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Abstract

Variable renewable generation and load fluctuations induce significant balancing cost in
power system operation. To overcome this issue, this paper proposes a control architecture
that leverages inherent regulation capabilities of wind turbines to minimize the system-wide
balancing costs. Instead of handling wind power fluctuations via power filtering algorithms
that are agnostic to system-wide power imbalance, this paper aims to optimize the wind
power generation profile from system perspective. In the proposed method, wind turbines
are modelled as semi-dispatchable units, where the dispatch command is dynamically gen-
erated at every automatic generation control cycle by considering mileage payments as an
indicator of system-wide imbalance. As a result, local resources of wind turbines are opti-
mally leveraged in real-time to mitigate system-wide power imbalances. The proposed strat-
egy and state-of-the-art techniques are compared in comprehensive high-fidelity case stud-
ies. Our simulation results demonstrate that the proposed system-aware regulation scheme
can alleviate system balancing costs without investments into energy storage systems.

1 INTRODUCTION

In recent years wind power generation has seen a dramatic
increase in the energy mix of modern power systems. Although
wind energy is a sustainable and abundant resource, its weather-
dependent nature leads to uncertain and intermittent power
generation. Conventionally, wind turbines (WTs) operate in a
“free-running” manner using maximum power point tracking
(MPPT) control. In this operating mode, fast wind power fluc-
tuations will directly result in a fluctuating power imbalance in
the power grid and the control of conventional generators (i.e.
inertia response, primary control, secondary control, and ter-
tiary control) will respond to the above-mentioned power imbal-
ance [1]. Consequently, the system balancing cost will increase.
According to a real-world study in the United Kingdom, the
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additional balancing costs incurred as the result of 20% inte-
gration of wind power would be £200 million per year or
£3/MWh [2]. Currently, some market policies have been set
up to impose penalties on wind farms (WFs) such as fixed
balancing fees per MWh or MW-month [3], and penalties for
diverging from the day-ahead forecast [4]. In United Kingdom,
wind farms and large loads are allocated a share of the hourly
balancing cost that is proportional to their power generation
[5]. Because power imbalances are created jointly by demand
fluctuations, wind power, and other renewable resources, pre-
cisely determining the balancing cost incurred by WFs is a
highly complex problem that is not fully addressed by fixed
balancing fee schemes currently used by system operators.
Moreover, due to limited forecasting accuracy, imposing penal-
ties on deviations from the day-ahead forecast may encourage
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WFs to follow the day-ahead forecasts and underutilize wind
generation.

An essential ancillary service is automatic generation control
(AGC) (i.e. secondary control), which aims to compensate the
mismatch between power generation and demand on the time
scale of seconds. One widely used metric to quantify the AGC
balancing cost are so called mileage payments to AGC units
that have seen wide spread adoption (see e.g. FERC order 755
[6]). The regulation mileage reflects the performance of AGC
units, and encourages fast-responding AGC units to provide
regulation service [7]. In this scenario, the stochastic character-
istic of wind power will result in significant mileage payments.
To address this problem, a cooperative scheme is proposed in
[8] to exploit the complementary characteristics of wind power
and battery storage by designing an optimal bidding strategy
in joint energy and regulation markets. A combined heat and
power plant and a wind farm are operated as a portfolio in [9]
to increase the overall profit in a balancing market. It should be
noted that, in these works, the fluctuation of wind power is com-
pensated by other flexible resources and not by the WTs them-
selves. Moreover, existing works focus on determining optimal
bidding strategies for relatively long energy scheduling cycles
and ignore detailed WTs models, their practical operation con-
straints, and WT real-time control and operation.

At the real-time control level, wind power fluctuations are
normally compensated through smoothing control strategies,
where the smoothing references are typically generated through
ad-hoc strategies. For example, a first order low pass filter (LPF)
is utilized in [10] to smooth out high-frequency components
of wind power generation. The control performance of such
algorithms greatly depends on choosing an appropriate filtering
time constant. Likewise, a wavelet-enabled approach is utilized
in [11, 12] for wind power smoothing. A moving average (MA)
algorithm is adopted in [13, 14] to eliminate short-cycle power
fluctuations and the resulting smoothing effect depends on the
filter window size. In addition, the output of a WT is adjusted
by pre-setting ramp limits at different time scales in [15, 16].
It should be noted that smoothing references generated by ad-
hoc methods do not account for system-wide power imbalance
and the resulting smooth generation profiles may be (i) econom-
ically inefficient because a significant amount of wind energy
may be arbitrarily sacrificed through the predefined hard-coded
smoothing algorithms and (ii) not conducive to the reduction
of balancing cost because it does not account for system-wide
imbalances [17].

