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Abstract

Functional linear model is a fruitfully applied general framework for regres-
sion problems, including those with intrinsically infinite-dimensional data. Online
gradient descent methods, despite their evidenced power of processing online or
large-sized data, are not well studied for learning with functional data. In this
paper, we study reproducing kernel-based online learning algorithms for functional
data, and derive convergence rates for the expected excess prediction risk under
both online and finite-horizon settings of step-sizes respectively. It is well under-
stood that nontrivial uniform convergence rates for the estimation task depend
on the regularity of the slope function. Surprisingly, the convergence rates we
derive for the prediction task can assume no regularity from slope. Our analysis
reveals the intrinsic difference between the estimation task and the prediction task
in functional data learning.
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1 Introduction
In this paper, we study the functional linear model

Y = α∗ +

∫
T
X(t)β∗(t)dt+ ε. (1)

Here, the predictor X is a random function on a compact set T in some Euclidean space.
The slope (or coefficient) β∗ is an unknown function. We assume that X and β∗ are
both in the space (L2(T ), ⟨·, ·⟩ , ∥·∥) of square integrable functions. The number α∗ is the
constant intercept. The error ε is a zero-mean random variable with variance σ2 < ∞,
and it is independent of X. We let Y denote the response.

In this paper, for technical simplicity we assume α∗ = 0, and that the mean function
is zero, i.e. E[X] = 0. Consequently, E[Y ] = 0.

Let D = {(Xi, Yi)}ni=1 be a sample of independent copies of (X,Y ). The prediction
problem of functional linear regression is to exploit D and find a linear functional η̂ on
L2(T ) as estimator of the unknown functional η∗ on L2(T ),

η∗(X) = ⟨X, β∗⟩ =
∫
T
X(t)β∗(t)dt,

where ⟨·, ·⟩ denotes the inner product in L2(T ). Denote E(η̂) the excess prediction risk
of η̂,

E(η̂) = E(X,Y )

[
(Y − η̂(X))2 − (Y − η∗(X))2

]
= EX

[
(η̂(X)− η∗(X))2

]
,

where (X,Y ) is independent of η̂ and E(X,Y ) denotes the expectation taken with respect
to the distribution of (X,Y ). The expectation EX is similarly defined.

There is a large literature on function linear models. See [4, 5, 23, 18] and the refer-
ences therein. Functional principal component analysis (FPCA) is a popular tool for the
regression problems [4, 13]. FPCA makes use of the functional principal component rep-
resentation of X with fast decaying coefficients for estimation, and usually requires strong
regularity of the slope function β∗. Another widely applied approach is the reproducing
kernel method [23, 5, 15, 19, 14], which represents functions by linear combinations of
kernel functions, so that the regression problem is, in computation, reduced to optimiza-
tion problems over the coefficient vector spaces. The algorithms studied in this paper are
designed with reproducing kernels.

In this paper, we study the online stochastic gradient descent scheme which starts
from β1 = 0 and is then iteratively defined by

βk+1 = βk − γk

(∫
T
βk(t)Xk(t)dt− Yk

)∫
T
K(s, ·)Xk(s)ds. (2)

Here γk > 0 is the step-size. K : T × T → R is a continuous reproducing kernel (a.k.a.
Mercer kernel), which is defined to be continuous, symmetric (i.e., K(s, t) ≡ K(t, s)),
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and positive semi-definite (i.e., the Gramian matrix (K(ti, tj) : 1 ≤ i, j ≤ n) is positive
semi-definite for any n ≥ 1 and any t1, . . . , tn ∈ T ). The function K defines an integral
operator LK : L2(T ) → L2(T ),

LKf =

∫
T
K(s, ·)f(s)ds, (3)

which is known to be compact and positive semi-definite. See, e.g., [7, Section 4.2], and
[20, Section 4.3]. So, (2) can be equivalently written as

βk+1 = βk − γk (⟨βk, Xk⟩ − Yk)LKXk. (4)

After n iterations, the output estimator η̂n+1 of the predictor η∗ is defined by

η̂n+1(X) = ⟨βn+1, X⟩ =
∫
T
βn+1(t)X(t)dt. (5)

We study two settings of the step-sizes {γk} and the data set D.

• The online setting. In this setting, one takes D as a source of (finite or infinite)
sample points and the iterations continue indefinitely, before the possible exhaustion
of D. We use a decreasing sequence {γk = γ1k

−µ} of step-sizes with some µ > 0,
and update the estimated predictor after each step of iteration.

• The finite-horizon setting. In this setting we assume a finite sample size n = |D| <
∞ and use a fixed step-size γk ≡ γ0n

−µ that is dependent on n. The iteration is
scheduled to terminate after the exhaustion of D.

