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1 | INTRODUCTION

The tremendous increase of energy consumption in
modern society leads to serious consequences, such as envi-
ronmental pollution, global warming, and the depletion of

Abstract

Metal-organic compounds, including molecular complexes and coordination
polymers, have attracted much attention as electrode materials in super-
capacitors owing to their large surface area, high porosity, tailorable pore size,
controllable structure, good electrochemical reversibility, and abundant active
sites. Among the variety of metal-organic compounds exhibiting desired super-
capacitor performances (high specific capacitance, long cycling life, high
energy density, and power density), those with metals in the first transition
metal series are the most studied due to their rich covalent states, light atom
weight, environmental-friendliness, non-toxicity, and low cost. In this review,
the recent reports on the metal-organic compounds of the first transition metal
series as electrode materials in supercapacitors are summarized and their elec-
trode and device performances are discussed in terms of different metal ele-
ments and typical multidentate ligands. Moreover, the current challenges,
design strategies, future opportunities and further research directions are also
highlighted for metal-organic compounds in the field of supercapacitors.
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fossil fuels. In order to overcome these issues, one way is to
develop efficient, environmental-friendly and renewable
energy resources, while another is to explore technologies
associated with energy conversion and storage. Both the
intermittent nature of renewable energy sources (such as
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wind and solar power) and the transmission to the power
grid require the energy storage systems (ESSs) such as batte-
ries, fuel cells and supercapacitors (SCs).! SCs, with attrac-
tive properties of high power density, fast charge/
discharge rate, long cycle life and good electrochemical
reversibility, have bridged the power/energy gap (Figure 1)
between traditional dielectric capacitors (with high power
output) and batteries/fuel cells (with high energy storage)
and have found the potential application in portable elec-
tronic products, electronic communication, electric vehi-
cles, backup power storage, industrial energy/power
management devices, aerospace, etc.'>*?

A SC device comprises two electrodes, electrolyte (aque-
ous, organic, ionic liquid, solid, or redox active) and a sepa-
rator preventing the electrical contact between electrodes.
The electrodes can either be identical for the symmetric SCs
(SSCs) or different for asymmetric SCs (ASCs). The perfor-
mance of SC electrodes or SC devices is evaluated by a list
of electrochemical parameters such as specific capacitance,
cycling stability, energy density, and power density. In gen-
eral, the electrode performance is adjusted in three-electrode
system to optimize the working parameters before the actual
assembly of the SC devices (two-electrode system). The spe-
cific capacitance (gravimetric capacitance, C, in F g !, areal
capacitance, C, in F cm ™2 and volumetric capacitance, C, in
F cm ) of the electrode in a three-electrode system can be
either estimated by cyclic voltammetric (CV) method or
galvanostatic charge-discharge (GCD, also noted as
chronopotentiometry [CP]) method. The quantitative
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FIGURE 1 Ragone plot. Detail window shows energy drop due
to internal dissipation and leakage losses for sufficiently high and
low power. Reproduced with permission: Copyright 2000, Elsevier
Science S.A.

calculation equations (Equations (1)-(3) for CV method and
Equations (4)-(6) for GCD method) are shown below?*:

1
Co=—_|1(V)adv, 1
§ mxsxAV V) (1)
-1 |ivav 2)
“Ta, xsx AV ’
—— L _|iwav 3)
VU, XS XAV ’
I x At
=, 4
§ mx AV ()
I x At
== 5
T a, x AV (5)
I x At
=, 6
VT Ve X AV (6)

where [I(V)dV is the integral area of CV curve (A V), s is
the scan rate (V s~ '), AV is the total potential deviation of
the voltage window (V), I is the discharge current (A), At
is the discharge time (s), m is the mass of active material
on the electrode (g), a, is the electrode area (cm?) and v, is
the electrode volume (cm?). For the SC device in a two-
electrode system, the specific capacitance can be expressed
by the following equations (Equations (7)-(9) for CV
method and Equations (10)-(12) for GCD method)**:

1
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where [I(V)dV is the integral area of CV curve (A V), s is
the scan rate (V s~ '), AV is the total potential deviation of
the voltage window (V), I is the discharge current (A), At
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is the discharge time (s), m" and m~ is respectively the
mass of active material on the positive and negative elec-
trode (g), ay is the device area (cm®) and v, is the device
volume (cm?). The energy density (E, in Whkg ',
Wh cm ™2, or Wh cm™?) and power density (P, in W kg™,
W cm 2, or Wem ) of the SC devices are obtained by
GCD method and calculated by the following equations®*:

C x AV?
E=——"—", (13)
4x2x%X3.6
E x 3600
P=—"""—", (14)
At

where C is the specific capacitance (Fg', Fcm 2, or

F cm ), AV is the total potential deviation of the voltage
window (V) and At is the discharge time (s). The cycling
stability in both three- and two-electrode system is esti-
mated with the capacitance retention after a specific
charge-discharge cycle number by either CV or GCD
method. However, in a few cases, especially those for
battery-SC hybrid applications, the authors only reported
the specific capacity (in Cg '/Ccm ?/Ccm > or
mAh g~'/mAh cm™?/mAh cm ) of the electrode mate-
rials based on metal-organic compounds.>>>° Consider-
ing that the specific capacitance is the parameter
reported in the most research papers of SC discipline,
those literatures which only reported the specific capacity
of transition metal-organic compounds of the first transi-
tion metal series as SC electrode materials are not
included in this review. The stability (cycling stability,
chemical stability, thermal stability, etc.) of the electrode
material is also a critical parameter for the practical
applications. The cycling stability is usually evaluated by
the capacitance retention after a specific number of
charge-discharge cycles. However, the chemical and ther-
mal stabilities of SC electrode materials are rarely
reported in the previous literature reports.

Depending on the storage mechanism or cell configura-
tion, SCs can be classified into electrochemical double-
layer capacitors (EDLCs), faradaic pseudocapacitors and
hybrid supercapacitors (HSCs). The capacitance of EDLCs
originates from the ion adsorption and desorption at the
electrode-electrolyte interface without any electron transfer
process and the electrode materials of EDLCs are mainly
carbon-based materials with good conductivity and high
specific surface area.*”*! While Faradaic pseudocapacitors
store charges via reversible redox reactions with electron
transfer between the electrode and electrolyte, materials
showing pseudocapacitance are usually metal oxides/
nitrides/carbides/sulfides/phosphates/hydroxides, Prus-
sian blue and its analogues, conductive polymers and
sometimes functionalized porous carbon.**>° HSCs are

_WILEY_L 2%

the hybrid devices composed of an EDLC electrode and a
pseudocapacitive or battery type electrode, combining
the properties of both systems and leading to an interme-
diate performance in some cases."'* In general, pseudo-
capacitors can hold 10 to 100 times higher specific
capacitance values than EDLCs,"*"">> however, pseudo-
capacitors suffer from the poor mechanical stability due
to the swelling and shrinking of electrodes caused by
redox reactions and the low power performance as a
result of the slower Faradaic processes involved.>®
Metal-organic compounds refer to a class of chemical
compounds that contain metal ions and organic ligands.
Different from organometallic compounds, metal-organic
compounds do not necessarily involve the metal-carbon
bonds. As shown in Figure 2B, the metal-organic com-
pounds can be divided into molecular complexes and
metal coordination polymers, and typical structures of
metal coordination polymers of different dimensions are
demonstrated. It is worth noting that a previous paper
has reviewed the MOFs of different spatial dimensions
and their application in the SC field, and thus this paper
would not focus on the dimension effect of the metal-
organic compounds on the SC performance.”” The
metallation of the organic SC-electrode materials tends to
bring about better performances due to the following fac-
tors: (a) The metallation helps generate extra redox activ-
ities by charge transport of both the metal atoms and the
organic ligands. (b) Coordination compounds have wide
structural diversity derived from various coordination
number, geometry, and valence shell of the metal atoms.
Recently, metal-organic compounds based on the first
transition metal series have become one of the most pop-
ular candidates for high-performance active materials of
SC electrodes, owing to their desired properties as pres-
ented below: (a) Metal-organic compounds of the first
transition metal series possess advantages such as ease of
synthesis, low cost, controllable structure and wide struc-
tural diversity. Besides, metals in the first transition
metal series are non-toxic, less costly and abundant on the
earth. (b) Rich valence states of transition metals allow the
redox reaction activity and efficient electron transfer for
pseudocapacitive mechanism. (c) Porous structures can be
achieved by the tetrahedral or octahedral coordination
nature of transition metals and the usage of multidentate
ligands to form porous structures in metal coordination
polymers (especially in metal-organic frameworks, MOFs).
The EDLC mechanism benefits from this because more
channels for the transmission of ions during the charge-
discharge processes can be realized. (d) Compared to the
subsequent transition metal series, the first transition
metals have smaller molecular weights, which result in
higher specific gravimetric capacitance values. Figure 2A
illustrates the advantages of the first-transition metal-
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organic compounds as the SC electrode materials. Never-
theless, SC electrodes based on pristine metal-organic
compounds sometimes are confronted with weak cycling
stability and poor conductivity. To overcome these set-
backs, three strategies are generally adopted’®: (a) By pre-
paring metal-organic compounds of particular topologies
or architectures via various advanced synthetic technolo-
gies and solely applying them as SC electrodes to pursue
high performances. (b) By compositing metal-organic com-
pounds with conductive matrices (such as conductive
polymers or carbon-based materials) to afford better con-
ductivity and structural stability. (c) By utilizing metal-
organic compounds (especially MOFs) as templates or pre-
cursors to yield various materials (such as metal oxides/
nitrides/carbides/sulfides/hydroxides, porous carbon mate-
rials and multifold composites). The first two strategies
focused on the metal-organic compounds themselves as
SC electrode materials, while the last strategy converts
them into inorganic materials. It is worth mentioning that
there have been several reviews™® on the SC materials
that are derived from MOFs (such as carbon, metal oxides,
metal sulfides, metal hydroxides, etc.) and those reports
will not be covered generally in this paper.

