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Abstract: Measurement uncertainty has significant negative impacts on the operation and 

control of heating, ventilation and air conditioning systems. It is a big challenge and should be 

solved urgently. Existing studies focus on reducing the impacts of measurement uncertainty by 

developing uncertainty tolerant methods without quantifying the measurement uncertainties 

themselves. They therefore fail to fundamentally solve them. This study aims to directly 

quantify the measurement uncertainties of water flow meters in multiple water-cooled chiller 

systems using a Bayesian approach. A measurement uncertainty quantification strategy is 

proposed based on Bayesian inference and energy balance models, and the Markov chain 

Monto Carlo method is used to achieve the strategy. The site data collected from a chiller 

system are used to test the strategy. Four simulation tests with different levels of measurement 

uncertainty are conducted to further test and systematically validate the strategy. Test results 

show that the measurement uncertainties (both systematic and random uncertainties) of the 

water flow meters in the chiller systems can be quantified effectively and with acceptable 

accuracy. The strategy performs very well in quantifying random uncertainties of flow meters, 

and the relative errors range from 0% to 12.8%. The performance of the strategy in quantifying 

systematic uncertainties is also satisfactory, and the relative errors range from 0.1% to 36.57%. 

The proposed strategy is able to quantify measurement uncertainties and can be used to 

optimize the control of chiller systems and improve the reliability of chiller systems. 

Keywords: Measurement uncertainty, uncertainty quantification, Bayesian inference, chiller 

system, water flow meter.
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Nomenclature 

HVAC heating, ventilation and air conditioning 

MCMC Markov chain Monte Carlo 

NUTS No-U-Turn Sampler 

HMC Hamiltonian Monte Carlo 

cLHS conditioned Latin hypercube sampling 

CHWFM chilled water flow meter 

CWFM cooling water flow meter 

K number of warmup iterations/samples 

P power consumption of chiller (kW) 

T temperature (℃) 

q true volumetric flow rate of water (L/s) 

𝑞𝑞� measured volumetric flow rate of water (L/s) 

𝑞𝑞� mean of true volumetric water flow rate (L/s) 

u measurement uncertainty 

Nchain number of Markov chains 

Niter number of iterations 

qr rated flow rate of water pump (L/s) 

qref reference value of water flow rate under actual working condition (L/s) 

Qin heat absorption of evaporator in chiller (kW) 

Qout heat rejection of condenser in chiller (kW) 

c specific heat capacity of water (kJ/(kg·℃)) 

n number of chillers 

COP coefficient of performance 

COPFL full load coefficient of performance 

CP cooling capacity of chiller (kW) 

rp part load ratio of chiller 

Greek letters 

ρ density of water (kg/m3) 

μ systematic uncertainty of flow meter (L/s) 

σ standard deviation of random uncertainty of flow meter 

α ratio of actual (part-load) COP of chiller to its full load COP 

δ standard deviation of true volumetric water flow rate 
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Subscripts 

chw chilled water 

chws chilled water supply 

chwr chilled water return 

cw cooling water 

cwin cooling water inlet 

cwout cooling water outlet 

chwq chilled water flow meter 

cwq cooling water flow meter 

i chiller No. 
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1. Introduction 

In order to provide cooling or heating to indoor spaces and guarantee indoor thermal 

comfort, almost all modern buildings are equipped with heating, ventilation and air 

conditioning (HVAC) systems. They are major energy consumers in most buildings. The 

building sector consumes about 40% of end-use energy [1], and the electricity consumed by 

HVAC systems accounts for over 50% of total building electricity use [2]. In order to improve 

the overall energy efficiency of HVAC systems and reduce energy waste, many researchers 

have tried to develop optimal control strategies for HVAC systems. Karami and Wang [3] 

employed the particle swarm optimization search algorithm to optimize the chilled water 

temperature setpoint, condenser water temperature setpoint and threshold of cooling load 

during the chiller stage sequence for a multiple-chiller plant with non-identical chillers. Mu et 

al. [4] proposed a model-free optimization strategy based on multivariate extremum seeking 

control with penalty terms to maximize the energy efficiency of a chilled-water plant with 

parallel chillers. Teimourzadeh et al. [5] optimized cooling-load dispatch for multiple-chiller 

plants through an augmented group search optimization algorithm. There is no doubt that 

control strategies for HVAC systems are becoming more and more precise due to the efforts of 

researchers. 

However, no matter how good the control strategy is, its implementation must rely on one 

or more measurements. Measurement uncertainty cannot be avoided regardless of how accurate 

the sensors used are, and it may lead to significant negative impacts on system control, energy 

consumption, indoor thermal comfort, etc. Existing studies show that energy consumption 

increases by 17% in cooling mode and 43% in heating mode due to the measurement 

uncertainties in outdoor air flow control [6]. Uncertainties in occupancy measurements can 

lead to an 18% and 16.5% increase in total energy consumption in winter and summer days 

respectively [7]. Liao et al. [8] systematically analysed the impacts of uncertainties on four 

typical chiller sequencing control strategies, results show that uncertainties affected the chiller 

switching frequency, supply air temperature and energy consumption. Generally, sensors 

should be calibrated annually [9], but it is in fact very difficult to carry out field calibration for 

sensors. As a result, many sensors are never calibrated in their life cycles. In addition, even if 

the sensors are calibrated, the calibration interval is usually long, and so the impacts of 

measurement uncertainties cannot be reduced to an acceptable level. Hence, in order to reduce 

the impacts of measurement uncertainties on the operation of HVAC systems, researchers have 

proposed control strategies which can tolerate or remove a certain level of measurement 
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uncertainties. Zhuang et al. [10, 11] proposed a risk-based robust optimal control strategy to 

deal with measurement uncertainties. Huang et al. [12] reduced measurement uncertainties by 

fusing available redundant measurements while considering outliers, noises and biases in order 

to improve cooling load measurement. Sun et al. [13] utilized fused measurements to deal with 

possible misbehaviours in measurement instruments. Shi et al. [14] proposed an exergy-

analysis-based method to evaluate the energy saving potential of HVAC systems under 

measurement uncertainties. Yang et al. [15] presented an online fault-tolerate control strategy 

to correct faulty measurements. These studies all addressed measurement uncertainties 

indirectly: they aimed to reduce their impacts rather than quantify them directly. In other words, 

the measurement uncertainties have not fundamentally been solved. 

According to the ISO/IEC GUIDE 98-3 [16], the measurement uncertainty considered in 

this study is a Type B uncertainty, because the uncertainty is not evaluated by the statistical 

analysis of series of observations. In this study, the measurement uncertainty (including the 

measuremen error) is divided into two components: a systematic uncertainty (also known as 

bias) and a random uncertainty (also known as noise). The systematic uncertainty is generally 

considered to be fixed or varying very slowly over time. The random uncertainty is of course 

random but can be considered to generally follow a normal distribution. Some studies only 

consider the random uncertainties of measurements without taking the systematic uncertainties 

into account. In fact, both systematic and random uncertainties may lead to negative effects 

and cannot be ignored. In addition, the focus of most existing studies is the effects of 

measurement uncertainties on the operation and control of HVAC systems instead of the 

measurement uncertainties themselves. There are very few studies on quantifying both 

systematic and random uncertainties of measurements directly. It is a big challenge to quantify 

measurement uncertainty directly. Fortunately, Bayesian inference, a powerful uncertainty 

analysis method, can provide a means to cope with this challenge. 

