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patients update their beliefs about their health status following the Bayes’ rule. We show
that the patients’ doctor-shopping decisions are critically affected by the diagnosis accuracy,
the relative value of identifying a severely ill patient, and the cost per visit. We examine
how the patients’ doctor shopping behavior affects social welfare from two aspects, namely,
an objective one that accesses whether doctor shopping improves the judgment accuracy
regarding the patient’s health status, and a subjective one concerning whether doctor shop-
ping relieves patients’ anxiety. We find that allowing patients to conduct doctor shopping
exacerbates the system congestion (congestion effect), but it can help those patients who
have decided to join obtain a higher reward (reward effect). There exists a diagnosis accu-
racy threshold above which allowing doctor shopping incurs a welfare loss and below which
allowing doctor shopping improves welfare. Moreover, this diagnosis accuracy threshold in-
creases as patients become more pessimistic or hold more diverse initial illness perceptions.
The objective welfare maximization prefers a higher doctor shopping rate than the subjective
welfare maximization does only when the value of identifying a severely ill patient is high
enough, which may help explain why doctor shopping is encouraged for the critical illness
such as cancer.
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1 Introduction

Patients often seek opinions from multiple doctors during a single illness episode without

referrals; such behavior is referred to as doctor shopping by Kasteler et al. (1976). Doctor

shopping is a commonly-observed phenomenon. Nearly 40% of patients in the government

out-patient departments in Hong Kong have doctor shopping experience (Lo et al., 1994).

In the United States, the prevalence of doctor-shopping among breast cancer patients is 20%

(Morrow et al., 2009). The overall prevalence rate of doctor shopping is 18% in Canada

(Macpherson et al., 2001) and 23% in Japan (Sato et al., 1995). According to Payne et

al. (2014); Sansone and Sansone (2012), the reasons why patients conduct doctor shopping

include confirmation of a diagnosis/treatment, dissatisfaction with an initial consultation,

unfulfilled needs, a desire for additional information, hopes for a change of a diagnosis, high

risks for major morbidity or mortality, and treatment complications and adverse effects.

Despite the prevalence of doctor shopping, the empirical evidence on its implications is

mixed. Some believe that it reduces the risk of misdiagnosis and provides patients with

better treatment options; see, e.g., Althabe et al. (2004). Others argue that it may lead to

patient confusion, resources waste, and a higher risk of in-hospital complications, especially

when there is no informed reconciliation of conflicting opinions (Chang et al., 2013; Shmueli

et al., 2017). It has not yet reached an conclusion of whether doctor shopping truly improves

the quality of care in the general medical practice. This motivates us to develop a thorough

understanding of doctor shopping and its effects on the patients and the system performance.

In this work, we examine the patients’ doctor-shopping behavior when they seek the diagnosis

service. We are particularly interested in the following research questions:

(1). How shall we model and derive patients’ doctor shopping behavior?

(2). How do the system parameters, such as the diagnosis accuracy, patients’ initial ill-

ness perceptions, and the features of the illness (namely, the values/losses of being

identified/misidentified), affect the equilibrium outcomes, such as the patients’ joining

incentives, the doctor shopping rate, and the social welfare?

(3). How shall the doctor shopping behavior be regulated from the viewpoint of welfare

maximization?

To model patients’ doctor shopping behavior, we note that patients often hold prior

beliefs (often biased) about their medical conditions, which are called their illness perceptions

(Weinman and Petrie, 1997). When the diagnosis result provided by the doctor significantly

differs from a patient’s belief, cognitive dissonance arises, and the patient may resort to
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doctor-shopping to alleviate the dissonance (Donkin et al., 2006). We consider a stylized

public system that offers the diagnosis service. Patients arrive according to a Poisson process.

They exhibit similar symptoms but are heterogeneous in their illness perceptions. Each

patient’s illness perception measures her subjective belief about the likelihood that she is

severely ill, which is not an informative indicator of her true health status (Petrie et al.,

2007). After performing a diagnosis, the doctor dismisses the patient if the diagnosis result is

negative (indicating that the patient has a mild health problem) and refers her for treatments

if the result is positive (indicating that the patient has a severe health problem). The

diagnosis, however, is imperfect. Based on the diagnosis result, the patient updates her

belief following a Bayes rule and decides whether to take the advice and leave the diagnostic

system or to conduct doctor shopping.

The patient’s doctor shopping decision is an optimal stopping problem: it involves com-

paring the expected reward of stopping immediately with that can be achieved by pay-

ing another visit, wherein the future expected reward is associated with another round of

stopping-now or continuing-doctor-visiting decision and so on. There exist two illness per-

ception thresholds in equilibrium, an upper one and a lower one. Patients join the diagnostic

system when their initial illness perceptions are above the lower threshold, and they leave

once their updated illness perceptions are above the upper threshold or below the lower

threshold. We show that any patient whose illness perception falls in between the two

thresholds will leave the system when the diagnosis results are the same in two successive

visits. Based on the stopping decisions of the patients who join the system, we classify them

into three categories, obedient, stubborn, and diagnosis-dependent. The obedient patients

always follow the doctor’s advice, whereas the stubborn patients are assertive that they have

severe health problems and insist on referrals regardless of the diagnosis result;1 both types

visit once and leave. Doctor shopping only occurs among diagnosis-dependent patients. We

then derive the equilibrium number of times that a patient visits during one illness episode

and the system effective arrival rate. We show that the expected visiting times of the pa-

tients are jointly determined by the diagnosis accuracy, the relative value of identifying a

severely ill patient, and the cost per visit.

After characterizing the patients’ doctor shopping decisions, we examine how doctor

shopping affects the system performance from two aspects, namely, the objective welfare

and the subjective welfare. The former is concerned with to what degree doctor shopping

helps achieve more accurate judgment on the patients’ health status while the latter is

concerned with how much doctor shopping helps relieve patients’ anxiety. We show that

1The existence of stubborn patients has been documented in literature; see, e.g., O’Donnell (2000); Webb
and Lloyd (1994); Armstrong et al. (1991); Virji and Britten (1991) These studies find that doctors are
generally quite responsive to patients’ request for referrals even when the diagnosis result is negative.
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when doctor shopping is prohibited, there exists an optimal effective arrival rate that the

welfare maximization aims to achieve. This optimal effective arrival rate increases with

diagnosis accuracy (i.e., the quality of the diagnosis service). When doctor shopping is

allowed, we show that the social planner sets a relatively low price so that both the low- and

the high-illness-perception diagnosis-dependent patients have incentives to conduct doctor

shopping, thereby maximizing the objective social welfare.

Allowing patients to conduct doctor shopping affects the overall system performance in

a twofold way. On the one hand, it results in a higher system congestion and thus increases

patients’ cost per visit, namely the congestion effect, which induces more patients to balk.

On the other hand, the opportunity of doctor shopping can make the patients who have

decided to join obtain a higher reward, namely the reward effect, which incentivizes more

patients to join. Their net effect determines the patient’s optimal joining-or-balking decision

and whether to conduct doctor shopping.

We find that when a patient population is more pessimistic (i.e., when patients’ initial

illness perceptions are more likely to take large values), allowing patients to conduct doctor

shopping attains a higher welfare improvement if the diagnosis accuracy is not high. This

is because under this situation, the congestion effect induced by allowing doctor shopping

is dominated by the corresponding reward effect. However, if the diagnosis accuracy is very

high, the increased patient reward from doctor shopping is marginal compared with the

exacerbated congestion. In this situation, the more pessimistic patient population incurs a

higher welfare loss. When patients’ views towards their health conditions are more diverse

among the patient population (i.e., when patients’ initial illness perceptions are more mean-

preserving spreading), allowing patients to conduct doctor shopping attains a higher welfare

improvement. The effective arrival rate of new patients is smaller and the equilibrium size of

stubborn patients in the population is larger as patients’ initial illness perceptions become

more diverse. Under this situation, the reward improvement from doctor shopping surpasses

the corresponding exacerbated congestion. Consequently, allowing patients to conduct doc-

tor shopping leads to a higher welfare improvement. Our results show that for any given

patient initial illness perception distribution, there exists a diagnosis accuracy threshold

above which allowing doctor shopping incurs a welfare loss and below which allowing doctor

shopping improves welfare. Moreover, this diagnosis accuracy threshold increases as patients

become more pessimistic or hold more diverse initial illness perceptions.

We further find that when the value of identifying a severely ill patient increases, the

welfare improvement from doctor shopping increases and fewer patients balk. Thus, the

effective arrival rate of new patients increases. The objective welfare maximization prefers

a higher doctor shopping rate than the subjective welfare maximization does only when the
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value of identifying a severely ill patient is high enough. This may help explain why doctor

shopping is encouraged for the critical illness such as cancer (which has a huge impact on

the patients’ life) (Garcia et al., 2018).

The remainder of this paper is organized as follows. Section 2 reviews the related liter-

ature. Model setup is discussed in Section 3. In Section 4, we analyze the patients’ doctor

shopping behavior and derive the welfare-maximizing pricing strategy. Section 5 compares

the social welfare achieved by allowing doctor shopping with that by prohibiting it. Con-

cluding remarks are provided in Section 6. All of the proofs are relegated to the online

Appendix.

2 Literature Review

Our study is closely related with studies on the provision of diagnosis service. The works of

Wang et al. (2010) and Alizamir et al. (2013) consider balancing congestion and diagnosis

accuracy. Wang et al. (2010) consider a multi-server queueing system and demonstrate

that with dual concerns over accuracy and congestion, increasing capacity might increase

congestion. Alizamir et al. (2013) model the diagnostic process as a sequence of imperfect

tests to determine a customer’s type. They find that the provider should continue to perform

the diagnosis as long as its current belief that the customer is of a given type falls into an

interval. The studies of Pac and Veeraraghavan (2010) and Dai et al. (2017) consider the

credence nature of the diagnostic service, where the service is provided by experts and

customers lack sufficient knowledge to evaluate the service quality. Pac and Veeraraghavan

(2010) examine the issue of expert cheating (over- and under-provision). They show that

congestion concerns mitigate expert cheating and that high prices can signal honest diagnoses

and can reduce the system congestion. Dai et al. (2017) consider the credence nature of the

physicians’ decisions on ordering imaging tests and find that insurance coverage is the key

driver of physicians’ over-provision.

Our research is also closely related with those studies concerning the speed-quality trade-

off in service systems. De Vericourt and Zhou (2005) study a call-routing system in which

customers call back when their problems are not completely resolved. They show that the

optimal routing policy is of threshold type. Chan et al. (2014) consider a state-dependent

queuing network and find that speedup may actually exacerbate congestion due to the in-

creased need for rework. Yom-Tov and Mandelbaum (2014) examine some time-varying

staffing policies of an Erlang-R queueing model where customers may return to service sev-

eral times during the sojourn time. Guo et al. (2016) investigate the relationships between

the payment schemes (fee-for-service and bundled payment), the doctors’ service-time deci-

sions, and the patients’ readmission. They show that the bundled payment performs better
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in maximizing patient welfare and reducing readmission while the fee-for-service scheme is

preferred in reducing system congestion.

In the aforementioned two streams of studies, service quality is solely determined by the

service provider; customers are passive receivers and and readmission is driven by the service

failure. In contrast, here, we take into account patients’ active decision making based on the

behavioral medicine research (Leventhal et al., 1984; Leventhal and Cameron, 1987), where

the primary driving force of a patient revisiting the service system is due to the discrepancy

between his/her own belief about the self health status and the doctor’s diagnosis result.

The above-mentioned studies are concerned with the “objective” implications of customer

revisits on the system performance including system workload and congestion, whereas our

study is concerned with not only the objective aspect regarding the judgment accuracy but

also the subjective aspect regarding relieving patients’ anxiety by allowing doctor shopping.

Our work is related to those studies that consider the sequential process of customers

soliciting the service-related information and examine customers’ active decision making on

the service provider selection. Hassin and Roet-Green (2018) study the equilibrium joining

strategies of customers in a system with two parallel servers, in which each arriving customer

chooses a server to inspect its queue length with an inspection cost and then decides whether

to join this queue or to further inspect the other queue. They show that in many cases even

when servers are symmetric, customers’ equilibrium joining strategy is not the monotonic

threshold-type2 but contains cascades (or “holes”). Yang et al. (2019) investigate customers’

search behavior when they are confronted with a large collection of vertically differentiated

and congested service providers. Customers conduct a costly sequential search to resolve

uncertainty about service providers’ quality and queue length and follow certain stopping

rules to decide which one to join. They find that reducing either the search cost or the

customer arrival rate may increase the average waiting time in the system and decrease

customer welfare. Different from the above studies, we consider an unobservable queue and

examine patients’ continuing-doctor-shopping-or-stopping-now decisions by characterizing

the evolution of patients’ beliefs upon obtaining diagnosis results. Similar to Yang et al.

(2019), we find that patients’ individual rational decisions may lead to welfare loss due to

the increased system congestion. In this sense, our work is also related to Cui et al. (2019)

that considers customers’ rational retrial decisions in a steady-state queueing system and

finds that the retrial option can hurt consumer welfare.

The study on the provision of health service under the framework of queueing games is

also related. Green et al. (2006) consider the patient scheduling and appointment acceptance

2The monotonic threshold-type joining strategy is the one in which customers join if the queue length is
below a threshold and balk otherwise.
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in the diagnostic facilities. Green and Savin (2008) model the medical appointment system

as a single-server queueing system in which customers have a state-dependent probability

of “no-show” and “no-show” customers may rejoin. They demonstrate that the queueing

models are helpful in physician practices for managing the “patient panel” and reducing

appointment backlogs. Guo et al. (2014) study a two-tier health care system with both a

public and a private system and find that expanding the public service capacity could increase

congestion for the overall patients; that is, the Downs-Thomson paradox occurs in the two-

tier health care system. Qian et al. (2017) examine how to subsidize patients and move

them away from the public waiting queue into the private health care system so as to better

utilize the service capacities. Shi et al. (2020) research into trade-offs between managing a

heavy clinical workflow and conducting valuable medical research on new diagnostic tests

and develop a decomposition algorithm.