To date, cobalt, nickel and copper have been the most
reported metal elements for pristine or composite SC
electrodes based on metal-organic compounds, not only
in the first transition metal series (Figure 2C) but also
among all metal elements in the whole periodic table.
However, there are no papers yet on scandium- and
titanium-organic compounds for SCs. Figure 3 depicts
the development history of SC electrode materials (I-XXT)
based on the metal-organic compounds of the first transi-
tion metal series, and some of the representative struc-
tures are given, with the years of their reports indicated.
In 2012, Diaz and coworkers firstly performed SC tests on
the known Zn/Co-MOF (I and II) materials, with a

dicarboxylate as the ligand.®® Subsequently, more metal-
organic compounds with various polycarboxylate ligands
(Figure 4A) and nitrogen-based bridging ligands
(Figure 4B) were applied in the SC field, and the metal
elements were gradually expanded to nearly the whole
first transition metal series. Gao's group firstly bridged the
zeolitic imidazolate frameworks (ZIFs) with the SC elec-
trode materials by preparing composites based on two
representative ZIFs (VI and VII) in 2014.°*% In the fol-
lowing year, Zhang and coworkers designed a zinc-
porphyrin monomer and prepared the SC electrodes by
the electropolymerization method to afford a conducting
metal-organic polymer (IX).” The metal-organic com-
pounds exhibiting the SC properties were extended to
those containing the Schiff-base ligands (XV),”> ferrocene-
based ligands (XVI)”® and polyoxometalates (POMs, XVII)”’
in 2017. From 2018 onwards, research interests of the
metal-organic compounds of the first transition metal
series began to move to the two-dimensional MOFs (eg,
XVIII, XIX and XXI) with planar polyamine and poly-
phenol ligands (Figure 9).”**° In 2019, there were three
reports concerning ferrocene-modified materials and all
of them showed great pseudocapacitive behaviors due to
the redox activities of the ferrocene components.”#!8
Previous reviews on SC electrodes related to metal-
organic compounds mainly focused on the MOF-based elec-
trode materials,*>"%*%% covering neither metal-organic
molecular complexes nor non-framework metal coordina-
tion polymers. In this review, both SC electrodes and device
performances of monometallic and bimetallic metal-organic
compounds from the first transition metal series and their
composites were comprehensively summarized for the first
time. Metal-organic compounds used in SC electrodes sorted
by different metal elements along with their representative
organic ligands are presented in the respective sessions. Our
discussion is further extended to various synthetic
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MOF-5 (I) and Co8-MOF-5 (II).* CoBDC(DMF) (III), [Co5(2,6-NDC)5(bipy);.s] (IV) and [Co(BPDC)(H,0),] (V).%” ZIF-8 (VI).*® ZIF-67
(VII).* MIL-100(Fe) (VIII).”’ (Zn-mTCPP), (IX).”! Co-LMOF (X).”? [Cu(Br,BDC),]H,(triethylamine), (XI) and [Co(Br,BDC)
(HCOO),(dimethylformamide),] (XII).”* DMOF-ADC (XIII) and DMOF-NDC (XIV).” Ni(salphen) (XV).” [Co4(FcDC)4(bipy).(H,0)s]
(XVI).”® (H,bpe)(Hbpe),[Cu(pzta)(H,0)][P;W1504,] (XVII).”” Ni-HAB (XVIII) and Cu-HAB (XIX).”® Ferrocene-functionalized reduced

graphene oxide (XX).”” Cu-DBC (XXI).*

technologies, molecular structures, material morphologies,
electrochemical mechanism, current trends, challenges,
and future opportunities of the metal-organic compounds
of the first transition metal series in the development
of SCs.

2 | MONOMETALLIC METAL-
ORGANIC COMPOUNDS AND THEIR
COMPOSITES

2.1 | Manganese

Manganese is one of the attractive metals in the first
transition metal series for ESS applications due to its
rich valence states. To date, various pure manganese
oxides (MnO,) have been directly used as electrode
materials.”*°® Meanwhile, the pseudocapacitive prop-
erties of manganese-organic compounds and their

composites (1-11) make them attractive materials for
SC applications,®”®* which may result from the sur-
face redox reactions of manganese ions in different
valence states.®® This conversion process in aqueous

electrolytes can be expressed by the following
equations:
Mn(II)+OH™ < Mn(II)(OH),4 +e", (15)
Mn(II)(OH),4 <> Mn(III)(OH) 4, +¢ ™. (16)

The electrodes and SC performances of manganese-
organic compounds are summarized in Tables 1 and 2.
MOFs with polycarboxylate ligands (Figure 4A), which
generally exhibit 2D or 3D layered structures with
[M,(COO),] nodes of paddle-wheel secondary building
units and r-conjugated bridging ligands (Figure 4B),”>%’
have aroused wide research interest as electrode
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TABLE 1 Summary of SC electrode performances of manganese-organic compounds
Composited Surface
Metal Ligand with area® Specific capacitance® Cycling stability®*® Electrolyte® Reference
Manganese polycarboxylate MOFs

1 Mn H,BDC — — 284Fg '@1Ag" — 1 M Na,SO, 87
432Fg ' @5mVs!

2 Mn H,BDC CNT — 2031Fg'@1Ag! — 1 M Na,SO, 87
206Fg '@5mVs!

3 Mn H,E,BDC, bipy — 17.08 m* g 1098Fg'@1Ag" 92.6% @2 Ag (20000 1MKOH 88
1178Fg '@1Ag! 94.6% @2 Ag ' (20000 1M LiOH

4 Mn H,BDC — 323m*g ! 1779Fg '@ 05A g " 1 M Na,SO, 89
1664Fg'@1mVs "

5 Mn H,BDC, tipa — — 1358Fg '@1Ag! 105% @ — (2000) 6 M KOH 90

6 Mn H,BDC Ko.sMn,0, — 611Fg'@1Ag" — 1M Na,SO, 91

7  Mn H,BDC Ko.sMn,04 — 704Fg'@1Ag" — 1M Na,SO, 91

8 Mn H,BDC Ko.sMn,0, 166.77m*g !  889Fg '@1Ag’ 90.5% @2 A g '(6000) 1M Na,SO, 91

9 Mn H,BDC Ko.sMn,0, — 2415Fg '@1Ag™! 1M Na,SO, 91

Others
10 Mn THPP-PA — — 9Fg '@25A¢g " — 1 M Na,SO, 92

81.1Fg '@1l0mVs!

Abbreviation: CNT, carbon nanotube.
“Determined by the Brunauer-Emmett-Teller (BET) method.

Obtained by either CP and GCD method at specific current densities or CV method at specific scan rates.
“Evaluated by the capacitance retention after a number of charge/discharge cycles, which are shown in brackets.

INormally in water except for those with special clarification.

materials for SCs. To the best of our knowledge, nearly
all reported manganese-organic compounds used as elec-
trode materials for SCs are Mn-MOFs with poly-
carboxylate ligands (1-9) and the highest value of C,
(1358 F g ') was achieved by a polythreaded Mn-MOF
(5) based on the ligands of H,BDC and tipa.”® The SC
electrode based on 5 exhibited no capacitance loss after
2000 charge/discharge cycles in 6 M KOH and an ASC
device with 5 as the positive electrode could deliver C, up
to 1146 Fg '. Another Mn-MOF (3) with poly-
carboxylate ligand (H,F,BDC) and bridging ligand (bipy)
also showed good SC electrode performance, with C, over
1000 F g~ ! in the base solutions (1 M KOH and LiOH).
Yao and coworkers presented an accessible strategy to
prepare vertically co-oriented K, sMn,0,@Mn-MOF
nanosheet arrays (6-9), with K,s;Mn,0, as both the
self-sacrificing template and precursor (Figure 5A),
which avoided the extra removal of the template and
the use of conductive agents in electrode preparation.”®
Ko.sMn,0,@Mn-MOF nanosheet arrays were prepared
by solvothermal method of different reaction times
(4, 6, 8, and 10 hours for composites 6, 7, 8 and 9,
respectively), and the optimized C, reached 886.9 F g !
(8). An as-assembled ASC device with 8 as a positive
electrode provided the maximum energy density and

maximum power density of 42.94 Whkg ' and
6493.51 W kg !, respectively.