Bayesian techniques have commonly been used for inverse uncertainty quantification in 

building energy models [17]. The purpose of inverse uncertainty quantification is to estimate 

the unknown variables in building energy models using mathematical formulations [18] and 

observational data. It is also called model calibration. There are many successful application 

cases of Bayesian theory in model calibration. For example, Heo et al. [19] calibrated 

normative energy models with a Bayesian approach to evaluate different energy retrofit options. 

Chong et al. [20] validated the ability of Bayesian calibration using two different building 

energy models. Booth et al. [21] used Bayesian calibration to handle uncertainties in housing 

stock models. Moreover, Bayesian inference can be used in conjunction with machine learning 
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algorithms. Liu et al. [22, 23] used feedforward neural network, principal component analysis 

and Gaussian process to develop the surrogate models and enhanced the computational 

efficiency of Bayesian-based uncertainty quantification significantly. Zhu et al. [24] used 

support vector machine and neural network to extend the application of an approximate 

Bayesian computation method in the calibration of building energy models. Burkhart [25] and 

Heo [26] used a Bayesian-based Gaussian process modelling framework to handle uncertainties 

in measurement and verification practices. Similarly, the kind of measurement uncertainty 

quantification concerned in this study can also be considered an inverse problem. It is possible 

to estimate unknown systematic and random uncertainties using available measurements. 

Moreover, the energy balance models, as an inherent correlation between measurements, can 

be used as constraints to improve quantification accuracy. 

Therefore, this study aims to directly quantify measurement uncertainties of water flow 

meters in chiller systems. Due to high flexibility [27], multiple water-cooled chiller systems 

are widely used in large-scale commercial buildings, and a typical multiple water-cooled chiller 

system is selected as the reference system for this study. A measurement uncertainty 

quantification strategy based on Bayesian inference and energy balance models is proposed. 

The measurement uncertainties (both systematic and random uncertainties) of flow meters in 

the chiller system are considered. The main innovation of this strategy is that the measurement 

uncertainties are quantified directly, including both systematic and random uncertainties of 

measurements. The proposed strategy can be used for online sensor calibration, significantly 

reducing the costs. It can also enhance the robustness of decision-making schemes for the 

control of HVAC systems. 

2. Multiple water-cooled chiller systems and measurement uncertainties 

2.1 System description 

A multiple water-cooled chiller system typically consists of a chilled water system and a 

cooling water system, as shown in Fig. 1. The chilled water loop connects the chillers with the 

building. The cooling water loop connects the chillers with the cooling towers. Each chiller is 

interlocked with a constant-speed chilled water pump on the water return side and a constant-

speed cooling water pump on the water inlet side. A number of temperature sensors, chilled 

water flow meters (CHWFM), cooling water flow meters (CWFM), power meters, etc., are 

installed in the system for system monitoring and online real-time control. For each chiller, the 

power consumption (𝑃𝑃𝑖𝑖), chilled water supply temperature (𝑇𝑇𝑐𝑐ℎ𝑤𝑤𝑤𝑤,𝑖𝑖) and return temperature 
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( 𝑇𝑇𝑐𝑐ℎ𝑤𝑤𝑤𝑤,𝑖𝑖), chilled water volume flow rate (𝑞𝑞𝑐𝑐ℎ𝑤𝑤,𝑖𝑖), cooling water inlet temperature �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖� and 

outlet temperature (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖), and cooling water volume flow rate (𝑞𝑞𝑐𝑐𝑐𝑐,𝑖𝑖) are measured. On the 

main pipe, the main chilled water supply temperature (𝑇𝑇𝑐𝑐ℎ𝑤𝑤𝑠𝑠) and return temperature (𝑇𝑇𝑐𝑐ℎ𝑤𝑤𝑤𝑤), 

main chilled water volume flow rate (𝑞𝑞𝑐𝑐ℎ𝑤𝑤), main cooling water inlet temperature (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and 

outlet temperature (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), and main cooling water volume flow rate (𝑞𝑞𝑐𝑐𝑐𝑐) are also measured. 

 
Fig. 1. Schematic of a multiple water-cooled chiller system and metering arrangement 

2.2 Basic characteristics of measurement uncertainty 

The measured values (𝑥𝑥�) of a variable can be divided into two parts as shown in Eq. (1), 

i.e. the true values (x) and an uncertain term (𝑢𝑢𝑥𝑥). The true values can never be determined 

exactly. In this study, the uncertain term represents measurement uncertainty and can be 

considered to follow a normal distribution with mean 𝜇𝜇𝑥𝑥 and standard deviation 𝜎𝜎𝑥𝑥, as shown 

in Eq. (2). Its mean represents the systematic uncertainty of measurement, and its standard 

deviation reflects the random uncertainty of measurement. According to the characteristics of 

a normal distribution, the actual measured values of the variable also follow a normal 

distribution with mean (𝑥𝑥 + 𝜇𝜇𝑥𝑥) and standard deviation 𝜎𝜎𝑥𝑥, as shown in Eq. (3). 

    (1) 
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 ( )2~ ,  µ σx x xu N   (2) 

 ( )2~ ,  µ σ+ x xx N x   (3) 

As mentioned before, temperature sensors, flow meters, power meters, etc., are all 

installed in the chiller systems. The measurement uncertainties of these sensors are 

unavoidable. In this study, only the measurement uncertainties of water flow meters are 

considered for the following reasons: (1) The computation load will increase significantly if 

uncertainties of more sensors are included in quantification; (2) Temperature sensors can be 

calibrated using other relatively easier means compared with water flow meters, and the cost 

of replacing temperature sensors is much lower than that for flow meters; (3) Power meters 

have higher accuracy and are easier to calibrate. 

3. Measurement uncertainty quantification strategy 

3.1 The basic approach and procedure 

Uncertainty exists inherently in all measurements and determines measurement quality as 

well as the accuracy and reliability of decisions made using the measurements. Quantification 

of measurement uncertainty is therefore an essential means to ensure or improve the accuracy 

and reliability of decisions. Fig. 2 shows the basic procedure of measurement uncertainty 

quantification proposed in this study. A key feature is that the measurements are the only inputs 

needed. The tool used in this study is the Stan programming language. The number of Markov 

chains (𝑁𝑁𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎) is set to 4 by default. In order to reduce computational load, the number of 

iterations (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) should be set as small as possible while ensuring that the chains can converge 

to the same value. The parameter Rhat is used to check convergence. If the chains have 

converged, Rhat will near 1. Otherwise, Rhat will be larger than 1. In general, it is acceptable 

for Rhat to be no more than 1.01 [28]. Apart from Rhat, the traces and autocorrelations of 

samples are also used for checking whether the Markov chains are converged in this study [29]. 

Based on these criterions, the number of iterations can be set properly. In addition, it is 

necessary to assign a prior distribution to the uncertainty of each measurement - the details will 

be provided in Section 3.3. The Markov chain Monte Carlo (MCMC) method is used to 

generate samples under the constraints of the energy balance models. During the iterative 

process, prior distributions are updated continually, and the posterior distributions are 

calculated using the generated samples and measurement uncertainty models (i.e. likelihoods) 

according to Bayes' theorem. The posterior distributions are the outputs of the uncertainty 
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quantification and show the possible distributions of unknown uncertainties. The methods and 

models used will be introduced in detail in the following sections. 

 
Fig. 2. Basic procedure of measurement uncertainty quantification 

3.2 Measurement uncertainty quantification methods adopted 

Two advanced methods, Bayesian inference and No-U-Turn Sampler (NUTS), are 

adopted in the measurement uncertainty quantification strategy. An outline of these two 

methods is given below. 

