑘 ∙ 𝑏𝑤

𝑘

𝑤∈𝑊𝑘

≤ 𝑐𝑘,                          ∀𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾                                          (30) 22 

𝑏𝑤
𝑘 ≥ 0,                                                ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊                                     (31) 23 

𝑥𝑤 ≤ ∑ 𝑏𝑤
𝑘

𝑘∈𝐾𝑤

,                                    ∀𝑤 ∈ 𝑊                                                 (32) 24 

𝑏𝑤
𝑘   integer,                                         ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊                                     (33) 25 

𝑥𝑤  integer,                                         ∀𝑤 ∈ 𝑊                                                  (34) 26 

 27 

In the above reformulated model (RMPPS), the objective function in Eq. (23) and the 28 
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constraints in Eqs. (24), (25), (29)-(34) are linear, and the constraints in Eqs. (26)-(28) 1 

are non-linear but the nonlinearity only involves the logarithms of the decision variables. 2 

Section 4 will further discuss how to deal with the nonlinear constraints in Eqs. (26)-3 

(28) in order to provide lower and upper bounds for the model. 4 

 5 

4. Solution algorithm 6 

To solve the RMPPS model proposed in Section 3, this section first discusses how to 7 

further relax the logarithmic function based on the cut scheme of the variable interval 8 

in Subsection 4.1. Then in Subsection 4.2, we transform the RMPPS model into a 9 

relaxed mix-integer linear programming problem in order to obtain the upper bound of 10 

the RMPPS with the relaxation of the logarithmic function (from Subsection 4.1) and 11 

construct the feasible solution as the lower bound of the RMPPS. Moreover, in 12 

Subsection 4.3 we adopt a range reduction technique, which is coupled with the relaxed 13 

mix-integer linear programming problem, to further decrease the computation cost of 14 

the algorithm. In Subsection 4.4, we describe the detailed process of the solution 15 

algorithm and discuss its convergence to the globally optimal solution. 16 

 17 

4.1 Linear relaxation  18 

In Subsection 3.2, the original MPPS is reformulated into the RMPPS model with the 19 

objective function and some constraints being linear in terms of the decision variables. 20 

The RMPPS is still non-linear considering the logarithms. However, the nonlinearity of 21 

RMPPS only relates to the logarithm function, i.e., ln(𝑥𝑤), ln(𝑦𝑤), and ln(𝑝𝑤). To 22 

ease the presentation, we define 𝐻 = {𝑥𝑤, 𝑦𝑤 , 𝑝𝑤, ∀ 𝑤 ∈ 𝑊 } and ℎ𝑤 ∈ 𝐻 might be 23 

used to indicate 𝑥𝑤, 𝑦𝑤, or 𝑝𝑤. 24 

 25 

Similar to existing studies (e.g., Wang and Lo, 2010; Wang et al., 2015; Liu and Wang, 26 

2015; Liu et al., 2019), a piecewise linear relaxation is introduced, as shown in Fig. 2. 27 

We take the logarithm function 𝐿ℎ𝑤 = ln(ℎ𝑤), ℎ𝑤 ∈ 𝐻 as an example to elaborate the 28 

linear relaxation. Denote ℎ𝑤 and ℎ𝑤 as the predefined lower and upper bounds of 29 

ℎ𝑤. In particular, for ℎ𝑤 = 𝑥𝑤, the lower and upper bounds, i.e., 𝑥𝑤 and 𝑥𝑤 can be 30 

set to be zero and �̅�𝑤 ∙ exp (−𝜂𝑤 ∙ 𝑝𝑤). For ℎ𝑤 = 𝑦𝑤, its lower bound 𝑦𝑤 can be set 31 

to be zero. Moreover, with Eqs. (13) and (18), we have  32 

𝑦𝑤 = 𝑝𝑤 ∙ 𝑥𝑤 ≤ 𝑝𝑤 ∙ �̅�𝑤 ∙ exp(−𝜂𝑤 ∙ 𝑝𝑤)                                                           (35) 33 

Then, the upper bound 𝑦
𝑤

 can be set as  34 
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𝑦
𝑤
= {

�̅�𝑤 ∙ exp(−1)

𝜂𝑤
,  𝑖𝑓 𝑝𝑤 ≤

1

𝜂𝑤
≤ �̅�𝑤

𝑚𝑎𝑥 {𝑝𝑤 ∙ �̅�𝑤 ∙ exp(−𝜂𝑤 ∙ 𝑝𝑤)|𝑝𝑤 = 𝑝𝑤, �̅�𝑤} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(36) 1 

The interval [ℎ𝑤, ℎ𝑤] can be further divided uniformly into 𝑁 − 1 intervals by the 2 

set of points ℎ𝑤
𝑛  as given in Eq. (37). As shown in Fig. 2, the tangential support is 3 

constructed at each point ℎ𝑤
𝑛   and the curve chords are formed by connecting two 4 

adjacent points ℎ𝑤
𝑛  and ℎ𝑤

𝑛+1 for 𝑛 = 1,2,⋯𝑁 − 1. The linear relaxation of ln(ℎ𝑤)5 

is set to be the region below all tangent lines and above all curve chords. Then the 6 

relaxation of ln(ℎ𝑤)  with breakpoints ℎ𝑤
𝑛  , 𝑛 = 1,2,⋯ ,𝑁  can be constructed as7 

follows: 8 

𝐿ℎ𝑤 ≤ ln(ℎ𝑤
𝑛 ) − 1 +

ℎ𝑤

ℎ𝑤
𝑛 , ∀ℎ𝑤

𝑛 = ℎ𝑤 +
ℎ𝑤−ℎ𝑤

𝑁−1
∙ (𝑛 − 1), 𝑛 = 1,2,⋯ , 𝑁    (37)9 

∑𝜃ℎ𝑤
𝑛 ∙ ℎ𝑤

𝑛

𝑁

𝑛=1

= ℎ𝑤  (38) 10 

∑𝜃ℎ𝑤
𝑛 ∙ ln(ℎ𝑤

𝑛 )

𝑁

𝑛=1

≤ 𝐿ℎ𝑤  (39) 11 

∑𝜃ℎ𝑤
𝑛

𝑁

𝑛=1

= 1  (40) 12 

𝜃ℎ𝑤
𝑛 ≥ 0, 𝑛 = 1,2,⋯ ,𝑁  (41) 13 

𝜃ℎ𝑤
𝑛 ≤ 𝜆ℎ𝑤

𝑛−1 + 𝜆ℎ𝑤
𝑛 ,    𝑛 = 2,3,⋯ ,𝑁 − 1 ; 𝜃ℎ𝑤

1 ≤ 𝜆ℎ𝑤
1  ; 𝜃ℎ𝑤

𝑁 ≤ 𝜆ℎ𝑤
𝑁−1  (42) 14 

∑𝜆ℎ𝑤
𝑛

𝑁−1

𝑛=1

= 1  (43) 15 

𝜆ℎ𝑤
𝑛 = {0,1},    𝑛 = 1,2,⋯ , 𝑁 − 1  (44) 16 

In Eq. (37), as the right-hand side denotes all the tangent lines, Eq. (37) represents the 17 

upper bound of ln(ℎ𝑤) , i.e., 𝐿ℎ𝑤  are below the tangent lines. If ℎ𝑤  is within the18 

interval [ℎ𝑤
𝑛∗ , ℎ𝑤

𝑛∗+1], then Eqs. (40)-(44) mean that only the values of 𝜃ℎ𝑤
𝑛∗ and 𝜃ℎ𝑤

𝑛∗+119 

are no less than zero and other values of 𝜃ℎ𝑤
𝑛 are all equal to zero. Then the left-hand 20 

side of Eq. (39) represents the curve chord from (ℎ𝑤
𝑛∗ , ln(ℎ𝑤

𝑛∗)) to (ℎ𝑤
𝑛∗+1, ln(ℎ𝑤

𝑛∗+1)).21 

Therefore, Eqs. (38)-(44) together constrain 𝐿ℎ𝑤 to be greater than those defined by 22 

all curve chords. 23 
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Fig. 2. Linear relaxation of the logarithm function 2 

 3 

4.2 Relaxed mixed-integer linear program  4 

Given the predefined breakpoints of the variables 𝑥𝑤, 𝑦𝑤 and 𝑝𝑤, the linear relaxation 5 

in Section 4.1 transforms the non-linear constraints in Eqs. (26)-(28) into the linear 6 

constraints in Eqs. (37)-(44). With the above linear relaxation, the RMPPS is relaxed 7 

into the following mixed-integer linear program (RMILP). 8 

max𝑍 = ∑ 𝑦𝑤
𝑤∈𝑊

                                                                                                      (45) 9 

s.t. 10 

𝐿𝑦𝑤 = 𝐿𝑝𝑤 + 𝐿𝑥𝑤,                          ∀𝑤 ∈ 𝑊                                                          (46) 11 

