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Vibration source identification using an energy 

density method  

Chen Mao1, Waion Wong1 and Li Cheng1 

 

Abstract 

The localization of shaking forces acting on an operating machine is an important step to 

identify vibration and noise sources. The forced vibration response of a linearly vibrating 

structure is assumed to be linear. However, the energy distribution of a linearly vibrating 

structure contains “coupled terms” in the modal decomposition of the vibration energy density 

function. These coupled energy terms represent the cross-modal energy density associated with 

the exciting force of a dynamic structure under forced vibration. In this research, it is proved 

analytically that the high order cross-modal energy densities of a linear dynamic structure are 

highly correlated to the location of the external exciting force. Using this finding, a new force 

localization index based on the high order cross-modal energy densities of a dynamic structure 

is proposed and tested. Numerical tests on uniform and step beam structures under force 

excitation with different frequencies and locations have been carried out to test the effectiveness 

of the proposed force localization method. It is found that the proposed force localization 

method works well on vibrating beam structures. Experiments are carried out to verify the 

proposed force localization method. 
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1. Introduction 

The localization of dynamic forces acting on a structure is important in locating the vibration 

and noise sources. In many practical cases, it may not be possible to measure the dynamic force 

directly and detection of unknown forces from vibration measurements at accessible locations 

is required. A large number of studies have been conducted about indirect determination of the 

dynamic loadings by calculating the forces through the measured Frequency Response Function 

(FRF) matrix and structural operational response with a mathematical model of the structure as 

an inverse problem (Ma et al., 2003; Thite and Thompson, 2003; Djamaa et al., 2007; Janssens 

et al., 2011; Lage et al., 2013). In practice, the measurement of the FRF of a dynamic system 

takes a long time and in many cases, the ill-posedness of the force identification problem results 

in large estimation errors.  New force identification methods were developed in order to avoid 

measuring the FRF matrix. Force Analysis Technique (FAT) (Pezerat and Guyader, 2000a and 

2000b; Leclere and C. Pezerat, 2012) is based on the numerical discretization of the equation 

of motion of the structure.  Due to the difficulty in formulating the equations of motion of the 

dynamic structures in practical applications, some researchers investigate the function 

expansion method (Liu et al., 2006; Qiao et al., 2015; Li et al., 2015; Qiao et al., 2016; Jiang et 

al., 2019). The function expansion method employs appropriate basis functions to approximate 

the desired unknown force. The coefficients of basis functions are solved instead of the original 

force and the number of unknowns is significantly reduced.  The exciting force to a dynamic 

structure can also be identified as the energy source of the structural intensity or power flow in 

the structure (Wang et al., 2006; Samet et al., 2017).  The force identification in all the above 

mentioned methods is considered as a classical inverse problem, in which the measured data 

and the assumed mathematical models of mechanical structures are used to determine the 

applied force. However, the analysis results of both FAT and power flow methods are often 

contaminated by the noise generated during the derivation of the high order derivatives of the 

measured vibration signal and the local change of the structure in mass and stiffness (Pezerat 

and Guyader 2000a; Lee et al. 2006; Wang et al. 2006; Xu et al. 2011).  

 

Based on the review of force identification methods, there are two major difficulties found 

in the recently-developed methods: (1) the contamination of force identification index caused 
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by non-uniform structure and (2) amplification of noise in the generation of high order 

derivative of the vibration signal.  

 

In this paper we propose an alternative approach for the identification of dynamic loads in 

structures based on concepts different from those presented previously. There have been some 

studies on the relationship between the modal vibration energy (Wong et al., 2009; Wang et al., 

2009) and structural damages of structures. This paper presents an analysis of the effect on the 

redistribution of the cross modal energy density of a continuous structure by the exciting force.   

A force localization method is established based on the determination of the cross-modal energy 

density function of the vibrating structure as described in the following section.  A force 

localization index is constructed by relating the change of vibration energy distribution of the 

structure caused by the exciting force.  The proposed method is proved analytically to work 

on non-uniform beam structures and it doesn’t require the determination of high order 

derivative of the vibration signal. Both simulation and experimental tests are carried out to 

provide validations of the proposed force localization method. 