3.2.1 Bayesian inference 

Bayesian inference utilizes prior distribution and likelihood function to compute the 

posterior distribution according to Bayes' theorem. The mathematical formulation of Bayes' 

theorem is stated as Eq. (4). 

 ( ) ( ) ( )
( ) ( ) ( )|

| |
p y p

p y p y p
p y
θ θ

θ θ θ
⋅

= ∝ ⋅   (4) 

Where, θ represents the unknown parameters to be estimated, y is the observational data, 

𝑝𝑝(𝜃𝜃|𝑦𝑦)  is the posterior probability, 𝑝𝑝(𝑦𝑦|𝜃𝜃)  is the likelihood function, 𝑝𝑝(𝜃𝜃)  is the prior 
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probability, and 𝑝𝑝(𝑦𝑦) is the marginal likelihood. The posterior probability is proportional to 

the prior probability multiplied by the likelihood function. The prior probability is the inherent 

likeliness and reflects the beliefs about θ without considering the observational data, while the 

posterior probability signifies the beliefs about θ considering observational data. The posterior 

probability is calculated using the likelihood function and observational data according to 

Bayes’ theorem, and is mainly affected by the prior probability and the likelihood function. 

3.2.2 No-U-Turn Sampler (NUTS) 

Monte Carlo method can achieve the propagation of distributions and is effective to 

explore the distributions of unknown uncertainties [30]. The proposed strategy adopts the 

MCMC sampling method to realize Bayesian inference and quantify the measurement 

uncertainties. The MCMC sampling method is commonly used to compute the posterior 

distribution in Bayesian analysis, it can draw samples from high-dimensional posterior 

distributions [31]. Although there are many kinds of MCMC algorithms, most of them are 

plagued by random walk behaviour and are sensitive to correlated parameters. The Hamiltonian 

Monte Carlo (HMC) method is one of the most popular MCMC algorithms and can avoid the 

above issues by taking a series of steps based on first-order gradient information [32]. However, 

the performance of HMC is heavily dependent on two main parameters: the leapfrog step size 

and the number of leapfrog steps per iteration [20]. Hoffman and Gelman [33] extended the 

HMC algorithm and proposed the No-U-Turn Sampler (NUTS) to solve the problem. NUTS 

can search for the number of leapfrog steps automatically using a recursive algorithm and can 

adapt the leapfrog step size using a primal-dual averaging scheme. Not only does NUTS not 

require user intervention or costly tuning runs, but it also performs at least as well as HMC 

method. Therefore, this study uses the NUTS method to generate samples for computing the 

posterior distributions of unknown parameters in Bayesian inference. 

3.3 Prior distributions 

In order to estimate the unknown variables and measurement uncertainties, prior 

distributions must be assigned to each of them. In general, prior distributions can be derived 

from expert knowledge, experiments, surveys and industrial standards, among other sources 

[19]. In this study, the unknown variables include the true water flow rates, while the 

measurement uncertainties include the systematic uncertainty (i.e. 𝜇𝜇𝑥𝑥 in Eq. (2)) and random 

uncertainty of each flow meter. A normal distribution is chosen as the prior distribution of 

systematic uncertainty. Its mean is set to 0 because the systematic uncertainty can be positive 
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or negative. Its standard deviation is determined through the hypothesis that the probability of 

the systematic uncertainty being less than 10% of the rated flow rate (𝑞𝑞𝑟𝑟) is 95%, as shown in 

Fig. 3. Therefore, the prior distributions of the systematic uncertainties can be determined once 

the rated flow rates of the corresponding water pumps are determined. 

 
Fig. 3. Prior distribution of systematic uncertainty 

The random uncertainty of each flow meter is not fixed and can be represented by its 

standard deviation (i.e. 𝜎𝜎𝑥𝑥 in Eq. (2)). As it is well-known that standard deviation must be 

greater than 0, the chi-square distribution with 3 degrees of freedom (𝜒𝜒2(3)) is assigned to be 

the prior distributions of random uncertainty of each flow meter, as shown in Fig. 4. 
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Fig. 4. Prior distribution of random uncertainty 

In order to quantify the measurement uncertainties of flow meters more accurately, further 

information about the true water flow rates is considered. Because both chilled water and 

cooling water are driven by constant-speed pumps, their flow rates may follow normal 

distributions as shown in Eq. (5) and (6). However, the means and standard deviations of these 

distributions are unknown. In principle, the water flow rate can be determined by the pump 

head according to the characteristic curve of the pump concerned. The pump head can be 

measured on-site. The flow rate corresponding to the measured pump head on the characteristic 

curve of the pump is then the reference value of the true water flow rate (denoted by 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟). In 

reality, the mean of the true water flow rate may deviate from 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟, due to the actual pressure 

heads as well as other factors. The prior distributions of the means of the chilled water flow 

rates (𝑞𝑞�𝑐𝑐ℎ𝑤𝑤,𝑖𝑖) and cooling water flow rates (𝑞𝑞�𝑐𝑐𝑐𝑐,𝑖𝑖) can be assigned by referring to the assignment 

of prior distribution of systematic uncertainty. In this study, it is assumed that the probability 

that the mean deviates from 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 by less than 3% is 95%, as shown in Fig. 5. 
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Fig. 5. Prior distribution of the mean of true water flow rate 

3.4 Energy balance models 

As mentioned previously, many variables are measured in real time. In principle, there are 

certain numerical relationships between these variables, as they should obey basic rules such 

as energy and mass balance. Fig. 6 shows the principle of a water-cooled chiller (Chiller-i). 

The heat is transferred from the chilled water to the cooling water indirectly by a vapor 

compression refrigeration cycle, as shown in Fig. 6 (a). As a medium of heat transfer, the 

refrigerant absorbs the heat of chilled water and discharges the heat to cooling water. The 

refrigerant goes through a compression process (1→2), a condensation process (2→3→4), a 

throttling process (4→5) and an evaporation process (5→1) to complete a cycle. The state of 

the refrigerant during the cycle can be presented in the pressure-enthalpy (p-h) and 

temperature-entropy (T-s) diagrams, as shown in Fig. 6 (b) and (c). According to the law of 

energy balance, the input power of the compressor (𝑃𝑃𝑖𝑖 ) plus the heat absorption of the 

evaporator (𝑄𝑄𝑖𝑖𝑖𝑖,𝑖𝑖) equals the heat rejection of the condenser (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖), as shown in Eq. (7). Where, 

c is the specific heat capacity of water (𝑘𝑘𝑘𝑘/(𝑘𝑘𝑘𝑘 ∙ ℃)), and ρ is the density of water (𝑘𝑘𝑘𝑘/𝑚𝑚3). 
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Fig. 6. Principle of a water-cooled chiller (Chiller-i): (a) Schematic diagram, (b) p-h diagram, 

(c) T-s diagram 
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  (7) 

In addition, in a multiple water-cooled chiller system, the chilled water from each chiller 

mixes into the main supply pipe, which should also satisfy the law of energy and mass balance, 

as shown in Eq. (8) and Eq. (9). Similarly, the mixing of cooling water from each chiller should 

satisfy Eq. (10) and Eq. (11). These equations are used to constrain the MCMC sampling in 

this study. 