𝐿𝑥𝑤 ≤ ln(�̅�𝑤) − 𝜂𝑤 ∙ 𝑝𝑤,              ∀𝑤 ∈ 𝑊                                                          (47) 12 

𝑝𝑤 ≤ 𝑝𝑤 ≤ �̅�𝑤,                                 ∀𝑤 ∈ 𝑊                                                        (48) 13 

∑ 𝛿𝑤𝑙
𝑘 ∙ 𝑏𝑤

𝑘

𝑤∈𝑊𝑘

≤ 𝑐𝑘,                          ∀𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾                                               (49) 14 

𝑏𝑤
𝑘 ≥ 0,                                                ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊                                           (50) 15 

𝑥𝑤 ≤ ∑ 𝑏𝑤
𝑘

𝑘∈𝐾𝑤

,                                   ∀𝑤 ∈ 𝑊                                                        (51) 16 

𝑏𝑤
𝑘  integer,                                         ∀𝑘 ∈ 𝐾,𝑤 ∈ 𝑊                                           (52) 17 

𝑥𝑤  integer,                                         ∀𝑤 ∈ 𝑊                                                        (53) 18 

Constraints in Eqs. (37)-(44) for ℎ𝑤 ∈ 𝐻               (54) 19 

 20 

We now further show that through utilizing the above relaxed mixed-integer linear 21 

program (RMILP) we can obtain lower and upper bounds for the original MPPS model. 22 
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 1 

In the original MPPS, the decision variables are 𝑝𝑤, 𝑤 ∈ 𝑊 and 𝑏𝑤
𝑘 , 𝑤 ∈ 𝑊𝑘, 𝑘 ∈ 𝐾. 2 

To ease the presentation, we define the variables  𝑝𝑤 and 𝑏𝑤
𝑘  in the vector forms by 3 

𝑃 = {𝑝𝑤, 𝑤 ∈ 𝑊}  and 𝐵 = {𝑏𝑤
𝑘 , 𝑤 ∈ 𝑊𝑘, 𝑘 ∈ 𝐾} , respectively. Then the original 4 

MPPS model in Eqs. (23)-(34) can be written as (M1) as follows: 5 

(M1): max𝑍1 = 𝐹1(𝑃, 𝐵)                                                                                      (55) 6 

s.t. 7 

𝐺(𝑃, 𝐵) ≤ 0                                                                                                               (56) 8 

where 𝐺(𝑃, 𝐵) represents the constraints in Eqs. (24)-(34). Let (𝑃∗, 𝐵∗) be the global 9 

optimal solution of model M1 and 𝑍1
∗ be the corresponding objective function value. 10 

 11 

Given the value of 𝑃 which satisfies Eq. (29), the model M1 becomes an integer linear 12 

program for optimizing the seat allocation 𝐵, which can be readily solved by existing 13 

linear program solvers. We can define the objective function value to be a function of 14 

𝑃, i.e., 𝐹1(𝑃) and its solution to be �̃�. When the value of 𝐵 is given, which satisfies 15 

Eqs. (30)-(31), the model M1 becomes a problem of optimizing the price 𝑃. Similarly, 16 

we can define the objective function value to be a function of 𝐵, i.e., 𝐹1(𝐵) and its 17 

solution to be �̃�. In particular, this problem can be transformed into the problems of 18 

optimizing the price 𝑝𝑤 for each OD pair 𝑤, i.e., 19 

(M1𝑤):max 𝑦𝑤 = 𝑝𝑤 ∙ 𝑥𝑤                                                                                      (57) 20 

s.t. 21 

𝑥𝑤 ≤ 𝑄𝑤(𝑝𝑤)                                                                                                            (58) 22 

𝑥𝑤 ≤ 𝑏𝑤                                                                                                                      (59) 23 

𝑥𝑤  integer                                                                                                                 (60) 24 

𝑝𝑤 ≤ 𝑝𝑤 ≤ �̅�𝑤                                                                                                           (61) 25 

 26 

where 𝑏𝑤  is given. For solving the model M1𝑤 , we first denote 𝑄𝑤
−1(∙)  to be the 27 

inverse function of 𝑄𝑤(𝑝𝑤) . If 𝑝𝑤 ≤ 𝑄𝑤
−1(𝑏𝑤) , then 𝑄𝑤(𝑝𝑤) ≥ 𝑏𝑤  and 𝑦𝑤 = 𝑝𝑤 ∙28 

𝑏𝑤, which corresponds to the red solid lines in Fig. 3. The other case with 𝑄𝑤(𝑝𝑤) <29 

𝑏𝑤 and 𝑦𝑤 = 𝑝𝑤 ∙ 𝑄𝑤(𝑝𝑤) corresponds to the black solid curves in Fig. 3. One can 30 

verify that 31 

• When 𝑝𝑤 ≤
1

𝜂𝑤
≤ �̅�𝑤 , as shown in Fig. (3a): If 𝑄𝑤

−1(𝑏𝑤) ≤
1

𝜂𝑤
 , the optimal 32 

price 𝑝𝑤
∗ =

1

𝜂𝑤
 ; if 

1

𝜂𝑤
≤ 𝑄𝑤

−1(𝑏𝑤) ≤ �̅�𝑤 , 𝑝𝑤
∗ = 𝑄𝑤

−1(𝑏𝑤) ; if 𝑄𝑤
−1(𝑏𝑤) ≥ �̅�𝑤 , 33 

𝑝𝑤
∗ = �̅�𝑤.  34 

• When  𝑝𝑤 ≤ �̅�𝑤 ≤
1

𝜂𝑤
, as shown in Fig. (3b): the optimal price 𝑝𝑤

∗ = �̅�𝑤. 35 
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• When 
1

𝜂𝑤
≤ 𝑝𝑤 ≤ �̅�𝑤, as shown in Fig. (3c): If 𝑄𝑤

−1(𝑏𝑤) ≤ 𝑝𝑤, 𝑝𝑤
∗ = 𝑝𝑤; if 1 

𝑝𝑤 ≤ 𝑄𝑤
−1(𝑏𝑤) ≤ �̅�𝑤, 𝑝𝑤

∗ = 𝑄𝑤
−1(𝑏𝑤); if 𝑄𝑤

−1(𝑏𝑤) ≥ �̅�𝑤, 𝑝𝑤
∗ = �̅�𝑤. 2 

Thus, the solution of model M1𝑤 can be given as  3 

𝑝𝑤
∗ =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
1

𝜂𝑤
,           𝑝𝑤 ≤

1

𝜂𝑤
≤ �̅�𝑤, 𝑄𝑤

−1(𝑏𝑤) ≤
1

𝜂𝑤
          

𝑄𝑤
−1(𝑏𝑤), 𝑝𝑤 ≤

1

𝜂𝑤
≤ �̅�𝑤,

1

𝜂𝑤
≤ 𝑄𝑤

−1(𝑏𝑤) ≤ �̅�𝑤

�̅�𝑤,            𝑝𝑤 ≤
1

𝜂𝑤
≤ �̅�𝑤, 𝑄𝑤

−1(𝑏𝑤) ≥ �̅�𝑤           

�̅�𝑤,            𝑝𝑤 ≤ �̅�𝑤 ≤
1

𝜂𝑤
                                         

𝑝𝑤 ,           
1

𝜂𝑤
≤ 𝑝𝑤 ≤ �̅�𝑤, 𝑄𝑤

−1(𝑏𝑤) ≤ 𝑝𝑤           

𝑄𝑤
−1(𝑏𝑤),

1

𝜂𝑤
≤ 𝑝𝑤 ≤ �̅�𝑤, 𝑝𝑤 ≤ 𝑄𝑤

−1(𝑏𝑤) ≤ �̅�𝑤

�̅�𝑤 ,           
1

𝜂𝑤
≤ 𝑝𝑤 ≤ �̅�𝑤, 𝑄𝑤

−1(𝑏𝑤) ≥ �̅�𝑤           

                                 (62) 4 

 5 
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Fig. 3. The illustration of how to solve model M1𝑤 1 

 2 

Let �̃�𝑚  denote the set of breakpoints for variables 𝑥𝑤, 𝑦𝑤  and 𝑝𝑤 , 𝑤 ∈ 𝑊  at the 3 

iteration number 𝑚 during the iterative algorithm to be introduced in Section 4.4. In a 4 

similar way, the RMILP can also be rewritten as follows (M2): 5 

(M2): max𝑍2 = 𝐹2( 𝑃, 𝐵, �̃�
𝑚)                                                                             (63) 6 

s.t. 7 

𝛩(𝑃, 𝐵, �̃�𝑚) ≤ 0                                                                                                       (64) 8 

where 𝛩(𝑃, 𝐵, �̅�𝑚)  represents the linear constrains in Eqs. (46)-(54). We denote 9 