Let C be the covariance function of X (recall that E[X] = 0),

C(s, t) = E [(X(s)− E[X(s)])(X(t)− E[X(t)])] = E[X(s)X(t)].

It is easy to verify that C is symmetric and positive semi-definite. In this paper we assume
that C is continuous, so C is another Mercer kernel. We define the integral operator LC

by replacing K with C in (3), so LC is also compact and positive semi-definite.
In the analysis, we make the following assumptions.

(A1) The coefficient β∗ satisfies

L
1/2
C β∗ = L θg∗, for some g∗ ∈ L2(T ) and θ > 0,

where L = L
1/2
C LKL

1/2
C . We shall discuss this assumption in Section 3.

(A2) There exists some constant 0 < c < ∞ such that for any β ∈ L2(T ),

E
(∫

T
β(t)X(t)dt

)4

≤ c

(
E
(∫

T
β(t)X(t)dt

)2
)2

. (6)
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One uses vector notation to rewrite (6) as E[⟨β,X⟩4] ≤ c(E[⟨β,X⟩2])2. Assumptions (A1)
and (A2) are adopted in [9] to establish the convergence of excess risk of a functional
data-based classifier under the framework of optimal individualized treatment rules. As-
sumption (A2) is also used in [23, 5] for the analysis of kernel-based batch learning
scheme for functional linear regression. Nonetheless, it remains an interesting open ques-
tion whether Assumption (A2) is technical or intrinsic, for the convergence of Algorithm
(2).

2 Main Results
This paper studies the online scheme (2) for learning the predictor η∗ of the functional
linear regression model (1). In this section we provide the convergence rates of the
expected excess risk. Recall that K and C are both continuous, and T is compact. So

κ1 := max
t∈T

√
K(t, t) < ∞, and κ2 := max

t∈T

√
C(t, t) < ∞.

In Theorem 1 below, we study the online setting. The data set D is assumed to be
a source of finite or infinite sample points, and the estimator η̂n+1 is obtained with the
first n sample points. The iteration (4) can continue until the possible exhaustion of D.

Theorem 1. Let {η̂n+1 : n ≥ 1} be a sequence of estimators defined by (5) and (4) with
step-sizes γk = γ1k

−µ. Assume (A1) with θ > 0, (A2), and let

µ = min

{
1

2
,

2θ

2θ + 1

}
=

{
2θ

2θ+1
, when 0 < θ ≤ 1/2,

1
2
, when θ > 1/2.

(7)

If γ1 ≤ µ/[21+µ(1 + c)(1 + κ2
1κ

2
2)

2Cµ] (where Cµ is defined by Lemma 4 below), then for
any n ≥ 1,

E[E(η̂n+1)] ≤ C1n
−µ log(n+ 1),

where C1 is a constant independent of n, and it will be specified in the proof.

In Theorem 2 below, we study the finite-horizon setting. The data set D is assumed
to be finite with size n = |D| ≥ 1. After n steps of iterations D is exhausted, and the
algorithm terminates and outputs the estimator η̂n+1.

Theorem 2. Let η̂n+1 be the estimator defined by (5) and (4) with a finite sample
D = {(Xi, Yi)}ni=1 and the constant step-size γk ≡ γ. Assume (A1) with θ > 0 and (A2).
If γ = γ0n

−2θ/(2θ+1) with

0 < γ0 ≤
1

2(1 + c)(1 + κ2
1κ

2
2)

2
(
1 + 2θ+1

2eθ

) ,
then we have

E[E(η̂n+1)] ≤ C2n
−2θ/(2θ+1) log(n+ 1),

where C2 is a constant independent of n, and it will be specified in the proof.
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Remark 1. The analysis in [23, 5] requires the regularity β∗ ∈ L
1/2
K (L2(T )) (that is, β∗

resides in the reproducing kernel Hilbert space generated by K). It is well understood in
the literature of regression learning that for an algorithm to learn β∗ from data (a.k.a.
the estimation problem), a non-trivial convergence rate depends on the regularity of β∗

[6, 21, 3, 1, 16]. Similar results for classification problems are referred to as no-free-lunch
theorems [8, 20]. Our analysis relaxes this assumption. From Theorem 3, we see that by
properly selecting the kernel K, Theorems 1 and 2 apply with some 0 < θ < 1/2, to any
β∗ ∈ L2(T ). In fact, if there exist some δ > 0 and 0 < θ < 1/2, such that LK ⪰ δLν

C with
ν = 1

2θ
− 1, then one uses Theorem 3 to guarantee (A1) for any β∗ ∈ L2(T ). The results

in this paper show that it is possible to learn the predictor η∗ (in a specific convergence
rate) without assuming regularity of the slope function β∗. The regularity requirement
on β∗ is an intrinsic difference between the prediction problem (for learning η∗) and the
estimation problem (for learning β∗) in functional data learning.