3 Model Setup and Preliminaries

Consider a public medical diagnostic system that consists of a large (or infinite) number

of doctors who are able to provide the same kind of diagnosis service. Each doctor can be

considered as a server and their service can be treated as homogeneous. This is reasonable

because in a public health care system, medical resources are allocated fairly. For example,

the Hong Kong’s Hospital Authority allocates resources under “same service, same funding”

principle.3 The doctors’ service times are independent and identically distributed exponential

random variables with rate µ. The diagnostic system charges a price f ≥ 0 per each diagnosis

service.

A stream of patients exhibiting similar symptoms arrive at each doctor according to a

Poisson process with rate Λ. Patients decide whether to join or to balk upon their arrival.

Those who decide to join may visit the system multiple times, that is, engaging in doctor

shopping. Patients are served by each doctor on the First-Come First-Served (FCFS) basis.

Let αb denote the prevalence of the disease, that is, the probability of a patient being

stricken with a severe health problem. Each patient (she) holds an initial illness perception

(or belief) towards her illness condition, that is, the probability that she believes herself to

be severely ill, denoted as α. Patients’ illness perceptions αs are independently drawn from a

distribution supported on the interval (0, 1), with the probability density function (PDF) and

the cumulative distribution function (CDF) denoted as ϕ(·) and Φ(·), respectively. Patients’
illness perceptions are subjective (Petrie et al., 2007) and hence do not necessarily reflect

their true health status.

3See http://www.legco.gov.hk/yr13-14/english/panels/hs/papers/hs0120cb2-671-5-e.pdf.
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The diagnosis helps determine a patient’s health status/type denoted by t: being positive

and having a severe health problem (t = 1) or being negative and having a mild health

problem (t = 0). After performing the diagnosis, the doctor dismisses the patient if the

diagnosis result is negative (denoted by s = 0) or recommends her for treatments if the

diagnosis result is positive (denoted by s = 1). Diagnostic errors can occur. Given a

patient’s true type t = i, the probability that her diagnosis result is s = j is expressed as

q(s = j|t = i), where i, j ∈ {0, 1}. For brevity, denote q(s = j|t = i) by qij. Clearly,

q10 + q11 = 1 and q01 + q00 = 1. When i = j, the diagnosis result is correct. We assume that
1
2
< q11 = q00 = q < 1, where q is an indicator of the diagnosis accuracy. The condition q > 1

2

ensures that the likelihood of correct diagnosis is larger than 50%. When i ̸= j, the diagnosis

result is false. The doctor either misidentifies a patient with mild conditions (t = 0) as severe

(s = 1), i.e., a false positive (type I error), or misidentifies a patient with severe conditions

(t = 1) as mild (s = 0), i.e., a false negative (type II error). Given a patient’s true type

t = i (i ∈ {0, 1}), she gains a reward Vi if she is correctly identified and suffers a loss Li if

misidentified. We assume that min{q11V1−q10L1, q00V0−q01L0} > 0. That is, the diagnostic

information (with the possibility of misdiagnosis taken into account) is valuable to patients

regardless of their true health status.

Let Xn = xn be the posterior belief of a patient about her health status who has joined

the system and paid n (n ∈ N ) visits, where 0 < xn < 1. Conditional on Xn = xn, the

patient decides whether to conduct doctor shopping one more time with a belief of obtaining

a positive diagnosis result (s = 1) with probability P (s = 1|xn) and a negative one (s = 0)

with probability P (s = 0|xn), which can be derived as

P (s = 1|xn) = q01(1− xn) + q11xn, (1)

P (s = 0|xn) = q00(1− xn) + q10xn. (2)

If the patient conducts doctor shopping one more time, she further updates her belief ac-

cording to the Bayes’ rule based on the (n+1)th diagnosis result. The posterior belief Xn+1

thus takes one of the following two values: xn+1 = g1(xn) if the diagnosis result is positive

(s = 1) or xn+1 = g0(xn) if the diagnosis result is negative (s = 0), where

g1(xn) :=
q11xn

q11xn + q01(1− xn)
; (3)

g0(xn) :=
q10xn

q10xn + q00(1− xn)
. (4)

It can be easily shown that both g1(xn) and g0(xn) are increasing with xn.

After obtaining a diagnosis, each patient decides whether to leave the system or to rejoin

and seek for more opinions (i.e., conduct doctor shopping). As such, the effective arrival
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rate to the system consists of those from both the newly joined patients and doctor-shopping

patients who have visited some doctor(s) and decided to revisit again. Since doctors are

homogeneous, we can consider a representative doctor to examine the system performance.

We assume that the arrival of doctor-shopping patients to the representative doctor follows

a Poisson process, and hence the aggregate arrival process (from newly-joined and doctor-

shopping patients) is also Poisson. Let λ denote the patient’s effective arrival rate to the

representative doctor. The patient’s mean sojourn time (i.e., waiting time plus service time)

per visit at the representative doctor, denoted by w, is thus w = 1/(µ − λ). Hereafter, by

“waiting time” we mean the sojourn time. The patient pays the price f per each visit and

incurs a waiting cost that is proportional to her waiting time in the system with a unit-time

cost c. Accordingly, the expected cost that a patient incurs in each visit is

Cp := f + cw = f + c/(µ− λ). (5)

Let N denote the number of times that a patient visits the system in one illness episode.

Undoubtedly, N is a random variable. The effective arrival rate then can be expressed as

λ = ΛE[N ].

Note that the expected number of times that a patient visits the system E[N ] is a critical

indicator of the system congestion, and unnecessary doctor-shopping leads to a waste of

medical resources.

As our focus is patients’ doctor shopping behavior, we shall consider the following two

aspects regarding social welfare: to what extent it improves the chance of correctly identifying

patient types and the associated reward, and to what extent it benefits the patients in

terms of relieving anxiety and the perceived reward. Accordingly, we name the former the

objective (labeled o) social welfare and the latter the subjective (labeled s) social welfare.

The associated objective reward at the nth visit shall be based on the true probability that

the patient is ill, which is updated based on an unbiased prior, i.e., the prevalence of the

disease αb, denoted as Yn; while the corresponding associated subjective reward shall be

based on an individual patient’s posterior illness perception, which is updated based on her

initial subjective illness perception X0 = α, i.e., Xn. Taking the first visit as an example, the

updated illness perception X1 (i.e., the believed probability of being ill) takes the value g1(α)

if the diagnosis result is positive and g0(α) otherwise. In contrast, Y1, the true probability

of the patient being ill shall be either g1(αb) or g0(αb).
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4 Analysis

In this section, we first construct the patient’s diagnosis-seeking decision as an optimal

stopping problem. Next, we investigate the patients’ optimal stopping decision. We then

derive the public diagnostic system’s optimal pricing decision of maximizing social welfare.

Here, we consider social welfare from two aspects, an objective one and a subjective one.

We also consider a benchmark scenario in which doctor shopping is prohibited to facilitate

the understanding of the doctor shopping effect.

4.1 Patient’s Optimal Stopping Problem

In this section, we assume that the price per each visit f is given and derive the patients’

optimal decisions, including whether or not to seek the diagnostic service, when to stop

doctor shopping if joining the diagnostic system, and moreover, the expected number of

times a patient visits in an illness episode.

A patient makes her joining-or-balking and continuing-doctor-visiting-or-stopping-now

decisions by comparing the reward of stopping at the current state with the expected reward

that can be achieved by continuing the visiting process and incurring the related cost. This

can be formulated as an optimal stopping problem. Let v(xn) denote the patient’s expected

reward arising from her optimal stopping decision given her current belief Xn = xn (n ∈ N ).

Then, her expected reward from continuing the visit can be expressed as E [v(Xn+1)|xn]. If

the patient stops at the current state, she ends with an illness perception Xn = xn and an

expected reward r(xn). Consequently, the optimality equation can be written as

v(xn) = max {r(xn), E [v(Xn+1)|xn]− Cp} , (6)

where Cp is the expected cost associated with a visit as stated in (5).

Note that the patient’ decision of stopping now is associated with two potential outcomes–

leaving the system with being reassured as mildly ill or leaving the system by considering

herself as severely ill and seeking treatments. Recall that a type t = i patient gains a reward

Vi if she is correctly identified and suffers a loss Li if misidentified, i = 0, 1. Then, her

expected rewards of being identified as mildly and severely ill are (1 − xn)V0 − xnL1 and

xnV1 − (1 − xn)L0, respectively. The patient then chooses the leaving outcome that yields

the higher reward, i.e.,

r(xn) = max {xnV1 − (1− xn)L0, (1− xn)V0 − xnL1} .

Consequently,

r(xn) =

{
(1− xn)V0 − xnL1, if 0 < xn < α̂,

xnV1 − (1− xn)L0, otherwise,
(7)
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where

α̂ =
V0 + L0

V0 + V1 + L0 + L1

. (8)

A lower threshold α̂ corresponds to a larger (V1 +L1)/(V0 +L0), indicating a higher relative

value of identifying a severely ill patient. Each leaving outcome, according to the self-

regulatory compliance theory in behavioral medicine research, represents the patient’s “lay

diagnosis” of her health condition; see Leventhal et al. (1984) for a systematic review of the

compliance theory. Then, (7) indicates that by the patient’s “lay diagnosis”, she is mildly

ill when she holds a belief xn < α̂ but severely ill if α̂ ≤ xn < 1. We can further show the

following result:

Lemma 1. The expected reward arising from the patient’s optimal stopping decision v(xn)

stated in (6) is convex.

Let S denote the set of patients’ illness perceptions Xn’s, n = 0, 1, 2... at the nth visit,

with which patients will not join/revisit the system once her illness perception falls into this

set. Note that when n = 0, a patients holds the initial illness perception X0 = α and will

not join the system if α ∈ S. In the behavioral medicine research (Leventhal et al., 1984;

Leventhal and Cameron, 1987), it is found that a patient’ non-compliance occurs when there

exist discrepancies between her own view of the self health condition and that from the

doctor. We thus assume that if a patient joins the system, she follows the doctor’s advice

and leaves the system whenever her own “lay diagnosis” is the same as the doctor’s diagnosis;

that is, if a patient holds an illness perception Xn = xn ∈ (0, α̂) (resp. Xn = xn ∈ [α̂), 1],

she then leaves the system whenever the diagnosis result is negative (resp. positive); that is,

the updated posterior belief stated in (3) and (4) shall satisfy{
g0(xn) ∈ S, if 0 < xn < α̂,

g1(xn) ∈ S, otherwise,
and α̂ /∈ S. (9)

We can show that (9) holds as long as the expected cost associated with each visit Cp = f+cw

stated in (5) falls into a moderate range and satisfies 4

max {g0(α̂)(1− α̂), [1− g1(α̂)]α̂} ≤ Cp

V0 + V1 + L0 + L1

< (q11 − q10)α̂(1− α̂).

In our optimal stopping problem, both the expected reward arising from the optimal

stopping decision v(xn) and the expected reward of stopping immediately r(xn) highly hinge

on the patient’s illness perception Xn = xn, which depends closely on her initial subjective

4See the online Appendix for the detailed derivation of the conditions that ensure (9) holds.
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illness perception X0 = α; that is, the patient’s optimal stopping decision is based on the

subjective reward. Her objective reward, however, shall be based on the true probability of

being ill Yn, which is updated based on the unbiased prior αb. Let

C :=

√( q00q10
q00 − q10

)2

+ q00q10α̂(1− α̂)− q00q10
q00 − q10

 (V0 + L0 + V1 + L1).

Based on Lemma 1, we obtain the following proposition regarding the patient’s optimal

stopping decision.

Proposition 1. The optimal stopping set S takes the following form:

S = {Xn|0 < Xn ≤ α or α ≤ Xn+1 < 1, n = 0, 1, 2, ...},

where α < α̂ < α and

α =

{
q201(L0+V0)+(1+q01)Cp

q201(L0+V0)+q211(L1+V1)−(q11−q01)Cp
if 0 < Cp < C,

q01(L0+V0)+Cp

q11(L1+V1)+q01(L0+V0)
otherwise;

(10)

α =

{
q200(L0+V0)−(1+q00)Cp

q200(L0+V0)+q210(L1+V1)−(q00−q10)Cp
if 0 < Cp < C,

q00(L0+V0)−Cp

q00(L0+V0)+q10(L1+V1)
otherwise.

(11)

A patient whose illness perception falls into the interval (α, α) leaves the system whenever

two successive diagnosis results are the same.

Proposition 1 shows that a patient stops visiting the system whenever her illness per-

ception is either below a lower threshold α or above an upper threshold α. This indicates

that patients makes their joining-or-balking and continuing-doctor-visiting-or-stopping-now

decisions by following a double-threshold stopping policy. Proposition 1 also indicates that

if a patient’s initial illness perception satisfies 0 < α ≤ α, she will not join the system as

she perceives no need to take medical action. However, when the patient’s initial illness

perception is above the upper threshold, namely when α ≤ α < 1, she still needs to join the

system because diagnosis is required prior to treatment. Once a patient joins the system,

she keeps on visiting doctors until her posterior illness perception falls into the stopping set

S.

The two thresholds highly hinge on the relative magnitudes of the reward that a patient

is correctly identified (V1 and V0) and the potential loss that she is misidentified (L0 and

L1), the diagnosis accuracy q00 and q11, and the cost associated with each visit Cp. Note

that the magnitudes of V1, V0, L0 and L1 depend on the illness type and the related clinical

development, and the diagnosis accuracy is usually determined by the available technologies
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and qualifications of doctors. They are unlikely to be changed in the short run. However,

the system can easily adjust its price per each visit f to alter the patient’s visiting cost Cp

and thus to manipulate her visiting incentive. We can further show that when the expected

cost per visit Cp is relatively high, i.e. when Cp > C, the optimal continuing-doctor-visiting

or stopping-now decision rule characterized by the two thresholds α and α exactly follows

the One-Step Look-Ahead (OSLA) rule;5 that is, at each decision point, the patient only

compares the current reward obtained by stopping immediately with that by conducting one

more time of doctor shopping.

To facilitate the analysis, denote

αb :=
αq01

αq01 + (1− α)q11
, αb :=

αq00
αq00 + (1− α)q10

,

αs :=
αq00

αq00 + (1− α)q10
, and η :=

α(1− α)

α(1− α)
.

We first provide the following lemma that summarizes the relationships among the above

thresholds.

Lemma 2. η increases with Cp, the expected total cost per visit. Moreover, when Cp < C,(
q10
q11

)2
≤ η < q10

q11
, under which α < αb ≤ αb ≤ α < αs; when Cp ≥ C, q10

q11
≤ η < 1, under

which αb ≤ α < α ≤ αb < αs.