(𝑃𝑚, 𝐵𝑚) as the solution of the above model M2. With 𝑃𝑚 and 𝐵𝑚 we can obtain 10 

𝐹1(𝑃
𝑚) and 𝐹1(𝐵

𝑚), respectively. It is obvious that 11 

max{𝐹1(𝑃
𝑚), 𝐹1(𝐵

𝑚)} ≤ 𝐹1(𝑃
∗, 𝐵∗) ≤ 𝐹2( 𝑃

𝑚, 𝐵𝑚, �̃�𝑚)                             (65) 12 

From the above analysis and procedure, it is evident that the upper and lower bounds 13 

of the optimal solution can be obtained. 14 

 15 

4.3 Range reduction scheme 16 

This subsection further introduces the construction of the set of breakpoints and 17 

proposes the range reduction scheme to decrease the computation cost of the algorithm 18 

(to be detailed in Section 4.4) for finding the optimal solution. 19 

 20 

In model M2 with the set of breakpoints �̃�𝑚, we denote �̃�ℎ𝑤
𝑚  as the set of breakpoints 21 

for the variable ℎ𝑤 ∈ 𝐻 at the iteration number 𝑚. For the initial step, i.e., 𝑚 = 1, 22 

we have 23 

�̃�ℎ𝑤
1 = {ℎ𝑤

𝑛 |ℎ𝑤
𝑛 = ℎ𝑤 +

ℎ𝑤 − ℎ𝑤
𝑁 − 1 ∙ (𝑛 − 1), 𝑛 = 1,2,⋯ , 𝑁}                         (66) 24 

At the iteration number 𝑚 + 1 , we can construct the set of breakpoints �̅�𝑚+1  as 25 

follows: 26 

△ �̃�ℎ𝑤
𝑚 = {

ℎ𝑤
𝑛 + ℎ𝑤

𝑛+1

2 |ℎ𝑤
𝑛 , ℎ𝑤

𝑛+1 ∈ �̃�ℎ𝑤
𝑚 , 𝑛 = 1,2,⋯ ,𝑁 − 1}                       (67) 27 

�̃�ℎ𝑤
𝑚+1 =△ �̃�ℎ𝑤

𝑚 ∪ �̃�ℎ𝑤
𝑚                                                                                             (68) 28 

To ease the notation burden, we still use 𝑁 to present the number of breakpoints at 29 

iteration number 𝑚, and the breakpoints for each variable are sorted in the increasing 30 

order of their values. However, the above method involves a growing number of 31 

breakpoints. 32 
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We now introduce the range reduction scheme to reduce the feasible region and the 1 

number of breakpoints. Without loss of generality, we use the variable ℎ𝑤 ∈ 𝐻  for 2 

illustration. Denote ℎ𝑤
𝑚 and ℎ̅𝑤

𝑚 to be the lower and upper bounds of variable ℎ𝑤 at 3 

iteration number 𝑚. We will solve the following model M3 to obtain the new lower 4 

and upper bounds of variable ℎ𝑤, i.e., 5 

(M3): ℎ𝑤
𝑚+1 = min

(𝑃,𝐵)
ℎ𝑤 ,    ℎ̅𝑤

𝑚+1 = max
(𝑃,𝐵)

ℎ𝑤                                                        (69) 6 

s.t. 7 

𝛩(𝑃, 𝐵, �̃�𝑚) ≤ 0                                                                                                       (70) 8 

ℎ𝑤
𝑚 ≤ ℎ𝑤 ≤ ℎ̅𝑤

𝑚                                                                                                         (71) 9 

𝐹2( 𝑃, 𝐵, �̃�
𝑚) ≥ max{𝐹1(𝑃

𝑚), 𝐹1(𝐵
𝑚)}                                                             (72) 10 

Proposition 1. The global solution of the model M1 will not be eliminated by the range 11 

reduction scheme governed by Eqs. (69)-(72) (model M3), i.e., the global solution ℎ𝑤
∗  12 

is within [ℎ𝑤
𝑚+1, ℎ̅𝑤

𝑚+1 ]. 13 

 14 

Proof. The proof of Proposition 1 is provided in Appendix B.  15 

 16 

Using the model M3, the feasible region of variable ℎ𝑤 can be reduced, and we can 17 

construct the set of breakpoints with the new bounds. Let 𝑢 and 𝑣 be positive integers 18 

such that  19 

 ℎ𝑤
𝑢−1 ≤ ℎ𝑤

𝑚+1 ≤ ℎ𝑤
𝑢                                                                                                 (73) 20 

ℎ𝑤
𝑣 ≤ ℎ̅𝑤

𝑚+1 ≤ ℎ𝑤
𝑣+1                                                                                                  (74) 21 

where ℎ𝑤
𝑛 ∈ �̃�ℎ𝑤

𝑚 . We construct the set of breakpoints for variable ℎ𝑤 at the iteration 22 

number 𝑚 + 1, then  23 

�̃�ℎ𝑤
𝑚+1 = {ℎ𝑤

𝑛 ∈ �̃�ℎ𝑤
𝑚 |𝑛 = 𝑢, 𝑢 + 1,⋯ , 𝑣}24 

∪ {
ℎ𝑤
𝑛 + ℎ𝑤

𝑛+1

2 |ℎ𝑤
𝑛 , ℎ𝑤

𝑛+1 ∈ �̅�ℎ𝑤
𝑚 , 𝑛 = 𝑢, 2,⋯ , 𝑣 − 1}25 

∪ {ℎ𝑤
𝑚+1, ℎ̅𝑤

𝑚+1}                                                                             (75) 26 

and �̃�𝑚+1 = ⋃ �̃�ℎ𝑤
𝑚+1

ℎ𝑤∈𝐻  . With the above method of constructing the set of 27 

breakpoints, we denote Ω𝑚  to be the feasible region of the model M2, and the 28 

following Proposition 2 holds. 29 

 30 

Proposition 2. With the method for updating the set of breakpoints governed by Eq. 31 

(67), we have Ω𝑚 ⊃ Ω𝑚+1  and the set of optimal objective function values 32 

{𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚)} obtained based on the model M2 is a monotonically decreasing 33 
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series. 1 

 2 

Proof. The proof of Proposition 2 is provided in Appendix C.  3 

 4 

4.4 Solution algorithm 5 

With the analysis in Sections 4.1-4.3, we can develop a globally optimal solution 6 

algorithm for model M1, where the details are summarized below. 7 

Step 0: Initialization.  8 

Use a large enough value as the function upper bound �̅�1
0 and a small enough 9 

value as the lower bound 𝑍1
0; 10 

Let the iteration number 𝑚 = 1; 11 

Set the initial number of breakpoints 𝑁 = 3, and construct the initial set of 12 

breakpoints, �̃�1 with Eq. (66). 13 

Step 1: Solve the relaxed model. 14 

Solve the model M2 using the MILP algorithm to obtain the optimal solution 15 

( 𝑃𝑚, 𝐵𝑚) and the optimal objective function value 𝑍2
𝑚; 16 

Solve the objective function values 𝐹1(𝑃
𝑚)  and 𝐹1(𝐵

𝑚) , and get the 17 

corresponding solutions �̃�𝑚 and �̃�𝑚, respectively; 18 

Update the objective function bounds:  �̅�1
𝑚 = min{�̅�1

𝑚−1, 𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚)} 19 

and  𝑍1
𝑚 = max{𝑍1

𝑚−1, 𝐹1(𝑃
𝑚), 𝐹1(𝐵

𝑚)}; 20 

Step 2: Check the convergence. 21 

If 
|𝑍1
𝑚−𝑍1

𝑚|

𝑍1
𝑚 ≤ 𝜀, then stop; otherwise, go to Step 3. 22 

Step 3: Update the breakpoint set 23 

Choose a group of variables for further range reductions and form the set 𝐻𝑚; 24 

For each variable ℎ𝑤 ∈ 𝐻
𝑚: 25 

Reduce the range of the variable ℎ𝑤 by solving the model M3 and update 26 

the variable range [ℎ𝑤
𝑚+1, ℎ̅𝑤

𝑚+1 ]; 27 

Calculate 𝑢 and 𝑣 with Eqs. (73)-(74); 28 

Update the set of breakpoints and obtain �̃�ℎ𝑤
𝑚+1 with Eq. (75). 29 

For each variable ℎ𝑤 ∈ 𝐻\𝐻
𝑚, update the set of breakpoints and obtain �̃�ℎ𝑤

𝑚+1 30 

with Eqs. (67) and (68). 31 

Calculate �̃�𝑚+1 = ⋃ �̃�ℎ𝑤
𝑚+1

ℎ𝑤∈𝐻 ; 32 

Set 𝑚 = 𝑚 + 1 and go to Step 1. 33 

It is noteworthy that if the proposed algorithm executes the range reduction method for 34 

all variables in each iteration, it will cost substantial computation time. Thus, in each 35 

iteration, the algorithm may choose a subset of variables to apply the range reduction 36 

method, which can be based on the variation trend of each variable over the iterations. 37 
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 1 