 

 

2. Theory 

Consider the forced vibration of a uniform Euler beam as illustrated in Fig. 1, the equation 

of motion of the beam may be written as (Meirovitch, 2001) 

2 2 2

2 2 2

( , ) ( , )
( ) ( ) ( )sin( ),   0f

w x t w x t
m x YI x F x x ωt x L

t x x


   
     

    
      (1) 

where )(x,tw   is the transverse displacement, )(xm   the mass per unit length, and L   the 

length of the beam. )(xYI  is the flexural rigidity, in which Y  is the Young’s modulus and 

)(xI   the second moment of cross-sectional area of the beam.   is the Kronecker delta 

function. sinf F t  is the exciting harmonic force of frequency ωacting at point x = xf.   

The vibration energy of the beam may be written as 

  ( ) ( ) ( )E t T t V t        
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22 2

20 0

1 ( , ) 1 ( , )

2 2

L Lw x t w x t
m dx YI dx

t x

   
    

    
                 (2) 

where )(tE  is the total vibration energy of the beam composed of the kinetic energy )(tT  

and strain energy )(tV .  

The vibration energy of an infinitesimal element of length x , as shown in Fig. 1, may be 

written as 

( , ) ( , ) ( , )E x t T x t V x t     

   

22
2

2

1 1 ( , )
( , )

2 2

w x t
m x w x t YI x

x

 
    

  
 (3) 

where ( , )w x t  represents 
 ,w x t

t




.  The energy density function ),( txe  is defined as (Wong 

et al., 2009) 

0

( , )
( , ) lim

x

E x t E T V
e x t

x x x x 

   
   

   
 

22
2

2

1 1 ( , )
( , )

2 2

w x t
mw x t YI

x

 
   

  
       (4) 

 

2.1.Decomposition of the vibration energy 

The solution of Eq. (1) may be written as 

1

( ) ( )sin( )i i
i

w x,t η x ωt




          (5) 

where ( )i x   is the ith vibration mode shape of the beam and iη   is the ith modal ratio 

coefficient written as 

0

2 2 2 2

( ) ( ) ( )
L

i f i f
i

i i

x F x x dx F x

ω ω ω ω

  



 

 


 .                            (6) 

where i  is the ith natural frequency of the beam. 

Substituting Eq. (5) into Eq. (4), ( , )e x t can be rewritten as 
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22 2
2 2 2

2
1 1

22 2
2

2
1 1

1 1 ( )
( ) ( ) cos sin

2 2

1 1 1 ( )
( )

2 2 2

i
i i i

i i

i
i i i

i i

x
e x,t mω η x t YI η t

x

x
mω η x YI η

x







 

 

 

 

   
         

    
            

 

 

 

22 2
2

2
1 1

1 1 1 ( )
( ) cos(2 )

2 2 2

i
i i i

i i

x
mω η x YI η ωt

x




 

 

    
            

   

( ) ( )cos(2 )E x L x ωt   (7) 

where 

22 2
2

2
1 1

1 1 1 ( )
( ) ( ) ( ) ( )

2 2 2

i
i i i

i i

x
E x m x ω η x YI x η

x




 

 

    
            

      (8a) 

 

22 2
2

2
1 1

1 1 1 ( )
( ) ( ) ( ) ( )

2 2 2

i
i i i

i i

x
L x m x ω η x YI x η

x




 

 

    
            

  .    (8b) 

                                                    

The static or time unvarying component, )(xE  , is the mean total energy density, whose 

integration along the beam gives the total energy of the beam. The amplitude of the dynamic or 

time varying component in Eq. (7), )(xL , on the other hand, represents the mean Lagrangian 

energy density. The dynamic component, ( )cos(2 )L x ωt  , implies that there exists 

instantaneous energy exchange between adjacent beam elements during one period of 

vibration.(Wong et al., 2009; Wang et al., 2009). 

The mean energy density is considered in the following analysis. It is rewritten as 

   
2 2

2

2 2
1 1

( )1 1 1 ( )
( ) ( ) ( )

2 2 2

j k
f j k j k

j k

d x d x
E x mω x x YI η η

dx dx

 
 

 

 

 
  

 
 

  

 

1 1

( )jk j k
j k

E x  
 

 

              (9) 

where  

   
2 2

2

2 2

( )1 1 1 ( )
( ) ( ) ( )

2 2 2

j k
jk f j k

d x d x
E x mω x x YI

dx dx

 
 

 
  

 
 

  (10) 

Using Eq. (9), the mean energy density ( )E x  can be written in matrix form as 
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1
11 1

2

1 2
1

( ) ( )

( ) [ , , ]
( ) ( )

k

j jk

E x E x

E x
E x E x





 

 
   
   
   
   
   
    

 

  

2

1 1 1

( ) ( )ii i jk j k
i j k

j k k j

E x η E x  
  

  
 

    

dia cross( ) ( )E x E x                                         (11)  

where 
2

dia
1

( ) ( )ii i
i

E x E x η




  and cross
1 1

( ) ( )jk j k
j k
j k k j

E x E x  
 

 
 

 . 