We then examine the patient’s optimal visiting decision and obtain the following results:

Proposition 2. For a patient with the initial illness perception X0 = α ∈ (0, 1),

1. when
(

q10
q11

)2
≤ η < q10

q11
,

i. if α ∈ (0, α), she never joins the system;

ii. if α ∈ (α, αb), she visits and then leaves the system if the diagnosis result is

negative; otherwise, she conducts doctor shopping;

iii. if α ∈ [αb, αb], she visits the system once and then follows whatever the advice

the doctor gives;

iv. if α ∈ (αb, αs), she visits and then leaves the system if the diagnosis result is

positive; otherwise, she conducts doctor shopping;

v. otherwise, she always requests for a referral of treatment regardless of the diagnosis

result.

5The analysis of the stopping set under the OSLA rule can be found in the proof of Proposition 1 in the
online Appendix.
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2. when q10
q11

≤ η < 1, the patient behaves exactly the same as described above except that

when α ∈ (α, αb], she visits the system once and then follows whatever the advice the

doctor gives;
In
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Figure 1: Illustration of the Defined Thresholds and Classified Patient Types

Based on Proposition 2, we can classify the population of patients into the following four

types: balking patients who never join the system, diagnosis-dependent patients who conduct

doctor shopping when the diagnosis result deviates from their beliefs, obedient patients who

always follow the doctor’s advice, and stubborn patients who require referrals for treatments

regardless of the diagnosis results; see Figure 1 for the illustration of patient types. Doctor-

shopping behavior occurs only among the diagnosis-dependent patients. From Proposition

2 and illustrated by Figure 1, we can see that when the threshold η is small (i.e., η < q01
q11

),

doctor shopping occurs among patients with both relatively low and relatively high illness

perceptions (α ∈ (α, αb) ∪ (αb, αs)). However, when η ≥ q01
q11

, the doctor shopping behavior

occurs only among patients with relatively high illness perceptions (α ∈ (αb, αs)) and the

OSLA rule is adopted.

When
(

q01
q11

)2
≤ η < q01

q11
, let

α̃ :=
αq200

αq200 + (1− α)q210
.

Recall that N is the total number of visits taken for a patient to reach the stopping set (and

thus leave the diagnostic system) in one illness episode; that is,

N = min{n : Xn ∈ S}.
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Obviously, N = 0 if X0 = α ≤ α. By Propositions 1 and 2, we can then derive the expected

number of times that a patient visits the system.

Proposition 3. Given the expected cost per visit Cp, the expected number of times that a

patient visits the system E[N ] is as follows:

1. when
(

q01
q11

)2
≤ η < q01

q11
,

E[N ] =1− Φ(α) +

(
αb

q11(1 + q10)

1− q11q10
+ (1− αb)

q01(1 + q00)

1− q00q01

)
[Φ(αb)− Φ(α)]

+

(
αb

q10(1 + q11)

1− q11q10
+ (1− αb)

q00(1 + q01)

1− q00q01

)
[Φ(α)− Φ(αb)]

+ [q10αb + q00(1− αb)][Φ(α̃)− Φ(α)

+

(
αb

q10(1 + q10)

1− q11q10
+ (1− αb)

q00(1 + q00)

1− q00q01

)
[Φ(αs)− Φ(α̃)],

where α ≤ α̃ < αs;

2. when q01
q11

≤ η < 1,

E[N ] = 1− Φ(α) + [q10αb + q00(1− αb)][Φ(αs)− Φ(αb)].

Proposition 3 shows that the patients’ expected number of visits in one illness episode

E[N ] is impacted by the diagnosis accuracy q00 and q11, and the illness perception thresholds

α and α. We further note that the illness perception thresholds α and α stated in (10) and

(11) of Proposition 1 highly hinge on the magnitude of the relative value of identifying a

severely ill patient (V1 +L1)/(V0 +L0), which decreases in α̂ stated in (8), and the expected

cost per visit Cp. Proposition 3 then implies that how many times the patient visits the

system is jointly determined by the diagnosis accuracy, the relative value of identifying a

severely ill patient and the price per visit f . It is worth mentioning that E[N ] can be less

than 1 because of patient balking.

So far, we have obtained the expected number of times that a patient visits the system

for a given expected waiting time w. However, the expected waiting time w is in turn

determined by the expected number of times that a patient visits the system. When the

system reaches a stable state, the two numbers shall coincide. Furthermore, we can show

the following result:

Proposition 4. For any given price f , there exists a unique equilibrium effective arrival

rate λ.
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We now provide an iterative algorithm to calculate the equilibrium expected waiting

time w or, alternatively, the equilibrium effective arrival rate λ as there exists a one-to-one

correspondence between them (w = 1/(µ− λ)).

Step 0: Set λl = 0 and λh = µ.

Step 1: Set λ = λl+λh

2
. Obtain the thresholds α and α based on Proposition 1 and E[N ]

based on Proposition 3.

Step 2: If λ− E[N ]Λ < 0, set λl = λ; otherwise, λh = λ.

Step 3: If |λ− E[N ]Λ| < 10−4, stop; otherwise, go to Step 1.

Through the above iteration process, we can then obtain the patients’ equilibrium effective

arrival rate and the corresponding expected waiting time for any given price f .

4.2 System’s Welfare Maximization

In this section, we examine the public diagnostic system’s welfare maximization problem by

taking into account of patients’ doctor shopping behavior. The system cares about the social

performance in two aspects, an objective social welfare denoted byWo and a subjective social

welfare denoted by Ws. The former is concerned with to what extent doctor shopping helps

improve the chance of correctly identifying patient types and the related objective reward,

while the latter is concerned with to what extent it helps improve patients’ perceived feelings

in terms of either relieving anxiety and the subjective reward. Below, we first derive these

two types of patient rewards.

When patients are allowed to conduct doctor shopping, patients make their optimal

stopping decisions according to those stated in §4.1. Recall that a patient reaches the

stopping set S after N visits. At the end of the Nth visit, both the true probability YN

that the patient is ill, which is updated based on the unbiased prior αb, and her subjective

belief XN that the patient believes herself to be ill, which is updated based on her initial

subjective perception α, are uniquely determined by the trajectory of how the patient’s illness

perception reaches the stopping set. Then, based on (7), we can write the expected subjective

reward of a patient holding the initial illness perception X0 = α as EXN
[r(XN)

∣∣X0 = α] and

her objective reward as EYN
[r(YN)

∣∣X0 = α]. We can further derive the average subjective

reward and the average objective reward per patient, Rs and Ro, as follows:

Rs = EX0

[
EXN

[r(XN)
∣∣X0 = α]

]
and Ro = EX0

[
EYN

[r(YN)
∣∣X0 = α]

]
.

The public diagnostic system decides the price f to maximize the social welfare Wi,

i = o, s, as follows:

max
f

Wi = Λ

(
Ri − E[N ]

c

µ− λ

)
, (12)

s.t. f ≥ 0.
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The system’s welfare maximization is equivalent to maximizing the patients’ average net

rewards (average rewards minus the expected total waiting cost), because the payments

between the doctor and patients are internalized. Denote the corresponding optimal price

by f ∗
i . Note that the price f directly impacts the patient’s cost per visit Cp. One immediate

observation we can withdraw with respect to the two thresholds derived in Proposition 1

is that a higher f leads to a larger α but a smaller α. An increased α indicates that a

larger proportion of patients choose to balk. Meanwhile, a decreased α leads to a smaller

αs, leading to a larger proportion of stubborn patients whose main purpose of visiting is to

obtain the referrals. It results in both a lower overall objective patient reward and a lower

overall subjective patient reward.

To facilitate the understanding of the doctor shopping effect, we consider a benchmark

scenario in which doctor shopping is prohibited, denoted by a superscript “u”. Since patients

visit the system at most once, the expected number of times a patient visits the system can

be easily shown to be E[N ] = 1 − Φ(α). The average subjective and objective rewards per

patient are, respectively,

Ru
s = EX0

[
EX1 [r(X1)

∣∣X0 = α]
]
and Ru

o = EX0

[
EY1 [r(Y1)

∣∣X0 = α]
]
.

The corresponding welfare maximization problem can be written as

max
f

Wu
i = Λ

(
Ru

i − (1− Φ(α))
c

µ− (1− Φ(α))Λ

)
, (13)

s.t. f ≥ 0,

Denote the corresponding optimal price by fu∗
i . Define

κ(x) := (q11V1 − q10L1)x+ (q00V0 − q01L0)(1− x), where x ∈ [0, 1], (14)

which represents the expected reward of a patient who holds the illness perception x and does

not conduct doctor shopping (either due to that doctor shopping is prohibited or because

she is obedient). We then have the following result.

Proposition 5. When doctor shopping is prohibited,

1. under the objective social welfare maximization, if there exists a price f̃ > 0 such that

the effective arrival rate

λu
o = µ−

√
cµ

κ(αb)
,

then fu∗
o = f̃ ; otherwise, fu∗

o = 0.

2. under the subjective social welfare maximization,
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i. when q11V1 − q10L1 ≥ q00V0 − q01L0, if there exists a price f̂ > 0 such that the

effective arrival rate

λu
s = µ−

√
cµ

κ(α)
.

then fu∗
s = f̂ ; otherwise, fu∗

s = 0;

ii. otherwise, the optimal price satisfies 0 ≤ fu∗
s ≤ fu∗

o , and the effective arrival rate

λu
s ≥ λu

o = µ−
√

cµ
κ(αb)

.

Proposition 5 shows that when doctor shopping is not allowed, there exists an optimal

effective arrival rate λu
j (j ∈ {o, s}) that the welfare-maximizing provider aims to serve

via regulating the price. When such rate is not reachable, the system provides the diagnosis

service for free to enhance patients’ visiting incentives. Note that κ(·) stated in (14) increases

with the diagnosis accuracy parameters q00 and q11. A close look at Proposition 5 then

indicates that a higher diagnosis accuracy leads to a larger optimal arrival rate.

We now investigate the scenario in which doctor shopping is allowed and obtain the

following result.

Proposition 6. When doctor shopping is allowed, 0 < α̂ ≤ αb and

λ|f=f ≤ λ := µ−

√
cµ

κ(αb)

(
1 +

q00q10[q10αb + q00(1− αb)]

(αq00 + (1− α)q10)2
ϕ(αb)

ϕ(α)

)
, (15)

the optimal price that maximizes the objective social welfare does not exceed f , i.e., 0 ≤ f ∗
o ≤

max{f, 0}, where f ∈ R is the solution to η − q01/q11 = 0.

The threshold price f stated in Proposition 6 is the one resulting in η = q01/q11, where

η increases with f (see the proof of Proposition 6 in the online Appendix). This implies

that η < q01/q11 whenever f < f . By Proposition 2, we have that whenever f < f ,

doctor shopping occurs among patients with both relatively low and relatively high illness

perceptions, whereas when f ≥ f , doctor shopping occurs only among patients with relatively

high illness perceptions. Also, recall that a lower threshold α̂ (given in (8) ) indicates a higher

relative value of identifying an ill patient. Proposition 6 together with Proposition 2 then

indicates that when the relative value of identifying an ill patient is high, to maximize the

objective social welfare, the optimal price shall be set such that both high- and low-illness-

perception diagnosis-dependent patients are encouraged to conduct doctor shopping. Similar

to that when doctor shopping is prohibited, Proposition 6 shows that when doctor shopping

is allowed, there also exists an optimal effective arrival rate λ̄ that the social planner aims

to achieve. A close look at the expression of λ̄ in (15) shows that it highly depends on
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the magnitude of the diagnosis accuracy q00 and q11, the prevalence of the disease among

patients αb, and the relative value of identifying a severely ill patient (V1 + L1)/(V0 + L0),

which impact the patient’s joining threshold α. Moreover, the relationship between them is

non-monotonic.

However, when doctor shopping is allowed, the subjective social welfare function and the

objective social welfare function when conditions stated in Proposition 6 are violated are not

well-behaved. We have to resort to the extensive numerical search to find the optimal price

and the corresponding system performance.

5 The Impact of Doctor Shopping

So far, we have analyzed the patients’ visiting decision by taking into account of their doctor

shopping behavior and the social planer’s corresponding welfare maximization problem. We

show that the system’s service quality reflected by its diagnosis accuracy and the character-

istics of the disease reflected by the relative value of identifying a severely ill patient (which

impacts the patient’s joining incentive) greatly affect the patients’ doctor shopping behav-

ior and the system’s optimal pricing decision. In this section, we further explicitly explore

how they influence the system performance via conducting extensive numerical experiments.

The patients’ initial illness perceptions (which fall into the interval [0, 1]) are drawn from a

beta distribution with positive shape parameters a and b, i.e., Beta(a, b), and the diagnosis

accuracy q := q00 = q11.

Consistent with the healthcare literature (Kasteler et al., 1976; Lo et al., 1994; Sato et

al., 1995; Macpherson et al., 2001), we define the doctor-shopping rate as the proportion of

patients who visit more than one doctor in one illness episode. Then, the doctor-shopping

rate can be expressed as

Ds =
λ− (1− Φ(α)) Λ

λ
× 100%.

where λ is the effective arrival rate, and (1− Φ(α)) Λ is the arrival rate of patients who visit

the system for the first time. The difference between them is the arrival rate of the doctor-

shopping patients. Through a Managed Care Outcomes Project conducted at six health

maintenance organizations, Horn et al. (1996) find that among the patients who had one of

the five study diseases and needed diagnostic testing, 37.9% were in severe or catastrophic

conditions. Moreover, the field study of Petrie and Weinman (2012) finds that prior to

testing, patients generally prepare themselves for unfavorable diagnoses with higher illness

perception. We thus set the prevalence of the disease among patients αb = 0.38 and consider

those beta distributions that satisfy E[X0] =
a

a+b
> αb = 0.38 in the numerical experiments.
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The other parameter values are set to be V1 = V0 = 120, L1 = L0 = 80, µ = 4, Λ = 3 and

c = 12.
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Figure 2: The Impact of Diagnosis Accuracy on the Congestion Effect and Reward Effect of
Doctor Shopping: V1 = V0 = 120, L1 = L0 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38, f = 0,
X0 ∼ Beta(2, 3)

We first examine how the doctor shopping behavior affects the system congestion and

patient rewards compared to those without doctor shopping under a given price in Figure 2,

which considers a beta distribution with parameters (2, 3) (Beta(2, 3)), the price as f = 0,

and the diagnosis accuracy q varies from 0.75 to 1. Figure 2(a) depicts the congestion effect,

which shows that compared to that without doctor shopping, allowing doctor shopping

exacerbates system congestion and thus increases patients’ waiting cost per visit. Figure

2(b) depicts the reward effect, which shows that the opportunity of doctor shopping indicates

a higher reward of the patients unless the diagnosis accuracy is very high. Moreover, the

reward effect decreases with the diagnosis accuracy. Figure 2(b) further implies that the

reward effect in terms of the subjective one concerning relieving patients’ anxiety is always

higher than that in terms of the objective one concerning improving diagnosis judgment

accuracy. Their net effect determines the patient’s optimal joining-or-balking decision and

whether to conduct doctor shopping.