Proposition 3. When the iteration number 𝑚 → +∞ , the proposed algorithm 2 

guarantees the convergence to the globally optimal solution of the original model MPPS 3 

or model M1. 4 

  5 

Proof. The proof of Proposition 3 is provided in Appendix D.  6 

                                   7 

5. Numerical studies 8 

Now we turn to numerical illustrations for the proposed model and algorithm. We firstly 9 

present a toy network example for illustration, and then test the developed method on a 10 

real-world regional network in China. 11 

 12 

All numerical tests are conducted on a personal computer with Intel® Core (TM) 3.00 13 

GHz processor and 16.00 GB RAM and Windows 10 Home Edition operating system 14 

(64-bit). The YALMIP-R20190425 together with MATLAB R2018b is used to conduct 15 

the numerical tests. The commercial solver GUROBI optimization studio 8.1.1 (IBM 16 

ILOG, 2018) is adopted to solve all RMILP problems, whereas the free solver 17 

FMINCON from the MATLAB platform is applied to solve all the nonlinear problems. 18 

 19 

5.1. A toy network example 20 

We adopt a railway track network shown in Fig. 4. There are six stations 𝑆1, 𝑆2, 𝑆3, 21 

𝑆4, 𝑆5 and 𝑆6 and four trains 𝑘1, 𝑘2, 𝑘3 and 𝑘4 running in the network. For this 22 

toy network example, all numerical settings are assumed. There are 15 OD pairs in total, 23 

and the total potential demand for all OD pairs is 11250. The stopping pattern of each 24 

train is shown in Fig. 4. 25 

 26 

S3S1 S6S4 S5S2

train k1

train k2

train k3

train k4  27 

Fig. 4. A railway track network with four running trains in the toy network example 28 

 29 

We set the convergence parameter as 𝜀 = 5 × 10−4  (for the solution algorithm in 30 

Section 4.4) and the capacity of each train as 400 persons (or seats), i.e., 𝑐𝑘=400 seats 31 

per train, 𝑘 ∈ 𝐾 . The OD-specific parameters are summarized in Table 3. The 32 

potential demands for all OD pairs are summarized in Table 4. 33 

 34 

Table 3. A summary of OD-specific parameters in the toy network example 35 
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OD pair 𝑝𝑤 𝑝
𝑤

 value of 𝜂𝑤 

(𝑆1, 𝑆2) 50 100 0.0109 

(𝑆1, 𝑆3) 80 160 0.0093 

(𝑆1, 𝑆4) 140 280 0.0095 

(𝑆1, 𝑆5) 210 420 0.0132 

(𝑆1, 𝑆6) 260 520 0.0106 

(𝑆2, 𝑆3) 30 60 0.0135 

(𝑆2, 𝑆4) 90 180 0.0109 

(𝑆2, 𝑆5) 160 320 0.0093 

(𝑆2, 𝑆6) 210 420 0.0095 

(𝑆3, 𝑆4) 60 120 0.0132 

(𝑆3, 𝑆5) 130 260 0.0106 

(𝑆3, 𝑆6) 180 360 0.0135 

(𝑆4, 𝑆5) 70 140 0.0093 

(𝑆4, 𝑆6) 120 240 0.0095 

(𝑆5, 𝑆6) 50 100 0.0132 

 1 

Table 4. Potential demands for all OD pairs in the toy network example 2 

OD pair 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

𝑆1 0 600 450 750 1500 750 

𝑆2 0 0 750 600 450 450 

𝑆3 0 0 0 600 750 900 

𝑆4 0 0 0 0 600 900 

𝑆5 0 0 0 0 0 1200 

𝑆6 0 0 0 0 0 0 

 3 

Given the above setting, we implemented the proposed method for solving this toy 4 

network example. The optimal pricing and seat allocation solution is shown in Table 5 

5, and the seat allocation of each section is shown in Table 6. One can verify that the 6 

pricing and seat allocation scheme meets all problem constraints. Fig. 5 further shows 7 

the convergence process of the lower and upper bounds of model, where the proposed 8 

method yields a globally optimal solution (upper and lower bounds converge to 𝑍 =9 

3.141 × 105). The total CPU time for solving this toy network example is 28.326s.  10 

 11 

Table 5. Optimal price and seat allocation scheme solved by the proposed method in 12 

the toy network example 13 

OD pair 𝑝𝑤 𝑥𝑤 𝑄𝑤(𝑝𝑤) 𝑏𝑤 
𝑏𝑤
𝑘  

𝑏𝑤
1  𝑏𝑤

2  𝑏𝑤
3  𝑏𝑤

4  

(𝑆1, 𝑆2) 93.29  217  217.04  717  380  222  0  115  

(𝑆1, 𝑆3) 104.80  169  169.80  268  0  0  268  0  

(𝑆1, 𝑆4) 140.19  198  198.00  198  20  178  0  0  

(𝑆1, 𝑆5) 210.65  93  93.00  285  0  0  0  285  
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(𝑆1, 𝑆6) 261.30  47  47.00  132  0  0  132  0  

(𝑆2, 𝑆3) 60.00  333  333.64  333  333  0  0  0  

(𝑆2, 𝑆4) 91.20  222  222.04  222  0  222  0  0  

(𝑆2, 𝑆5) 160.66  101  101.00  101  0  0  0  101  

(𝑆2, 𝑆6) 210.35  61  61.00  61  47  0  0  14  

(𝑆3, 𝑆4) 76.00  220  220.01  333  333  0  0  0  

(𝑆3, 𝑆5) 130.03  189  189.00  189  0  0  189  0  

(𝑆3, 𝑆6) 180.22  79  79.00  79  0  0  79  0  

(𝑆4, 𝑆5) 107.85  220  220.06  353  353  0  0  0  

(𝑆4, 𝑆6) 120.31  287  287.00  400  0  400  0  0  

(𝑆5, 𝑆6) 76.49  437  437.22  928  353  0  189  386  

 1 

Table 6. The seat allocation of each section solved by the proposed method in the toy 2 

network example 3 

Section 

no. 
Section 

𝑏𝑙
𝑘

 

Train 𝑘1 Train 𝑘2 Train 𝑘3 Train 𝑘4 

1 (𝑆1, 𝑆2) 400  400  400  400  

2 (𝑆2, 𝑆3) 400  400  400  400  

3 (𝑆3, 𝑆4) 67  400  132  400  

4 (𝑆4, 𝑆5) 400  400  400  400  

5 (𝑆5, 𝑆6) 400  400  400  400  

 4 

 5 

 6 

Fig. 5. Updating process of upper and lower bounds in the toy network example  7 

 8 

For comparison purpose, we also tested “FMINCON” in MATLAB R2018b, which is 9 
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used for solving the non-linear constrained optimization problem with four different 1 

algorithms: trust region reflective, interior point, active set, and sequential quadratic 2 

programming (SQP). As the MPPS problem in this paper involves integers, the above 3 

four algorithms embedded in “FMINCON” in MATLAB R2018b cannot produce a 4 

feasible solution. We relaxed all the integer variables (i.e., 𝑏𝑤
𝑘  and 𝑥𝑤) in the MPPS 5 

model as continuous variables and then solved the relaxed model labelled as “MPPS_1” 6 

with the four algorithms embedded in “FMINCON”. The solutions obtained from 7 

“FMINCON” are listed in Appendix E. In particular, trust region reflective algorithm 8 

and interior point algorithm produced the same feasible solution (with an objective 9 

function value of 𝑍 = 5.209 × 104, a CPU time of 11.313s for trust region reflective 10 

and a CPU time of 11.405s for interior point). The SQP algorithm produced another 11 

feasible solution that is more effective than the other three algorithms in FMINCON 12 

(with an objective function value of 𝑍 = 3.146 × 105 and a CPU time of 2.333s), and 13 

the activate-set algorithm produces the worst (and very inefficient) solution (omitted in 14 

Appendix E), which might be due to that activate-set algorithm mainly focus on 15 

quadratic programming. 16 

 17 

For comparison purpose, we also implemented the proposed method for solving the 18 

MPPS_1 model (with continuous variables) for the toy network example. The pricing 19 

and seat allocation solution is shown in Table 7. The seat allocation for each section is 20 

shown in Table 8. One can verify that the pricing and seat allocation scheme meets all 21 

constraints. The objective function value is 𝑍 = 3.146 × 105 . As can be seen, the 22 

objective function value of MPPS_1 model with continuous variables is only slightly 23 

larger than the original MPPS model with integer variables (i.e., 3.146 × 105  >24 