 ,1 ,1 ,2 ,2chws chw chws chw chws chw chws,n chw,n⋅ = ⋅ + ⋅ + + ⋅T q T q T q T q   (8) 

 ,1 ,2 ,chw chw chw chw= + + + nq q q q   (9) 

 ,1 ,1 ,2 ,2cwout cw cwout cw cwout cw cwout,n cw,n⋅ = ⋅ + ⋅ + + ⋅T q T q T q T q   (10) 

 ,1 ,2cw cw cw cw,n= + + +q q q q   (11) 

3.5 Measurement uncertainty models (Likelihoods) 

According to the characteristics of measurement uncertainty mentioned in Section 2.2, the 

measured flow rates follow normal distributions as shown in Eq. (12), (13), (14) and (15) 

respectively. In these equations, only the measured water flow rate ( q ) is available. The true 

water flow rate (q), mean (μ, systematic uncertainty) and standard deviation (σ, random 
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uncertainty) corresponding to each flow meter are unknown and should be quantified. These 

measurement uncertainty models are in fact the likelihoods in Bayes' theorem. 

 ( )2~ ,  ,    1, 2,...,chw,i chw,i chwq,i chwq,i i nµ σ+ =q N q   (12) 

 ( )~ ,  ,    1,2,...,2
cw,i cw,i cwq,i cwq,i i nµ σ+ =q N q   (13) 

 ( )2~ ,  chw chw chwq chwqµ σ+q N q   (14) 

 ( )2~ ,  cw cw cwq cwqµ σ+q N q   (15) 

In MCMC sampling process, these unknown parameters involved should satisfy the 

distribution functions above and are constrained by the energy balance models described in 

Section 3.4. When the pre-set/enough iterations are done, these effective samples will be used 

to construct the posterior distributions of the unknown parameters involved and then further 

analysis can be conducted. 

4. Description of test arrangement 

The strategy is tested using site data. In practical application, the true values of 

measurements cannot be known exactly, which means that the measurement uncertainty of a 

sensor cannot be known exactly either. Even though the measurement uncertainty of site data 

can be quantified by the proposed strategy, it is very difficult to judge whether the quantified 

results are correct or not. Hence, four simulation tests with different levels of measurement 

uncertainty are conducted to further test and validate the strategy systematically. Details about 

the site test case and simulation test cases are introduced in this section. 

4.1 Description of the site test case 

4.1.1 Chiller system involved in the site test case 

The chiller system is equipped in a super high-rise commercial building in Hong Kong. 

The system equips six identical chillers, and each chiller is interlocked with a constant-speed 

cooling water pump and a constant-speed primary chilled water pump. The rated cooling 

capacity of each chiller is 7 230 kW, and the rated flow rates of each cooling water pump and 

primary chilled water pump are 410.1 L/s and 345.0 L/s respectively. More details about the 

chiller system can be found in references [34, 35]. 

The chilled water flow rate and the cooling water flow rate of each chiller are measured 

on-site, but the main chilled water flow rate and the main cooling water flow rate are not 

measured in the system. Even so, the proposed strategy is also applicable to the case. The 
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measurement uncertainty models are represented by Eq. (12) and (13), subject to the constraint 

(i.e. the energy balance model) shown in Eq. (7). In this paper, test results from one of the 

chillers are selected to demonstrate the use and the performance of the strategy. The data used 

in this site test case was collected on 31 Aug 2020 with a time interval of 5 minutes, and the 

chiller concerned ran 24 hours per day. There are 288 data sets in total. 

4.1.2 Prior distributions of unknown parameters in the site test case 

There are 6 unknown parameters to be quantified in this site test case, including the 

systematic uncertainties and the standard deviations of the random uncertainties of chilled 

water and cooling water flow meters, as well as the means of true chilled water and cooling 

water flow rates. The prior distributions of these unknown parameters can be assigned 

according to the rules described in Section 3.3, with the details shown in Table 1. 

Table 1 Prior distributions of unknown parameters in the site test case 
No. Parameter Prior distribution 
1 Systematic uncertainty of chilled water flow meter 𝑁𝑁(0, 212) 
2 Systematic uncertainty of cooling water flow meter 𝑁𝑁(0, 252) 
3 Random uncertainty of chilled water flow meter 𝜒𝜒2(3) 
4 Random uncertainty of cooling water flow meter 𝜒𝜒2(3) 
5 Mean of true chilled water flow rate 𝑁𝑁(345, 6.32) 
6 Mean of true cooling water flow rate 𝑁𝑁(410.1, 7.52) 

4.2 Description of the simulation test cases 

4.2.1 Chiller system model used in the simulation test cases 

A multiple water-cooled chiller system is simulated. The system consists of three identical 

chillers, three identical chilled water pumps and three identical cooling water pumps. The 

mathematical model of the chiller is obtained by referring to reference [36]. The full load 

coefficient of performance (COPFL) of the chillers with different cooling capacities (CP) is 

represented by Eq. (16). The ratio (α) of the actual (part-load) COP of the chiller to its full load 

COP is determined by Eq. (17), which is a function of the part load ratio (rp). The actual COP 

and the power consumption (P) of the chillers can be calculated using Eq. (18) and Eq. (19) 

respectively. 

 9 2 42.886 10 0.293 10 4.711FLCOP CP CP− −= × ⋅ + × ⋅ +   (16) 

 3 20.569 0.258 1.520 0.321p p pr r rα = − ⋅ − ⋅ + ⋅ +   (17) 

 FLCOP COPα= ⋅    (18) 
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 QP
COP

=    (19) 

The rated cooling capacity of each chiller in this study is 600 kW. The full load COP is 

4.73. The cooling load in the test period ranges between 1 200 kW and 1 800 kW as shown in 

Fig. 7 (94 points in total), with all three chillers running during the test period.  The cooling 

load is equally distributed to each of the three chillers in the test, and the rated flow rates of the 

chilled water pumps and cooling water pumps are 28.6 L/s and 34.7 L/s respectively. In 

addition, the measurement uncertainty models are represented by Eq. (12)-(15), subject to 

constraints shown in Eq. (7)-(11). 

 
Fig. 7. Cooling load profile 

4.2.2 Prior distributions of unknown parameters in the simulation test cases 

There are eight flow meters in total in the chiller system used in the test, i.e., the chilled 

water and cooling water flow meters of each chiller and the main chilled water and cooling 

water flow meters. There are 22 unknown parameters in the test cases, including the systematic 

uncertainties and standard deviations of random uncertainties of each flow meter, and the 

means of true chilled water and cooling water flow rates of each chiller. The prior distributions 

of these unknown parameters are assigned according to the rules described in Section 3.3. The 

details are shown in Table 2. 

 

 

 

 

 



 

18 
 

Table 2 Prior distributions of unknown parameters in the simulation test cases 
No. Parameter Prior distribution 
1-3 Systematic uncertainty of chilled water flow meter 1-3 𝑁𝑁(0, 1.462) 
4-6 Systematic uncertainty of cooling water flow meter 1-3 𝑁𝑁(0, 1.792) 
7 Systematic uncertainty of main chilled water flow meter 𝑁𝑁(0, 4.382) 
8 Systematic uncertainty of main cooling water flow meter 𝑁𝑁(0, 5.372) 

9-11 Random uncertainty of chilled water flow meter 1-3 𝜒𝜒2(3) 
12-14 Random uncertainty of cooling water flow meter 1-3 𝜒𝜒2(3) 

15 Random uncertainty of main chilled water flow meter 𝜒𝜒2(3) 
16 Random uncertainty of main cooling water flow meter 𝜒𝜒2(3) 

17-19 Mean of true chilled water flow rate from chiller 1-3 𝑁𝑁(28.6, 0.4382) 
20-22 Mean of true cooling water flow rate from chiller 1-3 𝑁𝑁(34.7, 0.5312) 

4.2.3 Measurement uncertainty generation 

In these test cases, chiller plant simulation is conducted without accounting for 

measurement errors. The “actual measurements” are generated by adding errors to the 

simulation test outputs. The simulation test outputs are considered to be the true values without 

measurement uncertainties. The measurement uncertainties of the flow meters are generated 

according to the characteristics of measurement uncertainty. As mentioned in Section 2.2, the 

measurement uncertainty of a sensor follows a normal distribution. Hence, the measurement 

uncertainty of each flow meter is generated randomly by a given normal distribution, as 

described in Eq. (20)-(23). 