Figure 3 shows the optimal price and the corresponding patient joining behavior in equi-

librium when doctor shopping is allowed. Figure 3(a) depicts the critical thresholds stated in

Proposition 2 that are used to classify patients’ visiting behavior under the optimal objective

welfare maximizing price f ∗
o . Those under the optimal subjective welfare maximizing price

f ∗
s exhibit the similar pattern and thus we omit them here. We find that αs (blue circle

line), αb (blue dash-dotted line) and αb (blue dotted line) are increasing with the diagnosis

accuracy q, whereas αb (black dash line) and α (black solid line) are decreasing with q. Note
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that a higher diagnosis accuracy q indicates a higher diagnosis service quality and thus the

diagnostic result becomes more reliable. Figure 3(a) then shows that as the diagnosis service

quality increases, fewer patients balk (due to a lower α) and thus the system serves more

newly-joined patients. Meanwhile, with the increased diagnosis reliability, patients has more

confidence in the diagnosis result and thus fewer patients are stubborn (due to a higher αs).

Consequently, more patients are obedient, trust the diagnosis result, and follow the doctor’s

advice, as reflected by the enlarged interval [αb, αb]. Patients with the initial illness percep-

tion falling into the intervals (αb, αs)∪ (α, αb) are diagnosis-dependent and may doctor-shop.

As shown in Figure 3(a), under the optimal price, the length of these two intervals is first en-

larged and then narrowed as q increases. This implies that as diagnosis accuracy q increases,

the marginal improvement on the patient reward is first increasing and then decreasing.
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Figure 3: The Impact of Diagnosis Accuracy on the System Performance: V1 = V0 = 120,
L1 = L0 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38, X0 ∼ Beta(2, 3)

Figure 3(b) shows the resulting equilibrium doctor shopping rates under both the ob-
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jective and subjective welfare maximization. We can see that both doctor shopping rates

decrease with the diagnosis accuracy q, and the one under the objective welfare maximiza-

tion is slightly lower than the one under the subjective welfare maximization. That is, if the

system cares about the patients’ subjective rewards associated with their anxiety relieving

rather than the objective rewards associated with diagnosis judgment accuracy, it shall en-

courage more patients to engage in doctor shopping under the former than under the latter.

The optimal price that the system shall charge is depicted in Figure 3(c). Figure 3(c) shows

that when the diagnosis accuracy q is relatively low, the system shall provide the diagnosis

service for free under both the subjective and objective welfare maximization. As q increases,

the optimal welfare-maximizing prices f ∗
o and f ∗

s first (weakly) increase and then decrease,

and they both reach the maxima at around q = 0.94, with the objective-welfare-maximizing

price f ∗
o slightly higher than the subjective-welfare-maximizing price f ∗

s . This is because

a lower price can incentivize more patients to engage in doctor shopping to improve their

subjective rewards, as shown in Figure 3(b). Thus, the system is more congested under the

subjective welfare maximization than that under the objective welfare maximization.

Figure 3(d) depicts the percentage of welfare improvement from doctor shopping defined

as
W∗

i −Wu∗
i

Wu∗
i

× 100%, i = o, s.

It shows that compared to that without doctor shopping, allowing patients to conduct doc-

tor shopping attains a welfare improvement only when the diagnosis accuracy is not high.

Moreover, the subjective welfare improvement is higher than the objective one. These re-

sults are consistent with those in the medical-related literature concerning whether or not

doctor shopping is valuable to diagnosis tests. As noted in the review work by Payne et

al. (2014), patients usually believe that second opinions from doctor shopping are valuable,

whereas there is no any conclusive evidence of whether doctor shopping improves the quality

of patient care. The value of doctor shopping is context-dependent. If doctor shopping stems

from mere anxiety (which corresponds to the subjective welfare considered in our study),

it may lead to patient confusion, resource waste, and a higher risk of in-hospital complica-

tions, especially when there is no informed reconciliation of conflicting opinions (Chang et

al., 2013; Shmueli et al., 2017). However, doctor shopping is usually believed to improve

the quality of care (which corresponds to the objective welfare considered in our study) in

radiology and pathology (Payne et al., 2014), because there exist substantial discrepancies in

the interpretation of imaging and histopathological diagnosis (i.e., a low diagnosis accuracy).

For example, in a study on the value of second opinion for breast cancer patients, Garcia

et al. (2018) reported that 43% patients’ diagnosis result was changed and concluded that

second opinions are valuable for many patients. Our numerical results confirm the above
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observations in the practice and shed lights on why allowing doctor shopping is beneficial to

patients in radiology and pathology but not necessarily so in general care. Specifically, the

reality of low diagnosis accuracy in radiology and pathology (changes in diagnosis in 43% of

the patients) makes doctor shopping valuable in terms of both the objective and subjective

welfare.

Next, we examine how the distribution of the patients’ prior belief X0 ∼ Beta(a, b)

affect the system performance. Specifically, we vary the distribution in terms of the first-

order and the second-order stochastic orders to derive insights. The first-order stochastic

ordering measures the “magnitude” of the distribution, where a larger “magnitude” indicates

a larger pessimistic patient population. The second-order stochastic ordering measures the

distribution’s mean-preserving spread-out level, where a higher spread-out level indicates

more diverse views of the patients on their health conditions.
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Figure 4: The Impact of Allowing Doctor Shopping on the Social Welfare Improvement
by Varying Diagnosis Accuracy and the Initial Illness Perception’s Beta Distribution in the
First-order Stochastic Order: V1 = V0 = 120, L1 = L0 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38

We first keep the shape parameter b unchanged but increase the shape parameter a. As

such, patients’ initial illness perceptions are increasingly likely to take large values, indi-

cating that the patient population becomes more pessimistic. Note that the distribution

Beta(a1, b) first-order stochastically dominates the distribution Beta(a2, b) if a1 > a2; see

Shaked and Shanthikumar (2007). Figure 4 depicts how the patient population’s degree of

pessimism together with diagnosis accuracy affect the equilibrium social welfare. It shows

that when a patient population becomes more pessimistic (i.e., a larger a), allowing patients

to conduct doctor shopping attains a higher welfare improvement if the diagnosis accuracy is

not extremely high. This is because when the patient population is more pessimistic, there is

a larger proportion of high-illness-perception diagnosis-dependent patients engaged in doctor
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shopping. When the diagnosis accuracy is not too high, the congestion effect induced by

allowing doctor shopping is dominated by the corresponding reward effect. However, if the

diagnosis accuracy is extremely high, the increased patient reward from doctor shopping is

marginal compared with the exacerbated congestion. In this situation, the more pessimistic

patient population incurs a higher welfare loss. Figure 4 demonstrates that there exists a

diagnosis accuracy threshold, below which allowing doctor shopping improves social welfare

whereas above which allowing doctor shopping hurts social welfare. Moreover, this threshold

increases as the patient population becomes more pessimistic (measured by the first-order

stochastic order).
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Figure 5: The Impact of Allowing Doctor Shopping on the Social Welfare Improvement
by Varying Diagnosis Accuracy and the Initial Illness Perception’s Beta Distribution in the
Second-order Stochastic Order: V1 = V0 = 120, L1 = L0 = 80, µ = 4, Λ = 3, c = 12,
αb = 0.38

We then increase both shape parameters a and b but let a = b. As such, the mean of the

patients’ initial illness perceptions remains the same but the variance becomes smaller as the

shape parameters increase, indicating that patients’ views towards their health conditions are

less diverse. Note that the distribution Beta(a1, a1) second-order stochastically dominates

the distribution Beta(a2, a2) if a1 < a2; see Shaked and Shanthikumar (2007). Figure 5 shows

that as the patient population holds more diverse views (i.e., a smaller a), allowing patients to

conduct doctor shopping attains a higher welfare improvement. This is because the effective

arrival rate of newly joined patients is smaller and the equilibrium size of stubborn patients

in the population is larger as patients’ initial illness perceptions become more diverse. Under

this situation, the reward improvement from doctor shopping surpasses the corresponding

exacerbated congestion. Consequently, allowing patients to conduct doctor shopping leads to

a higher welfare improvement. Again, there exists a diagnosis accuracy threshold above which
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allowing doctor shopping incurs a welfare loss and below which allowing doctor shopping

improves welfare. Moreover, this diagnosis accuracy threshold increases as patients hold

more diverse initial illness perceptions (measured by the second-order stochastic order).
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Figure 6: The Impact of the Value of Identifying A Severely Ill Patient on the System
Performance: V0 = 120, L0 = L1 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38, q = 0.90,
X0 ∼ Beta(2, 3)

We further examine how the relative value of identifying a severely ill patient affects

the system performance by varying V1 from 100 to 500 and fixing other parameter values

to be V0 = 120, L0 = L1 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38, q = 0.90 and X0 ∼
Beta(2, 3). Note that a larger V1 indicates a higher value of identifying a severely ill patient.

The results are illustrated in Figure 6. Figure 6(a) depicts the equilibrium effective arrival

rates under the optimal objective welfare maximizing price f ∗
o . Those under the optimal

subjective welfare maximizing price f ∗
s exhibit the similar pattern and thus are omitted

here. In this situation, because the diagnosis accuracy is high (q = 0.90), the effective
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arrival rate of stubborn patients is extremely small (less than 2.75× 10−4). As V1 increases,

the relative value of identifying a severely ill patient becomes larger and thus fewer patients

balk. Figure 6(a) shows that the effective arrival rate of diagnosis-dependent patients first

(weakly) decreases and then increases, whereas that of obedient patients first increases and

then (weakly) decreases. Consequently, the total effective arrival rate (from newly-joined

patients and doctor-shopping patients) increases with V1. Accordingly, the doctor shopping

rate first decreases and then increases with V1; see Figure 6(b). Figure 6(b) together with

Figure 6(c) show that when the value of identifying a severely ill patient V1 exceeds a certain

threshold, the subjective welfare maximization charges a higher price, which results in a

lower doctor shopping rate, than the objective welfare maximization does. Figure 6(d)

further shows that the welfare improvement from allowing doctor shopping transforms from

a loss to a gain and keeps increasing as V1 increases. That is, when the value of identifying

a severely ill patient is not high (for those diseases that are noncritical), allowing doctor

shopping incurs welfare loss as the induced congestion effect dominates the corresponding

reward effect. However, when the value of identifying a severely ill patient is high enough,

allowing doctor shopping attains welfare improvement. Figure 6(d) together with Figure 6(b)

help explain why doctors encourage patients to seek second opinions for those critical diseases

that have a huge impact on patients’ life (Garcia et al., 2018; Payne et al., 2014). When it

comes to the serious health problem like cancer, the value of identifying a severely ill patient

is extremely high. Our results show that a higher doctor shopping rate is preferred when

maximizing the objective welfare concerning increasing the judgment accuracy compared to

that when maximizing the subjective welfare concerning relieving patients’ anxiety. This

is consistent with that of Manion et al. (2008) which suggest that second opinions shall be

mandatory in diagnostic surgical pathology service.

In the above numerical studies, the diagnostic system incurs the two types of diagnostic

errors, false positive (type I error) and false negative (type II error) with the same likelihood;

that is, the diagnosis accuracy q00 = q11 = q and the diagnostic errors q01 = q10 = 1 − q.

We now relax this by considering that the likelihoods of false positive and false negative

are different and examine how such error rate difference affects the system performance.

Specifically, we fix the overall diagnosis accuracy q := q11αb+ q00(1−αb) = (1− q10)αb+(1−
q01)(1−αb) but vary the false positive and false negative error rates q01 and q10. We consider

the scenario 1
2
< q00 < q11 < 1, under which the difference between the two diagnostic

error rates can be expressed as q01 − q10 = q11 − q00, where a larger error rate difference

indicates that the diagnostic system is more likely to incur one type of the error over the

other. In this scenario, we can first discretize the state of patients’ belief (namely, their

illness perceptions) into multiple small intervals. We then calculate the expected visiting
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times for patients in each interval, based on which we can calculate the expected visiting

times for the whole patient group. After that, we design an algorithm to iterate between

finding the effective arrival rate given the two thresholds and solving the dynamic program to

find the two thresholds given the updated effective arrival rate. We refer interested readers

to the online Appendix B for the detail.
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Figure 7: The Impact of Diagnostic Error Rate Difference on the System Performance:
V1 = V0 = 120, L1 = L0 = 80, µ = 4, Λ = 3, c = 12, αb = 0.38, q = 0.90, X0 ∼ Beta(2, 3)

Figure 7(a) depicts the equilibrium effective arrival rates under the optimal objective

welfare maximizing price f ∗
o . Those under the optimal subjective welfare maximizing price

f ∗
s exhibit the similar pattern and thus are omitted here. As the overall diagnosis accuracy

is high (q = 0.90), the effective arrival rate of stubborn patients remains extremely small

(less than 1.21 × 10−4). However, as the error rate difference q01 − q10 increases, more

patients balk and less patients are obedient. Both the effective arrival rate of diagnosis-

dependent patients and the total effective arrival rate (from both newly-joined and doctor-
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shopping patients) (weakly) increase. Consequently, the doctor shopping rate increases with

q01 − q10 as illustrated in Figure 7(b). Figure 7(b) together with Figure 7(c) show that

when the error rate difference q01 − q10 exceeds a certain threshold, the subjective welfare

maximization charges a higher price and has a lower doctor shopping rate than the objective

welfare maximization does. Figure 7(d) shows that due to the high diagnosis accuracy(q =

0.90), allowing doctor shopping actually leads to welfare loss under both the objective and

subjective welfare maximization. However, a larger error rate difference q01 − q10 always

mitigates the negative effect of allowing doctor shopping on the system welfare under the

objective welfare maximization. In contrast, under the subjective welfare maximization, as

q01 − q10 increases, it first exacerbates the negative effect of allowing doctor shopping and

enlarges the welfare loss and then dampens such effect and reduces the welfare loss when the

error rate difference becomes large enough. The results under the scenario 1
2
< q11 < q00 < 1

are qualitatively the same.