The amplification coefficient is defined as 

jk j kη η
  

2

2 2 2 2

( ) ( )j f k f

j k

x x F

ω ω ω ω

 


 
                 (12)                                            

 

2.2. Interpretation of the vibration energy decomposition 

Eq. 11 shows that the mean energy density is composed of dia( )E x  and cross( )E x . ( )iiE x of 

dia( )E x represents the ith modal energy density distribution in the beam caused by the exciting 

harmonic force, and 
0

( )
L

iiE x dx   represents the ith  modal energy stored in the beam. The 

integration of the mean energy density along the beam can be written as 

0
( )

L

E x dx  dia cross0 0
( ) ( )

L L
E x dx E x dx    

0 0
1 1 1

( ) ( )
L L

ii ii jk jk
i j k

j k k j

E x dx E x dx
  

  
 

       

0 0
1 1 1

( ) ( )
L L

ii ii jk jk
i j k

j k k j

E x dx E x dx
  

  
 

                       (13) 

According to Eq. 9, ( ) 0iiE x  .  We may write 

0
( ) 0 1

L

iiE x dx ,  i n                                       (14) 
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On the other hand, the cross-modal energy density element kjxEjk  ),(  can be positive or 

negative. The three classical boundary conditions, including pinned, fixed and free end, render 

the system selfadjoint (Tse et al., 1978), and therefore, if the mode shapes are mass-normalized, 

the alternative companion orthonormality relations can be written as (Meirovitch, 2001) 

  

2 2

2 20

( ) ( )
( ) , 1, , ,

L j k
jk

d x d x
YI x dx ,  j k n

dx dx

 
      (15) 

where jk = 1 if  j = k  and jk = 0 if  j  k. 

The orthonormality relations is                         

0
( ) ( ) , 1, , ,

L

j k jkm x x dx ,  j k n        (16)                  

Using Eqs. 15 and 16, the integration of cross-modal energy density element over the beam 

is  

0
( ) 0 1, , ,

L

jkE x dx ,  j k; j,k n    (17) 

Therefore, cross
1 1

( ) ( )jk j k
j k
j k k j

E x E x  
 

 
 

  may be considered as the redistribution of the energy 

density within the structure.  According to Eq. 11, this shift is found to be related to jk , and 

from Eq. 12, jk  is related to the location and driving frequency of exciting force. Therefore, 

cross ( )E x  may be considered as the redistribution of energy density caused by the exciting 

force. 

 

2.3.Force localization index 

The cross-modal energy density of the beam may be written as 

jk jkE ( x)   

2
21 1

2 22 2 2 2

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ,

2( )( )

j f k f
j k j k

j k

F x x
m x ω x x YI x x x j k

ω ω ω ω

 
        

  
  (18) 

where 
   

2 2

2 2

( ) ( )
( ) and ( )

j k
j k

d x d x
x x

dx dx

 
   .               
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It can be seen that the value of jk jkE ( x)  in Eq. 18 is decided by the location fx  and 

the order of modes j  and k . This value varies with the order of modes j and k , and thus may 

be positive or negative. However, at the location of exciting force fx  , ( )jk jkE x   can be 

written as 

( )jk jk fE x

2
2 2 2

2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

4( )( )
j f k f j f k f j f k f

j k

F
m x ω x x YI x x x x x

ω ω ω ω
         

  

kj   (19) 

 

If only the high order modes are considered, where j    and  k   , the term 

2

2 2 2 24( )( )j k

F

ω ω ω ω 
  in Eq. 19 must be positive. The term 

2 2 2( ) ( ) ( )j f k fm x ω x x   in  

Eq. 19 is also positive. As shown in the Appendix A, the term 

( ) ( ) ( ) ( ) ( )j f k f j f k fYI x x x x x       in Eq. 19 can be proved to be positive when the 

location of force fx  is not too close to any classical boundary condition including the pinned, 

fixed and free end of the beam.  Quantification of the required distance from the boundary is 

derived and shown in Appendix B.  

 

In view of the abovementioned reasons, the cross-modal energy density ( )jk jk fE x   is 

positive at any high order mode with j   and  k  . Therefore, the sum of high order 

terms of ( )jk jk fE x  with j   and  k   would show an accumulation phenomenon 

at the location of the exciting force as illustrated in Fig. 2. 