3 Discussions on the Regularity Assumption
In this section we discuss the regularity assumption (A1). Theorem 3 below suggests
that (A1) is a mild assumption and it can be satisfied for any β∗ ∈ L2(T ) by properly
selecting the reproducing kernel K, at least for any 0 < θ < 1/2.

For any two self-adjoint operators L1 and L2, we write L1 ⪯ L2 (or L2 ⪰ L1) if L2−L1

is positive semi-definite. Recall that ∥·∥ denotes the norm in L2(T ).

Theorem 3. Assume LK ⪰ δLν
C for some δ > 0 and ν > 0. Then, for any β∗ ∈ L2(T ),

there exists some g∗ ∈ L2(T ) such that L
1/2
C β∗ = L θg∗ and ∥g∗∥ ≤ δ−θ∥β∗∥ with θ =

1/(2 + 2ν). In particular, one has L
1/2
C β∗ ∈ L θ1(L2(T )) for any 0 < θ1 ≤ θ.

Remark 2. Thanks to the results in [10], the assumption in Theorem 3 can be further
relaxed to Lω

K ⪰ δLν
C for δ, ω, ν > 0 and ω+ν ≥ 1, with θ = 1/(2+2ν/ω). This relaxation

is not trivial for 0 < ω < 1. Nonetheless, here we do not expand the details.

Remark 3. Since the sum of two Mercer kernels is a Mercer kernel, as long as K − δC

is a Mercer kernel for some δ > 0, one has already LK ⪰ δLC.

Proof of Theorem 3. Since LK ⪰ δLν
C , we claim that L ⪰ δL1+ν

C . In fact, for any
β ∈ L2(T ), ⟨β,L β⟩ =

〈
L
1/2
C β, LK(L

1/2
C β)

〉
≥ δ

〈
L
1/2
C β, Lν

C(L
1/2
C β)

〉
=
〈
β, δL1+ν

C β
〉
.

Next, we claim that L 1/(1+ν) ⪰ δ1/(1+ν)LC . This follows from the fact that the
function f(x) = xr on x ∈ [0,∞) with 0 < r ≤ 1 is operator monotone (i.e., L1 ⪯ L2

implies f(L1) ⪯ f(L2) for any bounded positive semi-definite operators L1 and L2) [17].
For any bounded positive semi-definite operators L1 and L2 on L2(T ), L1 ⪯ L2

implies that for any β∗ ∈ L2(T ), there exists some g∗ ∈ L2(T ) such that ∥g∗∥ ≤ ∥β∗∥
and L

1/2
1 β∗ = L

1/2
2 g∗. This is a standard result with the matrix form available in many

linear algebra textbooks, e.g. [2, page 114]. See [11] for a proof for operators on Hilbert
spaces. Recall that L is bounded. The proof is complete.
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4 Proofs of the Main Results
We first symbolically decompose the residual L1/2

C (βk+1 − β∗) after k steps of iterations.

Lemma 1. Let {βk : k ∈ N} be defined by (4). One has

L
1/2
C (βk+1 − β∗) = −

[
k∏

i=1

(I − γiL )

]
L
1/2
C β∗ +

k∑
i=1

γi

[
k∏

j=i+1

(I − γjL )

]
Bi, (8)

where I is the identity operator (of which the domain is inferred from the context), the
product

∏k
j=i+1 vanishes to I when i+ 1 > k, and Bk is defined by

Bk = LL
1/2
C (βk − β∗) + (Yk − ⟨Xk, βk⟩)L1/2

C LKXk. (9)

Proof. By definition (4) of βk, we have

L
1/2
C (βk+1 − β∗) = L

1/2
C (βk − β∗) + γk (Yk − ⟨Xk, βk⟩)L1/2

C LKXk

= (I − γkL )L
1/2
C (βk − β∗) + γkBk

= (I − γkL )(I − γk−1L )L
1/2
C (βk−1 − β∗) + γk−1(I − γkL )Bk−1 + γkBk

= −

[
k∏

i=1

(I − γiL )

]
L
1/2
C β∗ +

k∑
i=1

γi

[
k∏

j=i+1

(I − γjL )

]
Bi.

This completes the proof.