Except for the manganese polycarboxylate MOFs,
there are two reports on manganese-organic compounds
with ligands of a poly(porphyrin) derivative (10)** and
p-phenylenediamine (11).”* Cheng and coworkers fabricated
an ASC device based on a novel Mn(II)-porphyrin polycon-
densation polymer THPP-PA-Mn (10, Figure 5B), which
could lighten a light-emitting diode (LED) for ~12 seconds
after being charged for 10 seconds by a 2 V direct-current
power supply (Figure 5C).”> Kannangara and coworkers
synthesized two layered MOFs, Mn-pPDA (11) and Ni-
pPDA (138), through a liquid-liquid interfacial reaction
method.” It was found that the ASC devices with 11 and
138 as positive electrodes could deliver C, of 109.3 and
184.7 F g, respectively.

2.2 | Cobalt

For SCs based on monometallic organic compounds, cobalt
is the most commonly used metal in the first transition
metal series.?>?7>0070972739713% qummarized in Tables 3
and 4 are the electrode and SC performances of cobalt-
organic compounds and their composites (12-92).
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TABLE 2 Summary of SC electrode performances of manganese-organic compounds

Positive electrode

Composited Negative Specific Energy density and Cycling
Metal Ligand with electrode capacitance® power density® stability™© Electrolyte? Reference
Manganese polycarboxylate MOFs
2 Mn H,BDC CNT 2 503Fg '@025Ag ' 69Whkgl@ 8% @5Ag " 1M Na,SO, 87
122.6 Wkg ! (3000)
13Whke' @
2240 Wkg ™t
4 Mn H,BDC — 4 645Fg '@025Ag" 43Whkgt@ 98% @ — PVA/Na,SO, 89
176 W kg ™! (2000)
5 Mn  H,BDC,tipa — AC 1146 Fg '@1Ag' 358Whkgt@ 85.6% @5Ag " 6MKOH 90
750 W kg™! (1000)
8 Mn H,BDC KosMn,0, WO, — 42.94Whkg ' @ N1%2@2Ag " 1M Na,S0, 91
1080.08 W kg™* (8000)

20.74 Whkg ' @
6493.51 Wkg™*

Others
10 Mn  THPP-PA — CNT — — 86.3% @S0 A g ' 1M Na,S0, 92
(3000)
11 Mn  pPDA — GC 1093Fg ' @025A g™ " 342Whkg* @ 97.45% @8 A g " 1MKOH 93
0.75 kW kg™ ! (5000)
13.3Whkg' @
6.0 kWkg™*

Abbreviations: AC, activated carbon; GC, graphite carbon; PVA, polyvinyl alcohol.

#Obtained by either CP and GCD method at specific current densities, or CV method at specific scan rates.
®Data of maximum energy densities and maximum power densities are underlined.

“Evaluated by the capacitance retention after a number of charge/discharge cycles, which are shown in brackets.
INormally in water except for those with special clarification.

(A) (M

R 6 85°C solvothermal

Pure nickel foam

Ko sMn,0,@Mn-MOF-8

R¥2rp

DINGGTAN INIVERNITY OF TRONMOOGY

@

FIGURE 5 A, Schematic
illustration of the synthesis of a
Mn-MOF composite (8).
Reproduced with permission:
Copyright 2020, American
Chemical Society.” B, The
structure of 10. Reproduced with
permission: Copyright 2019,
Elsevier B.V.%* C, Photograph of
a LED driven by an ASC device
based on 10. Reproduced with
permission: Copyright 2019,
Elsevier B.V??
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FIGURE 6 A, Schematic illustration of electrochemical deposition of PPy films using pyrrole and CoN, complex (12). Reproduced with
permission: Copyright 2021, Springer Nature Limited.”® B, Schematic illustration of the synthesis route of the 2D-MOF/rGO (86-89) and
fabrication of the flexible 2D-MOF/rGO hybrid through an electrostatic self-assembly route. Reproduced with permission: Copyright 2018,
The Royal Society of Chemistry.'*? C, Integrated micro-SCs and two SCs mounted into a printed circuit board to power up an LED.

Reproduced with permission: Copyright 2018, The Royal Society of Chemistry

Polycarboxylate ligands (13-55, 86-89) and
3-methylimidazole (56-78) are two species of the most com-
mon ligands used in cobalt-organic compounds which
exhibit SC properties. Similar to manganese-organic com-
pounds, the pseudocapacitance of cobalt-organic com-
pounds can also be ascribed by their surface redox
reactions,”” and their conversion process in aqueous electro-
lytes can be expressed by the following equations:

Co(IT), +OH " « Co(II)(OH),, + ¢, (17)

Co(II)(OH),4 < Co(III)(OH),; +€~. (18)

Parnell and coworkers first studied a conductive
electrode film (Figure 6A) using macrocyclic Co(III) Ny
complex (12) and PPy by electrodeposition which dem-
onstrated a superior SC performance,”® which reached
a high C, value of 721.9 F g~! in acid electrolyte
and exhibited high cycling stability with 93% retention
after 500 cycles. So far, this was the only work which
reported the application of molecular cobalt-organic
complex in SCs.

132

Cobalt polycarboxylate MOFs are the most popular
cobalt-organic compounds as electrode materials in
SCS.25'27’50’67’72’73’97’99-116’132 HZBDC (Figure 4A) is one Of
the most typical polycarboxylate ligands and has been
widely used to fabricate SC electrodes based on Co-MOFs
and their composites (13-16, 18, 19, 25). In 2012, Lee and
coworkers first reported Co-BDC MOF (14) which
showed the high cycling stability with only 1.5% capaci-
tance loss after 1000 cycles.”® They further extended the
ligands to H,NDC (20) and H,BPDC (21) in 2013 and rev-
ealed that the molecular length of organic linkers can be
used to manipulate the pore size, surface area and C,
value of MOFs.*” More impressively, Yang and coworkers
reported a layered Co-BDC MOF (15) with nanosheet
morphology showing an ultrahigh C, of 2564 F g~ 1.'*' To
further evaluate the practicality of Co-BDC MOF, Zhu
and coworkers fabricated an ASC (Co-MOF/NF//AC) by
employing Co-BDC (18) as the positive electrode and AC
as the negative electrode, which delivered a high energy
density of 1.7 mWhem 2 at a power density of
4.0 mW cm 2 with a capacitance retention of nearly
69.70% after 2000 cycles.'”> Another typical polycarbox-
ylate ligand is H3;BTC (36-46). Punde and coworkers
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synthesized highly porous Co-BTC MOF (36) and pre-
pared their hybrid composites (37) with graphene
nanosheet.'” A SSC device was assembled from two
identical electrodes made of 37 and provided a maximum
energy density of 49.8 Wh kg ' at a power density of
1025.8 kW kg ', while the energy density remained to be
26.7 Whkg ! along with a higher power density of
2049.7 W kg 1.’ Ramachandran and coworkers demon-
strated a systematic investigation on the synthesis of
Co-BTC MOFs (38-42) of different structures and sizes in
various solvents,'’® and Xuan and coworkers conducted
another systematic study of temperature influence on the
synthesis of Co-BTC MOF (43-46)."'" Among the system-
atic studies on Co-BTC MOFs, it manifested that there is
a positive correlation between specific capacitance and
surface area of the MOFs when they were synthesized
under similar conditions.

Meanwhile, H,BDC and H;BTC derivatives
(Figure 4A) also have attracted wide research interest as
ligands for the synthesis of Co-MOFs, which exhibited
excellent SC performances (17, 20-24, 26-35, 47-55). A 2D
layered Co-MOF (24) with H,F,BDC (Figure 4A) ligand
reported by Liu and coworkers reached a high C, value of
2474 F g > Dong and coworkers synthesized five Co-
MOFs (26-29) based on 3,6-bis(benzimidazol-1-yl)
pyridazine and different polycarboxylate ligands by
changing the reaction conditions and studied their molec-
ular structures and electrochemical behaviors.'”® Wang
and coworkers reported another Co-MOF with H;TATB
(Figure 4A) ligand and found that the electrode with
nanorod Co-MOF (50) could deliver a higher C,
(2405 F g ") than that of the bulk crystal state (49,
323 Fg ).""* Wang's group also synthesized a series of
interpenetrated and extended 2D layered Co-MOFs (51-
53) by using H;TATB and varying the flexible N-donor
ligands and inorganic anions."'> The maximum C, of the
electrode based on 51 reached 2572 F g_l, which, to
the best of our knowledge, has been the highest value so
far among all the cobalt- and other metal-organic com-
pounds. The capacitance of pristine 51 was comparable to
the recently reported Fe-, Ni- and Co-coordination poly-
mer electrodes, and also superior to those of the reported
metal oxide electrodes and hybrid electrodes which were
derived from metal-coordination polymers. Cheng and
coworkers fabricated bending-tolerant and highly con-
ductive 2D-MOF/rGO papers through the electrostatic
self-assembly of intrinsically electronegative GO sheets
and electropositive MOF sheets (86-89, Figure 6B).'*?
More importantly, the all-solid-state ASCs based on 86
to 89 offer high editability and bending-tolerance prop-
erties, and perform very well under various severe con-
ditions, for example, when they are being seriously cut,
bent and heavily loaded. In this work, two integrated

devices composed of the comb-like ASCs were con-
nected with a LED in series, and the SCs could power
up the LEDs to deliver a dazzling light after being
charged for several seconds (Figure 6C).