 

Since the accumulation phenomenon of high order cross-modal energy density is directly 

related to the force location, a force localization index (FLI) is defined as 
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FLI ( ) ( ); and .
n n n n

j k jk jk jk j k
j k j k
j k k j j k k j

E x E x
   

     
   
   

        (20) 

where  and n are selected integers to control the number of high order mode in the calculation 

of the FLI.  The proposed FLI is tested with a uniform beam numerically and experimentally 

for force localization and the test results are shown in the following section.   

 

3. Simulation and experiment 

A mild steel beam structure was used in both simulation and experiment. The beam had a 

rectangular cross section under fixed-free boundary condition. The length of it was L  = 0.3 m. 

The height and the width of the beam were h  = 0.0047 m and b  = 0.0191 m, respectively. 

The density and Young’s modulus were  = 7740 kg/m3 and 204 GPa, respectively. 

 

3.1.Simulation 

The force localization index (FLI) was calculated according to Eq. 20 using Matlab and 

plotted in Fig. 2 for illustration of the proposed force localization method. The exciting force 

was assumed to be applied at 0.35fx L  with driving frequency f = 300  rad/s, and the 

parameter   in Eq. 20 was chosen to be 1. The accumulation phenomenon of the FLI was 

noted at the location of exciting force as the parameter n  in Eq. 20 increased from 4 to 8.  

 

3.2.Experiment 

In practice, the amplification coefficient jk  in Eq. 20 is unknown and it has to be obtained 

from the measured operational response of the structure. Least Square Method (LSM) (Liu and 

Shepard, 2005) was applied in the experiments in order to reduce the noise influence in the 

measurements. The procedure of extracting the amplification coefficient as a typical inverse 

problem is shown in the following section. 
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3.2.1. Procedure of experiment 

In the experiment, the tested cantilever beam was excited by a concentrated force applied by 

a shaker (B&K Type 4809), which was powered by power amplifier (B&K Type 2706). The 

exciting force was measured by using a force transducer (B&K Type 8203). The modal 

parameters and operational response were measured by using a laser vibrometer (Polytec PSV-

400). The whole experiment set-up is illustrated in Fig. 3. 

 

The outline of experiment was illustrated by Fig. 4. It could be found that the random noise 

in the measurement may influence both the amplification coefficient and modal energy density 

in Eq. 20. Since the force location information was contained in the amplification coefficient, 

the amplification of noise caused by high order derivative in modal energy density element had 

limited effect on the proposed FLI. 

 

 

The natural frequencies of the beam were extracted from the standard modal testing software 

after curve fitting of the FRF. The mode shapes of the beam were measured by exciting the 

fixed-free beam at the free end with corresponding natural frequencies. The velocity response 

of the beam was measured with the beam excited by the shaker at the operational frequency.  

 

The measurement procedure was illustrated in Fig. 5. As shown in Fig. 5(a), the excitation 

and measurement points for measuring point mobility FRF were chosen at the location 0.01 m 

away from the free end. White noise was applied to obtain the result in a broad frequency band. 

In Fig. 5(b), the beam was excited by the exciting force under the natural frequency r  at the 

same location to get the corresponding mode shape. The laser vibrometer swept from the point 

0.02 m away from fixed end to the point 0.01 m away from free end, and the interval between 

two measured points is 005.0 m. In Fig. 5(c), the setting of the sweeping range was the same 

as that in Fig. 5(b), and the exciting force was applied at the operational location 0 35fx . L  

with the driving frequency f = 300  rad/s. Only the first seven mode shapes were measured 
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as the measurements of the higher mode shapes are less accurate and in practice only limited 

mode shapes are available. 

 

In the experiment, the point mobility FRF was approximated by using the H2 frequency 

response estimator for single input single output (SISO) systems with 500-times complex 

average. The modal shapes and operational displacement response were measured with 500-

times magnitude averaging.  The operational response and mode shapes were measured at a 

finite number of discrete points. Using Eq. 5, the measured displacement values of the beam 

may be put into the following equation. 

( ) [ ( )  ( )    ( )]w x W x W x W x                (21) 

where w(x) and Wi(x) were both 1m  vectors, and  was a 1n  vector. m  was the number 

of measured points and n   was the number of included modes. The truncation error was 

neglected. 