In the literature, two broad classes of methods for compen-
sating wind power fluctuations and tracking dispatch commands
have been proposed: (i) integration with energy storage sys-
tems (EES), and (ii) ESS-free control methods. The first class of
methods utilizes ESS to store/release excess energy as needed
to obtain a wind energy system that is dispatchable and able
to assist in generation-demand balancing [18–20]. While this
approach is highly effective, it is also costly due to the significant
costs of an ESS. The second class of methods aims to fully lever-
age the regulation capabilities of WTs without relying on an ESS.
Even though the regulation capability of WTs is limited, appro-
priate control methods can operate WTs as “semi-dispatchable”

FIGURE 1 Proposed system-perceived wind power regulation framework

units that partially contribute to mitigating system-wide imbal-
ances. Considering the increasing integration of wind generation
in large-scale systems, the ESS-free control method is a promis-
ing cost-effective solution. Therefore, this work focuses on how
to optimally leverage the self-regulation potential of WTs on
the time scales of AGC. One potential approach is to curtail
wind power generation by adjusting the blade pitch angle [21,
22]. However, relying purely on blade pitch angle control is not
economical because the curtailed power is discarded. In addi-
tion, frequent changes in the pitch angle will inevitably increase
WT mechanical stress and fatigue. Another option is to use the
kinetic energy (KE) stored in the WT rotor [23–25] to com-
pensate power fluctuations. This approach is advantageous for
energy harvesting because some of the curtailed power can be
stored by the WT in the form of KE. This KE can be rapidly
released into the grid if increased power injection is requested.
Even though utilizing the existing degrees of freedom of WTs
to regulate wind power is a promising solution to mitigating
system-wide imbalances, it is difficult to quantify and leverage
the regulation capabilities of WTs in real-time operation.

To overcome these limitations, a novel wind power regulation
paradigm is proposed in this paper. Instead of acting as power
sources using MPPT control, we use mileage costs as a met-
ric for system-wide imbalance and regulate wind power genera-
tion in real-time. In contrast to existing works, the power refer-
ence generated by the proposed method accounts for the over-
all system imbalance and fully leverages the downward/upward
power regulation potential of WTs. The overall architecture is
illustrated in Figure 1.

Specifically, at the upper level, we assume that the relevant
information, e.g. the power/energy scheduling profile and reg-
ulation capacity, mileage cost, and performance scores of AGC
units are provided by the system operator. Based on this infor-
mation the wind farm operator solves a receding horizon opti-
mization problem that trades off maximizing wind power pro-
duction and minimizing the system-wide balancing cost. At the
WT level, a prioritized control strategy is devised to enable WTs
to instantly track the dispatch commands received from the
upper layer. This architecture is motivated by current market
paradigms in different system (i.e. UK national grid, PJM, and
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China Southern Power Grid) and wind farm control architec-
tures.

Overall, the contributions of this paper are twofold:

1. We propose a new real-time wind power regulation paradigm
that uses mileage costs as a key metric for controlling WTs
active power injection.

2. The proposed control framework fully leverages the WTs
upward/downward power regulation capabilities to respond
to system balancing needs while accounting for WTs opera-
tion constraints, i.e., ensuring the practical feasibility of the
proposed control.

2 SYSTEM-PERCEIVED WIND POWER
REGULATION

In this section, we will first review basic principles of system bal-
ancing services, mileage payments, and wind power regulation.
Subsequently, we will introduce a novel receding horizon wind
power control algorithm that accounts for the system balancing
needs.

2.1 A prospective role of wind turbines in
balancing market

As discussed in Section 1, the uncertain nature of wind power
generation and demand can result in significant balancing costs.
At the same time, WTs have some flexibility to regulate their
power output downward/upward. As a result, WTs can partially
contribute to reducing system-wide power imbalances and bal-
ancing cost. This, in turn, can potentially reduce the balancing
fees charged to a wind farm or result in additional revenue for
the WF operator through novel ancillary services. The focus of
this work is to develop a technical solution that allows WFs to
leverage their control capabilities to partially contribute to miti-
gating system-wide power imbalances.

We emphasize that, in real-time operation, it is difficult to
accurately quantify the amount of balancing cost caused by a
particular WF or load. Consequently, system operators currently
use different ad-hoc market policies to impose penalties or bal-
ancing costs on wind farms ranging from fixed fees per MWh
and month [3] to allocating hourly balancing costs to generators
and large-scale loads [5] proportionally to their power genera-
tion or demand.