Another popular type of Co-MOFs is ZIFs which
show an attractive electrochemical property. They are
ideal for the storage of charges in the electrical double
layer due to their intrinsically high surface area and the
combination of the advantages of MOFs with high stabil-
ity and framework diversity.®*'!” ZIF-67, a Co-MOF with
the linker of 3-methylimidazolate (mIM), and its compos-
ites (56-78) have gained an increasing attention in recent
years for the application in SCs.*®**”*?® In 2016, Worrall
and coworkers reported the pristine ZIF-67 (56) with a
high surface area of 1521 m* g~ as electrode materials
for SC application,'’” which has exceeded the surface
areas for other Co-polycarboxylate MOFs from 1.81 to 1192.9
m” g '. Gao and coworkers first reported the SC electrode
performance of two ZIF-67 composites (57 and 58) with
nickel-based inorganic salts (Ni,CO;(OH), and NiC,0,),
both of which had the surface areas over 200 m* g~ ' and
delivered the C, values over 1000 F g "**'"® Wang and
coworkers developed the flexible composites (63-65) of PANI,
CNT and ZIF-67 as SC electrodes, which owned the advan-
tages of good electroactivity, high electroconductivity and
hierarchical porous nanostructures.'** Notably, 65 as elec-
trode materials presented an ultrahigh C, of 3511 mF cm 2
at 10 mV s, which are so far the highest C, value among
all reported Co-MOFs. Another ZIF-67 composite without
the CNT component, abbreviated as PANI-ZIF-67-CC (60),
also delivered a high C, value of 2146 mF cm™ 2" Xu and
coworkers synthesized a series of ZIF-PPy composites (66-69,
Figure 7C) with different mass ratios of ZIF-67 and PPy
tubes.'”® Although the surface areas of these composites
decreased (1545.2, 1168.1, 877.4 and 518.8 m* g~ * for 66, 67,
68 and 69, respectively) with the increase of PPy tube mass
ratios (17, 28, 37 and 49% for 66, 67, 68 and 69, respectively),
the sample with the highest C, (67) was not the composites
with the highest surface area (66). It was assumed that the
pseudocapacitance of PPy tubes would be hardly affected
before and after interweaving the ZIF particles, because the
ZIF-67 particles do not change the structural and intrinsic
properties of PPy tubes as the PPy tubes just serve as the sup-
port for the growth of ZIF-67 particles, and there are no
strong chemical interfacial interactions between PPy tubes
and ZIF-67 particles.'** This work demonstrated that the
capacitance of ZIF-67 can be increased remarkably after inte-
grating with PPy tubes, and the value can be maximized by
adjusting the proportion of the PPy substrates. Another ZIF-
67 and PPy composites were reported by Liu and coworkers,
where the CC/ZIF-67/PPy composite (74) electrodes were
prepared through electrochemical deposition technology.'*®
Impressively, the capacitance retention of electrode based on
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FIGURE 7 A, The structure of the (A) N B .
monomers CoTBImPc (82) and /( ~ @
CoTAPBImPc (84)."*! B, Synthesis of HN KN e N X/N -~
N N
PiCBA (92) through the coordination = [f?,( ‘Q\/\ n Ev/ / Q\ [? ,4\‘&\/)
reaction between isocyanide and cobalt \\/&T’N\Ti\/g// N ’ \X//‘ N ‘:/*(/ N
. . =N_ N =N_ N
ions (R = COOC,Hs) and TEM image of N, /\Co/ N N tCO/\ N
92 on a copper grid. Reproduced with \r\i \j\/l/ 2‘!\{ ?/1/
permission: Copyright 2017, Wiley-VCH A /Q’N/‘{“ N /(j/ NN e
7\ T N\= = 7 T N\= = 7 W
Verlag GmbH & Co. KGaA,  —NH }\ L . 'Lvl
Weinheim.'** C, Schematic illustration N ;T : (} N ;N
of LBL fabrication of 92 on Au 82 W Y ? V>
interdigital electrodes. Reproduced with
permission: Copyright 2017, Wiley-VCH B)
Verlag GmbH & Co. KGaA, el R e
Weinheim!3* co él%o%m GO Os N:&%o
o N®o N R R N
0 8 0~ RyrR R¢rR
COCIZ 2
O Interface : PiCBA :
N0, [N O~ & P R 5 i) g
© Ne® MR RN
iCl. c
iCBA Eseta-CI0) 09 oot

(C)@

Silicon water

i)l
Pt

74 was found to be 100.7% after 40 000 cycles, exceeding
their original capacitance. An optimized specific capacitance
after ~5000 cycles and high long-term cycling stability after
40 000 cycles for 74 as the electrode materials can be real-
ized. The PPy not only firmly adheres to the interspace of
CC/ZIF-67 particles, but also forms a thin film on the sur-
faces of ZIF-67 successfully. The relatively low capacitance
before cycles can be explained by the assumption that some
Co”*" may be entrapped by the PPy film in a deep position
and released as the charge/discharge test begins.'*® Sundriyal
and coworkers found that the ZIF-67/rGO composites (72)
could deliver over 10 times higher capacitances with an opti-
mized redox additive electrolyte (562 Fg ' at 5 mVs ')
than that in the simple aqueous electrolyte (46.5 Fg ' at
5mV s ")."* Moreover, 72 can realize a high C, value more
than 1500 F g~ when tested by the CP method at a current
density of 45 A g .

Besides Co-MOFs with  polycarbonate and
imidazolate ligands, there are also reports on cobalt

i) g H g

x10

= \
? Profile 'y

§ ;3 4 % 4748 §
b Au | b Au 4 3 Au 4

coordination polymers based on POMs (79-81),'*

phthalocyanine-derivatives  (82-85, Figure 7A),'*
1,2,4,5-benzenetetramine (BTA, Figure 9; 90 and 91),"**
and diisocyano (92, Figure 7B)'** ligands. Hua and
coworkers reported that a facile method can be used to
construct large scale and highly oriented uniform coordi-
nation polymer (Co-BTA, 90 and 91) thin films.'** The
symmetric micro-SC based on Co-BTA showed a high C,
of 231 Fcm ® on rigid Si substrates (90) and
22.0 F cm ™ on flexible polyethylene terephthalate sub-
strates (91). Another attempt to fabricate on-chip
micro-SCs based on Co-MOF was conducted by Yang
and coworkers."** The micro-SC based on cobalt coor-
dination polymer frameworks PiCBA (92, Figure 7B)
prepared by a layer-by-layer approach (Figure 7C)
exhibited an ultrahigh C, of 34.1 F cm >, which are the
highest C, among all SC devices based on metal-
organic compounds, as well as the highest C, among
all reported polymer-based micro-SCs.
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(A) 25 (D) FIGURE 8 A, Cyclic
& 2.0 — voltammetry of an ASC (95)
518 — 1::. with three bending modes
é 1.0 (insets). Reproduced with
E. 0.5- permission: Copyright 2016,
% 0.0 The Royal Society of
2 05 Chemistry."*’” B, Photograph of
§ '1' : 90° 180° a red LED powered by two ASC
o ] 0° o~ C‘ devices in series. Reproduced
:z P Y N | with permission: Copyright

010 OI2 0:4 0:6 0:8 1:0 1t2 14
Potential / V

2018, Elsevier Inc.'** C,
Schematic illustration of the
synthesis process of Ni-MOFs
and wireframe view of 3D Ni-
DMOF-ADC (110). Reproduced
with permission: Copyright
2016, Elsevier Ltd.”* D,
Schematic illustration of the
left and right helical channels
in different directions and the
3D framework helical channels
of Ni-MOFs (111 and 112).

Reproduced with permission:
Copyright 2017, Elsevier B.V'*

OH
NH, oH 5
O NH; OH OH
NH, NH, HoN HO O HO ‘O -
R (] 94
z Z HN O HO O HO O
HoN NH, NH, OH OH
NH;  HN  NH, NH, NH; OH OH
pPDA BTA HAB HITP CAT (or HHTP) DBCO
FIGURE 9 Polyamine and polyphenol ligands used to construct metal-organic compounds as SC electrode materials
Ni(II);+OH™ < Ni(II)(OH),4 +¢", (19)
2.3 | Nickel
Ni(II)(OH),4 < Ni(III)(OH),4 +e". (20)

Nickel-organic compounds and their composites with
polycarboxylate (93-116), polyamine or polyphenol (117-
127, 134-138) and others (128-133, 139) have drawn
increasing attention in the field of SCs in recent
yearS.25’32’74’75’78’93’102’108’116’135_158 Tables 5 and 6 llSt the
electrode and SC performances of nickel-organic com-
pounds. The conversion process of surface redox reac-
tions for nickel-organic compounds can be expressed by

the following equations'*':

So far, there are still no reports on the SC properties of
nickel-organic molecular complexes. Similar to Co-MOFs,
Ni-MOFs with polycarboxylate ligands (Figure 4A) and
their composites (93-116) are the most studied and
reported. A Ni-BDC-based ASC (128) showed high
gravimetric energy density of 135.84 Whkg™!, and
another Ni-BDC-based ASC (94) achieved a high
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FIGURE 10 A, Schematic illustration of
the fabrication process of LSG/Ni-CAT MOF
hybrid SC and structure of LSG/Ni-CAT MOF
(117). Reproduced with permission: Copyright
2019, WILEY-VCH Verlag GmbH &

Co. KGaA, Weinheim.'* B, Schematic
illustration of the molecular structure of
Ni5(HITP), (125) and relative size of pores'®