6 Conclusion

In this study, we model and analyze the doctor shopping behaviors of the patients in a public

diagnostic system. Patients are heterogeneous in their illness perceptions (i.e., subjective

beliefs of the probability of being in the severe condition). Upon receiving the diagnosis

results, they actively decide whether to follow a doctor’s advice or to seek second opinions.

According to the visiting patterns of the patients, we show that they can be classified into the

following four types, balking, obedient, stubborn, and diagnosis-dependent. Doctor shopping

occurs only among the diagnosis-dependent patients. We then derive the expected number

of times that a patient visits the system in one illness episode and the effective arrival rate

to the system.

Our research sheds lights on the implication of doctor shopping on the system perfor-

mance. On the one hand, allowing patients to conduct doctor shopping exacerbates the

system congestion and hence increases patients’ waiting cost, which may induce more pa-

tients to balk. On the other hand, the opportunity of doctor shopping can improve patient

rewards and hence enhance patients’ joining incentive. Their net effect determines the pa-

tient’s optimal joining-or-balking decision and whether or not to conduct doctor shopping.

We find that doctor shopping is more likely to attain welfare improvement under the fol-

lowing conditions: the diagnosis accuracy is not high, the patients are more pessimistic and

hold more diverse initial illness perceptions, and the relative value of identifying a severely

ill patient is high. The subjective welfare maximization usually prefers a higher doctor shop-

ping rate than the objective welfare maximization does. However, when the relative value
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of identifying a severely ill patient is high enough, the opposite holds true, which may ex-

plain why doctors usually encourage patients to conduct doctor shopping for serious health

problems such as cancer.

Our work does not consider the incentive issues of the doctors’ and assumes that both

doctors and patients are risk-neutral. In practice, when misdiagnosis cost is very high and/or

where people are highly risk-averse, repeated consultations and examinations may be rec-

ommended by doctors for the purpose of defensive medicine. For example, doctors in the

United States are likely to encourage patients seek second opinions to reduce the risk of

malpractice suits (see, e.g. King and Moulton (2006)), whereas doctors in mainland China

often recommend patients to seek second opinions because of the highly risk-averse culture

and/or for fear of violence against them (Zhang and Sleeboom-Faulkner, 2011). It would be

interesting to study doctor shopping with risk-averse doctors and patients. Here, we con-

sider the doctor-shopping behavior in a public diagnostic system where the price and service

quality are both homogeneous across different service stations. It would be another interest-

ing research to expand our work into a two-tier health care system with both for-profit and

not-for-profit service facilities, and study how different levels of service quality and prices

affect patients’ doctor shopping decisions. Besides, online doctor shopping is an emerging

phenomenon in the current era of digital economy, under which a patient can decide whether

to consult multiple physicians upfront before the diagnostic result is released to her. Such

online doctor shopping is likely a revenue maximization problem of the online platform. We

would like to leave it for future research.
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Online Appendix
“Modeling Patients’ Illness Perception and Equilibrium Analysis

of Their Doctor Shopping Behavior”

Appendix A Proofs

Recall that qij := q(s = j|t = i). We have

q00 = q(s = 0|t = 0) = 1− q(s = 1|t = 0) = 1− q01,

q11 = q(s = 1|t = 1) = 1− q(s = 0|t = 1) = 1− q10.

Therefore, q00 = q11 is equivalent to q01 = q01. Moreover, by (3) and (4), we have

g0(g0(x)) =
q210xn

q210xn + q200(1− xn)
; g1(g1(x)) =

q211xn

q211xn + q201(1− xn)
;

g1(g0(x)) = g0(g1(x)) =
q11q10x

q11q10x+ q00q01(1− x)
= x.

(16)

For the purpose of simplification, for j ∈ {0, 1} and any arbitrary function h(α), let gj ·h(α) =
gj(h(α)), (gj)

2 · h(α) = gj(gj(h(α))) and so on and so forth. Similarly, let (g1 · g0)1(α) =

g1(g0(α)), and (g1 · g0)2(α) = g1(g0(g1(g0(α)))) and so on and so forth. For any i ∈ N =

{1, 2, 3...}, we can obtain from the above equation that

(g1 · g0)i(α) = α; (g1)
j · (g1 · g0)i(α) = (g1)

j(α); (g0)
j · (g1 · g0)i(α) = (g0)

j(α). (17)

We will use the above notations a lot in the following analysis.

Proof of Lemma 1: Recall that a function h(x) is convex if and only if it satisfies

h(x+ ε)− h(x) ≥ h′(x)ε, (18)

where ε > 0 is an arbitrarily small number. Now let us consider a finite horizon dynamic

programming with a fixed number of periods. As the number of periods goes to infinity,

the finite-horizon DP converges to our current DP problem. Let vk(xn) denote the value

function when there are k remaining periods. Then,

v0(xn) = r(xn) and v(xn) = lim
k→∞

vk(xn).

The corresponding optimality equation and value iteration recursion can be written respec-

tively as follows:

vk(xn) = max {r(xn), E [vk−1(Xn+1)|xn]− Cp} ;

E [vk−1(Xn+1)|xn] = P (s = 0|xn)vk−1 (g0(xn)) + P (s = 1|xn)vk−1 (g1(xn)) .
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Define π−
k (xn) and π+

k (xn) as follows:

π−
k (xn) = P (s = 0|xn)vk (g0(xn)) and π+

k (xn) = P (s = 1|xn)vk (g1(xn)) .

Then,

E [vk−1(Xn+1)|xn] = π−
k−1(xn) + π+

k−1(xn).

Recall that g0(xn) is given in (4). For an arbitrary number ε, we have

g0(xn + ε)− g0(xn) =
q10xn

q10(xn + ε) + q00(1− xn − ε)
− q10xn

q10xn + q00(1− xn)

=
q00q10ε

[q10(xn + ε) + q00(1− xn − ε)][q10xn + q00(1− xn)]
.

Therefore,

g′0(xn) = lim
ε→0

g0(xn + ε)− g0(xn)

ε
=

q00q10
[q10xn + q00(1− xn)]2

.

Recall that P (s = 0|xn) = q00(1− xn) + q10xn. We can further show that

P (s = 0|xn + ε)
[
g0(xn + ε)− g0(xn)

]
=

q00q10ε

q10xn + q00(1− xn)
= P (s = 0|xn)g

′
0(xn)ε. (19)

Obviously, P (s = 0|xn) = q00(1− xn) + q10xn is linear, and hence

P (s = 0|xn + ε)− P (s = 0|xn) =
dP (s = 0|xn)

dxn

ε. (20)

First, we show that for an arbitrarily small number ε > 0,

π−
0 (xn + ε)− π−

0 (xn) = P (s = 0|xn + ε)v0(g0(xn + ε))− P (s = 0|xn)v0(g0(xn))

≥ P (s = 0|xn + ε)
{
v0(g0(xn)) + v′0(g0(xn))

[
g0(xn + ε)− g0(xn)

]}
−P (s = 0|xn)v0(g0(xn))

= [P (s = 0|xn + ε)− P (s = 0|xn)]v0(g0(xn))

+P (s = 0|xn + ε)v′0(g0(xn))
[
g0(xn + ε)− g0(xn)

]
=

dP (s = 0|xn)

dxn

v0(g0(xn))ε+ P (s = 0|xn)v
′
0(g0(xn))g

′
0(xn)ε

= (π−
0 )

′(xn)ε,

where “≥” follows from (18) and that v0(xn) = r(xn) is convex (as shown by (7) in the

manuscript, r(xn) first linearly decreases and then linearly increases, and thus is convex),

and the third “=” follows from (19) and (20). By the condition in (18), π−
0 (xn) is convex in xn.
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Similarly, we can show that π+
0 (xn) is convex. Therefore, E [v0(Xn+1)|xn] = π−

0 (xn)+π+
0 (xn)

is convex. Thus, v1(xn) = max{r(xn), E [v0(Xn+1)|xn]− Cp} is convex in xn.

Next, suppose that vk(xn) is convex. We can show that for an arbitrarily small ε > 0,

π−
k (xn + ε)− π−

k (xn) = P (s = 0|xn + ε)vk(g0(xn + ε))− P (s = 0|xn)vk(g0(xn))

≥ P (s = 0|xn + ε)
{
vk(g0(xn)) + v′k(g0(xn))

[
g0(xn + ε)− g0(xn)

]}
−P (s = 0|xn)vk(g0(xn))

=
dP (s = 0|xn)

dxn

vk(g0(xn))ε+ P (s = 0|xn)v
′
k(g0(xn))g

′
0(xn)ε

= (π−
k )

′(xn)ε.

Thus, π−
k (xn) is convex. Similarly, we can show that π+

k (xn) is convex. Therefore, E [vk(Xn+1)|xn] =

π−
k (xn) + π+

k (xn) is convex in xn and thus,

vk+1(xn) = max{r(xn), E [vk(Xn+1)|xn]− Cp}

is convex. By mathematical induction, v(xn) = limk→∞ vk(xn) is convex in xn.

Derivation of the Condition That Ensures (9) Holds: It can be easily shown that

E [v(Xn+1)|xn] = P (s = 0|xn)v(g0(xn)) + P (s = 1|xn)v(g1(xn)). (21)

By (1), (2), (3), and (4), we have

P (s = 0|g0(xn)) =
q210xn + q200(1− xn)

q10xn + q00(1− xn)
, P (s = 1|g0(xn)) =

q00q01(1− xn) + q11q10xn

q10xn + q00(1− xn)
; (22)

P (s = 1|g1(xn)) =
q201(1− xn) + q211xn

q01(1− xn) + q11xn

, P (s = 0|g1(xn)) =
q00q01(1− xn) + q11q10xn

q01(1− xn) + q11xn

. (23)

By utilizing (16), (21), (22) and the convexity of v(xn) (see Lemma 1), we can show that

E [v(Xn+2)|g0(xn)] = P (s = 0|g0(xn))v(g0 · g0(xn)) + P (s = 1|g0(xn))v(g1 · g0(xn))

= P (s = 0|g0(xn))v(g0 · g0(xn)) + P (s = 1|g0(xn))v(xn)

≤ P (s = 0|g0(xn)) [(1− g0 · g0(xn))v(0) + g0 · g0(xn)v(1)]

+P (s = 1|g0(xn)) [(1− xn)v(0) + xnv(1)]

= (1− g0(xn))v(0) + g0(xn)v(1).

Similarly, by utilizing (16), (21), (23) and the convexity of v(xn), we can show that

E [v(Xn+2)|g1(xn)] = P (s = 0|g1(xn))v(g0 · g1(xn)) + P (s = 1|g1(xn))v(g1 · g1(xn))

= P (s = 0|g1(xn))v(xn) + P (s = 1|g1(xn))v(g1 · g1(xn))

≤ P (s = 0|g1(xn)) [(1− xn)v(0) + xnv(1)]

+P (s = 1|g1(xn)) [(1− g1 · g1(xn))v(0) + g1 · g1(xn)v(1)]

= (1− g1(xn))v(0) + g1(xn)v(1).
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By using (7) and the boundary conditions v(0) = V0 (an illness perception xn = 0 indicates

that the patient is surely healthy and thus has a reward V0) and v(1) = V1 (an illness

perception xn = 1 indicates that the patient is surely ill and thus has a reward V1), we then

have{
E [v(Xn+2)|g0(xn)]− Cp − r(g0(xn)) = g0(xn)(V1 + L1)− Cp if 0 < xn < α̂.

E [v(Xn+2)|g1(xn)]− Cp − r(g1(xn)) = [1− g1(xn)](V0 + L0)− Cp otherwise.
(24)

The optimality equation (6) indicates that a patient shall stop visiting/revisiting the diag-

nosis system if and only if

E [v(Xn+1)|xn]− Cp − r(xn) ≤ 0.

Then, to ensure that the requirement{
g0(xn) ∈ S, if 0 < xn < α̂;

g1(xn) ∈ S, otherwise
(25)

holds, based on (24), it is equivalent to require that{
g0(xn)(V1 + L1)− Cp < 0, if 0 < xn < α̂;

[1− g1(xn)](V0 + L0)− Cp < 0, otherwise
(26)

From (3) and (4), we can obtain that g0(xn) and g1(xn) increase in xn and

g1(xn)− xn =
(q11 − q01)xn(1− xn)

q11xn + q01(1− xn)
> 0, g0(xn)− xn =

(q10 − q00)xn(1− xn)

q10xn + q00(1− xn)
< 0.

Then, (26) holds if

Cp ≥ max {g0(α̂)(V1 + L1), [1− g1(α̂)](V0 + L0)} ,

under which{
v(g0(xn)) = r(g0(xn)) ≥ E [v(Xn+2)|g0(xn)]− Cp if 0 < xn < α̂

v(g1(xn)) = r(g1(xn)) ≥ E [v(Xn+2)|g1(xn)]− Cp otherwise
. (27)

For the patient with an illness perception α̂ = V0+L0

V0+V1+L0+L1
, to ensure that α̂ /∈ S, we need

v(α̂) = E [v(Xn+1)|α̂]− Cp > r(α̂),

By utilizing (1), (2), (3), (4), (7), (8), (21) and (27), we can show that it satisfies

E [v(Xn+1)|α̂]− Cp − r(α̂) = P (s = 0|α̂)v(g0(α̂)) + P (s = 1|α̂)v(g1(α̂))− r(α̂)− Cp

= P (s = 0|α̂)r(g0(α̂)) + P (s = 1|α̂)r(g1(α̂))− r(α̂)− Cp

= (q11 − q01)α̂(1− α̂)(V0 + V1 + L0 + L1)− Cp > 0

(28)
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whenever Cp < (q11 − q10)α̂(1− α̂)(V0 + V1 +L0 +L1). Based on the above analysis, we can

show that (9) always holds if

max {g0(α̂)(1− α̂), [1− g1(α̂)]α̂} ≤ Cp

V0 + V1 + L0 + L1

< (q11 − q10)α̂(1− α̂).