We see that Bk in (9) is just the difference between (Yk − ⟨Xk, βk⟩)L1/2
C LKXk and its

mean with respect to the observation (Xk, Yk),

E(Xk,Yk)

[
(Yk − ⟨Xk, βk⟩)L1/2

C LKXk

]
=L

1/2
C LKEXk

[⟨β∗ − βk, Xk⟩Xk]

=L
1/2
C LKLC(β

∗ − βk) = LL
1/2
C (β∗ − βk). (10)

Therefore, E[Bk] = 0.

Lemma 2. Let A be a compact positive semi-definite operator on some real separable
Hilbert space, such that ∥A∥op ≤ C∗ for some C∗ > 0. Let l ≤ k and γl, γl+1, . . . γk ∈
[0, 1/C∗]. Then, when θ > 0,∥∥∥∥∥Aθ

k∏
j=l

(I − γjA)

∥∥∥∥∥
2

op

≤ (θ/e)2θ + C2θ
∗

1 + (
∑k

j=l γj)
2θ
. (11)

When θ = 0, one has ∥∥∥∥∥
k∏

j=l

(I − γjA)

∥∥∥∥∥
2

op

≤ 1. (12)

In particular, when l > k, the above products vanish to the identity operator, and the sum∑k
j=l γj vanishes to zero, so the bounds (11) and (12) still hold true.
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Proof. The case l > k is trivial and we assume l ≤ k. Bound (12) directly follows the
fact 0 ≤ γj ∥A∥op ≤ γjC∗ ≤ 1. Now we assume θ > 0. The case

∑k
j=l γj = 0 is trivial

and we assume
∑k

j=l γj > 0.
Define polynomial τ(x) = xθ

∏k
j=l(1−γjx) on 0 ≤ x ≤ C∗. Then 0 ≤ γjx ≤ γjC∗ ≤ 1,

so 0 ≤ 1− γjx ≤ 1, and one has,

0 ≤ τ(x) ≤ Cθ
∗ . (13)

Recall that for fixed θ, A > 0, the function xθe−Ax defined on x ∈ [0,∞) achieves its
maximum θθ(eA)−θ at x = θ/A. One applies the inequality 1 − x ≤ e−x for x ≥ 0 to
obtain

τ(x) ≤ xθ

k∏
j=l

e−γjx = xθ exp

{
−x

k∑
j=l

γj

}
≤ θθ

(
e

k∑
j=l

γj

)−θ

. (14)

Recall that for a, b, c > 0, min(ab, c) ≤ 1
1+b

ab + b
1+b

c = b(a + c)/(b + 1). One lets
a = (θ/e)2θ, b = (

∑k
j=l γj)

−2θ, and c = C2θ
∗ to derive from (13) and (14) that,

τ 2(x) ≤ (θ/e)2θ + C2θ
∗

1 + (
∑k

j=l γj)
2θ
.

We apply the spectral theorem to derive (11).

Theorem 4. Let {βk : 1 ≤ k < N} be defined by (4) for some N ≤ ∞. Assume (A2)
and that γjκ2

1κ
2
2 ≤ 1 for any j ≥ 1. Then for any 1 ≤ n < N ,

E[E(η̂n+1)] ≤

∥∥∥∥∥
[

n∏
i=1

(I − γiL )

]
L
1/2
C β∗

∥∥∥∥∥
2

+ (1 + c)(1 + κ2
1κ

2
2)

2

n∑
i=1

γ2
i [EE(η̂i) + σ2]

1 +
∑n

j=i+1 γj
. (15)

Furthermore, if we assume(A1), then

E[E(η̂n+1)] ≤
(θ/e)2θ + (κ1κ2)

4θ

1 +
(∑n

j=1 γj

)2θ ∥g∗∥2 + (1 + c)(1 + κ2
1κ

2
2)

2

n∑
i=1

γ2
i [EE(η̂i) + σ2]

1 +
∑n

j=i+1 γj
. (16)

Proof. Recall that η∗(X) = ⟨β∗, X⟩ and η̂n+1(X) = ⟨βn+1, X⟩. We have

E(η̂n+1) =EX

[
(η̂n+1(X)− η∗(X))2

]
=EX

(∫
T
(βn+1(t)− β∗(t))X(t)dt

)2

=EX

(∫
T

∫
T
(βn+1(t)− β∗(t))(βn+1(s)− β∗(s))X(t)X(s)dtds

)
= ⟨βn+1 − β∗, LC(βn+1 − β∗)⟩

=
∥∥∥L1/2

C (βn+1 − β∗)
∥∥∥2 .
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Here we have used the definition C(s, t) = E[X(t)X(s)]. By Lemma 1,

E [E(η̂n+1)] =E
[∥∥∥L1/2

C (βn+1 − β∗)
∥∥∥2]