FIGURE 11 A, Synthesis of radical (A)
COFs (131 and 132). Reproduced with
permission: Copyright 2015, WILEY-VCH

Verlag GmbH & Co. KGaA, Weinheim.'> B, Q :Qa./ K o
~
The structure of [Ni(salphen)],, (133)”* and i T ij?nf

[Ni(salen)], (139).2°8 C, A dual anode and
dual cathode setup proposed for the -
assembled ASC laboratory model. The dual '

+
anode: 139 (1) and PPy (2). The dual cathode: X = 50: [HC=Clogg- NIP-COF
poly(Ceo-Pd) (3) and PPy (2'). Reproduced nr&/ 7 .
+

Y
X = 0:NiP-COF

with permission: Copyright 2018, Elsevier
Ltd.'*®

~
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FIGURE 12 A, A spinning motor (A)
powered by rGO/HKUST-1 SSC (140) over
9 minutes. Reproduced with permission:
Copyright 2015, Elsevier Ltd."*® B,
Schematic synthesis of the HUST-1/rGO
hybrid (145). Reproduced with permission:
Copyright 2016, The Royal Society of
Chemistry.'®' C, A green and a red LED
lightened by an ASC (148) for 3 and

5 minutes, respectively. Reproduced with
permission: Copyright 2018, Elsevier
B.V.'®* D, Schematic diagram of the
formation mechanism of HUST-1 (149-152)
at different temperatures. Reproduced with
permission: Copyright 2017, Elsevier
B.V164

gravimetric power density of 19.2 kW kg~ '."**'® These
are the best performance data among all the SCs with the
electrode materials made of nickel-organic compounds,
and are far higher than the highest gravimetric energy
density (50.30 Wh kg~ ') and power density (9071 W kg™ ")
of the Co-MOFs.'””'* Yan and coworkers assembled a
flexible solid-state accordion-like ASC device on Ni-BDC
MOF (95), which exhibited excellent mechanical flexibility
with a bending angle in the range of 0° to 180°
(Figure 8A)."” Du and coworkers fabricated a series of
novel hierarchical porous Ni-BTC MOFs (104-107) by a
facile hydrothermal process with different ratios of H;BTC
and nickel ions, and the ASC device based on 105 could
light up a red LED (Figure 8B).*** Qu and coworkers syn-
thesized three novel water-stable pillared Ni-MOFs (110,
Figure 8C) with good stability heritage and directly applied
as SC electrodes without morphology modification.”* The
ASC device with 110 as the positive electrode exhibited
high cycling stability, with only 2% loss of capacitance
after 16 000 cycles. Wang and coworkers introduced two
topological and isostructural 3D Ni-MOFs (111 and 112)
with novel 1D helical channels as the SC electrodes, which
were synthesized by a rigid tripodal ligand (H;TATB,
Figure 4A) and a flexible secondary linker (Figure 8D).'**
The highest C, of nickel polycarboxylate MOFs reached
2280 F g~! (115), which is also the highest value for the

FUNGTIONAL MATERIALS FOR GREEN ENERGY AND ENVIRONMENT

(B)

*Na0. 0

Cu(NO;), =+

O'Na* (o}

pe o F
¥ ;HJ
P 5 P 25
L N Nl Bl

@ «

Cu-MOF
‘ Ultrasonic

Cu-MOF/rGO hybrid

nickel-organic compounds.'’® Another Ni-MOF (97)
with H,BDC ligand also afforded a high C, value of
2192.4 F g '.*® These values are comparable to the
highest C, of Co-MOFs (2572 F g%, 51).

The ligands of polyamine and polyphenol (Figure 9)
are also popularly used to construct 2D Ni-MOFs (117-
127, 134-138) in recent years.”®?>*>151157 Iy addition to
the common properties of ultrahigh surface areas and
larger interior layer-spaces and so forth, these sheet-like
2D materials deliver versatile performances owing to
their distinctive inner structures and compositions.”” Wu
and coworkers prepared MSCs by using Ni-CAT MOF
(117) to grow selectively on patterned 3D laser-scribed
graphene (LSG) electrodes through a combined laser-
scribing and a selective solvothermal deposition process
(Figure 10A)."*° Li and coworkers fabricated a hierarchi-
cal electrode material with Ni-CAT/NiCo-LDH/NF (119),
which delivered a high C, (3200 mF c¢cm ?) by taking
advantage of the regular nanostructure and making full
use of the high porosity and excellent conductivity of the
material.’*® Zhou and coworkers fabricated continuous
Ni;(HITP), MOF (123 and 124) nanolayers on the surface
of CNFs by the interfacial synthesis, and a SSC based on
CNF@Ni-HITP (124) provided an ultrahigh C, of 2800
mF cm >.'*® Sheberla and coworkers reported a highly
conductive Niz(HITP), MOF (125), which is penetrated
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FIGURE 13 A, Schematic
illustration of the synthetic
process of NENU-5/PPy-n (161-
163). Reproduced with
permission: Copyright 2018,
American Chemical

Society.'”® B, Schematic
illustration of the possible
mechanism for the cooperative
capacity of 161 to 163.
Reproduced with permission:
Copyright 2018, American
Chemical Society.!” C,
Experimental routes for two
series of Cu-POMOFs.
Reproduced with permission:
Copyright 2018, Wiley-VCH
Verlag GmbH & Co. KGaA,
Weinheim.'® D, Three direct
modes of POM building blocks.
Reproduced with permission:
Copyright 2018, Wiley-VCH
Verlag GmbH & Co. KGaA,

Weinheim'®

by 1D cylindrical channels of ~1.5 nm diameter."* The
Ni;(HITP), combined the advantages of high surface
area, excellent electrical conductivity and large open
channels that could enable the swift movement of elec-
trolytes, suffering only minimal volume changes on
repeated charge/discharge cycles (Figure 10B). Feng and
coworkers developed a highly conductive and dense 2D
Ni-HAB MOF (126), which exhibited exceptionally high
C, of 760 F cm >, superior to those of all metal-organic
compounds.”® Thanks to the small particle size of Ni-
HAB, even with an increase in the thickness of the elec-
trodes up to 360 pm, the C, value did not show a plateau
and reached a value of 23 F cm ™2 To clarify how the ions
transport and to predict the corresponding potential-
dependent capacitance in characteristic shapes, Bi and
coworkers performed the constant-potential molecular
dynamics (MD) simulations to analyze the double-layer
structure and capacitive performance of SCs composed
of Ni-MOFs electrodes (127) and room temperature
ionic liquids (RTILs)."** Modeling results revealed that
these MOF/RTIL-based cells could exhibit superior
performance to most carbon-based devices, which sug-
gests promising avenues for designing SCs with both

high energy and power density. Nguyen and coworkers
developed a new approach for the fabrication of
Ni;(HITP), SC material (137) by electrophoretic depo-
sition technology, and the assembled SSC showed
exceptionally ultrahigh cycling stability with a reten-
tion of about 84% after 10’ cycles.'”’

Except for Ni-MOFs with polycarboxylate, polyamine
and polyphenol ligands, there are also some reports on
other nickel-organic compounds in the SC application
(128-133, 139). Xu and coworkers synthesized 1D nickel
hydroxide nanorods (129) based on SA via a facile hydro-
thermal process and used as electrode materials for
SCs,">* which provided a high C, over 1600 F g~', with
only ~5% loss of capacitance after 1000 cycles. A facile
and general strategy was developed by Xu and coworkers
that enabled the conversion of a conventional nickel-
based covalent organic framework (COF) into an out-
standing redox-active energetic framework (131 and 132,
Figure 11A) by the channel-wall functionalization.>> The
conventional imine-linked COFs 131 and 132, as a scaffold
with nickel-porphyrin at the vertices and ethynyl units on
the channel walls, turned out to be electrochemically inac-
tive. Accomplishment of the click reactions
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FIGURE 14 A, Chemical (A)
and crystal structure of CuDEPP

(191).%% B, Mesomeric

transformations of 191.

Reproduced with permission:

Copyright 2017, Wiley-VCH

Verlag GmbH & Co. KGaA,
Weinheim.'®* C, Schematic (C)
illustration of the electrophoretic
deposition of Cu-TCPP and
electropolymerization of PPy

(188). Reproduced with

permission: Copyright 2019, The

Royal Society of Chemistry.'®! D,
Schematic illustration of the

synthesis of MXene/MPFs (187)

films through a vacuum |
filtration method. Reproduced

SPFEFENR

2RERRE Pby

FEERRE
ERRRERE
W

Cu-TCPP/PPy

with permission: Copyright
2019, WILEY-VCH Verlag
GmbH & Co. KGaA,

Weinheim'®° i ﬁ ﬁ

FE ottt —

% Cu-TCPP Cu(COO),

e . -
-
. *®
¢« ® e ®
°®

functionalized the [HC=C]x-NiP-COF with organic
radicals into [TMEPO]x¢-NiP-COF that enhanced the
electrochemical activities. These results indicate that
the strategy of post-synthetic wall engineering is useful
to convert a conventional COF into radical frameworks,
in which open accessible polyradicals are covalently
immobilized on the channel walls in a controlled manner.
Lepicka and coworkers prepared a redox conducting poly-
mer (139, Figure 11B) by electropolymerization under
potentiodynamic conditions.*® The polymer 139, together
with two polymers (poly(Cgo-Pd) and PPy), were combined
to devise a laboratory model of a new ASC with a dual
anode and a dual cathode (Figure 11C). This ASC
exhibited a largely extended voltage operation in the range
of 0to 2.2 V.