In this context, it appears reasonable for a wind farm to
contribute to reducing the balancing cost both to improve
system performance and to reduce its own cost for balancing
services. To this end, we utilize the mileage payment as an indi-
cator to regulate wind power output. We emphasize that WFs
should receive further renumeration for partially contributing
to balancing the overall system. However, it is unclear how
to accurately price such a service and allocate such payments,
especially when large numbers of distributed renewable gener-
ation are considered. Questions along those lines are seen as an
interesting topic for future research.

FIGURE 2 Power balance in wind embedded grid

System-wide power imbalances are compensated in real-time
by AGC units. While different system operators use different
methods to purchase secondary reserves, one common solu-
tion are hourly markets based on mileage payments. For exam-
ple, according to [26], PJM clears the market by co-optimizing
energy and regulation for each operating hour subject to regu-
lation capacity constraints. Similarly, in China Southern Power
Grid (CSG) market, the regulation market is also cleared each
hour [27]. In this work, we assume that all AGC units bid for
their regulation capability hourly ahead, and the market clears
the mileage price periodically based on specific information
including bid-in prices and historical performance indices of
individual AGC units.

The mileage payment quantitatively reflects the regulation
engagement of AGC units. In a specific AGC cycle t, the mileage
payment to AGC unit m can be obtained by

𝛾m (t ) = |Dm (t )| ⋅ S ⋅ Km, (1)

where Dm (t ) denotes the active power injection or withdrawal
from regulation unit m when following the AGC dispatch sig-
nal at AGC cycle t, S is the market dependent mileage price,
and the performance score Km reflects the general performance
of unit m when following the dispatch signals. Dm (t ) can be
expressed as

Dm (t ) = P
reg

m (t ) − P
reg

m (t − 1), (2)

where P
reg

m (t ) and P
reg

m (t − 1) are power output from unit m at
control cycle t and previous control cycle t − 1 respectively.

System operators use different metrics and methods to assign
a performance score Km to each AGC unit [28]. Here, we
assume that the performance score is determined based on the
following three metrics: regulation rate, response delay, and the
regulation precision (the reader is referred to the Appendix for
further details). The AGC units respond to a dispatch signal
to balance generation and demand in the power system. This
power balance requirement is illustrated in Figure 2 and can be
expressed as

Pload (t ) − Pwind (t ) = Pschedule (t ) +
M∑

m=1

Dm (t ), (3)

where M is the number of AGC units.
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Specifically, in Figure 2, the pink area represents the wind
generation; the green area represents the scheduled power gen-
eration by dispatchable sources. However, the sum of the pink
and the green area are generally not equal to the demand. Specif-
ically, upward AGC regulation is required if the sum of sched-
uled power generation and wind power generation is smaller
than the demand and downward AGC regulation is required
when the sum of wind power generation and scheduled power
generation is larger than the load.

Due to the uncertain and intermittent characteristics of
wind turbines would result in low performance scores if they
were used as a conventional AGC units. In other words, in a
performance-based regulation market wind farms would likely
not be selected to contribute to AGC and provide secondary
reserves. Nonetheless, WFs can be controlled to contributed
to system-wide balancing needs, e.g., by down regulation and
exploiting the energy stored in the wind turbine rotor. Finally,
depending on the overall generation mix, a system operator may
need to impose requirements for system balancing on the wind
farms. For example, in a future system with large share of wind
power penetration, the regulation capacity of the remaining con-
ventional AGC units may not be sufficient to balance the system
on the time scales of AGC. In this case WFs may be designated
as balancing responsible.

2.2 Principle of wind power regulation

For an individual WT, the mechanical power extracted from the
wind is defined as

Pm =
𝜌

2
𝜋R2v3Cp(𝜆, 𝛽) (4)

where ρ is the density of air, R is the rotor blade radius, v is the
wind speed, λ is the tip speed ratio, and β is the pitch angle.
Moreover, the power coefficient Cp(𝜆, 𝛽) models the non-linear
relationship between the pitch angle and tip speed ratio

𝜆 =
𝜔R

v
(5)

where 𝜔 is rotor speed.
It should be noted that online optimal control of WTs is a

challenging problem because the Cp is a highly non-linear func-
tion of the tip speed ratio and the blade pitch angle. To address
this issue, an intelligent learning-based strategy is proposed in
Ref. [29]. For computational purposes, the power coefficient can
be approximated through the fourth order polynomial

Cp(𝛽, 𝜆) = [c11𝛽
2 + c12𝛽 + c13]𝜆2 + [c21𝛽

2 + c22𝛽 + c23]𝜆

+ [c31𝛽
2 + c32𝛽 + c33] (6)

obtained using polynomial regression. The resulting parameters
for Equation (6) and approximation error are given in Table A1
and Table A2 in the Appendix. We emphasize that the approx-
imation error is small, and the approximation Equation (6) can

be directly used for the purpose of real-time control. It should
be noted that the tip speed ratio depends on the rotor speed,
and that the rotor speed and the blade pitch angle are both con-
trol variables. Because the tip speed ratio and blade pitch angle
are multiplied in Equation (6) the mechanical power Equation
(4) is a non-convex function of the rotor speed and blade pitch
angle.