=− 2E

〈[
n∏

i=1

(I − γiL )

]
L
1/2
C β∗,

n∑
i=1

γi

[
n∏

j=i+1

(I − γjL )

]
Bi

〉

+ E

∥∥∥∥∥
n∑

i=1

γi

[
n∏

j=i+1

(I − γjL )

]
Bi

∥∥∥∥∥
2

+

∥∥∥∥∥
[

n∏
i=1

(I − γiL )

]
L
1/2
C β∗

∥∥∥∥∥
2

. (17)

We use J1 J2, and J3 to denote the three terms in the right-hand side of (17), respectively.
Here, J1 is an expectation where the only randomness comes from Bi’s, which have zero
mean as we discussed in (10). So,

J1 = 0.

Now we study J2. First, we expand the squared norm and write J2 as a double sum,

J2 =
n∑

i=1

n∑
l=1

γiγlE

〈[
n∏

j=i+1

(I − γjL )

]
Bi,

[
n∏

j=l+1

(I − γjL )

]
Bl

〉
.

Among the n2 summands of J2, whenever i > l, since

E(Xi,Yi)

〈[
n∏

j=i+1

(I − γjL )

]
Bi,

[
n∏

j=l+1

(I − γjL )

]
Bl

〉

=

〈[
n∏

j=i+1

(I − γjL )

]
E(Xi,Yi)[Bi],

[
n∏

j=l+1

(I − γjL )

]
Bl

〉
= 0,

the corresponding summand of J2 is zero. Similar argument applies to the case i < l.
Therefore,

J2 =
n∑

i=1

γ2
i E

∥∥∥∥∥
[

n∏
j=i+1

(I − γjL )

]
Bi

∥∥∥∥∥
2

. (18)

Write B̃i = L
1/2
K LC(βi − β∗) + (Yi − ⟨Xi, βi⟩)L1/2

K Xi. Similar to (10), we have E[B̃i] = 0

because

E(Xi,Yi)

[
(Yi − ⟨Xi, βi⟩)L1/2

K Xi

]
= EXi

[
⟨β∗ − βi, Xi⟩L1/2

K Xi

]
= L

1/2
K LC(β

∗ − βi).

Therefore,

E
[
∥B̃i∥2

]
≤ E

[
(Yi − ⟨Xi, βi⟩)2∥L1/2

K Xi∥2
]

= E
[
∥L1/2

K Xi∥2EYi
(Yi − ⟨Xi, βi⟩)2

]
= E

[
∥L1/2

K Xi∥2 ⟨β∗ − βi, Xi⟩2
]
+ σ2E

[
∥L1/2

K Xi∥2
]
.

8



Since LK is positive and compact, we write {λl : l ∈ I} the sequence of all the positive
eigenvalues of LK (arranged non-increasingly and counting multiplicity), where I is a
finite or countable set of indices. Write {ϕl : l ∈ I} the corresponding eigenvectors
normalized in L2(T ). We have ∥L1/2

K Xi∥2 =
∑

l∈I λl ⟨Xi, ϕl⟩2. By our assumption (A2)
on the moments of Xi,

E
[
∥L1/2

K Xi∥2 ⟨β∗ − βi, Xi⟩2
]
=
∑
l∈I

λlE
[
⟨ϕl, Xi⟩2 ⟨β∗ − βi, Xi⟩2

]
≤
∑
l∈I

λl

√
E
[
⟨ϕl, Xi⟩4

]√
E
[
⟨β∗ − βi, Xi⟩4

]
≤ c

∑
l∈I

λlE
[
⟨ϕl, Xi⟩2

]
EEXi

[
⟨β∗ − βi, Xi⟩2

]
= cE

[
∥L1/2

K Xi∥2
]
E
[
∥L1/2

C (β∗ − βi)∥2
]
.

Recall that E
[
∥L1/2

K Xi∥2
]
=
∫
T

∫
T K(s, t)C(s, t)dsdt ≤ κ2

1κ
2
2 and E

[
∥L1/2

C (β∗ − βi)∥2
]
=

E[E(η̂i)]. So,

E
[
∥B̃i∥2

]
≤ κ2

1κ
2
2(cE[E(η̂i)] + σ2). (19)

To continue the estimation in (18), we define M = L
1/2
K LCL

1/2
K . Then M is also a

compact positive semi-definite operator on L2(T ) with ∥M ∥op ≤ κ2
1κ

2
2. Simple calculation

shows that Bi = L
1/2
C L

1/2
K B̃i and∥∥∥∥∥

[
n∏

j=i+1

(I − γjL )

]
Bi

∥∥∥∥∥
2

=

∥∥∥∥∥L1/2
C L

1/2
K

[
n∏

j=i+1

(I − γjM )

]
B̃i

∥∥∥∥∥
≤

∥∥∥∥∥M 1/2

n∏
j=i+1

(I − γjM )

∥∥∥∥∥
2

op

∥B̃i∥2.