Proof of Proposition 1: A patient shall visit or continue to visit the system if and only if

E [v(Xn+1)|xn]− Cp − r(xn) > 0. (29)

Recall that E [v(Xn+1)|xn] is convex as shown in the proof of Lemma 1, and r(xn) stated in

(7) is linear over the two intervals 0 < xn < α̂ and α̂ ≤ xn < 1, respectively. Consider a

special case of xn = 0 < α̂. We can show that

E [v(Xn+1)|0]− Cp − r(0) = P (s = 0|0)v(g0(0)) + P (s = 1|0)v(g1(0))− Cp − r(0)

= P (s = 0|0)r(g0(0)) + P (s = 1|0)r(g1(0))− Cp − r(0)

= −Cp < 0,

where the first “=” follows from (18), the second “=” follows from (24), and the third

“=” follows from g1(0) = 0 and g0(0) = 0 (g1(xn) and g0(xn) are given by (3) and (4),

respectively). Similarly, we can show

E [v(Xn+1)|1]− Cp − r(1) = −Cp < 0.

Recall that in (28), we have E [v(Xn+1)|α̂]−Cp− r(α̂) > 0. Therefore, as xn increases, r(xn)

crosses E [v(Xn+1)|xn]− Cp exactly once from above in the interval 0 < xn < α̂. We denote

the intersection point as α. Similarly, r(xn) crosses E [v(Xn+1)|xn] − Cp exactly once from

below in the interval α̂ ≤ xn < 1 at a point denoted by α. That is,

E [v(Xn+1)|xn]− Cp − r(xn) ≤ 0, when xn ∈ (0, α] ∪ [α, 1),

under which it is optimal for the patient not to visit/revisit the system.

Note that when the patient’s initial illness perception is above the upper threshold,

namely when α ≤ x0 = α < 1, she still needs to join the system because diagnosis is

required prior to treatment. As such, the optimal stopping set S that characterizes the set

of illness perceptions with which it is optimal for the patient not to visit/revisit the system

can be written as follows:

S = {Xn|0 < Xn ≤ α or α ≤ Xn+1 < 1, n = 0, 1, 2, ...}.

Since both g0(xn) and g1(xn) increase in xn, (25) holds whenever

g0(α̂) ≤ α and g1(α̂) ≥ α. (30)

5
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By using (16), we show α ≤ g1(α̂) = g1 ·g1 ·g0(α̂) ≤ g1 ·g1(α) and α ≥ g0(α̂) = g0 ·g0 ·g1(α̂) ≥
g0 · g0(α), which is

α− g0(g0(α)) =
q200α(1− α)

q210α + q200(1− α)

(
α(1− α)

α(1− α)
− q210

q200

)
≥ 0,

g1(g1(α))− α =
q211α(1− α)

q211α + q201(1− α)

(
α(1− α)

α(1− α)
− q201

q211

)
≥ 0.

(31)

Since g1(x) and g0(x) both increase in x, we can show that for xn ∈ (α, α),

g1 · g1(xn) > g1 · g1(α) ≥ α and g0 · g0(xn) < g0 · g0(α) ≤ α; (32)

that is, whenever xn ∈ (α, α), the patient leaves the system after obtaining the same

diagnosis results at two successive visits.

We now derive the expressions of the two thresholds α and α. First, consider a patient

with an illness perception of α < xn < α̂. Since g0(xn) increases in xn, we show from (7)

and (30) that, respectively,

r(xn) = (1− xn)V0 − xnL1 and g0(xn) < g0(α̂) ≤ α. (33)

We shall consider the following two scenarios:

1a. g1(xn) ≥ α, namely, g1(xn) ∈ S;

1b. g1(xn) < α, namely, g1(xn) /∈ S;

We examine the above scenarios as follows.

Scenario 1a: g1(xn) ∈ S. Obviously, v(g0(xn)) = r(g0(xn)) and v(g1(xn)) = r(g1(xn));

from (21), we show

E [v(Xn+1)|xn] = P (s = 0|xn)r(g0(xn)) + P (s = 1|xn)r(g1(xn)) = E [r(Xn+1)|xn] ,

which indicates the One-Step Look-Ahead (OSLA) rule is optimal under Scenario 1a. By

using (1), (2), (4), (3), (7), and the continuing condition (29), we show that the patient shall

continue if and only if

E [v(Xn+1)|xn]− Cp − r(xn) = q11xn(V1 + L1)− q01(1− xn)(V0 + L0)− Cp > 0.

We then show that the patient shall continue if and only if

xn >
q01(L0 + V0) + Cp

q11(L1 + V1) + q01(L0 + V0)
:= s1a.

6
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Scenario 1b: g1(xn) /∈ S. Under this scenario, we have

v(g0(xn)) = r(g0(xn)) =
q00(1− xn)V0 − q10xnL1

q00(1− xn) + q10xn

; (34)

v(g1(xn)) = max{r(g1(xn)), E [v(Xn+2)|g1(xn)]− Cp} = E [v(Xn+2)|g1(xn)]− Cp

= P (s = 1|g1(xn))v(g1 · g1(xn)) + P (s = 0|g1(xn))v(g0 · g1(xn))− Cp

= P (s = 1|g1(xn))r(g1 · g1(xn)) + P (s = 0|g1(xn))v(xn)− Cp;

v(xn) = P (s = 1|xn)v(g1(xn)) + P (s = 0|xn)v(g0(xn))− Cp,

where the first line follows from (4), g0(xn) < xn < α̂, and (33, the second line follows from

g1(xn) /∈ S and (6), the fourth line follows from (17) and (32), and the last line follows from

xn /∈ S and (6). By plugging the expression of v(xn) into v(g1(xn)), we can derive that

v(g1(xn)) =
P (s = 1|g1(xn))r(g1 · g1(xn)) + P (s = 0|xn)P (s = 0|g1(xn))v(g0(xn))

1− P (s = 1|xn)P (s = 0|g1(xn))

− P (s = 0|g1(xn)) + 1

1− P (s = 1|xn)P (s = 0|g1(xn))
Cp. (35)

Recall that P (s = 1|g1(xn)) and P (s = 0|g1(xn)) are both given in (23). From (30), we can

show g1 · g1(xn) > α > α̂, and moreover, by (16) and (7), we have

r(g1 · g1(xn)) = g1 · g1(xn)V1 − (1− g1 · g1(xn))L0 =
q211xnV1 − q201(1− xn)L0

q201(1− xn) + q211xn

.

Plugging the above equations and (34) into (35), we can get

v(g1(xn)) =
q211xnV1 − q201(1− xn)L0 + [q00q01(1− xn) + q11q10xn][q00(1− xn)V0 − q10xnL1]

[q01(1− xn) + q11xn][1− (q00q01(1− xn) + q11q10xn)]

− q01(1− xn) + q11xn + q00q01(1− xn) + q11q10xn

[q01(1− xn) + q11xn][1− (q00q01(1− xn) + q11q10xn)]
Cp

=
q211xnV1 − q201(1− xn)L0 + q00q01[q00(1− xn)V0 − q10xnL1]

[q01(1− xn) + q11xn](1− q00q01)

− q01(1− xn) + q11xn + q00q01
[q01(1− xn) + q11xn](1− q00q01)

Cp. (36)

Recall that the patient continues only if

E[v(Xn+1)|xn]− r(xn)− Cp = P (s = 0|xn)r(g0(xn)) + P (s = 1|xn)v(g1(xn))− r(xn)− Cp > 0.

Using (1), (2), (33), (34), and (36), we can show that it requires

xn >
q201(L0 + V0) + (1 + q01)Cp

q201(L0 + V0) + q211(L1 + V1)− (q11 − q01)Cp

:= s1b.

7
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Obviously, α = min{s1a, s1b}, which is

α =

{
s1b :=

q201(L0+V0)+(1+q01)Cp

q201(L0+V0)+q211(L1+V1)−(q11−q01)Cp
if 0 < Cp < C,

s1a := q01(L0+V0)+Cp

q11(L1+V1)+q01(L0+V0)
otherwise;

Next, we look into the interval of α̂ < s ≤ xn < α. Since g1(xn) increases in xn, from (7)

and (30), we show, respectively,

r(xn) = xnV1 − (1− xn)L0 and g1(xn) > g1(α̂) ≥ α. (37)

there exist the following two scenarios:

2a. g0(xn) ≤ α, namely, g0(xn) ∈ S;

2b. g0(xn) > α, namely, g0(xn) /∈ S;

Scenario 2a: g0(xn) ∈ S. Here, v(g0(xn)) = r(g0(xn)) and v(g1(xn)) = r(g1(xn)). Similar

to Scenario 1a, the One-Step Look-Ahead (OSLA) rule is optimal under Scenario 2a. From

(21) and (29), we show that the patient shall continue if and only if

E [v(Xn+1)|xn]− r(xn)− Cp = P (s = 1|xn)r(g1(xn)) + P (s = 0|xn)r(g0(xn))− r(xn)− Cp

= q00(1− xn)(V0 + L0)− q10xn(V1 + L1)− Cp > 0,

where the second “=” follow from (1), (2), (4), (3), and (7). We then show that the patient

shall continue if and only if

xn <
q00(L0 + V0)− Cp

q00(L0 + V0) + q10(L1 + V1)
:= s2a.

Scenario 2b: g0(xn) /∈ S. Under this scenario, we have

v(g1(xn)) = r(g1(xn)) =
q11xnV1 − q01(1− xn)L0

q11xn + q01(1− xn)
; (38)

v(g0(xn)) = max{r(g0(xn)), E [v(Xn+2)|g0(xn)]− Cp} = E [v(Xn+2)|g0(xn)]− Cp

= P (s = 1|g0(xn))v(g1 · g0(xn)) + P (s = 0|g0(xn))v(g0 · g0(xn))− Cp;

= P (s = 1|g0(xn))v(xn) + P (s = 0|g0(xn))r(g0 · g0(xn))− Cp,

v(xn) = P (s = 0|xn)v(g0(xn)) + P (s = 1|xn)v(g1(xn))− Cp.

where the first line follows from (3), g0(xn) < xn < α̂, and (33, the second line follows from

g0(xn) /∈ S and (6), the fourth line follows from (17) and (32), and the last line follows from

xn /∈ S and (6). By plugging the expression of v(xn) into v(g0(xn)), we can derive

v(g0(xn)) =
P (s = 0|g0(xn))r(g0 · g0(xn)) + P (s = 1|xn)P (s = 1|g0(xn))v(g1(xn))

1− P (s = 0|xn)P (s = 1|g0(xn))

− P (s = 1|g0(xn)) + 1

1− P (s = 0|xn)P (s = 1|g0(xn))
Cp. (39)
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From (30), we show g0 · g0(xn) < α < α̂, and moreover, by (4) and (7), we have

r(g0 · g0(xn)) = (1− g0 · g0(xn))V0 − g0 · g0(xn)L1 =
q200(1− xn)V0 − q210xnL1

q210xn + q200(1− xn)
.

Recall that P (s = 0|g0(xn)) and P (s = 1|g0(xn)) are given in (22). Plugging the above

equations and (38) into (39), we can get

v(g0(xn)) =
q200(1− xn)V0 − q210xnL1 + [q00q01(1− xn) + q11q10xn][q11xnV1 − q01(1− xn)L0]

(q10xn + q00(1− xn))[1− (q00q01(1− xn) + q11q10xn)]

− q10xn + q00(1− xn) + q00q01(1− xn) + q11q10xn

(q10xn + q00(1− xn))[1− (q00q01(1− xn) + q11q10xn)]
Cp

=
q200(1− xn)V0 − q210xnL1 + q00q01[q11xnV1 − q01(1− xn)L0]

(q10xn + q00(1− xn))(1− q00q01)

− q10xn + q00(1− xn) + q00q01
(q10xn + q00(1− xn))(1− q00q01)

Cp. (40)

Recall that the patient continues only if

E[v(Xn+1)|xn]− Cp − r(xn) = P (s = 0|xn)v(g0(xn)) + P (s = 1|xn)r(g1(xn))− r(xn)− Cp > 0.

In a similar vein, following that in Scenario 1c, we can show that P (s = 1|xn), P (s = 0|xn),

r(g1(xn)) and v(g0(xn)) in the above continuing condition are given by (1), (2), (38), and

(40), respectively, except that here, r(xn) is given by (37) while in Scenario 1c, r(xn) is given

by (33). We then can show that the continuing condition requires

xn <
q200(L0 + V0)− (1 + q00)Cp

q200(L0 + V0) + q210(L1 + V1)− (q00 − q10)Cp

:= s2b.

Obviously, α = max{s2a, s2b}, which is,

α =

{
s2b :=

q200(L0+V0)−(1+q00)Cp

q200(L0+V0)+q210(L1+V1)−(q00−q10)Cp
if 0 < Cp < C,

s2a := q00(L0+V0)−Cp

q00(L0+V0)+q10(L1+V1)
otherwise.

Proof of Lemma 2: From (31), we can see that (9) also requires η >
(

q10
q11

)2
. From (10)

and (11), we have

dα

dCp

=


q201(1+q11)(L0+V0)+q211(1+q01)(L1+V1)

[q201(L0+V0)+q211(L1+V1)−(q11−q01)Cp]
2 > 0 if 0 < Cp < C

1
q11(L1+V1)+q01(L0+V0)

> 0, otherwise.
(41)

dα

dCp

=

− q200(1+q10)(L0+V0)+q210(1+q00)(L1+V1)

[q200(L0+V0)+q210(L1+V1)−(q00−q10)Cp]
2 < 0 if 0 < Cp < C

− 1
q00(L0+V0)+q10(L1+V1)

< 0, otherwise.
(42)

9
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Obviously, η := α(1−α)
α(1−α)

increases in α and decreases in α, and hence, η increases in Cp. From

(31), we show that η >
(

q10
q11

)2
. Since α < α, we show that η < 1. It can be easily shown

that when Cp = C,

η =
(q01α̂ + θ)(q10(1− α̂) + θ)

(q00α̂− θ)(q11(1− α̂)− θ)
=

q10
q11

.

Therefore, 
(

q10
q11

)2
≤ η < q10

q11
if 0 < Cp < C,

q10
q11

≤ η < 1, otherwise.