 3.141 × 105). It is also noted that the solution of MPPS_1 model is quite different 25 

from the solution of the original MPPS model, and we cannot obtain the MPPS solution 26 

by rounding the solution of the MPPS_1. This indeed highlights the importance to 27 

explicitly solve the integer models. 28 

 29 

Moreover, the solution of the MPPS_1 model produced by our method is much better 30 

than those from trust-region-reflective, interior-point and activate-set, and is very close 31 

to the SQP algorithm. This is because, MPPS_1 model is non-concave and non-linear, 32 

trust-region-reflective and interior-point algorithms may have solved a local optimum 33 

rather than a global optimum. The SQP algorithm is very powerful for solving non-34 

linear optimization problems which can handle any degree of non-linearity including 35 
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non-linearity in the constraints (Nocedal and Wright, 2006). It is noted that the two 1 

solutions obtained by SQP (with similar objective function values) and our method are 2 

different, which indicate that the optimal solution of this problem might be non-unique. 3 

Note that the SQP relies on several derivatives (either analytically or numerically), and 4 

it becomes quite cumbersome for large-scale problems with many variables or 5 

constraints. As tested in the next subsection for the real-world example, even if we 6 

consider the MPPS_1 model with continuous variables, the four algorithms in 7 

FMINCON function cannot find an optimal solution. 8 

 9 

Table 7. Optimal price and seat allocation scheme for the relaxed model MPPS_1 10 

solved by the proposed method in the toy network example 11 
     𝑏𝑤

𝑘  

OD pair 𝑝𝑤 𝑥𝑤 𝑄𝑤(𝑝𝑤) 𝑏𝑤 𝑏𝑤
1  𝑏𝑤

2  𝑏𝑤
3  𝑏𝑤

4  

(𝑆1, 𝑆2) 91.34 221.70 221.70 221.70 0 0 0 221.70 

(𝑆1, 𝑆3) 106.14 167.70 167.70 167.70 0 0 167.70 0 

(𝑆1, 𝑆4) 140.00 198.36 198.36 198.36 0 68.34 0 130.01 

(𝑆1, 𝑆5) 210.00 93.81 93.81 93.81 0 0 93.81 0 

(𝑆1, 𝑆6) 260.00 47.66 47.66 47.66 9.76 0 37.70 0 

(𝑆2, 𝑆3) 60.00 333.64 333.64 333.64 333.64 0 0 0 

(𝑆2, 𝑆4) 90.00 224.96 224.96 224.96 0 0 0 224.96 

(𝑆2, 𝑆5) 160.00 101.62 101.62 101.62 56.60 0 0 45.02 

(𝑆2, 𝑆6) 210.00 61.21 61.21 61.21 0 61.21 0 0 

(𝑆3, 𝑆4) 74.99 222.98 222.98 222.98 222.98 0 0 0 

(𝑆3, 𝑆5) 130.00 189.06 189.06 189.06 0 0 189.06 0 

(𝑆3, 𝑆6) 180.00 79.23 79.23 79.23 0 0 79.23 0 

(𝑆4, 𝑆5) 106.33 223.19 223.19 223.19 0 0 0 223.19 

(𝑆4, 𝑆6) 120.00 287.84 287.84 287.84 0 287.84 0 0 

(𝑆5, 𝑆6) 75.95 440.32 440.32 440.32 0 0 40.23 400.00 

 12 

Table 8. The seat allocation of each section for the relaxed model MPPS_1 solved by 13 

the proposed method in the toy network example 14 
  𝑏𝑙

𝑘
 

Section 

no. 
Section Train 𝑘1 Train 𝑘2 Train 𝑘3 Train 𝑘4 

1 (𝑆1, 𝑆2) 9.76 68.34 299.40 351.71 

2 (𝑆2, 𝑆3) 400.00 129.55 299.40 400.00 

3 (𝑆3, 𝑆4) 289.34 129.55 400.00 400.00 

4 (𝑆4, 𝑆5) 66.36 349.04 400.00 268.21 

5 (𝑆5, 𝑆6) 9.76 61.21 157.45 400.00 

 15 

We now further illustrate the computation efficiencies of the four algorithms in 16 
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FMINCON and our method under varying demand levels for MPPS_1. We here define 1 

𝜃 as a scale parameter for potential OD demand, and let: 2 

�̃�𝑤 = 𝜃 ∙ �̅�𝑤 3 

where �̅�𝑤 is the benchmark potential demand level. We solved the MPPS problem for 4 

the potential demands �̃�𝑤, which is different under different values of 𝜃. Specifically, 5 

the value of 𝜃 increases from 0.1 to 3. We calculate objective values of the methods 6 

of FMINCON (denoted by 𝑍) and those of our method (denoted by 𝑍∗) with different7 

values of 𝜃, and evaluate the ticket revenue ratio σ defined as follows: 8 

σ =
𝑍

𝑍∗
9 

We also record the CPU times by different methods and the results are summarized in 10 

Table 9. 11 
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Table 9. Optimal objective values and CPU times of the four algorithms in FMINCON and the proposed method in the toy network example 1 

𝜃 

FMINCON for MPPS_1  Our method 

Trust-region-reflective  Interior-point  Activate-set  SQP  MPPS_1  MPPS 

Objectiv

e value 

CPU 

time(s) 
𝜎(%)  

Objective 

value 

CPU 

time(s) 
𝜎(%)  

Objective 

value 

CPU 

time(s) 
𝜎(%)  

Objective 

value 

CPU 

time(s) 
𝜎(%)  

Objective 

value 

CPU 

time(s) 
 

Objective 

value 

CPU 

time(s) 

0.1 3.146E+04 4.184 100.0  3.146E+04 3.761 100.0  1.169E-04 2.359 0.0  3.146E+04 1.344 100.0  3.146E+04 7.422  3.100E+04 76.700 

0.2 6.299E+04 5.633 100.0  6.299E+04 5.682 100.0  1.169E-04 2.536 0.0  6.292E+04 3.294 99.9  6.299E+04 8.463  6.246E+04 83.001 

0.3 9.437E+04 9.870 100.0  9.437E+04 9.843 100.0  1.169E-04 2.278 0.0  9.437E+04 1.685 100.0  9.437E+04 8.391  9.399E+04 96.158 

0.4 1.258E+05 8.736 100.0  1.258E+05 8.694 100.0  1.169E-04 2.328 0.0  1.258E+05 1.913 100.0  1.258E+05 8.499  1.254E+05 84.294 

0.5 1.573E+05 5.995 100.0  1.573E+05 5.976 100.0  1.169E-04 2.279 0.0  1.573E+05 1.862 100.0  1.573E+05 8.555  1.566E+05 60.872 

0.6 1.887E+05 9.131 100.0  1.887E+05 9.085 100.0  1.169E-04 2.310 0.0  1.887E+05 2.929 100.0  1.887E+05 8.748  1.883E+05 90.908 

0.7 2.202E+05 8.451 100.0  2.202E+05 8.457 100.0  1.169E-04 2.307 0.0  2.202E+05 2.194 100.0  2.202E+05 8.896  2.195E+05 101.777 

0.8 2.517E+05 9.323 100.0  2.517E+05 8.859 100.0  1.169E-04 2.317 0.0  2.517E+05 1.996 100.0  2.517E+05 8.977  2.512E+05 87.263 

0.9 1.733E+05 11.792 61.4  1.733E+05 11.761 61.4  1.169E-04 2.302 0.0  2.822E+05 2.220 100.0  2.822E+05 6.627  2.820E+05 69.527 

1 5.209E+04 11.313 0.2  5.209E+04 11.405 0.2  1.169E-04 2.375 0.0  3.146E+05 2.333 100.0  3.146E+05 6.716  3.141E+05 28.326 

1.5 3.493E+05 10.228 75.6  3.493E+05 10.125 75.6  1.169E-04 2.337 0.0  4.620E+05 4.296 100.0  4.620E+05 7.930  4.618E+05 29.387 

2 4.196E+05 7.065 74.3  4.148E+05 7.032 73.4  1.169E-04 2.375 0.0  5.647E+05 8.508 99.9  5.648E+05 6.786  5.658E+05 54.240 

2.5 3.619E+05 11.116 63.3  3.619E+05 11.181 63.3  1.169E-04 2.434 0.0  5.714E+05 2.771 100.0  5.714E+05 4.559  6.438E+05 65.545 

3 6.703E+05 11.810 93.9  6.703E+05 11.772 93.9  1.169E-04 2.413 0.0  7.118E+05 3.065 99.7  7.141E+05 4.486  7.092E+05 83.277 

 2 
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We summarize several main observations from Table 9. First, we can see that the 1 

activate-set algorithm in FMINCON is always inefficient for solving this problem. 2 

Second, for the trust-region-reflective and interior-point, when 𝜃 varies from 0.1 to 3 

0.8, the objective values are very close to those obtained by our method, while 𝜃 ≥ 0.9, 4 

our method performs better. Third, for trust-region-reflective and interior-point, the 5 

revenue under 𝜃 = 1 (a higher potential demand) is smaller than those under 𝜃 = 0.9 6 