By (19) and Lemma 2 with θ = 1/2,

J2 ≤
n∑

i=1

γ2
i

(2e)−1 + κ2
1κ

2
2

1 +
∑n

j=i+1 γj
E[∥B̃i∥2]

≤ (1 + c)(1 + κ2
1κ

2
2)

2

n∑
i=1

γ2
i (E[E(η̂i)] + σ2)

1 +
∑n

j=i+1 γj
,

which, together with the estimation J1 = 0 and the expansion (17), proves (15).
With the further assumptions L1/2

C β∗ = L θg∗ for θ > 0, we estimate J3 by Lemma 2.

J3 ≤

∥∥∥∥∥L θ

n∏
i=1

(I − γiL )

∥∥∥∥∥
2

op

∥g∗∥2 ≤ (θ/e)2θ + (κ1κ2)
4θ

1 +
(∑n

j=1 γj

)2θ ∥g∗∥2 .

The proof is complete.
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Lemma 3. Let b ≥ 2, 0 < µ < 1, and a > b1−µ. One has∫ b

1

x−2µdx

a− x1−µ
≤ (b/2)1−2µ − 1

(1− 2µ)(a− (b/2)1−µ)
+

(b/2)−µ

1− µ
log

a− (b/2)1−µ

a− b1−µ
, (20)

where for the simplicity of notation, at µ = 1/2, the factor (b/2)1−2µ−1
1−2µ

denotes its limit
log(b/2).

Proof. The estimate is done by separating the integral interval into [1, b/2] and [b/2, b].
For the first half,∫ b/2

1

x−2µdx

a− x1−µ
≤ 1

a− (b/2)1−µ

∫ b/2

1

x−2µdx =
(b/2)1−2µ − 1

(1− 2µ)(a− (b/2)1−µ)
.

For the second half, one has∫ b

b/2

x−2µdx

a− x1−µ
≤
(
b

2

)−µ ∫ b

b/2

x−µdx

a− x1−µ

=

(
b

2

)−µ ∫ b

b/2

−1
1−µ

d(a− x1−µ)

a− x1−µ
=

(b/2)−µ

1− µ
log

a− (b/2)1−µ

a− b1−µ
.

The following lemma appears a few times in the literature of online learning theory
[22, 12, 11]. We include the proof for the sake of completeness.

Lemma 4. Let 0 < µ < 1 and 0 < γ1 ≤ 1. If the step-sizes γi = γ1i
−µ for i ≥ 2, we have

for any integer l ≥ 1,
l∑

i=1

γ2
i

1 +
∑l

j=i+1 γj
≤ Cµγ1

{
l−µ log(l + 1), for 0 < µ ≤ 1/2,

l−(1−µ), for 1/2 < µ < 1,
(21)

where Cµ is a constant only depending on µ and it will be specified in the proof. Conse-
quently, we also have a coarser constant bound

l∑
i=1

γ2
i

1 +
∑l

j=i+1 γj
≤ 2µCµγ1/µ. (22)

Proof. The case l = 1 is obvious, where the left-hand side of (21) is γ2
1 , and we only need

to set Cµ ≥ 1
log 2

. Now we assume l ≥ 2. Note that i ≥ (i+ 2)/3 for any i ≥ 1. We have

l∑
i=1

γ2
i

1 +
∑l

j=i+1 γj
=γ2

1 l
−2µ + γ1

l−1∑
i=1

i−2µ

1
γ1

+
∑l

j=i+1 j
−µ

≤γ2
1 l

−2µ + γ1

l−1∑
i=1

32µ(i+ 2)−2µ

1
γ1

+ 1
1−µ

[(l + 1)1−µ − (i+ 1)1−µ]

≤γ2
1 l

−2µ + 9µγ1

∫ l

1

(x+ 1)−2µdx
1
γ1

+ 1
1−µ

[(l + 1)1−µ − (x+ 1)1−µ]

=γ2
1 l

−2µ + 9µγ1(1− µ)

∫ l+1

2

x−2µdx
1−µ
γ1

+ (l + 1)1−µ − x1−µ
.