Next, we consider the active power balance. For an individual
WT, the KE stored in its rotating mass can be expressed as

E (t ) =
1
2

J𝜔2(t ), (7)

where J denotes the combined wind rotor and generator iner-
tia. Moreover, the imbalance between the captured mechanical
power and the electric power delivered to system will lead to
WT rotor speed variation. This process is modelled by the dif-
ferential equation

Pm (t ) − Pe (t ) = Pk(t ) =
dE (t )

dt
= J𝜔(t )

d𝜔(t )
dt

, (8)

where Pe is the WT electric power output.
It should be noted that the WT control variables in our model

are updated at each AGC cycle (i.e. 4 s). To this end, the differ-
ential Equation (8) is discretised to obtain

Pe (t ) = Pm (t ) − J𝜔(t )
𝜔(t ) − 𝜔(t − 1)

Δt
, (9)

where Δt is the AGC cycle.
It follows from Equation (9), that the WT power output can

be regulated by adjusting the rotor speed within its operational
constraints. It should be noted that WTs might stall if too much
KE is extracted. To avoid this problem, the electric power out-
put of an individual WT should be limited to

Pe (t ) ≤ Pmmp(t ) + Pdisc
k max(t ), (10)

where Pmmp is the maximum mechanical power that the WT
captures from wind given by

Pmmp =

⎧⎪⎨⎪⎩

1
2
𝜌ACp maxv3, v ≤ vrated

Pnom, v > vrated

, (11)

Cp max denotes the maximum power coefficient, and Pnom

denotes the WT nominal power. Equation (11) highlights the
two standard operating regimes of WTs. When the wind speed
is lower than the rated value, WT typically operates in MPPT
mode (i.e. at zero pitch angle and optimal rotor speed). In con-
trast, above the rated wind speeds, the pitch angle is increased to
capture the (constant) nominal power and keep the rotor speed
at the (constant) nominal speed.

We emphasize that our control approach will not use MPPT
control, but leverage the ability to control the power injection
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within the limits set by Equation (10), where Pdisc
k max denotes

the maximum electric power released from KE discharging. As
reported in [30], a WT operating at a rotor speed below the max-
imum power point (MPP) rotor speed may pose less small signal
stability margin. To avoid this problem, we define the maximum
discharge power Pdisc

k max

Pdisc
k max(t ) =

E (t − 1) − E (t )
Δt

=
J (𝜔2(t ) − 𝜔2

mmp(t ))

2Δt
, (12)

where 𝜔mmp is the rotor speed at MPP which can be calculated
using Equation (11) and the wind speed, and limit the KE dis-
charge according to Equations (10) and (12) to ensure that the
WT returns to the MPP after releasing the stored KE.

In addition to adjusting the rotor speed, the blade pitch angle
can be used to regulate the electric power delivered to the grid.
However, when increasing the pitch angle to reduce power gen-
eration, excess energy is discarded. In contrast, rotor speed con-
trol can be used to store excess power in the form of KE.
Because our objective is to minimize the mileage cost without
significantly reducing energy yield, the proposed controller will
prioritize rotor speed control and only use blade pitch angle
control when needed.

2.3 Optimal wind power regulation scheme

As discussed in Section 2.1, WTs can be controlled as semi-
dispatchable units for the purpose of power balancing. How-
ever, there is an inherent trade-off between wind energy yield
maximization and balancing cost minimization. To concurrently
consider these two objectives, we formulate a joint optimization
problem.