 2
, , ,~ ( , ),    1, 2,3chwq i chwq i chwq iu N iµ σ =   (20) 

 2
, , ,~ ( , ),    1, 2,3cwq i cwq i cwq iu N iµ σ =   (21) 

 2~ ( , )chwq chwq chwqu N µ σ   (22) 

 2~ ( , )cwq cwq cwqu N µ σ   (23) 

Because the sample size is limited and the generation of random numbers is pseudo-

random, the generated measurement uncertainties may not follow the given normal distribution 

strictly. In addition, there is more than one variable should be considered simultaneously. 

Therefore, the conditioned Latin hypercube sampling (cLHS) method [37, 38] is used to solve 

this problem, as it can generate near-random samples for each variable from a multi-variable 

distribution. In this study, the measurement uncertainties of all flow meters are generated 

according to given normal distributions. 940 000 data sets are generated first, then 94 data sets 

are sampled from the population. 
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Table 3 lists the pre-set values of these unknown parameters in the simulation test cases, 

including the systematic uncertainties and the standard deviations of the random uncertainties 

of each flow meter. The levels of measurement uncertainties in the four simulation test cases 

are different. The systematic uncertainties of the flow meters in Case 1 and Case 4 are about 

10% of the rated flow rates of corresponding water pumps, while in Case 2 and Case 3 they are 

about 5%. In addition, the systematic uncertainties of the flow meters in Case 1 and Case 2 are 

positive, which may result in that the measured flow rates are greater than the true flow rates. 

Conversely, the systematic uncertainties of the flow meters in Case 3 and Case 4 are negative, 

which may result in that the measured flow rates are less than the true flow rates. The standard 

deviations of the random uncertainties follow a slowly rising trend in all cases. 

Table 3 Pre-set values of measurement uncertainties in the simulation test cases (Unit: L/s) 
Flow meter Case 1 (10%) Case 2 (5%) Case 3 (-5%) Case 4 (-10%) 

Systematic uncertainty 
Main chilled water flow meter 8.50 4.50 -4.50 -8.50 

Chilled water flow meter 1 2.50 1.50 -1.50 -2.50 
Chilled water flow meter 2 2.75 1.75 -1.75 -2.75 
Chilled water flow meter 3 3.00 1.25 -1.25 -3.00 

Main cooling water flow meter 10.00 5.00 -5.00 -10.00 
Cooling water flow meter 1 3.25 2.00 -2.00 -3.25 
Cooling water flow meter 2 3.75 1.50 -1.50 -3.75 
Cooling water flow meter 3 3.50 1.75 -1.75 -3.50 

Standard deviation of random uncertainty 
Main chilled water flow meter 1.50 1.75 2.00 2.25 

Chilled water flow meter 1 1.25 1.00 1.75 1.50 
Chilled water flow meter 2 0.75 1.50 1.25 2.00 
Chilled water flow meter 3 1.00 1.25 1.50 1.75 

Main cooling water flow meter 1.75 2.00 2.25 2.50 
Cooling water flow meter 1 1.00 1.75 1.50 2.00 
Cooling water flow meter 2 1.25 1.50 2.00 1.75 
Cooling water flow meter 3 1.50 1.25 1.75 2.25 

5. Measurement uncertainty quantification results and analysis 

The proposed strategy is tested and validated by using it to quantify the measurement 

uncertainties of flow meters in five test cases, including a case using real site data and four 

simulation test cases with different levels of measurement uncertainties. The possible 

distributions (i.e. posterior distributions) of measurement uncertainties (both systematic and 

random uncertainties) are obtained. In order to systematically analyse and evaluate the results, 

95% and/or 99% Bayesian credible intervals and the posterior means of the parameters to be 
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quantified are also presented. Moreover, in this study, the Site test case iterates 500 000 times 

per chain and each simulation test case iterate 2 000 times per chain for convergence. But the 

first K samples (K<Niter) are called “warmup” samples and should be discarded, the rest (Niter - 

K) are called “post-warmup” samples and are used to construct the posterior distributions. In 

this study, the number of warmup samples (K) is equal to half the number of iterations (Niter/2). 

5.1 Water flow measurement uncertainty quantification - Site test case 

The measurement uncertainties of both chilled water and cooling water flow meters can 

be quantified successfully. It does 500 000 iterations totally, but there are 250 000 “warmup” 

samples are discarded. In addition, a thinning technique is used to reduce the autocorrelations 

and chain length [29]. It saves every 250th sample from the Markov chain and the rest are 

discarded. Fig. 8 shows the traces and autocorrelations of the post-warmup MCMC samples in 

this test case. As can be seen from the figure, the Markov chains of random uncertainties are 

well convergent and their autocorrelations decay fast. Although the Markov chains of 

systematic uncertainties do not converge as well as the random uncertainties, they are also 

acceptable. These post-warmup MCMC samples can be used to construct the posterior 

distributions of the parameters involved. 

 
Fig. 8. Traces and autocorrelations of post-warmup MCMC samples in Site test case 

Table 4 shows the quantified measurement uncertainties in the site test case. It can be 

observed that both the systematic uncertainty and the random uncertainty of the cooling water 

flow meter are larger than that of the chilled water flow meter. The posterior mean of the 
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systematic uncertainty of the chilled water flow meter is 4.17% of the rated flow rate of the 

chilled water pump, while the posterior mean of the systematic uncertainty of the cooling water 

flow meter is 11.99% of the rated flow rate of the cooling water pump. 

Table 4 Quantified measurement uncertainties in the site test case 
Flow meter 95% credible interval (L/s) Posterior mean (L/s) Percentage 

Systematic uncertainty 
Chilled water flow meter [5.53, 23.18] 14.39 4.17% 
Cooling water flow meter [41.16, 57.30] 49.18 11.99% 

Standard deviation of random uncertainty 
Chilled water flow meter [2.56, 4.00] 3.34 - 
Cooling water flow meter [16.00, 18.81] 17.34 - 

The ranges of the 95% credible intervals are relatively narrow. They are 17.65 L/s and 

16.14 L/s for the systematic uncertainties of the chilled water and cooling water flow meters 

respectively. The corresponding random uncertainties are 1.44 L/s and 2.81 L/s for the chilled 

water and cooling water flow meters respectively, which are rather small. In statistics, a narrow 

credible interval can generally provide more information about the population parameter. 

Therefore, the above results seem to be reliable. According to the specifications of the flow 

meters used, the accuracy of the insertion flow meters is about 2% [9], and actual site 

installation and aging may also affect the accuracy of flow measurements. Hence, a systematic 

uncertainty of 4.17% is quite acceptable for chilled water flow meters in practical buildings. 