10



We apply Lemma 3 to continue the estimation.

l∑
i=1

γ2
i

1 +
∑l

j=i+1 γj
≤γ2

1 l
−2µ +

9µγ1(1− µ)
1−µ
γ1

+ (l + 1)1−µ −
(
l+1
2

)1−µ ×
(
l+1
2

)1−2µ − 1

1− 2µ

+ 9µγ1

(
l + 1

2

)−µ

log

1−µ
γ1

+ (l + 1)1−µ −
(
l+1
2

)1−µ

1−µ
γ1

=:γ2
1 l

−2µ + J ′
1 + J ′

2.

Below we estimate J ′
1 and J ′

2. First,

J ′
1 ≤

9µγ1(1− µ)

1− (1/2)1−µ
(l + 1)µ−1


(1/2)1−2µ

1−2µ
(l + 1)1−2µ, when 0 < µ < 1/2,

log l+1
2
, when µ = 1/2,

1
2µ−1

, when 1/2 < µ < 1,

≤Cµ,1γ1


(l + 1)−µ, when 0 < µ < 1/2,
log(l+1)√

l+1
, when µ = 1/2,

(l + 1)µ−1, when 1/2 < µ < 1,

where

Cµ,1 =
9µ(1− µ)

1− (1/2)1−µ


(1/2)1−2µ

1−2µ
, when 0 < µ < 1/2,

1, when µ = 1/2,
1

2µ−1
, when 1/2 < µ < 1.

For J ′
2, recall that log(l + 1) ≥ log 3 ≥ 1 and γ1 ≤ 1. we have

J ′
2 ≤18µγ1(l + 1)−µ log

[
1 +

γ1(l + 1)1−µ

1− µ
(1− (

1

2
)1−µ)

]
≤18µγ1

[
1− µ+ log

(
1 +

γ1
1− µ

(1− (
1

2
)1−µ)

)]
(l + 1)−µ log(l + 1)

≤Cµ,2γ1(l + 1)−µ log(l + 1),

where Cµ,2 = 18µ
(
1− µ+ log

[
1 + 1−(1/2)1−µ

1−µ

])
. So, when 0 < µ ≤ 1/2, (21) is proved

by defining Cµ = 1 + Cµ,1 + Cµ,2.
Simple calculation shows that

max
1≤x<∞

x−µ log x =
1

eµ
, for any µ > 0, (23)

where the maximum is achieved at x = e1/µ. Therefore, when 1/2 < µ < 1, (l+1)−µ log(l+

1) ≤ 1
e(2µ−1)

(l + 1)−1+µ, and (21) is verified by defining Cµ = 1 + Cµ,1 +
Cµ,2

e(2µ−1)
. Also,

from (23) we see that for 0 < µ ≤ 1/2, l−µ log(l+1) ≤ 2µ(l+1)−µ log(l+1) ≤ 2µ/µ, and
when 1/2 < µ < 1, l−(1−µ) ≤ 1 < 2µ/µ. We have proved (22).

Without using any specific form of the step-sizes, the lemma below gives a uniform
rough estimation on error, which would be used later for deriving finer bounds.
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Lemma 5. Let {βk : k ≥ 1} be defined by (4), and N ≤ ∞. Assume (A2). Suppose for
all 1 ≤ k < N ,

γkκ
2
1κ

2
2 ≤ 1, and

k∑
i=1

γ2
i

1 +
∑k

j=i+1 γj
≤ 1

2(1 + c)(1 + κ2
1κ

2
2)

2
.

Then we have

E [E(η̂k+1)] ≤ 2κ2
2 ∥β∗∥2 + σ2, for all 0 ≤ k < N. (24)

Proof. We organize the proof with mathematical induction. For k = 1, recall β1 = 0. So,
η̂1 = 0. One has

E[E(η̂1)] = E[η∗(X)2] = E

[(∫
T
β∗(s)X(s)ds

)2
]

≤ ∥β∗∥2E
[∫

T
X2(s)ds

]
≤ κ2

2∥β∗∥2.

Now assume that (24) holds true for any k = 1, . . . , l − 1, with l < N . Below we prove
that (24) also holds true for k = l. In fact, from Theorem 4 and Lemma 2,

E [E(η̂l+1)] ≤

∥∥∥∥∥
l∏

i=1

(I − γiL )

∥∥∥∥∥
2

op

∥∥∥L1/2
C

∥∥∥2
op
∥β∗∥2

+ (1 + c)(1 + κ2
1κ

2
2)

2

(
l∑

i=1

γ2
i

1 +
∑l

j=i+1 γj

)
max
1≤j≤l

(
E [E(η̂j)] + σ2

)
≤κ2

2 ∥β∗∥2 + 1

2

(
2κ2

2 ∥β∗∥2 + 2σ2
)

=2κ2
2 ∥β∗∥2 + σ2.