According to Equation (9), the output power of WTs is cou-
pled across different time steps. Therefore, to optimize control
performance, we propose to use the following receding hori-
zon optimization problem that is solved by the WF operator to
obtain dispatch commands for the WTs:

min
𝜔b (t ),𝛽b (t ),P

reg_up
m (t ),P

reg_down
m (t )∈ℝ+

-𝛼
tT∑

t=t0

B∑
b=1

Pe,b(t )∕Pw fnom

+ (1 − 𝛼)
tT∑

t=t0

M∑
m=1

|||(Dup
m (t ) + Ddown

m (t ))||| SKm∕Cmil max (13)

s.t. 𝜔min ≤ 𝜔b(t ) ≤ 𝜔max (14)

𝛽min ≤ 𝛽b(t ) ≤ 𝛽max (15)

Pe,b(t ) ≤ Pmpp,b(t ) + max
{

0, Pdisc
k max,b(t )

}
(16)

Pb
e (t ) ≤ 1.2Pnom (17)

D
up
m (t ) = P

reg_up
m (t ) − P

reg_up
m (t − 1) (18)

Ddown
m (t ) = P

reg_down
m (t − 1) − P

reg_down
m (t ) (19)

0 ≤ P
reg_up

m (t ) ≤ P
reg_cap

m (20)

0 ≤ P
reg_down

m (t ) ≤ P
reg_cap

m (21)

P
load

(t ) − P
wind

(t ) = P
schedule

(t ) +
M∑

m=1

(D
up
m (t ) − Ddown

m (t )) (22)

where Equations (4), (5), and (9) are used to predict the rotor
speed for each time step.

Objective: The first term in Equation (13) aims to maximize
the total wind power production. The second term aims to min-
imize the system-wide mileage payment within the time horizon
tT that will be partially allocated to the WF. In Equation (13), M

is the number of AGC units, B is the number of WTs, Pe,b(t )
is the power output of individual WTs, and Pw fnom as well as
Cmil max are the nominal power of the WF and the maximum
mileage cost, respectively. As mentioned before, in this work,
we assume that the WF should be partially balancing responsi-
ble by consider the mileage payment as a metric for system-wide
power imbalance and wind power regulation. To this end, the
weighting factor 𝛼 ∈ [0, 1] in Equation (13) can be used to give
more or less weight to balancing cost.

WT constraints: To ensure reliable operation of individual
WTs, the control action is subject to certain practical constraints
in Equations (14)–(17). Specifically, the power injection of indi-
vidual WTs is subject to converter power limits (assumed to be
1.2 p.u.). Moreover, to avoid stalling the WT, the power output
of individual WTs is constrained by Equation (16). Finally, the
rotor speed and pitch angle variations throughout the dynamic
operation are subject to the constraints in Equations (14), (15).

System constraints: The AGC units that participate in the
regulation market are subject to operational constraints in
Equations (18)–(21), where D

up
m (t ) (Ddown

m (t )) denote up- (down-
) regulation mileage and P

reg_up
m (t ) (Preg_down

m ) denote up- (down-)
regulation power of AGC unit m. Moreover,P

reg_cap
m denotes the

regulation capacity of AGC unit m. Finally, the system should
satisfy power balancing constraint Equation (22) in each AGC
interval.

The wind-farm level optimization problem in Equations
(13)–(22) does not include a detailed model of the wind tur-
bine’s inner control loops, which is often not exactly known to
the wind-farm operator. Instead, we separate the control prob-
lem into wind-farm level optimization and a wind-turbine con-
trol that is compatible with standard wind farm control archi-
tectures and discussed in the next section.

For the case studies in Section 4, the receding horizon opti-
mization problem will be solved using the Interior Point OPTi-
mizer (IPOPT). Even though the first term of Equation (13)
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FIGURE 3 Proposed prioritized control for wind power regulation

is non-convex, the problem (i) can be solved efficiently within
one AGC control cycle; (ii) results in effective wind power reg-
ulation; and iii) we observe no practical constraint violations.

3 PRIORITIZED CONTROL OF WIND
TURBINES FOR POWER REGULATION

Typically, WTs operate in MPPT control mode and are not
required to share balancing responsibility. In this setting, the
active power reference is generated via a MPPT curve and
tracked by the rotor side controller (see Figure 3,). Moreover, if
the rotor speed is larger than the maximum value, a PI controller
is used to control to the blade pitch angle and limit the rotor
speed to its maximum value. In contrast, we propose to bypass
the MPPT control and utilize both rotor speed control and pitch
angle control to track a wind power reference obtained from
the receding horizon optimization Equations (13)–(22). As dis-
cussed in Section 2.2, rotor speed control can achieve higher
efficiency a by leveraging kinetic energy storage. Moreover, the
control objective formulated in Section 2.3, is to minimize the
mileage cost without significantly reducing energy yield. This
amounts to storing as much excess energy as possible as KE to
i) achieve high energy harvesting efficiency and ii) create a suffi-
cient “energy buffer” that enables the WT to track the dispatch
commands. Hence, the proposed WT control prioritizes control
strategy is designed, which is consistent with our optimization
objective. As shown in Figure 3, the optimized active power ref-
erence is sent to the rotor side controller and blade pitch angle
controller. Once the rotor speed is accelerated to its upper limit,
the deviation between the measured active power output and the
dispatch command will be sent to a PI controller to generate a
pitch angle reference to force the WT to follow the reference.