 

In order to minimize the difference between the extracted coefficients and the theoretical 

ones, the LSM was applied to obtain the solution. The modal ratio coefficients can be estimated 

as 

1(W W) W ( )w x   (22) 

The amplification coefficients jk  could then be calculated according to Eq. 12. The cross-

modal energy density function ( )jkE x  could be calculated using the measured mode shapes 

of the beam.  The force localization index (FLI) could then be calculated according to Eq. 20. 

 

3.2.2. Results of experiment 

The measured point mobility FRF and the extracted mode shapes were shown in Figs. 6 and 

7, respectively. The modal ratio coefficients, which were directly related to the amplification 

coefficients, were extracted by LSM on the basis of the measured data. The coefficients were 

normalized to compare with the theoretical ones and listed in Table 1. The coefficient of order 

7 as shown in Table 1 was practically zero so it means orders 7 or higher had negligible effect 
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to the force localization index in this case. The proposed force localization index was calculated 

according to Eqs. 19 and 20, and the result was shown in Fig. 8, where   was 1. 

 

 As predicted in theory and illustrated in the simulation, it could be found that the 

accumulation phenomenon occurred at the location of exciting force as shown in Fig. 8.  

Points at the peaks and troughs of the curve with n = 7 in Fig. 2 are added and marked with  

for comparison.  The locations, x/L, of those points with n = 7 in Fig. 2 match with the location 

of the peaks and troughs of the curve with n = 7 in Fig. 8. The experimental result matched with 

the simulation result in Fig. 2. The influence of noise in experiment on the extraction of 

amplification coefficients shown in Table 1 was limited. The proposed force localization 

method was validated by experiment. 

 

 The proposed approach of force localization was extended to test on a step beam or shaft 

which is more common in practice.  The analytical eigenvalues and eigenfunctions of the step 

beam were derived and then the FLI of the step beam was calculated according to Eq. 20.  The 

derivations and numerical experiment on the step beam were presented in Appendix B. 

 

 

4. Conclusion 

A force localization method using the accumulation phenomenon of the high order cross-

modal energy density at the excitation location was developed theoretically. The redistribution 

of cross-modal energy density of a uniform or step beam under forced vibration was derived 

analytically as a function of the location of the exciting force. It was analytically proved that 

the cross-modal energy density of the beam with any classical boundary condition including 

pinned, free and fixed end, would accumulate at the location of the exciting force provided that 

the force was not too close to the boundaries in the cases of a free or fixed end. Based on this 

accumulation phenomenon, selected high-order cross-modal energy density was used as an 

index to identify the location of the exciting force. The proposed method was validated by both 

numerical and experimental tests on a cantilever beam.   
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Appendix A - Effect of boundary conditions on the modal energy density of a beam 

Modal energy density of the beam at the location of the exciting force may be written as 

( )jk jk fE x
2

2 2 2
2 2 2 2

( ) ( ) ( )
4( )( )

f j f k f
j f k f

F
m x ω W x W x

ω ω ω ω
  

                                             

        
   2 2

2 2

( ) ( )
( ) ( ) ( )

j f k f

j f k f

d W x d W x
YI x W x W x

dx dx





, kj  .    (A1) 

where ( )jW x  and ( )kW x  are the jth and kth mode shapes of the beam, respectively.  If just 

high order modes where frfi    ,   are considered, then the sign of ( )jk jk fE x  

depends only on the sign of 
 2

2

( )
( )

r f

r f

d W x
W x

dx
.  

Since the exciting force can be applied anywhere along the beam, the symbol fx   is 

substituted by x , which does not affect the result in the following analysis. To analyse the sign 

of 
 2

2

( )
( ) r

r

d W x
W x

dx
 , results are enumerated under all the combinations of the classical 

boundary conditions including pinned, fixed and free end of the beam.  

 

The mode shape of an Euler–Bernoulli beam may be written as 

)cosh()sinh()cos()sin()( xDxCxBxAxW rrrrr                 (A2) 

where A, B , C  and D are constants to be determined by the boundary conditions, and 

r  is  

YI

mr
r

2
4 

                                                      (A3) 

By using the general form of mode shape, we may write 

 
    

2
2 22

2

( )
( ) sin( ) cos( ) sinh( ) cosh( )r

r r r r r r

d W x
W x A x B x C x D x

dx
           

             (A4) 

Some of the relationships among the coefficients in Eq. A4 may be determined by the 

boundary conditions at the location 0x , as shown in Table A1. 
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In general, there are two sets of boundary conditions that need to be considered: pinned end 

and fixed/free end for the sign of 
 2

2

( )
( ) r

r

d W x
W x

dx
 . Three different combinations of the 

boundary conditions of the beam are considered in the following. 