24 | Copper

The electrode and SC performances of copper-organic
compounds are listed in Tables 7 and 8. So far, reported
copper-organic compounds and their composites with
SC properties can be divided into copper carboxylate

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

R2 R2 R2 2-

D)

B +

Hydrothermal _

Cu-TCPP MPF

Etching é Sonication

TiyC,T,

H,TCPP

Vi

Ti;AIC, MXene

Mixing

MOFs (140-157), copper polyoxometalate organic
frameworks (Cu-POMOFs, 158-176), copper polyamine
or polyphenol MOFs (177-183), copper porphyrin com-
pounds (184-188), etc. Copper can exhibit electrochemi-
cal activity through the redox reaction between Cu(0),
Cu(I), and Cu(II), and its organic compounds have been
widely studied in SCs.”>7778:80:116.139-183 Relevant con-
version process can be expressed by the following
equation5164’167’174:

Cu(I){+OH™ <> Cu(I)(OH),4 +¢", (21)
Cu(Il){+OH™ < Cu(II)(OH), 4 +e, (22)
Cu(I)(OH),4 <> Cu(II)(OH), 4+ €7, (23)
Cu(II)(OH),4 < Cu(IIT)(OH) 4 +¢ ™. (24)
Among copper polycarboxylate MOFs (140-157),

HUST-1 (also known as MOF-199, 140-153) with H;BTC
ligand showed interesting behavior in the electrochemically
based SCs due to its large surface area and high pore
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volume.”>>*1%8184 Srimuk and coworkers firstly studied

g the HUST-1 as the active material for SC electrodes.'® The

%’ v W 25 N _ as-assembled flexible all-solid-state SSC based on

- oo = - - = rGO/HUST-1 composites (140) exhibited a high C, of

193 Fg ! and could supply the electricity to a spinning

s motor over a 9-minute discharging time (Figure 12A). Saraf

2 and coworkers further improved the SC performance with

. Ew rGO/HUST-1 (145) by using a facile ultra-sonication

3 ez _ E assisted synthetic method (Figure 12B).'®" The slow diffu-

£ gL o ; sion grown powder of HUST-1 showed a remarkable sur-

é == = = = = face area of 1316.246 m> g ' and their rGO composites

provided a maximum C, of 685.33 F g . Moreover, Jafari

and coworkers assembled an ASC device with HUST-1/

:g: PANI composite (148) as the positive electrode, which could

25 & lighten up LEDs over 3 minutes without recharging

2 8 (Figure 12C)."®* A systematic investigation of mixed phases

g E of HUST-1 was carried out by Ramachandran and

g’ & coworkers, in which the HUST-1 (149-152) were prepared

5 I § | by water as the only solvent at different temperatures

(90°C, 120°C, 150°C, and 180°C for 149, 150, 151, and 152,

respectively).'® It was found that the higher temperature

3 T o TE weakened the electrochemical performance due to the less

-, _ 8 7 z T, z < faradaic redox reaction from the surface of a specific phase,

% , ‘; :é z S % 9 E Y and the large void space in HUST-1 electrode could

5 T Ees T© é N‘@ 7‘© < improve effectively the electrolyte ions transport and fur-

& ® © TE ® 5 - g E @ g nish the superior electrochemical performance

g Ty o = ‘:f CR 5 E o0 3 (Figure 12D). Besides, Liu and coworkers prepared a 2D

8 = -8<2383 5 £2 copper-based layered coordination polymer (154) with

2 Tem e T - 5 é H,F,BDC and hmt as mixed bridging ligands.'®® The

2 2 Cg of 154 were found to be 1274 and 1102F g in

§ p - - EE 1 M LiOH and KOH, respectively, and similar CV

é 5 o8 o0 = 23 curves with a pair of similar redox peaks were

g 8 ﬁ 5 E g 2 observed from the CV curves in both aqueous elec-
S ¥ g8 2 2 g o i

o @ [ N 2 = 2g trolytes, which indicated that the pseudocapacitive

§D S §D behaviors were mainly associated with the redox

E . 5 2 reactions.

g 4 E ;é 3 Another important type of copper-organic compounds

s 5 & 58 is the POMOFs that has attracted recent research inter-

g E S o £35 8 ests in the field of SC (158-176).2%3877:169174 pOMOFs

£ § § § % g é have many exceptional advantages for SC applications,

‘g § g E g E £ § ‘:S such as long cycling life due to their poor solubility in

= 2 = § water and in common inorganic and/or organic solvents,

é % ‘_2 £ &  and crystalline forms which are suitable for investigating

% g % % s % § g their effect on SC properties. Wang and coworkers first

SN % i % % % = 2 £ % realized the modification of SC electrodes by using

3 = EL0O g = POM-based coordination polymers (158). It was

) é % % g3 % assumed that the improvement of conductivity of Cu-

é § 3 % £B § g MOFs with mixed N-donor ligands (pztaH and bpe,

s = ES 8§ 8§ & & § 32228  Figure 4B) was realized by the introduction of Wells-

o % {‘2‘ ‘E g, E» Z Dawson-type POM (a-K¢P,W150g,) into the long range

3 E N o o . ° o }g é 3 E:; = order structure, because part of the electrons on

“ E A AR A A § n Ess 3 E the localized state may turn into the extended state so

> TRLRE that the conductivity mechanism is transformed from
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Energy density and
power density®

Composited Negative
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Reference

Cycling stability™ Electrolyte®

Specific capacitance®

electrode

with

Ligand

Metal

Others

198

1 M KOH

96.2% @ — (2000)

20086 Fg '@1Ag ' 62.75Whkgt@—

GC

pPDA

210 Zn

— @4501.1Wkg !

198

1 M KOH

96.81% @ — (2000)

57.52Whkg ! @ —

1841Fg '@1Ag!

GC

pPDA

211 Zn

— @ 4499.03Wkg L

198

1 M KOH

96.79% @ — (2000)

5225Whkgt @ —

167.3Fg '@1Ag!

GC

pPDA

212 Zn

— @ 4498.92Wkg 1

#Obtained by either CP and GCD method at specific current densities, or CV method at specific scan rates;

®Data of maximum energy densities and maximum power densities are underlined;

“Evaluated by the capacitance retention after a number of charge/discharge cycles, which are shown in brackets.

YNormally in water except for those with special clarification.

the hopping to the drifting transport.”” A series of
HUST-1-based POMOF composites (NENU-5/PPy-n,
161-163) with different PPy doping ratios were
reported by Wang and coworkers.'”® Figure 13A,B
illustrate the synthetic process and possible mecha-
nism for the cooperative capacity of NENU-5/PPy-n
composites, respectively. More impressively, the elec-
trode materials of NENU-5/PPy-0.15 composite (162)
exhibited a high C, of 5147 mF cm %, and the as-
assembled all-solid-state SSC device can provide a C,
value of 1879 mF cm 2. To our best knowledge, these
C, values are the highest among all the SC electrodes
and devices based on the metal-organic compounds.
Meanwhile, introduction of proper organic nitrogen
elements into the Cu-based POMOF is believed to
improve its conductivity.'®*>'®® One of the popular N-
donor ligands is btx (Figure 4A).'**'’"72 Chai and
coworkers synthesized two Cu-POMOFs (159 and 160)
based on Keggin-type POM H,SiW;,04 and
(NH4)6W1,04 via regulating the amount of
triethylamine in the POM/Cu/btx reaction system
(Figure 13C).'® They also studied the relationship
between crystal structure on the molecular level and
their capacitance performance. It is deduced that the
different capacitances may be dominated by the modes
of direct connection between POM building blocks and
covalent networks. Figure 13D shows three direct
modes of POM building blocks in the two series of
POMOFs. For the modes 1 and 2, two isolated poly-
oxoanions are linked together through sharing Cu cat-
ions to form extended 1D lines or 2D sheets, which can
effectively promote the electron transfer between adja-
cent POMs. However, electrons cannot transfer effec-
tively between POMs in mode 3 due to the additional
insertion of the non-conjugative Cu-btx subunits."®
Afterwards, Chai's group further synthesized three
new POMOFs (164-166) based on Keggin-type POMs
with different Cu(I)/Cu(II) complexes and the btx
ligand.'”" It was found that the POMOFs with fully
oxidized metal atoms ([PW"',04]°" in compound
1 and [PMo""},04]°" in compound 4) tended to pro-
duce higher capacitance than that of the POMOFs with
partially reduced metal atoms ([PW"';,W",04,]°" in
compound 2, [PWY4WVY;0,4,]°" in compound 3 and
[SiMo";:M0Y0,0]°~ in compound 5). Similar phenom-
enon was also found in Chai's other work (167 and
168),"”> and these results indicate that the fully oxi-
dized Keggin POMs can provide a higher oxidation
capacity. Wang and coworkers constructed two layered
Cu(I)-based POMOFs (171 and 172) with f-[MogO,]*~
polyoxoanions and flexible bnie (Figure 4A) linker.'”*
Both SC electrodes fabricated with 171 and 172 showed
a poor cycling stability with nearly half of the
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ZnO/CC

FIGURE 15 Schematic
illustration of A, the fabrication
process of the PANI/ZnO/ZIF-8/
G/PC electrode material (194).
Reproduced with permission:
Copyright 2018, Elsevier

Inc.'®® B, the fabrication process
of the PANI/ZnO@ZIF-8-CC

electrode material (196).