(a lower potential demand). This implies that these two algorithms may converge into 7 

a local optimal solution for the MPPS_1 problem. Fourth, with the increase of 𝜃, the 8 

demand levels for all OD pairs increase, and the capacity of trains become less 9 

sufficient and the solution space becomes more complicated. The two algorithms, i.e., 10 

trust-region-reflective and interior-point, in the function of FMINCON, more likely 11 

converge into local optimal solutions, while the proposed method always provides the 12 

best solution. Fifth, the SQP algorithm in the function of FMINCON provides solutions 13 

of similar quality to our method for this small example under varying demand levels. 14 

Sixth, the average CPU time (7.503s) of our method is slightly less than those of the 15 

algorithms of region-reflective (8.903s) and interior-point (8.831s), but larger than that 16 

of SQP (2.886s). It shows that the built-in function FMINCON of MATLAB with SQP 17 

algorithm has its advantage in computing efficiency for the small example. With the 18 

increase of 𝜃, the CPU time of the proposed method for MPPS_1 do not have a clear 19 

trend, which means that proposed method might not depend on the demand level. We 20 

also adopt our method to solve the small example of MPPS under different demand 21 

levels. As can be seen from Table 9, with our method, the CPU times for MPPS model 22 

are about ten times of those of MPPS_1 under different values of 𝜃. This is because, 23 

the MPPS model involves more integer variables when solving the upper and lower 24 

bounds than the MPPS_1 model. 25 

 26 

5.2. A real-world regional network: Ninghang railway 27 

This section applies the model and algorithm on a real-world regional network, i.e., 28 

Ninghang railway. Ninghang Railway includes 11 stations (please refer to Fig. 6). The 29 

schedule from 6:00 am to 12:00 am on October 20, 2019 is used in the example. There 30 

are 24 high-speed trains running on the network and we set each train’s seat capacity to 31 

be 1000. The train running diagram is showed in Fig. 7. For this network, there are 55 32 

OD pairs. To ease the presentation, we use 𝑆1, 𝑆2, …, 𝑆11 to represent Nanjing South 33 

station, Jiangning station, …, and Hangzhou East station. We also summarize the price 34 

bounds and the potential demands for all OD pairs shown in Table 10 and Table 11 35 

respectively. The upper and lower bounds of the price are usually governed by local 36 
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policies, and we choose them based on information of the tariffs, mileage and relevant 1 

policies in China7. The total potential demand for all OD pairs is 189,600. The potential 2 

demand values are chosen with reference to the historical ticket booking data from 3 

China Academy of Railway Sciences Corporation Limited for the Ninghang railway. 4 

The parameters of the elastic demand functions are assumed, which are summarized in 5 

Table 12. Note that for the Ninghang railway network example, we also tested the four 6 

algorithms in the function of FMINCON to solve the MPPS and MPPS_1 models. For 7 

the MPPS model, MATLAB returned that the problems cannot be solved. For the 8 

MPPS_1 model, Activate-set and SQP algorithms still cannot solve it, while trust-9 

region-reflective and interior-point algorithms can obtain the same feasible solution for 10 

MPPS_1 model and the objective function value is 1.1248 × 105 , which is much 11 

smaller than the global optimal objective function value 4.2689 × 106 obtained by 12 

the proposed algorithm. 13 

 14 

Nanjing South

Jiangning

Jurongxi

Lishui

Wawushan

Liyang

Yixing

Changxing

Huzhou

Deqing

Hangzhou East

 15 
Fig. 6. Ninghang railway track network 16 

 17 

                                                             
7 National Railway Administration, Notice of the National Development and Reform Commission on 

the reform and improvement of passenger fare policies for high-speed rail EMUs. Accessed on 10 August 

2016. <http://www.nra.gov.cn/jgzf/flfg/gfxwj/zt/other/201602/t20160222_21192.shtml> 
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 1 
Fig. 7. The train running diagram for Ninghang railway track network under a 2 

given schedule 3 

 4 

Table 10. The price bounds for all OD pairs of Ninghang railway network (Unit: 5 

CNY) 6 
Lower/Uppe

r price 
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 12/24 32/64 46/92 68/136 98/196 129/258 165/330 185/370 221/442 256/512 

𝑆2 0 0 20/40 34/68 56/112 86/172 117/234 153/306 173/346 209/418 244/488 

𝑆3 0 0 0 26/52 48/96 78/156 109/218 145/290 165//330 201/402 236/472 

𝑆4 0 0 0 0 22/44 52/104 83/166 119/238 139/278 175/350 210/420 

𝑆5 0 0 0 0 0 30/60 61/122 97/194 117/234 153/306 188/376 

𝑆6 0 0 0 0 0 0 31/62 67//134 87/174 123/246 158/316 

𝑆7 0 0 0 0 0 0 0 36/72 56/112 92/184 127/254 

𝑆8 0 0 0 0 0 0 0 0 20/40 56/112 91/182 

𝑆9 0 0 0 0 0 0 0 0 0 36/72 71/142 

𝑆10 0 0 0 0 0 0 0 0 0 0 35/70 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 

 7 

Table 11. Potential OD demand for the Ninghang railway network 8 

OD pair 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 2700 3450 8400 4500 7500 15600 9300 15300 9900 6900 

𝑆2 0 0 300 1500 900 3150 1200 900 2400 2100 1800 

𝑆3 0 0 0 1200 1500 900 2100 1800 1200 300 2400 

𝑆4 0 0 0 0 300 2700 900 2400 2400 1800 600 

𝑆5 0 0 0 0 0 300 900 300 2700 300 300 

𝑆6 0 0 0 0 0 0 2700 1800 1500 1200 900 

𝑆7 0 0 0 0 0 0 0 12000 11400 3600 3300 

𝑆8 0 0 0 0 0 0 0 0 3600 1800 2400 

𝑆9 0 0 0 0 0 0 0 0 0 6900 1200 

𝑆10 0 0 0 0 0 0 0 0 0 0 9300 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 



 

32 
 

 1 

Table 12. Parameters in the elastic demand function for all OD pairs in the Ninghang 2 

railway network example 3 

OD pair 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 0.0380 0.0170 0.0180 0.0170 0.0160 0.0190 0.0140 0.0185 0.0075 0.0065 

𝑆2 0 0 0.0260 0.0370 0.0392 0.0082 0.0081 0.0075 0.0093 0.0094 0.0095 

𝑆3 0 0 0 0.0265 0.0371 0.0282 0.0058 0.0085 0.0092 0.0088 0.0076 

𝑆4 0 0 0 0 0.0183 0.0385 0.0068 0.0089 0.0087 0.0075 0.0077 

𝑆5 0 0 0 0 0 0.0182 0.0171 0.0171 0.0075 0.0175 0.0082 

𝑆6 0 0 0 0 0 0 0.0188 0.0085 0.0082 0.0075 0.0068 

𝑆7 0 0 0 0 0 0 0 0.0181 0.0195 0.0075 0.0063 

𝑆8 0 0 0 0 0 0 0 0 0.0184 0.0171 0.0075 

𝑆9 0 0 0 0 0 0 0 0 0 0.0182 0.0076 

𝑆10 0 0 0 0 0 0 0 0 0 0 0.0188 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 

 4 

We implemented the proposed method to solve the MPPS model for this Ninghang 5 

railway example. The optimal pricing and seat allocation solution is presented in Tables 6 

13-15. We take the train departing at 10:02 as an example to illustrate the seat allocation 7 

solution (refer to Table 16 and Table 17). From Table 16 and Table 17, one can verify 8 

that the seat allocation scheme for this train meets the seat capacity constraints of trains 9 

(the solution is feasible). Fig. 8 further shows the convergence process of lower and 10 

upper bounds (converged after 29 iterations given the tolerance value 𝜀 = 5 × 10−4 11 

for convergence check) when using the proposed method. The total CPU time is 12 

677.723s under the tolerance value 𝜀 = 5 × 10−4 for convergence check. It is about 13 

six times of that for solving the MPPS_1 model with continuous variables (110.220s). 14 

 15 

Table 13. Optimal rail service prices for all OD pairs (MPPS model for Ninghang 16 

railway example) 17 
OD 

pair 
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 24.00 58.98 55.36 68.00 98.00 129.00 165.00 185.00 221.00 256.00 

𝑆2 0 0 40.00 68.00 56.00 86.00 117.00 153.00 173.00 209.00 244.00 

𝑆3 0 0 0 52.00 96.00 156.00 173.00 145.00 165.00 201.00 236.00 

𝑆4 0 0 0 0 44.00 52.00 83.00 119.00 139.00 175.00 210.00 

𝑆5 0 0 0 0 0 54.94 61.00 97.00 134.00 153.00 188.00 

𝑆6 0 0 0 0 0 0 53.17 118.03 121.90 133.72 158.00 

𝑆7 0 0 0 0 0 0 0 55.05 56.00 133.18 158.75 

𝑆8 0 0 0 0 0 0 0 0 40.00 58.28 133.85 

𝑆9 0 0 0 0 0 0 0 0 0 55.05 131.68 

𝑆10 0 0 0 0 0 0 0 0 0 0 53.11 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 
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 1 