 

(a) Pinned-pinned boundary conditions 

For a pinned end at 0x , 0DB .  Eq. A4 is simplified as 

 2 2
2 2 2 2

2 2

( )
( ) sin ( ) sinh ( )r

r r r r

d W x C
W x A x x

dx A
  

 
  

 
.                 (A5) 

For the pinned-pinned boundary conditions, the pinned end at Lx   results in 0C  . 

Therefore, the sign of 
 2

2

( )
( ) r

r

d W x
W x

dx
 is determined by )(sin2 xr  in Eq. A5, which is 

always negative.  Therefore, ( )jk jk fE x  of Eq. A1 is positive throughout the beam span if

frfi    , . 

 

(b) Pinned-free and pinned-fixed boundary conditions 

For pinned-free/fixed boundary condition, the component )(sinh2 xr  also has effect on the 

sign. The free/fixed end condition results in the coefficient relationship  

)(sinh

)(sin
2

2

2

2

L

L

A

C

r

r




 .                                               (A6) 

The effects of 
2sin ( )rx and 

2
2

2
sinh ( )r

C
x

A
 in Eq. A5 are calculated and plotted in Fig. A1 

to show their effects on the accumulation phenomenon of the FLI along the beam. It could be 

seen in Fig. A1 that with the increase of the order of mode r  , the effect of hyperbolic 

component )(sinh2 xr  is gradually shifted to the free/fixed end. Therefore, when considering 

high order modes, the effects of the boundary conditions to the FLI can be neglected if x satisfy 

the condition (A7) below.  

2sin ( )rx
2

2
2

sin ( )
sinh ( )

sinh ( )
r

r
r

L
x

L





  (A7) 
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(c) Free/fixed-free/fixed boundary conditions 

For the free/fixed end at 0x , we have CADB      or CADB     . Eq. A4 may 

be simplified as 

 2

2

2 2

2 2

( )
( )

sin( ) cos( ) sinh( ) cosh( )

r
r

r r r r r

d W x
W x

dx

B B
A x x x x

A A
    

    
            

           (A8) 

For free/fixed-free/fixed boundary condition, the hyperbolic component 

2

)cosh()sinh( 







 x

A

B
x rr   also has effect on the sign of 

 2

2

( )
( ) r

r

d W x
W x

dx
. The free/fixed 

end condition results in the coefficient relationship  

)cosh()cos(

)sinh()sin(

LL

LL

A

B

rr

rr








 .                                    (A9) 

The effects of both the components in Eq. A7 on the accumulation phenomenon along the 

beam are shown in Fig. A2, when the order of mode r  is increasing. Similar to the results in 

pinned-free/fixed boundary conditions, the effects of the hyperbolic components caused by 

fixed/free end condition just affect the region near the boundary. With the increase of mode order, 

that region becomes smaller and closer to the boundary. This shows that if we consider only the 

high order modes of the beams, the sign of 
 2

2

( )
( ) r

r

d W x
W x

dx
  is negative if x satisfy the 

condition (A10) below. 

2 2

sin( ) sinh( ) sin( ) sinh( )
sin( ) cos( ) sinh( ) cosh( )

cos( ) cosh( ) cos( ) cosh( )
r r r r

r r r r

r r r r

L L L L
x x x x

L L L L

   
   

   

    
     

    
 

 (A10) 

To sum up, according to the results shown with either fixed, free or pinned boundary condition, 

the proposed force localization index (FLI) can be applied to the whole beam span for beams 

with pinned-pinned boundary conditions.  The FLI can be applied to beams with pin-free or 

pin-fixed boundary conditions at location x satisfying condition (A7). The FLI can be applied 

to beams with free/fixed-free/fixed boundary conditions at location x satisfying condition (A10).  
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Appendix B - FLI of a step beam structure 

The eigenvalue solution of a step beam derived below follows the approach of Wong et al. 

(2009).  Consider a step beam with different stiffness at different sections as illustrated in Fig. 

B1.  Applying Euler-Bernoulli beam theory to the step beam, the governing differential 

equation of each section of the beam can be expressed as                                                                                                                                                                                                      

 
4 2

1 1
1 4 2

0
w w

YI m
x t

 
 

 
                   -l1 < x < 0 

 
4 2

2 2
2 4 2

0
w w

YI m
x t

 
 

 
                   0 < x < l2 (B1) 

4 2
3 3

3 4 2
0

w w
YI m

x t

 
 

 
                    l2 < x < l3 

where m is the mass per length of the beam, w1 , w2 and w3 are the transverse vibratory 

displacements of the Section 1, Section 2 and Section 3 of the beam respectively.   