Concerning the cooling water flow meter, a systematic uncertainty of 11.99% is obviously 

beyond normal deviations caused by meter accuracy and installation, giving it a high 

probability of being in an unhealthy condition. These results may also reflect errors from other 

sensors, like the power meter and temperature sensors.  

It is hard to fully confirm whether the quantified results are correct because the 

measurement errors and uncertainties of the two flow meters cannot be known exactly. On-site 

verification of the flow meters at such a range of flow measurement deviation is very difficult 

due to the limitations of site conditions. In fact, the true flow rate cannot be obtained no matter 

how accurate the instruments used are. Therefore, simulation tests are a simpler and more direct 

means of further testing and validating the strategy. 

5.2 Water flow measurement uncertainty quantification - Simulation test case 1 (systematic 

uncertainty: 10%) 
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Fig. 9 and Fig. 10 show the traces and autocorrelations of post-warmup MCMC samples 

in this test case respectively. There are 1 000 “warmup” samples are discarded. As can be seen 

from the figures, the Markov chains of each parameter are well converged and the 

autocorrelations of MCMC samples are reduced rapidly. These post-warmup MCMC samples 

can be used to construct the posterior distributions of the parameters involved. 

 
Fig. 9. Traces of post-warmup MCMC samples in Simulation test case 1 

 
Fig. 10. Autocorrelations of post-warmup MCMC samples in Simulation test case 1 

Table 5 shows the quantified measurement uncertainties in Simulation test case 1, where 

the systematic uncertainties of the water flow meters are set to around 10% of the rated flow 

rates of the corresponding pumps. The 95% credible intervals and the posterior means are 
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presented. The pre-set values of the measurement uncertainties (both the systematic 

uncertainties and the standard deviations of random uncertainties) of the flow meters are also 

listed in the table for comparison. As shown in Table 5, the pre-set values fall within the 95% 

credible intervals, and the posterior means are very close to the pre-set values. Particularly for 

the systematic uncertainties of the main chilled water and cooling water flow meters, their 

posterior means are almost the same as their pre-set values. 

Table 5 Quantified measurement uncertainties in Simulation test case 1 

Flow meter 
Pre-set 
value 
(L/s) 

95% credible 
interval (L/s) 

Posterior 
mean (L/s) 

Relative 
error (%) 

Relative 
systematic 
uncertainty 

(%) 
Systematic uncertainty 

Main chilled water flow meter 8.50 [7.40, 9.68] 8.52 0.24 0.02 
Chilled water flow meter 1 2.50 [1.95, 3.32] 2.63 5.20 0.45 
Chilled water flow meter 2 2.75 [2.11, 3.41] 2.77 0.73 0.07 
Chilled water flow meter 3 3.00 [2.15, 3.48] 2.84 5.30 0.56 

Main cooling water flow meter 10.00 [8.77, 11.17] 9.99 0.10 0.01 
Cooling water flow meter 1 3.25 [2.73, 4.06] 3.38 4.00 0.37 
Cooling water flow meter 2 3.75 [3.15, 4.54] 3.85 2.67 0.29 
Cooling water flow meter 3 3.50 [2.86, 4.32] 3.62 3.43 0.35 

Standard deviation of random uncertainty 
Main chilled water flow meter 1.50 [1.27, 1.83] 1.53 2.00 - 

Chilled water flow meter 1 1.25 [1.03, 1.44] 1.22 2.40 - 
Chilled water flow meter 2 0.75 [0.55, 0.91] 0.72 4.00 - 
Chilled water flow meter 3 1.00 [0.85, 1.23] 1.03 3.00 - 

Main cooling water flow meter 1.75 [1.53, 2.16] 1.80 2.86 - 
Cooling water flow meter 1 1.00 [0.73, 1.10] 0.90 10.00 - 
Cooling water flow meter 2 1.25 [1.08, 1.52] 1.28 2.40 - 
Cooling water flow meter 3 1.50 [1.38, 1.89] 1.62 8.00 - 

The “relative error” and the “relative systematic uncertainty” are also presented in Table 

5. Where, the posterior mean of a parameter is regarded as its estimated value. The relative 

error is defined as the absolute error of uncertainty estimation (i.e. the difference between the 

pre-set value of the uncertainty and the posterior mean) divided by the pre-set value of the 

uncertainty. Similarly, the relative systematic uncertainty is defined as the absolute error 

divided by the design flow rate associated with the flow meter concerned or the rated flow rate 

of the corresponding water pump. It can be observed that the maximum relative errors are 

5.30% and 10.00% for the quantified systematic uncertainties and quantified random 

uncertainties respectively, indicating reasonably good accuracy. In addition, the relative 
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systematic uncertainties are very small, ranging between 0.01% and 0.56%. This strategy can 

therefore be used to validate flow meters and improve measurement accuracy effectively.  In 

fact, relative systematic uncertainty may be a better index to evaluate the quantified results in 

practical application, since the true systematic uncertainties (pre-set values) are unknown. It 

can be seen that the measurement uncertainties of flow meters can be quantified successfully 

with high accuracy in this test case. 

5.3 Water flow measurement uncertainty quantification - Simulation test case 2 (systematic 

uncertainty: 5%) 

Fig. 11 and Fig. 12 show the traces and autocorrelations of post-warmup MCMC samples 

in this test case respectively. It can be observed that the Markov chains of each parameter are 

well converged and the autocorrelations of MCMC samples are reduced rapidly. These post-

warmup MCMC samples can be used to construct the posterior distributions of the parameters 

involved. 

 
Fig. 11. Traces of post-warmup MCMC samples in Simulation test case 2 
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Fig. 12. Autocorrelations of post-warmup MCMC samples in Simulation test case 2 

Table 6 shows the quantified measurement uncertainties in Simulation test case 2, where 

the systematic uncertainties of the water flow meters are set to around 5% of the rated flow 

rates of the corresponding pumps. It can be observed that the pre-set values fall within the 95% 

credible intervals, and since the posterior means are close to the pre-set values, the 

measurement uncertainties in this test case have been quantified successfully. For the 

quantified systematic uncertainties in this test case, the relative errors are larger than that in 

Simulation test case 1, as the maximum relative error is 20.00%. The relative systematic 

uncertainties are still small (0.31-0.87%). The strategy can still be used to validate flow meters 

and improve measurement accuracy. For the quantified random uncertainties in this test case, 

the relative errors are small, with a maximum value of 12.80%. Therefore, the strategy 

performs better in quantifying random uncertainties than systematic uncertainties in this test 

case. 
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Table 6 Quantified measurement uncertainties in Simulation test case 2 

Flow meter 
Pre-set 
value 
(L/s) 

95% credible 
interval (L/s) 

Posterior 
mean (L/s) 

Relative 
error (%) 

Relative 
systematic 
uncertainty 

(%) 
Systematic uncertainty 

Main chilled water flow meter 4.50 [3.89, 6.11] 5.02 11.55 0.61 
Chilled water flow meter 1 1.50 [0.90, 2.26] 1.59 6.00 0.31 
Chilled water flow meter 2 1.75 [1.25, 2.66] 1.94 10.86 0.66 
Chilled water flow meter 3 1.25 [0.84, 2.16] 1.50 20.00 0.87 

Main cooling water flow meter 5.00 [4.29, 6.63] 5.48 9.60 0.46 
Cooling water flow meter 1 2.00 [1.14, 2.60] 1.89 5.50 0.32 
Cooling water flow meter 2 1.50 [0.94, 2.41] 1.68 12.00 0.52 
Cooling water flow meter 3 1.75 [1.29, 2.67] 1.98 13.14 0.66 