Table 14. The OD-specific optimal seat allocation scheme (MPPS model for 2 

Ninghang railway example) 3 
OD 

pair 
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 1444 1522 6950 2000 3541 1344 923 2696 1887 1693 

𝑆2 0 0 0 0 57 49 4 61 85 294 177 

𝑆3 0 0 0 0 0 0 899 123 50 51 399 

𝑆4 0 0 0 0 134 2000 2554 77 716 484 119 

𝑆5 0 0 0 0 0 110 1928 57 988 20 64 

𝑆6 0 0 0 0 0 0 4065 660 552 723 307 

𝑆7 0 0 0 0 0 0 0 4430 3825 1326 1213 

𝑆8 0 0 0 0 0 0 0 0 3862 664 1805 

𝑆9 0 0 0 0 0 0 0 0 0 6173 6601 

𝑆10 0 0 0 0 0 0 0 0 0 0 10741 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 

 4 

Table 15. The OD demand pattern under the optimal pricing and seat allocation 5 

solution (MPPS model for Ninghang railway example) 6 
OD 

pair 
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 1084 1265 3101 1416 1563 1344 923 499 1887 1306 

𝑆2 0 0 0 0 57 49 4 61 85 294 177 

𝑆3 0 0 0 0 0 0 769 123 50 51 399 

𝑆4 0 0 0 0 134 364 223 77 716 484 119 

𝑆5 0 0 0 0 0 110 317 57 988 20 64 

𝑆6 0 0 0 0 0 0 993 660 552 440 307 

𝑆7 0 0 0 0 0 0 0 4430 3825 1326 1213 

𝑆8 0 0 0 0 0 0 0 0 1724 664 879 

𝑆9 0 0 0 0 0 0 0 0 0 2533 441 

𝑆10 0 0 0 0 0 0 0 0 0 0 3426 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 

 7 

Table 16. The seat allocation scheme of the train departing at 10:02 (MPPS model for 8 

the Ninghang railway example) 9 
OD 

pair 
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 

𝑆1 0 0 0 0 0 0 183 0 817 0 0 

𝑆2 0 0 0 0 0 0 0 0 0 0 0 

𝑆3 0 0 0 0 0 0 0 0 0 0 0 

𝑆4 0 0 0 0 0 0 0 0 0 0 0 

𝑆5 0 0 0 0 0 0 0 0 0 0 0 

𝑆6 0 0 0 0 0 0 0 0 0 0 0 

𝑆7 0 0 0 0 0 0 0 0 183 0 0 

𝑆8 0 0 0 0 0 0 0 0 0 0 0 

𝑆9 
0 0 0 0 0 0 0 0 0 0 1000 
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𝑆10 0 0 0 0 0 0 0 0 0 0 0 

𝑆11 0 0 0 0 0 0 0 0 0 0 0 

 1 

Table 17. The seat allocation of each section of the train departing at 10:02 (MPPS 2 

model for the Ninghang railway example) 3 

Section no. Section Section capacity Section allocation 𝑏𝑙
𝑘

 

1 (𝑆1, 𝑆2) 1000 1000 

2 (𝑆2, 𝑆3) 1000 1000 

3 (𝑆3, 𝑆4) 1000 1000 

4 (𝑆4, 𝑆5) 1000 1000 

5 (𝑆5, 𝑆6) 1000 1000 

6 (𝑆6, 𝑆7) 1000 1000 

7 (𝑆7, 𝑆8) 1000 1000 

8 (𝑆8, 𝑆9) 1000 1000 

9 (𝑆9, 𝑆10) 1000 1000 

10 (𝑆10, 𝑆11) 1000 1000 

 4 

 5 

Fig. 8. Update process of upper and lower bounds (MPPS model for the Ninghang 6 

railway example) 7 

 8 

In the above analysis, we used the train schedules (from 6:00 am to 12:00 am) on 9 

October 20, 2019 for the Ninghang railway example. We also tested how the 10 
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computation time might vary against the number of trains in the network and shown in 1 

Fig. 9. When the number of trains is small, we see the CPU time varies and does not 2 

necessarily increase with the number of trains. When the number of trains is relatively 3 

large (greater than 18), the CPU time increases with the number of trains. 4 

 5 

 6 

Fig. 9. The variation of the CPU time against the number of trains 7 

 8 

6. Conclusion 9 

In this paper, an optimization model for jointly optimizing railway service pricing and 10 

seat allocation scheme is introduced and a solution algorithm that produces the globally 11 

optimal solution is proposed. The objective is to maximize the ticket revenue of railway 12 

network considering elastic demand and multiple trains with multiple stopping patterns, 13 

where the demand decreases with respect to the service price. In order to find the 14 

globally optimal solution, the objective function and some constraints of the 15 

optimization model for railway service pricing and seat allocation are linearized, while 16 

only a few constraints involving logarithm functions are still nonlinear. With the 17 

relaxation of these logarithm functions, the linearized model is further relaxed as a 18 

mixed-integer programing problem (MILP). By coupling the relaxed MILP with a range 19 

reduction scheme, a solution algorithm is then designed, and its convergence to the 20 

global optimum is illustrated. 21 

 22 

This study can be further extended in several ways. Firstly, this study assumes that the 23 

demand function is known and deterministic. A future study may further consider the 24 

case with stochastic demand (An and Lo, 2015), where we may only know the 25 

distribution of the demand given the train service price and level of service. We expect 26 
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that a robust optimization approach has to be adopted, where similar linear 1 

approximation techniques in this paper can still be used in sub-problems of the main 2 

robust optimization problem. Moreover, when the demand information is not fully 3 

known in advance, a rolling horizon approach might be developed to accommodate 4 

real-time inputs. Secondly, this paper assumes that the rail service price for the same 5 

OD pair is independent of ticket booking time (this reflects the current practice in 6 

China). The proposed method in this paper can be further extended for cases with ticket-7 

booking-time-dependent demand (Niu and Zhou, 2013; Niu et al., 2015). Last but not 8 

least, this study jointly considers pricing and seat allocation while a future study can 9 

further explore the joint optimization problem of pricing, seat allocation, line planning 10 

and scheduling. We expect that the additional interactions among pricing, seat 11 

allocation, line planning and scheduling due to the further consideration of line planning 12 

and scheduling will add further complexity for both the model formulation and solution 13 

approach. 14 
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 23 

Appendix A. Illustration of the non-concavity of the model MPPS (or Model M1) 24 

 25 

For the model MPPS to be concave, its objective function should be concave, i.e., the 26 

Hessian matrix of the objective function should be positive definite (Boyd et.al 2004). 27 

We can write down the Hessian matrix of the objective function as follows: 28 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑍2

𝜕𝑥1𝜕𝑥1
⋮
𝜕𝑍2
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       =

[
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0
1
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 5 

For the above Hessian matrix, one can verify that its eigenvalue set 𝜆(𝐴) =1 

{−1,−1,… ,−1, 1, 1, … , 1}2𝑊, and thus the matrix is not positive definite. Therefore, 2 

the objection function of the model MPPS is not concave, and thus the model is non-3 

concave. 4 

 6 

Appendix B. Proof of Proposition 1 7 

We prove Proposition 1 by a contradiction. Without loss of generality, we assume that 8 

ℎ𝑤
∗  is within [ ℎ𝑤

𝑚, ℎ𝑤
𝑚+1), then  9 

𝐹1(𝑃
∗, 𝐵∗) > max{𝐹1(𝑃

𝑚), 𝐹1(𝐵
𝑚)} 10 

It is obvious that (𝑃∗, 𝐵∗) is also a feasible solution of M2, then  11 

𝐹2(𝑃
∗, 𝐵∗, �̃�𝑚) ≥ 𝐹1(𝑃

∗, 𝐵∗) 12 

We then have 13 

𝐹2( 𝑃
∗, 𝐵∗, �̃�𝑚) > max{𝐹1(𝑃

𝑚), 𝐹1(𝐵
𝑚)} 14 

As ℎ𝑤
∗ < ℎ𝑤

𝑚+1, it contradicts to the fact that ℎ𝑤
𝑚+1 is a solution of model M3 with 15 

the constraint in Eq. (72). Therefore, Proposition 1 is true.    □ 16 

 17 

Appendix C. Proof of Proposition 2 18 

 19 

To provide some intuitions, the updating of chord curves is illustrated in Fig. C1 with 20 

the updating of breakpoint set. Fig. C1 shows that the region defined by the red solid 21 

curve chords and the curve of ln (ℎ𝑤) is a subset of that defined by the black dashed 22 

curve chords and the curve of ln (ℎ𝑤). The updating of tangential supports is similar, 23 

i.e., the region defined by the tangential supports (the short dash lines in Fig.C1) with 24 

the updating breakpoint set and the curve of ln (ℎ𝑤) is a subset of that defined the 25 

tangential supports with the previous breakpoint set and the curve of ln (ℎ𝑤). Thus, 26 

with the above method of updating the set of breakpoints, Ω𝑚 ⊃ Ω𝑚+1 . As Ω𝑚 ⊃27 

Ω𝑚+1, then 𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚) ≥ 𝐹2( 𝑃

𝑚+1, 𝐵𝑚+1, �̃�𝑚+1). Therefore, Proposition 2 is 28 

true.  □ 29 
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Fig. C1. The illustration of breakpoints updating 2 