The general solutions of Eq. B1 are 

wi(x, t) = (Ai sin ix + Bi cos ix + Ci sinh ix+ Di cosh ix) ejt ,       i = 1,2,3 (B2) 

where j is the imaginary number 1 ;  

1/4
2

i

i

m

YI




 
  
 

and i is the number to identify the spans 

shown in Fig. B1.   

The mode shape function of the beam is the spatial part of Eq. B2 written as 

wi(x) = Ai sin ix + Bi cos ix + Ci sinh ix+ Di cosh ix ,      i = 1,2,3  (B3) 

To satisfy the continuity and equilibrium conditions at the junctions of the sections, the 

following set of equations is derived: 

     ,,0,0 21 twtw       twtw ,0',0' 21  ,       

    1 1 2 2'' 0, '' 0, ,YI w t YI w t     1 1 2 2''' 0, ''' 0,YI w t YI w t ,  

    ,,, 2322 tlwtlw        tlwtlw ,',' 2322  , 
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    2 2 2 3 3 2'' , '' , ,YI w l t YI w l t      2 2 2 3 3 2''' , ''' ,YI w l t YI w l t . (B4) 

where primes denote differentiation with respect to x.   

The boundary conditions of the step beam can be expressed as 

    
31

31
1 3

1 3

1 3

0
0
0
0

AA
BB

K K
C C
D D

    
    

     
    

        

 (B5) 

where [K1] and [K3] depend on the actual arrangements of the boundary conditions of the beam.  

At the first junction at origin O, the continuity and equilibrium conditions combined with Eq. 

B4 lead to a simple relationship between coefficients for Section 1 and Section 2.  Such 

relationship can be written as   

  
1 2

1 2
1

1 2

1 2

A A
B B
C C
D D

   
   

    
   
      

   (B6) 

where  

2 1 2 1

1 2 1 2

2 2
1 1

2 2
2 2

1

2 1 2 1

1 2 1 2

2 2
1 1

2 2
2 2

0 0

0 1 0 1
1

2
0 0

0 1 0 1

   

   

 

 

   

   

 

 

 
  

 
 

  
  
 

  
 
 
  
  

 is a matrix relating the coefficient 

vector  TDCBA 1111  of Section 1 and the coefficient vector  TDCBA 2222  of 

Section 2. 

For the junction of Sections 2 and 3, we can translate the origin of the coordinates to the junction. 

By carrying out the coordinate transformation on Eq. B6 we have 

     

32

32

2

32

32

L R

AA

BB
T T

CC

DD

  
  
    
  
  

   

  (B7) 
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where   

3 32 2

2 3 2 3

2 2
2 2
2 2

3 3

2

3 32 2

2 3 2 3

2 2
2 2
2 2

3 3

0 0

0 1 0 1
1

2
0 0

0 1 0 1

  

   

 

 

  

   

 

 

 
  

 
 

  
  
 

  
 
 
  
  

 

 LT and  RT  are two coordinate transfer matrices and written as, 

  

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

cos sin 0 0

sin cos 0 0

0 0 cosh sinh

0 0 sinh cosh

L

l l

l l
T

l l

l l

 

 

 

 

 
 
 
 
 
 

  (B8) 

  

3 2 3 2

3 2 3 2

3 2 3 2

3 2 3 2

cos sin 0 0

sin cos 0 0

0 0 cosh sinh

0 0 sinh cosh

R

l l

l l
T

l l

l l

 

 

 

 

 
 
 
 
 
 

  (B9) 

Substitute Eq. B6 into Eq. B7, the relationship between the coefficients of Section 1 and those 

of Section 3 can be expressed as 

      

31

1 31

1 2

31

31

L R

AA

BB
T T

CC

DD



  
  
     
  
  

   

  (B10) 

Substitute this equation into Eq. B5, the eigenvalue problem can be expressed as 

          
3

1 3

1 1 2 3

3

3

0

0

0

0

L R

A

B
K T T K

C

D



   
   
      
   
   

  

 (B11) 

For a non-trival solution, the determinant of the 4 x 4 matrix in Eq. B11 should be zero; that is, 

         
1

1 1 2 3 0L RK T T K


     (B12) 
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The eigenvalues 2  can be obtained by solving the eigenvalue problem represented by Eq. 