ZnO/ZIF-8/CC

ZnO/ZIF-
8/PANI/CC
Reproduced with permission:

Copyright 2019, The Royal
Society of Chemistry."®” C, The
electropolymerization process
and the possible ion transmission
mechanism of the poly(Zn-
mTCPP) (197). Reproduced with
permission: Copyright 2015,
WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim”*
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capacitance loss after 5000 cycles. In order to solve this
problem, the conductive carbon-based matrix (such as
CNT or GO) was introduced to POMOF materials (173-
176). The resulting four composites with POMOF/car-
bon all exhibited high capacitance retention exceeding
100% after 5000 cycles, and the capacitance still
remained ~100% after 8000 cycles.

There are also several SC reports on Cu-MOFs with
polyamine and polyphenol ligands (177-183).7%80175178
However, the SC electrode performances of these Cu-
MOFs are not comparable to those of the Ni-MOFs with the
same polyamine or polyphenol ligands. For instance, the
highest C, and C, of Ni-CAT-based electrodes are 2133 F g~ !
(119) and 3200 mF cm ™2 (119), respectively, while those of
Cu-CAT-based electrodes are only 2159 Fg ' (178) and
484 mF cm ™2 (119), respectively.'**'”*'”” However, a SSC,
based on a 4-fold interpenetrated 3D Cu-MOF (182), could
afford an ultrahigh C, of 396 F g !, which is the highest
mass capacitance among all SC devices based on metal-
organic compounds.®

Among a diversity of MOFs, ultrathin 2D metal-
porphyrin framework (MPF) nanosheets have drawn

@-rF; \"’*/

extensive attention as electrode materials for SCs due
to their m-conjugated skeletons, large surface areas,
inherent porosities and abundant accessible active
SiteS.71’92’116’131’132’179_181’187_194 MOI'eOVeI', porphyrins
generally present small HOMO-LUMO gaps that
enable the facile uptake and release of electrons, thus
leading to fast redox kinetics.'®> Gao and coworkers devel-
oped a copper complex CuDEPP (191, Figure 14A) with
18n porphyrin as potential electrode materials for EES.'®*
In contrast to the slow discharge/charge processes in con-
ventional lithium ion batteries, the CuDEPP electrode
exhibited a rapid redox conversion involving the transfer
of electrons (up to four) (Figure 14B). More impressively,
the ASC device with CuDEPP could deliver a high energy
density of 345 Wh kg™, which is the highest among all
SC devices based on metal-organic compounds. Despite
many advantages mentioned above, the poor electrical
conductivity and low chemical stability of MPFs are still
inevitable obstacles which limit their electrochemical
performance. One way to circumvent these problems is
to carbonize the MPF precursors into conductive
carbon-based composites, destroying their initial
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Summary of SC electrode performances of vanadium-, chromium- and iron-organic compounds

TABLE 11

Reference

Electrolyte?

Composited with Surface area® Specific capacitance® Cycling stability®*

Metal Ligand

Vanadium-organic compound

199

1 M Na,SO,

5725Fg ' @05Ag " 92.8% @ 1A g ' (10 000)

1168 m* g™ !

H,BDC

213 V

Chromium-organic compound

200

PANI 31895m’g ! 1197Fg '@1Ag' 90% @20Ag ' (10000) 1M H,SO,

H,BDC

214 Cr

Iron-organic compounds

70
201

0.1 M K,S0,
1 M H,S0,

575Fg '@01Ag™!

H,BTC

215 Fe

353Fg '@20mVs ' 744% @ 1A g ' (10 000)

178Fg '@20mVs' —

408.34 m*g !

H,BDC

216 Fe

0.01 M ferrocene and 1 M TEABF, in ACN 202

GO

(ferrocene)

217 Fe

81

1 M H,SO,

96% @ 50 mV s~ ! (2000)

20Fg '@1Ag!

(ferrocene-derivative) GO

218 Fe

79
82

1 M H,S0,

89% @ 50 mV s~ ! (2000)

(ferrocene-derivative) rGO

219 Fe

99.93% @ 50 mV s~ ! (2000) 1 M H,SO,

695Fg '@1Ag!

(ferrocene-derivative) CNT

220 Fe

*Determined by BET method;

Obtained by either CP and GCD method at specific current densities or CV method at specific scan rates;

“Evaluated by the capacitance retention after a number of charge/discharge cycles, which are shown in brackets;

INormally in water except for those with special clarification.

structures inevitably.'®> Another way is to coat MPF
with conductive polymers or intercalate other 2D con-
ductive nanosheets into MPF structures.'!®'”?81 Zhao
and coworkers fabricated a Cu-TCPP/PPy composite
(188) as flexible and free-standing film through a direct
surface oxidation polymerization of PPy on the surface
of a wrinkled 2D ultrathin Cu-TCPP film with the com-
bination of the electrophoretic deposition method and
electrochemical polymerization technology
(Figure 14C)."®!' The electrode 188 exhibited a high
cycling stability with 91% capacitance retention after
20 000 cycles in 0.5 M H,SO,, and there was even no
obvious capacitance loss after 20 000 cycles for the as-
assembled all-solid-state SSC. Subsequently, Zhao's
group developed an interlayer MXene/MPFs hybrid
(187) film through the vacuum-assisted filtration
method (Figure 14D)."®" The surface terminations (—O,
—OH, and —F) on MXene nanosheets were found to
bond to the hydrogen atom in carboxy groups of Cu-TCPP
nanosheets through hydrogen bonds. It is believed that this
synergistic effect prevents the self-restacking of both
nanosheets and affords 3D interconnected conductive net-
work with porous architecture efficiently, which facilitates
the rapid ionic and electronic transport and shortens the
transmission path. Besides, serious volume changes of 187
electrode during fast charge/discharge process can be allevi-
ated by the interlayer hydrogen bonds, thus realizing an
ultrahigh cycling stability (with ~100% capacitance reten-
tion after 30 000 cycles) and even maintaining a great elec-
trode structural integrity under bending and folding.

2.5 | Zinc

The SC electrode and device performances of zinc-
organic compounds and their composites (192-
212)%8.71102196-198 4re summarized in Tables 9 and 10.
Similar to ZIF-67 discussed in Section 2.2, Zn-MOFs with
3-methylimidazole ligands (known as ZIF-8, 192-196,
209) have also attracted wide research interest in the field
of SC.%8102196197 Gao and coworkers prepared a compos-
ite (193) of ZIF-8 with SnO, quantum dots via a simple
in-situ epoxide precipitation method. The obtained com-
posite could deliver almost 10 times higher C, than that
of pure ZIF-8 (192).%® ZIF-8 is also an attractive MOF to
construct a flexible film electrode after forming compos-
ites with conductive polymers. Figure 15A,B demonstrate
two fabrication processes of the PANI/ZnO/ZIF-8 com-
posites (194 and 196).'°°'°” Each of the two as-assembled
all-solid-state SSCs based on 194 and 196 exhibited good
mechanical stability and high capacitance retention
under various mechanical bending angles, suggesting
that the MOF composites are suitable for developing
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Summary of SC performances of vanadium-, chromium-, and iron-organic compounds

TABLE 12

Positive electrode

Energy density

Negative

Reference

Electrolyte?

and power density?  Cycling stability™®

Specific capacitance®

electrode

Composited with

Metal Ligand

Vanadium-organic compound

199

1M Nast4
PVA/Na,SO,

92.1% @ 1 A g~ (10 000)

1316 Fg '@05Ag "

AC

H,BDC

213V

93.6% @ 2 mA cm 2 (10 000)

6.72mWhcem = @ —

146.5 mF cm ™2 @ 0.5 mA cm 2

Chromium-organic compound

(=3
(=)
N

PVA/Na,SO,

81% @ 2.5 A g (10 000)

7Whkgt @ —

214 371Fg '@05Ag "

PANI

H,BDC

214 Cr

— @ 2000W kg *

Iron-organic compounds

202

>96% @ 5 A g~ * (8000)

217 178Fg '@1Ag™

GO

(ferrocene)

Fe

217

#Obtained by either CP and GCD method at specific current densities, or CV method at specific scan rates;

Data of maximum energy densities and maximum power densities are underlined;

CHEN ET AL.

“Evaluated by the capacitance retention after a number of charge/discharge cycles, which are shown in brackets.

INormally in water except for those with special clarification.

high-capacitive and mechanically durable SCs. On the
other hand, Choi and coworkers synthesized 10 Zn-
MOFs (n(MTV-)MOF-5 series, 198-207) with diverse
structures, sizes, and functionalities of pores, based on
various mixed polycarboxylate ligands (Figure 4A).'*
The C, and C, of these SSCs ranged from 25 to 122 mF
cm 2 and from 195 to 913 mF cm >, respectively. Some
Zn-MOFs exhibited high cycling stability with over 80%
capacitance retention after more than 10 000 cycles.
Zhang and coworkers demonstrated a high-performance
film-state SSC based on a novel conjugated microporous
poly(zinc-porphyrin) (CMP, 197) films. The SC electrodes
were prepared by the electropolymerization of the zinc-
porphyrin monomer Zn-mTCPP (Figure 15C) on (indium
tin oxide)-coated glass, and the specific surface area of
the polymer reached 1450 m* g~'. Figure 15C also illus-
trates the electropolymerization process and the possible
ion transmission mechanism of 197.