Standard deviation of random uncertainty 
Main chilled water flow meter 1.75 [1.52, 2.18] 1.83 4.57 - 

Chilled water flow meter 1 1.00 [0.70, 1.09] 0.89 11.00 - 
Chilled water flow meter 2 1.50 [1.25, 1.76] 1.48 1.33 - 
Chilled water flow meter 3 1.25 [1.08, 1.52] 1.29 3.20 - 

Main cooling water flow meter 2.00 [1.64, 2.33] 1.96 2.00 - 
Cooling water flow meter 1 1.75 [1.49, 2.04] 1.75 0.00 - 
Cooling water flow meter 2 1.50 [1.34, 1.84] 1.58 5.33 - 
Cooling water flow meter 3 1.25 [1.19, 1.67] 1.41 12.80 - 

5.4 Water flow measurement uncertainty quantification - Simulation test case 3 (systematic 

uncertainty: -5%) 

Fig. 13 and Fig. 14 show the traces and autocorrelations of post-warmup MCMC samples 

in this test case respectively. It can be observed that the Markov chains of each parameter are 

well converged and the autocorrelations of MCMC samples are reduced rapidly. These post-

warmup MCMC samples can be used to construct the posterior distributions of the parameters 

involved. 
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Fig. 13. Traces of post-warmup MCMC samples in Simulation test case 3 

  
Fig. 14. Autocorrelations of post-warmup MCMC samples in Simulation test case 3 

Table 7 shows the quantified measurement uncertainties in Simulation test case 3, where 

the systematic uncertainties of the water flow meters are set to be around -5% of the rated flow 

rate of corresponding pumps. For the quantified systematic uncertainties of the main chilled 

water and cooling water flow meters, the pre-set values do not fall within the 95% credible 
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to the lower limits of the 95% credible intervals, and the differences between the pre-set values 

and the posterior means are also very significant. The relative errors in this test case are more 

significant than that in Simulation test case 1 and Simulation test case 2, with the maximum 

error being 38.57%. The relative systematic uncertainties are still within a relatively small 

range (1.33-2.24%). The results show that the strategy is still effective for validating flow 

meters and improving measurement accuracy, and can also provide valuable and meaningful 

information in practical application. For the quantified random uncertainties of the flow meters 

in this test case, the pre-set values fall within the 95% credible intervals, and the posterior 

means are very close to the pre-set values. The maximum relative error is 12.44% and the 

relative errors are within an acceptable range. The random uncertainties of flow meters in this 

test case are quantified with satisfactory accuracy. The strategy performs better in quantifying 

random uncertainties compared with systematic uncertainties in this test case. 

Table 7 Quantified measurement uncertainties in Simulation test case 3 

Flow meter 
Pre-set 
value 
(L/s) 

95% credible 
interval (L/s) 

99% credible 
interval* (L/s) 

Posterior 
mean 
(L/s) 

Relative 
error 
(%) 

Relative 
systematic 
uncertainty 

(%) 
Systematic uncertainty 

Main chilled water flow meter -4.50 [-4.27, -1.97] [-4.60, -1.61] -3.11 30.89 1.62 
Chilled water flow meter 1 -1.50 [-1.71, -0.25] - -0.98 34.67 1.82 
Chilled water flow meter 2 -1.75 [-1.78, -0.45] - -1.11 36.57 2.24 
Chilled water flow meter 3 -1.25 [-1.56, -0.11] - -0.83 33.60 1.47 

Main cooling water flow meter -5.00 [-4.54, -2.09] [-4.94, -1.74] -3.31 33.80 1.62 
Cooling water flow meter 1 -2.00 [-2.08, -0.63] - -1.34 33.00 1.90 
Cooling water flow meter 2 -1.50 [-1.83, -0.26] - -1.04 30.67 1.33 
Cooling water flow meter 3 -1.75 [-2.06, -0.54] - -1.28 26.86 1.35 

Standard deviation of random uncertainty 
Main chilled water flow meter 2.00 [1.61, 2.30] - 1.93 3.50 - 

Chilled water flow meter 1 1.75 [1.62, 2.22] - 1.89 8.00 - 
Chilled water flow meter 2 1.25 [1.13, 1.62] - 1.35 8.00 - 
Chilled water flow meter 3 1.50 [1.30, 1.82] - 1.54 2.67 - 

Main cooling water flow meter 2.25 [2.14, 2.98] - 2.53 12.44 - 
Cooling water flow meter 1 1.50 [1.32, 1.86] - 1.57 4.67 - 
Cooling water flow meter 2 2.00 [1.83, 2.52] - 2.14 7.00 - 
Cooling water flow meter 3 1.75 [1.63, 2.23] - 1.91 9.14 - 

*Only the 99% credible intervals of the parameters whose pre-set values do not fall within their 95% 

credible intervals are presented. 
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5.5 Water flow measurement uncertainty quantification - Simulation test case 4 (systematic 

uncertainty: -10%) 

Fig. 15 and Fig. 16 show the traces and autocorrelations of post-warmup MCMC samples 

in this test case respectively. It can be observed that the Markov chains of each parameter are 

well converged and the autocorrelations of MCMC samples are reduced rapidly. These post-

warmup MCMC samples can be used to construct the posterior distributions of the parameters 

involved. 

 
Fig. 15. Traces of post-warmup MCMC samples in Simulation test case 4 

  
Fig. 16. Autocorrelations of post-warmup MCMC samples in Simulation test case 4 

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

2.0

2.4

2.8

3.2

-8

-7

-6

-5

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000
2.0

2.5

3.0

3.5

-10

-9

-8

-7

-6

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1.25

1.50

1.75

2.00

-3

-2

-1

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1.6

2.0

2.4

2.8

-4

-3

-2

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000
1.5

1.8

2.1

2.4

2.7

-3

-2

-1

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1.5

1.8

2.1

2.4

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000
1.2

1.5

1.8

2.1

2.4

-3

-2

-1

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

2.0

2.5

3.0

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

μ c
hw

q
μ c

hw
q,

1
μ c

hw
q,

2
μ c

hw
q,

3

σ c
hw

q
σ c

hw
q,

1
σ c

hw
q,

2
σ c

hw
q,

3

μ c
wq

μ c
wq

,1
μ c

wq
,2

μ c
wq

,3

σ c
wq

σ c
wq

,1
σ c

wq
,2

σ c
wq

,3

Chain
1
2
3
4

Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration

Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration

Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration

Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration Post-warmup Iteration

101 3 5 7 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
cl

at
io

n

0 2 4 6 8

μchwq σchwq

μcwq σcwq

μchwq,1 σchwq,1

μcwq,1 σcwq,1

μchwq,2 σchwq,2

μcwq,2 σcwq,2

μchwq,3 σchwq,3

μcwq,3 σcwq,3



 

30 
 

Table 8 shows the quantified measurement uncertainties in Simulation test case 4, where 

the systematic uncertainties of the water flow meters are set to around -10% of the rated flow 

rate of the corresponding pumps. Both the 95% and 99% credible intervals of the quantified 

systematic uncertainties in this test case are presented. Besides the main chilled water and 

cooling water flow meters, the pre-set values of the quantified systematic uncertainties fall 

within the 99% credible intervals. The differences between the pre-set values and the posterior 

means are significant, leading to large relative errors with a maximum value of 30.40%. The 

relative systematic uncertainties range between 1.27% and 2.66%. Similar to the previous cases, 

the strategy can provide valuable and meaningful information in application.  For the quantified 

random uncertainties in this test case, the pre-set values fall within the 95% credible intervals, 

and the posterior means are very close to the pre-set values. The maximum relative error is 

4.50% and the relative errors are within an acceptable range. The strategy also performs better 

in quantifying random uncertainties than systematic uncertainties in this test case. 