Overall, as shown in Figure 1, the optimization module and
WT control module are mutually influenced and closely cou-
pled. The proposed WT cascade control has the following
merits:

∙ energy harvesting efficiency can be increased by utilizing the
rotor to store/release extra energy,

∙ WT system wear can be reduced by only using pitching con-
trol for power curtailment with low priority.

FIGURE 4 Control dynamics of rotor speed control and pitch angle
control

FIGURE 5 Configuration of the test system

3.1 Rotor speed and pitch angle control

The process supplementing wind power generation with kinetic
energy is illustrated in Figure 4. Considering a WT that initially
operates at the maximum power point (i.e. A), the operating
point can be shifted to B to allow tracking the dispatch com-
mand. If the dispatch command is greater than the WT power at
A, the WT can be controlled to shift to D by releasing the stored
KE. Considering the fast response of the power electronic con-
verters, the power output can be rapidly regulated according to
the new reference. Moreover, starting from A, the WT can shift
to C by increasing the pitch angle if the introduced power com-
mand is less than the WT power output. In contrast to rotor
speed control, pure pitch control cannot leverage the KE stor-
age capability and thus cannot provide overloading support.

4 CASE STUDIES

4.1 Experimental setup

(1) Test system. To demonstrate the effectiveness of the pro-
posed WF power regulation scheme, the system shown in Fig-
ure 5 is used. It consists of 3 AGC units, a wind farm with 4
identical 5-MW DFIG wind turbines [31], and a time varying
electrical load. Specifically, the WT model includes the aerody-
namics, shaft dynamics, induction generator, pitch servo mech-
anism, and the controlled back-to-back converter. The param-
eters of the AGC units are specified in Table 1 and, together
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TABLE 1 AGC units settings

AGC

unit no.

Regulation

capacity (MW)

Regulation

rate

Response

delay

Regulation

precision

1 4 0.25 0.9833 0.5333

2 6 1.6667 0.8801 0.7870

3 8 1.0833 0.9227 0.6433

FIGURE 6 MATLAB-DIgSILENT joint simulation platform

with a mileage price of 1.1 $/MW, reflect typical parameter val-
ues that serve as approximation of the overall mileage payments
and AGC action.

In the remainder we use wind speed data from [32] to eval-
uate multiple control strategies over a 15-min horizon. With-
out loss of generality, it is assumed that Pload − Pschedule = P3 min

MPPT
,

where P3 min
MPPT

denotes the 3-min averaged generation profile of
wind power under MPPT control. The prediction horizon for
the optimization is set as 5 AGC time slots (i.e. 20 s).

(2) Joint simulation platform. To verify the effectiveness of
the proposed WF regulation scheme, a simulation platform
is required that is both capable of handling receding hori-
zon optimization as well as time-domain simulation of the test
systems with multiple WTs, AGC units, and their control algo-
rithms. To this end, we are combining MATLAB and DIgSI-
LENT/PowerFactory as shown in Figure 6. DIgSILENT is
used for detailed modelling of wind turbines and perform the
time-domain simulation of the overall system. Moreover, for
this validation study an interface facilitating bidirectional data
exchange between MATLAB and DIgSILENT has been devel-
oped. Within each control cycle, MATLAB receives the current
WT state (i.e. ωt0, βt0), solves the receding horizon optimiza-
tion problem using IPOPT, and sends the dispatch commands
to DIgSILENT.

The optimization module is run in MATLAB every 4 s, i.e.
for every AGC cycle. Table 2 shows the average computation
time and hardware used for this numerical experiment.

TABLE 2 Computational efficiency

Computation platform Dell precision tower workstation

CPU E5-2650 v4@2.20 GHz, 2 processors

Solver IPOPT (interior-point method), OPTI
Toolbox in MATLAB

Computation time 0.2732 s (averaged by 10,000 individual runs)

FIGURE 7 The required regulation mileage when WTs operate at the
MPPT control mode

4.2 Wind power regulation performance
comparisons

According to Equation (3), the regulation mileage can be cal-
culated as Pload − Pschedule − Pwind . In our case study, when WTs
operate at MPPT control mode, the required mileage for sys-
tem balance is given by the grey area in Figure 7. Specifically,
downward regulation is needed when the wind power genera-
tion is above the green line. On the other hand, upward regu-
lation is needed when the wind power generation is below the
green line.