The proof is complete.

Proof of Theorem 1. We write the two terms at the right-hand side of (16) as J∗
1 and J∗

2 ,
respectively. By Assumption (A1), there exists some g∗ ∈ L2(T ), such that L

1/2
C β∗ =

L θg∗. We denote γi = γ1i
−µ to have

n∑
j=1

γj ≥ γ1

∫ n+1

1

x−µdx =
γ1

1− µ

[
(n+ 1)1−µ − 1

]
≥ γ1

1− µ
(1− 2µ−1)(n+ 1)1−µ.

So,

J∗
1 ≤ C∗

1

γ2θ
1 (n+ 1)2θ(1−µ)

, with C∗
1 =

[(θ/e)2θ + (κ1κ2)
4θ] ∥g∗∥2

[(1− 2µ−1)/(1− µ)]2θ
.
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By the setting

γ1 ≤
µ

21+µ(1 + c)(1 + κ2
1κ

2
2)

2Cµ

,

Bound (22) guarantees that

k∑
i=1

γ2
i

1 +
∑k

j=i+1 γj
≤ 1

2(1 + c)(1 + κ2
1κ

2
2)

2

for k ≥ 1. We use Lemma 5 to obtain E[E(η̂k)] ≤ 2κ2
2 ∥β∗∥2 + σ2 for any k ≥ 1. Recall

µ ≤ 1/2. We apply (21) to obtain

J∗
2 ≤ (1 + c)(1 + κ2

1κ
2
2)

2(2κ2
2 ∥β∗∥2 + 2σ2)

n∑
i=1

γ2
i

1 +
∑n

j=i+1 γj

≤ 2−µµ(κ2
2 ∥β∗∥2 + σ2)n−µ log(n+ 1).

To complete the proof, we set µ as (7) and let

C1 =
C∗

1

γ2θ
1

+ 2−µµ(κ2
2 ∥β∗∥2 + σ2).

Proof of Theorem 2. We write the two terms at the right-hand side of (16) as J∗
1 and J∗

2 ,
respectively. By the setting of step-size, γi ≡ γ = γ0n

−2θ/(2θ+1),

J∗
1 ≤

[
(θ/e)2θ + (κ1κ2)

4θ
]
∥g∗∥2

γ2θ
0

n−2θ/(2θ+1).

For any 1 ≤ k ≤ n,

k∑
i=1

γ2
i

1 +
∑k

j=i+1 γj
=

k∑
i=1

γ2

1 + (k − i)γ
= γ2 +

k−1∑
i=1

γ2

1 + iγ

≤ γ2 + γ

∫ k−1

0

γdx

1 + xγ
= γ2 + γ log(1 + (k − 1)γ). (25)

Recall that 0 < γ0 ≤ [2(1 + c)(1 + κ2
1κ

2
2)

2(1 + (2θ + 1)/(2eθ))]
−1

< 1, so γ < 1. We use
(23) to have

γ log(1 + (k − 1)γ) ≤ γ0n
− 2θ

2θ+1 log n ≤ γ0
2θ + 1

2eθ
.

So, for any 1 ≤ k ≤ n,

k∑
i=1

γ2
i

1 +
∑k

j=i+1 γj
≤ γ0 + γ0

2θ + 1

2eθ
≤ 1

2(1 + c)(1 + κ2
1κ

2
2)

2
.
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Also, obviously γ0κ
2
1κ

2
2 ≤ 1. So by Lemma 5, for any 1 ≤ k ≤ n, E[E(η̂k)] ≤ 2κ2

2 ∥β∗∥2+σ2.
Now we use (25) to have

n∑
i=1

γ2
i

1 +
∑n

j=i+1 γj
≤ γ + γ log(n+ 1) ≤

(
1

log 2
+ 1

)
γ log(n+ 1).

So, we can bound J∗
2 as

J∗
2 ≤ (1 + c)(1 + κ2

1κ
2
2)

2

(
n∑

i=1

γ2
i

1 +
∑n

j=i+1 γj

)(
2κ2

2 ∥β∗∥2 + σ2
)

≤

(
1 + 1

log 2

) (
2κ2

2 ∥β∗∥2 + σ2
)

2
(
1 + 2θ+1

2eθ

) n− 2θ
2θ+1 log(n+ 1).

We specify C2 below to complete the proof.

C2 =
[(θ/e)2θ + (κ1κ2)

4θ] ∥g∗∥2

γ2θ
0 log 2

+

(
1 + 1

log 2

) (
2κ2

2 ∥β∗∥2 + σ2
)

2
(
1 + 2θ+1

2eθ

) .
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