Table 8 Quantified measurement uncertainties in Simulation test case 4 

Flow meter 
Pre-set 
value 
(L/s) 

95% credible 
interval (L/s) 

99% credible 
interval (L/s) 

Posterior 
mean 
(L/s) 

Relative 
error 
(%) 

Relative 
systematic 
uncertainty 

(%) 
Systematic uncertainty 

Main chilled water flow meter -8.50 [-7.64, -5.25] [-8.16, -4.80] -6.44 24.24 2.40 
Chilled water flow meter 1 -2.50 [-2.44, -1.06] [-2.68, -0.85] -1.74 30.40 2.66 
Chilled water flow meter 2 -2.75 [-2.74, -1.26] [-2.98, -1.06] -1.99 27.64 2.66 
Chilled water flow meter 3 -3.00 [-3.03, -1.57] [-3.25, -1.40] -2.30 23.33 2.45 

Main cooling water flow meter -10.00 [-9.23, -6.74] [-9.60, -6.34] -7.98 20.20 1.94 
Cooling water flow meter 1 -3.25 [-3.56, -2.08] [-3.80, -1.85] -2.81 13.54 1.27 
Cooling water flow meter 2 -3.75 [-3.73, -2.23] [-3.95, -2.01] -2.99 20.27 2.19 
Cooling water flow meter 3 -3.50 [-3.62, -2.04] [-3.86, -1.75] -2.82 19.43 1.96 

Standard deviation of random uncertainty 
Main chilled water flow meter 2.25 [1.98, 2.79] - 2.35 4.44 - 

Chilled water flow meter 1 1.50 [1.29, 1.82] - 1.54 2.67 - 
Chilled water flow meter 2 2.00 [1.63, 2.25] - 1.91 4.50 - 
Chilled water flow meter 3 1.75 [1.49, 2.07] - 1.77 1.14 - 

Main cooling water flow meter 2.50 [2.23, 3.07] - 2.60 4.00 - 
Cooling water flow meter 1 2.00 [1.66, 2.28] - 1.94 3.00 - 
Cooling water flow meter 2 1.75 [1.46, 2.06] - 1.73 1.14 - 
Cooling water flow meter 3 2.25 [1.90, 2.61] - 2.22 1.33 - 
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5.6 Comparison between the results of the four simulation test cases 

According to the outputs of the four simulation test cases presented in Section 5.2-5.5, the 

measurement uncertainties of water flow meters, including both the systematic uncertainties 

and the random uncertainties, can be quantified effectively by the proposed strategy. Fig. 17 

summarizes the measurement uncertainty quantification results of the four simulation test cases. 

The relative errors and absolute errors of the measurement uncertainty quantification are 

presented. It can be observed that the errors of quantifying the random uncertainties of flow 

meters in all cases are very small, but the errors of quantifying the systematic uncertainties of 

flow meters vary from case to case. The errors are small for Case 1 and Case 2, but they are 

significant for Case 3 and Case 4.  

  
Fig. 17. Relative errors and absolute errors of measurement uncertainty quantification for 

simulation test cases 

The proposed strategy performs very well in quantifying systematic uncertainties in 

Simulation test case 1 and 2. Although the performance of the strategy in quantifying 

systematic uncertainties in Simulation test case 3 and 4 is not as good as that in Simulation test 

case 1 and 2, its performance is still acceptable. The strategy is still effective for validating 

flow meters and improving measurement accuracy and can provide valuable and meaningful 

information in practical application. In addition, the random uncertainties of the flow meters 

can be quantified accurately by the strategy no matter how significant they are. In general, the 

strategy performs better in quantifying random uncertainties than systematic uncertainties. 

The levels of the quantified measurement uncertainties in the four simulation test cases 

are consistent with the levels of the pre-set measurement uncertainties. In other words, the 
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levels of the measurement uncertainties of different flow meters can be identified by the 

strategy. The information is also meaningful and valuable in practical application. If the 

identified measurement uncertainties of one or more flow meters are obviously higher than that 

of other flow meters, more attention should be paid to these flow meters and calibrations on 

the measurement accuracy of these flow meters are needed or decisions requiring flow rate 

measurements of high accuracy should be avoided. For example, as presented in Section 5.1, 

the quantified measurement uncertainty of the cooling water flow meter in the site test case is 

much larger than the typical uncertainty range of flow measurement. If this cooling water flow 

measurement is used by a critical decision-making strategy, priority should be given to 

check/calibrate the flow meter or re-consider the decision-making strategy itself. 

As mentioned in Section 3.2, both prior distributions and likelihoods may affect posterior 

distributions. It is possible to improve the accuracy of the proposed strategy from these two 

aspects. The likelihoods are associated with observational data. In principle, the posterior 

distributions are mainly affected by likelihoods if the quantity of observational data is large 

enough. However, the computational load will increase significantly if the quantity of 

observational data increases. Therefore, the size of the observational data cannot be increased 

without limit. A trade-off between the quantity of observational data and the computational 

load should be made. On the other hand, the assignments of the prior distributions of the 

parameters to be quantified are based on expert judgement. A good prior distribution will be 

of great help in accurately quantifying the measurement uncertainty. Maximum utilization of 

information about the parameters to be quantified should be achieved to obtain the best prior 

distributions. 

The proposed measurement uncertainty quantification strategy is promising to be put into 

practice. The flow meters can be calibrated at any time by the strategy. A threshold of 

acceptable uncertainty can be set for each flow meter. If the quantified uncertainty of a flow 

meter is greater than the threshold, the operators can conduct an on-site calibration for the flow 

meter or replace the flow meter directly, and the impacts of the unacceptable uncertainty on 

system operation can be reduced. 

6. Conclusions 

This study proposed a flow measurement uncertainty quantification strategy which 

directly quantifies measurement uncertainties of water flow meters using a Bayesian approach. 

Bayesian inference and Markov chain Monte Carlo sampling methods are used. Both the 
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systematic uncertainties and the random uncertainties of flow meters in chiller systems are 

considered, and the energy balance models are taken as the constraints to MCMC sampling. 

The site data collected from a chiller system are used to test the strategy, and four simulation 

test cases with different levels of measurement uncertainties are conducted to systematically 

test and validate the strategy. Based on the results of these test cases, detailed conclusions can 

be drawn as follows. 

● The proposed strategy can effectively quantify the measurement uncertainties (both 

systematic and random uncertainties) of chilled water and cooling water flow meters in 

chiller systems. 

● The performance of the strategy in quantifying systematic uncertainties is satisfactory. 

The strategy is effective for validating flow meters and improving their measurement 

accuracy, and it can provide valuable and meaningful information in practical application. 

● The random uncertainties can be quantified accurately by the proposed strategy no matter 

how significant they are. The strategy performs better in quantifying random uncertainties 

than systematic uncertainties. 

● The levels of measurement uncertainties of different flow meters can be identified by the 

proposed strategy. It can be used to detect which flow meters need to be calibrated and 

assess the reliability of flow measurement, particularly concerning critical decision-

making. 

In practical application, factors such as data quality and volume, may affect the 

performance of the proposed strategy. Further research on data pre-processing is needed. In 

addition, the assignment of prior distributions is also worthy of further study. 
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