 3 

Appendix D. Proof of Proposition 3 4 

 5 

The proof here follows a similar logic as that in Wang et al. (2015) and Ng (2017). 6 

Denote the optimal objective function value of the MPPS model (or model M1) by 𝑍1
∗. 7 

As the RMILP model (or model M2) have a larger solution space than that of the MPPS 8 

model (or model M1), the objective function value 𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚) solved based on 9 

the RMILP model (or model M2) is always the upper bound of the MPPS model (or 10 

model M1), i.e., 𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚)  is no less than 𝑍1

∗ , where 𝑃𝑚  and 𝐵𝑚  are the 11 

corresponding rail service pricing and seat allocation solution. With Proposition 2, we 12 

know that the set of optimal objective function values {𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚)}  is a 13 

monotonically decreasing series with respect to the iteration number 𝑚 . From the 14 

algorithm in Section 4.4, we have �̅�1
𝑚 = min{�̅�1

𝑚−1, 𝐹2( 𝑃
𝑚, 𝐵𝑚, �̃�𝑚)} ≥ 𝑍1

∗ , so 15 

{�̅�1
𝑚} is also a monotonically decreasing series where the following holds 16 

�̅�1
1 ≥ �̅�1

2 ≥ ⋯ ≥ �̅�1
𝑚 ≥ ⋯ ≥ 𝑍1

∗ 17 

Moreover, with the increasing of the iteration number 𝑚, Eqs. (37)-(44) will drive 𝐿ℎ𝑤 18 

to approach ln(ℎ𝑤)  and the solution of RMPPS model will approach that of the 19 

original MPPS model. If the optimal solution is still not obtained, then the solution of 20 

𝑃𝑚 and 𝐵𝑚 in RMPPS will be updated with the range reduction technique and the 21 

updating of breakpoint sets in Step 3, and the proposed algorithm can update the bounds 22 
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�̅�1
𝑚. Thus, when the number of iterations approaches infinity, we have lim

𝑚→∞
�̅�1
𝑚 = 𝑍1

∗, 1 

and (𝑃𝑚, 𝐵𝑚) will approach the optimal solution (𝑃∗, 𝐵∗). 2 

 3 

We also know the objective function value 𝐹1(𝑃
𝑚)  and 𝐹1(𝐵

𝑚)  are solved under 4 

given 𝑃𝑚 and 𝐵𝑚, respectively, so 𝐹1(𝑃
𝑚) and 𝐹1(𝐵

𝑚) are both lower bounds of 5 

the MPPS model (or model M1), i.e., they are always no greater than 𝑍1
∗ based on Eq. 6 

(57). From the algorithm in Section 4.4, we also have 𝑍1
𝑚 =7 

max{𝑍1
𝑚−1, 𝐹1(𝑃

𝑚), 𝐹1(𝐵
𝑚)} ≤ 𝑍1

∗ , which further implies that {𝑍1
𝑚}  is a 8 

monotonically increasing series, i.e., 9 

𝑍1
1 ≤ 𝑍1

2 ≤ ⋯ ≤ 𝑍1
𝑚 ≤ ⋯ ≤ 𝑍1

∗ 10 

Moreover, one can verify that if 𝑃𝑚 = 𝑃∗, then (𝑃𝑚, �̃�𝑚) is an optimal solution of 11 

the MPPS model (or model M1); and if 𝐵𝑚 = 𝐵∗, then (�̃�𝑚, 𝐵𝑚) is also an optimal 12 

solution of the MPPS (or model M1). Thus, when the number of iterations approaches 13 

infinity, we have lim
𝑚→∞

𝑍1
𝑚 = 𝑍1

∗. The above indicates that the proposed method will 14 

yield lower bound and upper bound that converge to the exact global optimal solution 15 

of the original model MPPS (or model M1).   □ 16 

 17 

Appendix E. Non-integer solutions (for MPPS_1) obtained by “FMINCON” for 18 

the toy network example 19 

 20 

Table E1. MPPS_1 solution solved by the trust region reflective or interior-point 21 

algorithm in FMINCON 22 

     𝑏𝑤
𝑘  

OD pair 𝑝𝑤 𝑥𝑤 𝑄𝑤(𝑝𝑤) 𝑏𝑤 𝑏𝑤
1  𝑏𝑤

2  𝑏𝑤
3  𝑏𝑤

4  

(𝑆1, 𝑆2) 99.99 36.56 201.75 964.93 310.22 369.46 0 285.25 

(𝑆1, 𝑆3) 159.98 22.42 101.63 464.03 78.84 0 385.19 0 

(𝑆1, 𝑆4) 140.09 25.64 198.19 138.10 0.38 23.42 0 114.29 

(𝑆1, 𝑆5) 385.63 9.19 9.19 15.09 0.30 0 14.70 0.09 

(𝑆1, 𝑆6) 434.82 7.47 7.47 7.74 0.69 6.87 0 0.17 

(𝑆2, 𝑆3) 59.99 61.41 333.69 313.88 313.88 0 0 0 

(𝑆2, 𝑆4) 179.91 19.93 84.42 243.09 4.84 31.56 0 206.69 

(𝑆2, 𝑆5) 317.37 11.30 23.51 18.89 0.26 0 0 18.63 

(𝑆2, 𝑆6) 417.39 8.48 8.48 22.27 0.25 20.59 0 1.43 

(𝑆3, 𝑆4) 119.99 17.43 123.11 321.20 321.19 0 0 0 

(𝑆3, 𝑆5) 258.36 13.87 48.49 100.03 11.34 0 88.70 0 

(𝑆3, 𝑆6) 324.18 10.93 10.93 55.89 0.15 0 55.74 0 

(𝑆4, 𝑆5) 139.99 25.75 163.21 451.19 263.32 0 0 187.87 

(𝑆4, 𝑆6) 239.42 14.99 92.56 570.15 121.77 366.02 0 82.36 

(𝑆5, 𝑆6) 99.99 36.55 320.60 934.14 276.95 0 344.21 312.97 
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 1 

Table E2. MPPS_1 solution solved by the SQP algorithm in FMINCON 2 
     𝑏𝑤

𝑘  

OD pair 𝑝𝑤 𝑥𝑤 𝑄𝑤(𝑝𝑤) 𝑏𝑤 𝑏𝑤
1  𝑏𝑤

2  𝑏𝑤
3  𝑏𝑤

4  

(𝑆1, 𝑆2) 91.74 220.73 220.73 220.73 141.33 79.21 0.00 0.19 

(𝑆1, 𝑆3) 107.53 165.55 165.55 260.52 35.93 0.00 224.59 0.00 

(𝑆1, 𝑆4) 140.00 198.36 198.36 332.15 0.03 71.19 0.00 260.93 

(𝑆1, 𝑆5) 210.00 93.81 93.81 93.81 0.00 0.00 56.59 37.22 

(𝑆1, 𝑆6) 260.00 47.66 47.66 47.67 0.00 47.67 0.00 0.00 

(𝑆2, 𝑆3) 60.00 333.64 333.64 333.64 333.64 0.00 0.00 0.00 

(𝑆2, 𝑆4) 91.74 220.73 220.73 245.19 19.88 225.31 0.00 0.00 

(𝑆2, 𝑆5) 160.00 101.62 101.62 101.83 0.00 0.00 0.00 101.83 

(𝑆2, 𝑆6) 210.00 61.21 61.21 61.21 10.46 50.75 0.00 0.00 

(𝑆3, 𝑆4) 75.76 220.73 220.73 296.68 296.68 0.00 0.00 0.00 

(𝑆3, 𝑆5) 130.00 189.06 189.06 333.76 0.00 0.00 333.76 0.00 

(𝑆3, 𝑆6) 180.00 79.23 79.23 79.23 69.58 0.00 9.65 0.00 

(𝑆4, 𝑆5) 107.53 220.73 220.73 424.84 319.96 0.00 0.00 104.88 

(𝑆4, 𝑆6) 120.00 287.84 287.84 305.19 0.00 301.56 0.00 3.63 

(𝑆5, 𝑆6) 75.76 441.46 441.46 1077.14 290.42 0.00 390.35 396.37 

 3 

 4 
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