Next, we compare three dispatch command generation meth-
ods in our simulations: (i) our proposed scheme, i.e. the system-
perceived method, (ii) the Moving Average (MA) method, and
(iii) the Low-pass Filter (LPF) method.

We evaluate the wind power regulation performance of dif-
ferent methods according to the following metrics.

Wind energy yield 𝜓(kWh): It is formulated as

tT∑
t=t0

B∑
b=1

Pe,b(t )Δt . (23)

Total mileage payment ζ ($): It is formulated as

tT∑
t=t0

M∑
m=1

|||(Dup
m (t ) + Ddown

m (t ))||| SKm. (24)

Power reference tracking error δ: To quantitatively evaluate
the reference tracking performance of the WT controls for each
dispatch strategy, we define the tracking error:

𝛿 =

√√√√1∕N

N∑
i=1

(Pmeas − Pcom )2 (25)

where Pmeas denotes the measured actual power output from
the WF and Pcom denotes the power reference for the WF.

The main parameters and resulting performance metrics are
summarized in Table 3 and shown in Figures 8–10. For the MA
method, n is the pre-defined averaging window size. In the LPF
method, TLPF is the time constant used to specify the cut-off
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FIGURE 8 Simulation results using the proposed control framework. (a)
Total output power of the WF (α = 0.3); (b) rotor speed; (c) pitch angle; (d)
total output power of the WF (α = 0.5); (e) total output power of the WF
(α = 0.7)

frequency of the LPF. For all methods, the prioritized WT con-
trol strategy proposed in Section 3 is used to track the dispatch
command.

In our proposed control paradigm, the WT dispatch is
obtained through a receding horizon optimization that consid-
ers the trade-off between maximizing wind energy harvesting

FIGURE 9 Simulation results of MA method. (a) Total output power of
the WF (n = 40 s); (b) total output power of the WF (n = 100 s)

FIGURE 10 Simulation results of LPF method. (a) Total output power of
the WF (TLPF = 5 s); (b) total output power of the WF (TLPF = 10 s)

and minimizing mileage cost. The results in Table 3 illustrate
that the total captured wind energy decreases as α is decreased.
Curtailment of wind energy occurs because downward AGC
regulation is required in some situation, as shown in the grey
area above the green line in Figure 7. It should be noted that the
wind energy curtailment is not arbitrary but minimizes power
imbalances and mileage payments. Moreover, as expected, the
mileage payments decrease as α is decreased. In comparison
with the receding horizon control with α= 0.3, the MA method
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TABLE 3 Comparative simulation results

α = 0.3 α = 0.5 α = 0.7

System-perceived

method

ψ = 2154.73
ζ = 38.68
δ = 0.155

ψ = 2213.87
ζ = 64.50
δ = 0.179

ψ = 2282.56
ζ = 86.28
δ = 0.248

n = 40s n = 100s

MA ψ = 2140.64
ζ = 55.48
δ = 2.106

ψ = 2104.04
ζ = 44.95
δ = 2.521

TLPF = 5s TLPF = 10s

LPF ψ = 2383.47
ζ = 119.90
δ = 0.779

ψ = 2304.59
ζ = 98.63
δ = 1.288

results in both less wind energy harvesting and higher mileage
payments. Similarly, the LPF method results in significantly
larger mileage payments than the proposed method but only
achieves a slightly higher yield than the proposed method for
α = 0.7. In other words, from a system-level perspective, the
proposed method outperforms ad-hoc smoothing algorithms
by adjusting the WF power output in real-time to respond to
the system balancing needs and balancing cost. As indicated in
Table 3, the proposed framework has the smallest tracking error,
i.e. the optimized dispatch commands were best tracked by the
prioritized WT control.

Figures 8(a,d,e) and 9 show that the proposed control is effec-
tive in regulating output wind power. To track the WF power
reference, the degrees of freedom of the WTs are adequately
utilized through the proposed control strategy. As shown in Fig-
ure 8(b,c), when curtailment is required, a portion of the cur-
tailed power is converted to KE by accelerating the rotor. Once
the rotor speed reaches its maximum, the blade pitch angle con-
trol is activated to limit the power production. In contrast, the
KE stored in the WT rotor is released back to system by decel-
erating the rotor when overloading is needed. Due to the con-
straint Equation (16), excessive rotor speed decelerations are
avoided, and stable operation of the WTs is preserved.