B12.  Substituting these eigenvalues into Eq. B11 and solving it together with Eqs. B5 and B7, 

the coefficient vector [Ai Bi Ci Di]
T for the corresponding beam spans can be obtained.  

Substituting the vector [Ai Bi Ci Di]
T into Eq. (B3), the corresponding eigenfunctions (mode 

shapes), wi(x), are obtained. These mode shape functions are used for the calculation of FLI in 

Eq. (20) for the step beam. 

A numerical experiment was done to test the proposed FLI for a step beam.  A pinned-pinned 

step beam with three sections as illustrated in Fig. B1 was used in the test. For illustration 

purpose, it was assumed that YI1 = YI3 = 2YI2 = 1, m = 1, l1 = 0.4 L, and l2 = l3 = 0.3 L.  The 

eigenvalues 2  and the mode shape functions wi(x) of the step beam were calculated according 

to the theory as described above.  The forcing frequency was assumed to be in between the 

first and the second natural frequencies of the step beam.  The FLIs of the step beam were 

calculated using natural frequencies and mode shapes from the second to the seventh natural 

modes of the step beam according to Eq. 20 with xf /L = 0.15, 0.55 and 0.9, respectively. The 

FLI results were plotted in Fig. B2. As shown in Fig. B2, highest peak value of FLI could be 

observed at the exciting force location in all the three cases.  The proposed FLI was found to 

be applicable to a step beam.   
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Figure Captions 

Fig. 1 Illustration of the transverse vibration w of a beam excited by a dynamic 

point force f at x = xf. 

Fig. 2 Force localization index (FLI) of a beam with fixed-free boundary 

conditions. ( 0.35fx L ) 

Fig. 3 Setup of the experiments. 

Fig. 4 Outline of the experiment procedure. 

Fig. 5 Measurement procedures of the experimental tests. 

Fig. 6 Measured point mobility FRF. 

Fig. 7 Measured mode shapes of the beam in Fig. 5. 

Fig. 8 Force localization index derived from experiment. (xf = 0.35L). Points at the peaks 

and troughs of the curve with n = 7 in Fig. 2 are added and marked with  for 

comparison.     

Fig. A1 Effect of pinned-free/fixed boundary conditions on the FLI. 

Fig. A2 Effect of free/fixed-free/fixed boundary conditions on the FLI.  

Fig. B1 Step beam with pinned-pinned boundary conditions. 

Fig. B2  FLI of the step beam in Fig. B1 with different xf. 

 

 

 

 

 

Table Captions 

Table 1 Theoretical and experimental modal ratio coefficients.  

Table A1 Boundary conditions and coefficient relationship. 
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Fig. 1 Illustration of the transverse vibration w of a beam excited by a dynamic point force f at x = xf. 

113x44mm (144 x 144 DPI) 
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Fig. 2 Force localization index (FLI) of a beam with fix-free boundary conditions. (xf = 0.35L) 

162x92mm (144 x 144 DPI) 
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Fig. 3 Setup of the experiments. 

110x180mm (144 x 144 DPI) 
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Fig. 4 Outline of the experiment procedure. 
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Fig. 5 Measurement procedures of the experimental tests. 
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Fig. 6 Measured point mobility FRF. 
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Fig. 7 Measured mode shapes of the beam in Fig. 5. 
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Force localization index derived from experiment. (xf = 0.35L). Points at the peaks and troughs of the curve 
with n = 7 in Fig. 2 are added and marked with X for comparison. 
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Fig. A1 Effect of pin-free/fix boundary conditions on the FLI. 

119x187mm (144 x 144 DPI) 
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Fig. A2 Effect of free/fix-free/fix boundary conditions on the FLI. 
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Fig. B1 Step beam with pin-pin boundary conditions. 
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Fig. B2 FLI of the step beam in Fig. B1 with different xf. 
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Table 1 Theoretical and experimental modal ratio coefficients 

Order  (Experimental)r  (Theoretical)r Euclidean distance
1 1 1
2 -1.3849 -1.3765
3 -0.1532 -0.1414
4 0.0072 -0.0034
5 -0.0130 0.0113
6 0.0076 0.0051
7 5.0409e-4 -2.4328e-4

0.0303
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Table A1 Boundary conditions and coefficient relationship

Boundary condition Mathematics description Coefficient relationship

0
0


x

w 0 DB
Pin end

0
0

2

2





xx
w

0 DB

0
0


x

w 0 DB
Fix end

0
0





xx
w

0 CA

0
0

2

2





xx
w

0 DB
Free end

0
0

3

3





xx
w

0 CA
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