Recall that

αb =
αq01

αq01 + (1− α)q11
, (43)

αb =
αq00

αq00 + (1− α)q10
. (44)

αs =
αq00

αq00 + (1− α)q10
. (45)

We show the following:

αb − αb =
α(1− α)q00q11

[αq01 + (1− α)q11][αq00 + (1− α)q10]

((
q10
q11

)2

− η

)
< 0,

αb − α =
α(1− α)q11

αq01 + (1− α)q11

(
q10
q11

− η

)
,

α− αb =
α(1− α)q00

αq00 + (1− α)q10

(
q10
q00

− η

)
,

αb − αs =
α(1− α)q00q10

[αq00 + (1− α)q10][αq00 + (1− α)q10]
(η − 1) < 0,

When
(

q10
q11

)2
≤ η < q10

q11
, α < αb ≤ αb < α < αs and when q01

q11
≤ η < 1, αb ≤ α < α ≤ αb <

αs.

Proof of Proposition 2: It can be shown from (4), (4), (43), (44), and (45), that g1(αb) =

α, g0(αb) = α, and g0(αs) = α.

When
(

q10
q11

)2
≤ η < q10

q11
, we can show that if α < α < αb, g1(α) < g1(αb) = α and

g0(α) < g0(αb) = α; hence, the patient leaves the system only if she obtains a negative result.

If αb ≤ α ≤ αb, g1(α) ≥ g1(αb) = α and g0(α) ≤ g0(αb) = α; hence, the patient leaves the

system regardless of the result; If αb < α < αs, g1(α) > g1(αb) = α and g0(α) > g0(αb) = α;

hence, the patient leaves the system only if she obtains a positive result; If αs ≤ α < 1,

10
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both g1(α) > α > α and g0(α) ≥ g0(αs) ≥ α; hence, the patient leaves the system regardless

of the diagnosis result. Moreover, since her updated illness perception is always above the

upper threshold α, she presses for treatment referral.

When q01
q11

≤ η < 1, we can show that if α ≤ α ≤ αb, g1(α) ≥ g1(αb) = α and g0(α) ≤
g0(αb) = α; hence, the patient leaves the system regardless of the result. For αb < α ≤ αs

and αs ≤ α < 1, it is the same as that when
(

q10
q11

)2
≤ η < q10

q11
.

Proof of Proposition 3: It is easy to show that when 0 < y < 1,

∞∑
i=0

iyi =
y

(1− y)2
. (46)

Since the obedient and stubborn patients always visit once. The following analysis focus

exclusively on the diagnosis-dependent patient.

Case 1:
(

q01
q11

)2
≤ η < q01

q11
. Recall that

α̃ =
αq200

αq200 + (1− α)q210
. (47)

It can be easily shown that g0(α̃) := αb; see (4) and (11). From (11) and (45), we show

α̃− α =
α(1− α)q200

αq200 + (1− α)q210

(
η −

(
q10
q00

)2
)

≥ 0,

α̃− αs = =
α(1− α)q200q10

[αq200 + (1− α)q210][αq00 + (1− α)q10]

(
η − q10

q00

)
< 0.

Therefore, α ≤ α̃ < αs. We consider the following two types of diagnosis-dependent patients.

Subcase 1(a): Initial illness perception satisfies α < α < α. According to Proposition 1,

the diagnosis-dependent patient in this range leaves whenever the two successive diagnosis

results are consistent.

We start from a patient with illness perception αb < α < α. Under the worst-case

scenario, she obtains a negative diagnosis at the first visit, and in the following visits, none

of the diagnosis is consistent with the previous one. From (17), we conclude that she visits

infinitely under the worst scenario. Based on it, we then have the following about the number

of visits N :

1. If N = 2i+ 1 (i = 0, 1, 2, ...), it must be that the last diagnosis she receives is positive

and all the rest 2i are “negative-positive” repeating i times (i = 0, 1, 2, ...). Hence,

P (N = 2i+ 1|αb < α < α) = q11(q11q10)
iαb + q01(q00q01)

i(1− αb);

11
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2. If N = 2i+2 (i = 0, 1, 2, ...), it must be that the last two diagnoses both give negative

results, and all diagnoses before the last two are negative-positive repeating i times

(i = 0, 1, 2, ...); hence

P (N = 2i+ 2|αb < α < α) = (q10)
2(q11q10)

iαb + (q00)
2(q00q01)

i(1− αb).

That is, for i = 0, 1, 2, ...,

P (N |αb < α < α) =

{
q11(q11q10)

iαb + q01(q00q01)
i(1− αb) if N = 2i+ 1,

(q10)
2(q11q10)

iαb + (q00)
2(q00q01)

i(1− αb) if N = 2i+ 2.
(48)

Similarly, when α < α < αb, we can obtain that

P (N |α < α < αb) =

{
q10(q11q10)

iαb + q00(q00q01)
i(1− αb) if N = 2i+ 1,

(q11)
2(q11q10)

iαb + (q01)
2(q00q01)

i(1− αb) if N = 2i+ 2.
(49)

Subcase 1(b): Initial illness perception satisfies α ≤ α < αs. The patients whose initial

illness perceptions fall into this range leave immediately if a positive result is observed at

the first visit. When α ≤ α < α̃, if the patient obtains a negative result at the first visit,

αb = g0(α) < g0(α) < αb;

thus, she pays at most two visits, and we show

P (N |α ≤ α < α̃) =


q11αb + q01(1− αb) if N = 1,

q11q10αb + q00q01(1− αb) if N = 2,+,

q210αb + q200(1− αb) if N = 2,−,

(50)

where “+” and “−” denote that the second diagnosis is positive and negative, respectively.

When α̃ ≤ α < αs, if she observes a negative result at the first visit, since g0(α) ≥ g0(α̃) = αb

and g0(α) < g0(αs) = α, we show that her updated illness perception satisfies

αb ≤ g0(α) < α;

thus, she behaves like the patients’ whose illness perceptions are in interval (αb, α) from the

second visit on. We further show that for i = 0, 1, 2, ...,

P (N |α̃ ≤ α < αs) =


q11αb + q01(1− αb) if N = 1,

(q11q10)
i+1αb + (q00q01)

i+1(1− αb) if N = 2i+ 2,

(q10)
3(q11q10)

iαb + (q00)
3(q00q01)

i(1− αb) if N = 2i+ 3.

(51)

12
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By using (46), we can further obtain the following:

E[N |α < α < αb] =
1 + q11

1− q11q10
αb +

1 + q01
1− q00q01

(1− αb);

= 1 + αb
q11(1 + q10)

1− q11q10
+ (1− αb)

q01(1 + q00)

1− q00q01
:= 1 +N1,

E[N |αb < α < α] =
1 + q10

1− q11q10
αb +

1 + q00
1− q00q01

(1− αb);

= 1 + αb
q10(1 + q11)

1− q11q10
+ (1− αb)

q00(1 + q01)

1− q00q01
:= 1 +N2,

E[N |α ≤ α < α̃] = 1 + q10αb + q00(1− αb) := 1 +N3, (52)

E[N |α̃ ≤ α < αs] = 1 + αb
q10(1 + q10)

1− q11q10
+ (1− αb)

q00(1 + q00)

1− q00q01
:= 1 +N4.

Therefore,

E[N ] =1− Φ(α) +

(
αb

q11(1 + q10)

1− q11q10
+ (1− αb)

q01(1 + q00)

1− q00q01

)
[Φ(αb)− Φ(α)]

+

(
αb

q10(1 + q11)

1− q11q10
+ (1− αb)

q00(1 + q01)

1− q00q01

)
[Φ(α)− Φ(αb)]

+ [q10αb + q00(1− αb)][Φ(α̃)− Φ(α)

+

(
αb

q10(1 + q10)

1− q11q10
+ (1− αb)

q00(1 + q00)

1− q00q01

)
[Φ(αs)− Φ(α̃)],

Moreover, it can be shown that

N2 −N3 = q10αb

(
1 + q11

1− q11q10
− 1

)
+ q00(1− αb)

(
1 + q01

1− q00q01
− 1

)
> 0; (53)

N4 −N3 = q10αb

(
1 + q10

1− q11q10
− 1

)
+ q00(1− αb)

(
1 + q00

1− q00q01
− 1

)
> 0. (54)

Case 2: q01
q11

≤ η < 1. Under this case, when α ≤ α ≤ αb, the patient is obedient and

visits only once; see Proposition 2. When αb < α < αs, the patient leaves if she obtains

a positive result. If she obtains a negative result at the first visit, she becomes obedient

because α = g0(αb) < g0(α) < g0(αs) = α ≤ αb, and hence she leaves regardless of the

diagnosis result at the second visit. Therefore, the probability mass of her visiting times N

is also given as (50), and her expected visiting times is given as (52). Therefore,

E[N ] = 1− Φ(α) + [q10αb + q00(1− αb)][Φ(αs)− Φ(αb)].

13
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Proof of Proposition 4: From (43), (44), (45), and (47), we can show that

dαb

dα
=

q11q01
(αq01 + (1− α)q11)2

> 0, (55)

dαb

dα
=

q00q10
(αq00 + (1− α)q10)2

> 0, (56)

dαs

dα
=

q00q10
(αq00 + (1− α)q10)2

> 0, (57)

dα̃

dα
=

(
q00q10

αq200 + (1− α)q210

)2

> 0. (58)

When
(

q01
q11

)2
≤ η < q01

q11
, by ϕ(·) > 0, (53), (54), (55), (56), (57) and (58), we can show that

∂E[N ]

∂α
= −(1 +N1)ϕ(α)−N2ϕ(αb)

dαb

dα
− (N4 −N3)ϕ(α̃)

dα̃

dα
< 0,

∂E[N ]

∂α
= N1ϕ(αb)

dαb

dα
+ (N2 −N3)ϕ(α) +N4ϕ(αs)

dαs

dα
> 0.

When q01
q11

≤ η < 1, by ϕ(·) > 0, (56), and (57), we can show that

∂E[N ]

∂α
= −ϕ(α)−N3ϕ(αb)

dαb

dα
< 0,

∂E[N ]

∂α
= N3ϕ(αs)

dαs

dα
> 0. (59)

Together with (41) and (42), we have

dE[N ]

dCp

=
∂E[N ]

∂α

dα

dCp

+
∂E[N ]

∂α

dα

dCp

< 0. (60)

For any given price f , the equilibrium arrival rate is determined by λ = E[N ]Λ. By using

Cp = f + cw = f + c
µ−λ

, we have dCp

dλ
= c

(µ−λ)2
= cw2 > 0. Then, together with (60), we have

dE[N ]

dλ
=

dE[N ]

dCp

dCp

dλ
< 0.

That is, E[N ] monotonically decreases in λ, and hence, the two functions y = E[N ]Λ

(monotonically decreasing in λ) and y = λ (monotonically increasing in λ) cross each other

once. Therefore, there exists a unique equilibrium effective arrival rate.

Proof of Proposition 5: When doctor shopping is prohibited, E[N ] = 1 − Φ(α). Then,

λ = [1− Φ(α)]Λ and by (41),

dλ

dCp

= −Λϕ(α)
dα

dCp

< 0.

From Cp = f + cw, we show

dCp

df
= 1 + c

dw

df
= 1 +

c

(µ− λ)2
dλ

dCp

dCp

df
,

14
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and hence, Cp increases with f because

0 <
dCp

df
=

1

1− cw2 dλ
dCp

< 1. (61)

By (7), the subjective and objective rewards of a patient with illness perception α /∈ S can

be written as

EX1 [r(X1)
∣∣X0 = α] = r(g1(α))P (s = 1|α) + r(g0(α))P (s = 0|α) = κ(α),

EY1 [r(Y1)
∣∣X0 = α] = r(g1(αb))P (s = 1|αb) + r(g0(αb))P (s = 0|αb) = κ(αb),

where κ(·) is given by (14). They are also the expected subjective and objective reward of

an obedient patient. When α̂q00
α̂q00+(1−α̂)q10

< α < 1, by (8), g0(α) > α̂, and hence, the patient

still prefers to seek treatment even upon receiving a negative diagnosis result. Therefore,

when doctor shopping is not allowed,

αu
s =

α̂q00
α̂q00 + (1− α̂)q10

.

Recall that κ(·) is given by (14). We then obtain the average subjective reward and the

average objective reward per patient as follows:

Ru
o =

∫ αu
s

α

κ(αb)ϕ(α)dα, Ru
s =

∫ αu
s

α

κ(α)ϕ(α)dα.

Recall the objective function given in (13):

Wu
i = Λ

(
Ru

i − (1− Φ(α))
c

µ− (1− Φ(α))Λ

)
,

where i = o, s. Then, for the objective social welfare, taking the first and second derivatives

of the welfare function, we get

dWu
o

dα
= Λ

(
−κ(αb) +

cµ

[µ− [1− Φ(α)]Λ]2

)
ϕ(α),

d2Wu
o

dα2
= Λ

[
− 2cµΛ

[µ− [1− Φ(α)]Λ]3
f 2(α) +

(
−κ(αb) +

cµ

[µ− [1− Φ(α)]Λ]2

)
ϕ′(α)

]
,

where ϕ(α) > 0. If there exists an αo such that

(1− Φ(αo))Λ = µ−
√

cµ

κ(αb)
,

then

dWu
o

dα

∣∣
α=αo = 0,

d2Wu
o

dα2

∣∣
α=αo < 0,
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which indicates that Wu

o is unimodal with the global maximum at α = αo. By (41) and (61),

we can further show that

dα

df
=

dα

dCp

dCp

df
> 0. (62)

That is, α is strictly increasing in f , and hence, there is a one-to-one mapping between α

and f . Let f̃ be the price determined by αo. Then, f̃ must be unique. Thus, if f̃ ≥ 0,

fu∗
o = f̃ and the optimal arrival rate is λu

o = µ−
√

cµ
κ(αb)

. Otherwise, fu∗
o = 0.

For the subjective social welfare, we consider the following two cases:

Case i. When q11V1 − q10L1 ≥ q00V0 − q01L0, κ
′(α) ≥ 0.

dWu
s

dα
= Λ

(
−κ(α) +

cµ

[µ− [1− Φ(α)]Λ]2

)
ϕ(α),

d2Wu
s

dα2
= Λ

[
−
(
κ′(α) +

2cµΛϕ(α)

[µ− [1− Φ(α)]Λ]3

)
ϕ(α)

+

(
−κ(α) +

cµ

[µ− [1− Φ(α)]Λ]2

)
ϕ′(α)

]
,

where ϕ(α) > 0. If there exists an αs such that

(1− Φ(αs))Λ = µ−
√

cµ

κ(αb)
,

then

dWu
s

dα

∣∣
α=αs = 0,

d2Wu
s

dα2

∣∣
α=αs < 0,

which indicates that Wu
s is unimodal with the global maximum at α = αs. Recall from (62)

that there is a one-to-one mapping between α and f . Let f̂ be the price determined by αs.