4.3 Influence of wind speed forecasting
accuracy

To illustrate the impact of wind forecast uncertainty on the
receding horizon optimization control Equations (13)–(22), dif-
ferent levels of forecasting accuracy are considered. Simulation
results are reported in Table 4 and Figure 11 and we use 𝜎i

to denote the wind speed forecasting accuracy in the i-th look-
ahead time slot. Table 4 shows a slight increase in the mileage
payments as the forecast error increases, i.e. forecast errors have
an impact on the system-wide balancing cost. Nonetheless, we
expect wind forecasts to be sufficiently accurate over the rel-
atively short prediction horizon used in the proposed control.
Moreover, compared to the MA and LPF methods (as indicated
in Table 3), the proposed control strategy still effectively reduces
the balancing cost despite the forecast errors. This observation

TABLE 4 Simulation results for different forecast accuracies (15 min of
simulated wind speed series, a = 0.7)

Forecasting accuracy

Mileage

payment $

Case 1: 𝜎1= 0.96, 𝜎2= 0.945, 𝜎3= 0.925, 𝜎4= 0.90, 𝜎5= 0.87 87.45

Case 2: 𝜎1= 0.94, 𝜎2= 0.925, 𝜎3= 0.905, 𝜎4= 0.88, 𝜎5= 0.85 89.80

Case 3: 𝜎1= 0.92, 𝜎2= 0.905, 𝜎3= 0.885, 𝜎4= 0.86, 𝜎5= 0.83 91.16

FIGURE 11 Wind farm generation profiles with different look-ahead
forecasting accuracy

can be explained by the receding horizon implementation of the
proposed optimization-based control that recomputes the dis-
patch command at every AGC interval in closed-loop with the
system and thereby accounts for deviations from the forecast.

5 CONCLUSION

We propose a novel wind power regulation scheme that jointly
accounts for system balancing cost reduction and wind power
production maximization. In contrast to conventional methods
that smooth the wind power production without considering
the system-wide power imbalance, in this work, the wind power
regulation explicitly accounts for the system balancing needs.
Moreover, WT constraints are considered in the problem for-
mulation to ensure that their real-time regulation capabilities are
accurately reflected in the receding horizon control. Case studies
and high-fidelity time-domain simulations are used to compare
the proposed WF control scheme to standard power smoothing
methods and verify the effectiveness and potential of the pro-
posed approach. The influence of wind forecasting errors is also
discussed in this work. Simulation results demonstrate that the
proposed control exhibits satisfactory performance if the fore-
casting accuracy is sufficient. Specifically, the impact of forecast
errors is mitigated because the receding control recomputes the
dispatch command at every control cycle and thereby accounts
for deviations from the forecast.
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APPENDICES

A1 Performance score calculation

Regulation rate score: This score quantifies the regulation rate
of the resource in response to the dispatch signal, which is a
per-unit value calculated as

krate
m = Prate

m

/
Prate

avg (A1)

where Prate
m is the maximum ramp rate of unit m, Prate

m is the
average ramp rate of the control area.

TABLE A1 Fitting parameters of Cp

Model
Cp(𝜷t , 𝝀t ) = [c11𝜷t

2
+ c12𝜷t + c13]𝝀2

t + [c21𝜷t
2
+ c22𝜷t + c23]𝝀t

+[c31𝜷t
2
+ c32𝜷t + c33]

c11 −1.9543×10−4 c21 1×10−3 c31 −1.5×10−3

c12 1×10−3 c22 −1.01×10−2 c32 2.06×10−2

c13 −9.4×10−3 c23 1.538×10−1 c33 −1.969×10−1
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TABLE A2 Approximation error

MAPE 0.1236

NRMSE 0.1112

Response delay score: This score quantifies the time delay
between AGC signal and output change of regulation resource,
which can be expressed as

k
delay
m = 1 − T

delay
m

/
5 min (A2)

where T
delay

m is the response delay time of unit m.
Regulation precision score: This score measures the control

performance of AGC units, which is expressed as

k
precision
m = 1 −

1
N

N∑
i=1

|||||
P

disp
m − Pact

m

P
avg

m

||||| (A3)

where P
disp

m is the AGC dispatch signal of unit m,Pact
m is the actual

output of unit m,Pavg
m is the average absolute value of AGC dis-

patch signal of unit m during N control cycles.
The overall performance score can be calculated through a

weighted sum of krate
m ,kdelay

m and k
precision
m , i.e.

Km = a1krate
m + a2k

delay
m +a3k

precision
m (A4)

where a1, a2, and a3 represent non-negative weights and satisfy
a1 + a2 + a3 = 1. The weights are generally determined by the
ISO based on the historical regulation performance of individ-
ual AGC units. In our study, we set “a1 = 0.5, a2 = 0.25, a3 =

0.25″ as an example, which can be flexibly changed in different
operation scenarios.

A2 Polynomial regression of the power coefficient
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