Then, f̂ must be unique. Thus, iIf f̂ ≥ 0, fu∗
s = f̂ , and hence, the optimal arrival rate is

λu
s = µ−

√
cµ

κ(αb)
. Otherwise, fu∗

s = 0.

Case ii. When q00V0 − q01L0 > q11V1 − q10L1, κ
′(α) < 0. Since α ≤ αb, we can show that

dWu
s

dα
− dWu

o

dα
= Λ (κ(αb)− κ(α)) ≤ 0.

Recall from the proof of Case i that Wu
o is unimodal, dWu

o

dα
|α=αo = 0, and f̃ is the price

determined by αo. Also recall from 62 that α increases in f . Thus, for those f ≥ f̃ , we have

α ≥ αo and dWu
o

dα
≤ dWu

o

dα
|α=αo = 0. Then, we have

dWu
s

dα
≤ dWu

o

dα
≤ 0, ∀f ≥ f̃ .

This indicates that 0 ≤ fu∗
s ≤ max{f̃ , 0} = fu∗

o .
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Proof of Proposition 6: We have shown in Lemma 2 that η increases in Cp; together with

(61), we show that

dη

df
=

dη

dCp

dCp

df
> 0. (63)

And by (60) and (61), we have

dλ

df
=

dλ

dCp

dCp

df
= Λ

dE[N ]

dCp

dCp

df
< 0. (64)

Recall from the proof of Proposition 5 that the obedient patients’ objective rewards is κ(αb).

Below, we focus on the diagnosis-dependent patients.

Case 1:
(

q10
q00

)2
< η < q10

q00
. When αb < α < α, given i = 0, 1, ..., if the number of

visits paid by the patient N = 2i + 1, we have r(YN) = g1 · (g1 · g0)i(αb)V1 − (1 − g1 ·
(g1 · g0)i(αb))L0 = g1(αb)V1 − (1 − g1(αb))L0; if N = 2i + 2 (i = 0, 1, ...), then we have

r(YN) = (1− (g0)
2 · (g1 · g0)i(αb))V0− (g0)

2 · (g1 · g0)i(αb)L1 = (1− (g0)
2(αb))V0− (g0)

2(αb)L1.

That is, when αb < α < α,

r(YN) =

{
g1(αb)V1 − (1− g1(αb))L0 =

q11αbV1−q01(1−αb)L0

q11αb+q01(1−αb)
if N = 2i+ 1,

(1− (g0)
2 · (αb))V0 − (g0)

2 · (αb)L1 =
q200(1−αb)V0−q210αbL1

q200(1−αb)+q210αb
if N = 2i+ 2.

The corresponding probabilities of incurring N visiting time can be found in (48). We further

show the following:

EYN
[r(YN)|αb < α < α] =

∞∑
i=0

q11αbV1 − q01(1− αb)L0

q11αb + q01(1− αb)
P (N = 2i+ 1|αb < α < α)

+
∞∑
i=0

q200(1− αb)V0 − q210αbL1

q200(1− αb) + q210αb

P (N = 2i+ 2|αb < α < α)

=
q11αbV1 − q01(1− αb)L0

1− q11q10
+

q200(1− αb)V0 − q210αbL1

1− q00q01
.

Similarly, we show that when α < α < αb,

r(YN) =

{
(1− g0(αb))V0 − g0(αb)L1 =

q00(1−αb)V0−q10αbL1

q00(1−αb)+q10αb
if N = 2i+ 1,

(g1)
2 · (αb)V1 − (1− (g1)

2 · (αb))L0 =
q211αbV1−q201(1−αb)L0

q211αb+q201(1−αb)
if N = 2i+ 2.

By using the corresponding probabilities of incurring N visiting time (49), we have

EYN
[r(YN)|α < α < αb] =

∞∑
i=0

q00(1− αb)V0 − q10αbL1

q00(1− αb) + q10αb

P (N = 2i+ 1|α < α < αb)

+
∞∑
i=0

q211αbV1 − q201(1− αb)L0

q211αb + q201(1− αb)
P (N = 2i+ 2|α < α < αb)

=
q00(1− αb)V0 − q10αbL1

1− q00q01
+

q211αbV1 − q201(1− αb)L0

1− q11q10
.
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When α̃ ≤ α < αs,

r(YN) =


g1(αb)V1 − (1− g1(αb))L0 =

q11αbV1−q01(1−αb)L0

q11αb+q01(1−αb)
if N = 1,

αbV1 − (1− αb)L0 if N = 2i+ 2,

(1− (g0)
3(αb))V0 − (g0)

3(αb)L1 =
q300(1−αb)V0−q310αbL1

q300(1−αb)+q310αb
if N = 2i+ 3.

The corresponding probabilities of incurring N visiting time can be found in (51). We further

obtain

EYN
[r(YN)|α̃ ≤ α < αs] =

q11αbV1 − q01(1− αb)L0

q11αb + q01(1− αb)
P (N = 1|α̃ ≤ α < αs)

+
∞∑
i=0

[αbV1 − (1− αb)L0]P (N = 2i+ 2|α̃ ≤ α < αs)

+
∞∑
i=0

q300(1− αb)V0 − q310αbL1

q300(1− αb) + q310αb

P (N = 2i+ 3|α̃ ≤ α < αs)

= q11αbV1 − q01(1− αb)L0 +
q11q10[αbV1 − (1− αb)L0]

1− q11q10

+
q300(1− αb)V0 − q310αbL1

1− q00q01
.

When α ≤ α < α̃,

r(YN) =


g1(αb)V1 − (1− g1(αb))L0 =

q11αbV1−q01(1−αb)L0

q11αb+q01(1−αb)
if N = 1,

αbV1 − (1− αb)L0 if N = 2,+,

(1− (g0)
2 · (αb))V0 − (g0)

2 · (αb)L1 =
q200(1−αb)V0−q210αbL1

q200(1−αb)+q210αb
if N = 2,−.

(65)

where “+” and “−” denote that the second diagnosis is positive and negative, respectively.

The corresponding probabilities are given in (50), Thus,

EYN
[r(YN)|α ≤ α < α̃] = q11αbV1 − q01(1− αb)L0 + q11q10[αbV1 − (1− αb)L0]

+q200(1− αb)V0 − q210αbL1.

Let

φ(α) := EYN
[r(YN)|α]− κ(αb), (α, αb) ∪ (αb, αs).

Hence, φ(α) represents the expected objective reward improvements of a diagnosis-dependent

patient with initial illness perception α when doctor shopping is allowed. By plugging

q00 = q11 = q into the above equation and together with the above-obtained results, we then

have

φ(α) =


q00q01

1−q00q01
[q(1− αb)(V0 + L0)− (1− q)αb(V1 + L1)] := φ1, if α < α < αb,

q00q01
1−q00q01

[qαb(V1 + L1)− (1− q)(1− αb)(V0 + L0)] := φ2, if αb < α < α,

q00q01[αb(V1 + L1)− (1− αb)(V0 + L0)] := φ3, if α ≤ α < α̃,
q00q01

1−q00q01
[αb(V1 + L1)− (1− αb)(V0 + L0)] := φ4, if α̃ ≤ α < αs.

(66)
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Obviously, φ(α) is piece-wise constant.

Case 2: q10
q00

≤ η < 1. When α ≤ α < αs, the patient’s reward is the same as α ≤ α < α̃ of

Case 1; that is, her reward is the same as that in (65), and the corresponding probabilities

is (50). Therefore, φ(α) = φ3.

We now look at the welfare maximization problem. By (52) and (56), we have 0 < N3 < 1

and dαb

dα
> 0. Then,

κ(αb)−
cµN3

(µ− λ)2
> κ(αb)−

cµ

(µ− λ)2

(
1 +N3

ϕ(αb)

ϕ(α)

dαb

dα

)
≥ 0 for λ ≤ λ. (67)

Recall that f is defined as the price that makes η = q01/q11. By (63), we show that

for any f ≥ f , η ≥ q01/q11. Therefore, when f ≥ f , the objective reward Ro then can be

expressed as follows:

Ro = EYN
[φ(α)|αb < α < αs] +

∫ αs

α

κ(αb)ϕ(α)dα = EYN
[φ3|αb < α < αs] +

∫ αs

α

κ(αb)ϕ(α)dα,

where φ3 is given in (66). Then, we have

∂Ro

∂α
= −φ3ϕ(αb)

dαb

dα
− κ(αb)ϕ(α),

∂Ro

∂α
= [φ3 + κ(αb)]ϕ(αs)

dαs

dα
. (68)

Recall that λ = E[N ]Λ. We can rewrite the objective function (12) as follows:

max
f

Wo = Λ

(
Ro − E[N ]

c

µ− λ

)
= ΛRo −

cλ

µ− λ
= ΛRo + c− cµ

µ− λ
.

By (59) and (68), when f ≥ f , we have

dWo

df
=

(
Λ
∂Ro

∂α

dα

dCp

+ Λ
∂Ro

∂α

dα

dCp

− cµ

(µ− λ)2
dλ

dCp

)
dCp

df

= Λ

[(
∂Ro

∂α
− cµ

(µ− λ)2
∂E[N ]

∂α

)
dα

dCp

+

(
∂Ro

∂α
− cµ

(µ− λ)2
∂E[N ]

∂α

)
dα

dCp

]
dCp

df

= −Λ

[
κ(αb)ϕ(α) + φ3ϕ(αb)

dαb

dα
− cµ

(µ− λ)2

(
ϕ(α) +N3ϕ(αb)

dαb

dα

)]
dα

dCp

dCp

df

+Λ

[
κ(αb) + φ3 −

cµN3

(µ− λ)2

]
ϕ(αs)

dαs

dα

dα

dCp

dCp

df
.

Define

λ := µ−

√
cµ

κ(αb)

(
1 +N3

ϕ(αb)

ϕ(α)

dαb

dα

)
= µ−

√
cµ

κ(αb)

(
1 +

q00q10[q10αb + q00(1− αb)]

(αq00 + (1− α)q10)2
ϕ(αb)

ϕ(α)

)
.

Then, if λ|f=f ≤ λ, by (64) we have that λ ≤ λ|f=f ≤ λ for f ≥ f . It is easy to show that

that φ3 ≥ 0 when 0 < α̂ ≤ αb. By (41), (42), (56), (57), (61) and (67), we can show that

19



Modelling Patients’ Illness Perceptions and Doctor Shopping Online Appendix

when 0 < α̂ ≤ αb and λ|f=f ≤ λ,

dWo

df
< Λ

[
−
(
κ(αb)−

cµ

(µ− λ)2

(
1 +N3

ϕ(αb)

ϕ(α)

dαb

dα

))
ϕ(α)

dα

dCp

+

(
κ(αb)−

cµN3

(µ− λ)2

)
ϕ(αs)

dαs

dα

dα

dCp

]
dCp

df
< 0.

That is, when λ|f=f ≤ λ and 0 < α̂ ≤ αb , Wo decreases with f for any f ≥ f , which

indicates that if f ≤ 0, f ∗
o = 0, and if f > 0, the maximum of Wo is found on the interval

[0, f ].

Appendix B Numerical Protocol: When Two Error

Rates are Different

As shown in the proof of Lemma 1, the convexity of v(xn) does not depend on the assumption

q00 = q11. Hence, the double-threshold strategy still holds as long as the requirement stated

in (9) is satisfied. Utilizing this property, we design the following numerical algorithm to

find the system equilibrium outcome. The algorithm requires us to first discretize the state

space (patients’ belief) into multiple small intervals. We then calculate the expected visiting

times for patients in each interval, based on which we can calculate the expected visiting

times for the whole patient group. After that, the algorithm iterates between finding the

effective arrival rate given the two thresholds and solving the dynamic program to find the

two thresholds given the updated effective arrival rate.

The algorithm starts with the value of thresholds obtained under the One-Step Look-

Ahead (OSLA) rule, which can be found in the proof of Proposition 1 and do not require

q00 = q11. That is, when q00 ̸= q11, the thresholds under the OSLA rule are exactly the

same as those provided in the second lines of (10) and (11). That is, the initial value of two

thresholds are

α =
q01(L0 + V0) + Cp

q11(L1 + V1) + q01(L0 + V0)
and α =

q00(L0 + V0)− Cp

q00(L0 + V0) + q10(L1 + V1)
,

where Cp = f+c/(µ−λ). For any given price f , we provide the following iterative algorithm

to obtain the system equilibrium outcome.

Step 0 (Initialization): Set v0(xn) = r(xn), λ = 0, and i = 1. Let

s(i) =
q01(L0 + V0) + Cp

q11(L1 + V1) + q01(L0 + V0)
and s(i) =

q00(L0 + V0)− Cp

q00(L0 + V0) + q10(L1 + V1)
.

Step 1: Let λl = 0 and λh = µ.
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Step 2: Set λ = λl+λh

2
. Discretize the state space (patients’ belief), calculate the expected

visiting times of patients in each discretized state, and then obtain the expected visiting

times E[N ] for the whole group of patients.

Step 3: If λ− E[N ]Λ < 0, set λl = λ; otherwise, λh = λ.

Step 4: If |λ− E[N ]Λ| < 10−4, go to Step 5; otherwise, go to Step 2.

Step 5: Let Cp = f + c/(µ− λ) and

E [vi(Xn+1)|xn] = P (s = 0|xn)vi−1 (g0(xn)) + P (s = 1|xn)vi−1 (g1(xn)) .

Solve E [vi(Xn+1)|xn]− r(xn)−Cp = 0 with respect to xn, and obtain two critical values x1
n

and x2
n with 0 < x1

n < x2
n < 1. Set s(i+ 1) = x1

n, s(i+ 1) = x2
n, and i = i+ 1.

Step 6: If |s(i) − s(i − 1)| < 10−4 and |s(i) − s(i − 1)| < 10−4, α = s(i) and α = s(i);

otherwise, go to Step 1.
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