2.6 | Other metals

Tables 11 and 12 list the SC electrode and device perfor-
mances of vanadium- (213), chromium- (214), and iron-
organic (215-220) compounds and their composites. So
far, there are still no SC reports on the scandium- and
titanium-organic compounds among the first transition
metal series, and only one report for vanadium- and
chromium-organic compounds, respectively.'**** Yan
and coworkers prepared a uniform rod-like V-MOF
(VIV(O)BDC), also known as MIL-47, 213) which
exhibited an ultrahigh cycling stability with over 92%
capacitance retention after 10 000 cycles in both three-
electrode system and aqueous/all-solid-state ~ASC
device."® Wang and coworkers fabricated nanocomposites
(214) based on PANI and a Cr-MOF (MIL-101) via in situ
polymerization method (Figure 16A), which provided a
high C, of 1197 F g ' and retained 90% capacitance after
10 000 cycles.”® The as-assembled flexible all-solid-state SSC
device reached a high C, of 371 F g ! and exhibited extraor-
dinary mechanical stability with no obvious capacitance loss
at the bending angle from 0° to 180° and 90% capacitance
retention after being bent at 180° for 1000 times. Figure 16B
shows that four connected SSC devices could light up a red
LED for 90 seconds at a voltage of 1.8 V.

Compared to vanadium- and chromium-organic com-
pounds, iron-organic compounds are more attractive in
the field of SCs due to the presence of two common oxi-
dation states (Fe(II) and Fe(III)) of iron element. Apart
from two reported iron polycarboxylate MOFs (215 and
216),”%%°! ferrocene is a well-known organometallic com-
pound in the design and preparation of electrochemical
materials, and its derivatives (218-220) are more
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FIGURE 16 A, Schematic (A)
illustration of the fabrication
process of PANI/MIL-101
composite (214). Reproduced
with permission: Copyright
2018, Elsevier Ltd.*® B, Digital
photograph of LED powered by
a four-connected SSC (214).
Reproduced with permission:
Copyright 2018, Elsevier
Ltd.® C, Schematic illustration (©)
of two preparation processes of

the composite LRGO/Fc (217).
Reproduced with permission:

Copyright 2018, The Royal

MIL-101 ani

(Y
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Porot
o Grafted onto CUS F
T —
*" Reduced Pressure
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Vapor deposition

(B)

Wet adsorption

Society of Chemistry.?*> D, & o - =°
Structure of ferrocenyl-modified Vacuum Sublimation precipitation
GO (218),*' rGO (219)”° and
chitosan (220)%*
(D) |
@/\/\/N @
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: e
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frequently reported in SCs due to their rich electrochemi-
cal redox systems and high chemical stability.”®-%!82202
Borenstein and coworkers presented the fabrication of a
laser-reduced GO/ferrocene composite (LRGO/Fc, 217,
Figure 16C) and as-assembled SSC delivered a high C,
of 178 F g~'.**> Teimuri-Mofrad and coworkers focused
on the ferrocenyl compounds (Figure 16D) with
functionalized tethers (—O and —N), and used them to
modify GO (218)*! and rGO (219),” via chemical reactions.
Teimuri-Mofrad's group also synthesized a ferrocene-
modified chitosan (220), which could provide a high C,
value close to 700 F g~ *.3* All composites 218-220 showed a
good cycling stability in aqueous acid solutions.

2.7 | Summary

So far, for the SC electrodes based on the monometallic
metal-organic compounds of the first transition metal
series and their composites, C,, C, and C, values have
reached 2572 F g ' (51),'” 5147 mF cm 2 (162),'”° and
760 Fcm > (126),”® respectively, and most electrodes
exhibited high cycling stabilities (over 90% capacitance
retention) after thousands of consecutive charge-discharge
cycles. These desirable performances of the electrode
materials pave the way to their practical applications. A
few reports showed the application of SCs to power other

devices (LEDs in most cases),?>80-9%107:119.125,190.175 o tify.

ing their bright future as ESSs.

3 | BIMETALLIC METAL-
ORGANIC COMPOUNDS AND THEIR
COMPOSITES

In the last decade, heterometallic organic compounds
(especially bimetallic MOFs) and their composites (211-
264), also have aroused an increasing attraction due to
their unique SC performances.?®376%76203222  Qwing
to the tunable structures resulting from the mole ratios of
different metal centers, the properties of bimetallic
organic compounds could be adjusted and thus novel and
special applications can be obtained on the basis of the
monometallic organic compounds.®’ Listed in Tables 13
and 14 are the SC electrode and device performances of
bimetallic organic compounds and their composites.
Bimetallic-organic compounds with SC properties are
mainly the bimetallic MOFs with either polycarboxylate
ligands (221-245, 260-264)76-37:66-203-216.222 or
3-methylimidazole (246-256)*'">*° ligands. As shown in
Tables 13 and 14, cobalt, nickel and zinc are the most
popular metal elements used to fabricate SC electrodes
based on bimetallic-organic compounds. So far,
bimetallic-organic compounds have attracted numerous
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FIGURE 17 Schematic illustration (A R (®)
: [ H,BTC Ni Ni-MOF *
of A, the synthetic process of 3D ‘ —
hierarchical bimetallic MOFs (261 and & D 0900 —_ *
262). Reproduced with permission: cHNope0 200610 . L, H°
Copyright 2017, The Royal Society of EECs iereaey + 150865100
Chemistry.>’ B, Ton and charge transfer 4 | o PY
N —_—

in the 261 and 262 electrodes. X b CHCH, (T -y

T "

Reproduced with permission: Copyright \\ CoNERIGE
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2017, The Royal Society of

Chemistry.”” C, The synthesis process for ~ (B)
the Ni/Co-MOF (229). Reproduced with
permission: Copyright 2018, Elsevier

Inc.?” D, A possible mode of structural

change for the Ni-MOF before and after
Zn-doping. Reproduced with permission:
Copyright 2014, The Royal Society of

205

Chemistry

(D)

e T

research interest due to their good SC performances.
Rajak and coworkers synthesized a new heterometallic
Na/Co-based MOF (221) by a facile mixed ligand strategy
with slow-diffusion technique at room temperature.?’?
For 221, the high cycling stability (with less than 3%
capacitance loss after 5000 charge-discharge cycles) was
observed at a quite high current density of 18 A g !
Wang and coworkers synthesized a series of bimetallic
MOF nanosheets (232 and 233) with arrays on nickel
foams having different nickel-cobalt mole ratios, and 232
gave a high C, of 2230 Fg '*'° Rahmanifar and
coworkers prepared the composite (237) of Ni/Co-MOF
(236) and rGO, and the as-assembled ASC device based
on 237 realized a high energy density and power density
of 72.8 Wh kg ! and 42.5 kW kg, respectively.”'* Beka
and coworkers reported a series of 2D Ni/Co-MOF
ultrathin nanosheets/rGO hybrid electrode materials
(251-254) with different rGO doping weights, and the C,
of composite 253 reached a high value of 1553 F g '
Interestingly, higher specific capacitance values have
been observed in some bimetallic organic compounds
when compared to the monometallic ones with the same
ligands. Jiao and coworkers synthesized a Ni-BDC MOF
and partially substituted it with Co*" and Zn*" to form
two 3D hierarchical bimetallic MOFs, Co/Ni-MOF (261),
and Zn/Ni-MOF (262).%” Figure 17A illustrates the syn-
thetic process of 261 and 262. It was found that the bime-
tallic MOFs showed higher C, values (236.1 and 161.5

-

OH" e

W Nickel foam @ : o

S . \“11 -
anopm

13 1';\1'4“

mAh g ! for Co/Ni-MOF and Zn/Ni-MOF, respectively)
than that of Ni-MOF (122 mAh g~ ') when they were used
as the battery-type electrodes.”” The ASCs based on 261
and 262 could also provide higher C; and energy densities
than those of the ASC based on the original monometallic
Ni-MOF. The fact that these bimetallic MOFs exhibited
superior capacitances to the monometallic MOF can be
ascribed to the following reasons. On one hand, as demon-
strated in Figure 17B, the smaller ionic radius of Co*"
(0.65 A) than that of Ni*" (0.69 A) helps create more Ni*"
vacancies in the Co/Ni-MOF, which may lead to the gener-
ation of a larger number of free holes for pseudo-
capacitance, thus contributing to the improvement of the
electrical conductivity.>***** On the other hand, the bigger
Zn** (0.74 A) partly replaced Ni*" (0. 69 A) in the Zn/Ni-
MOF to form a layered structure with enlarged interlayer
distances (1.04 and 0.95 nm for Zn/Ni-MOF and Ni-MOF,
respectively), which provides enough space for electrolyte
diffusion and ensures more facile OH ™ intercalation and
deintercalation for electrical double-layer capacitance.?®
The increase of capacitance in bimetallic organic com-
pounds compared to the relevant monometallic ones was
also observed in other reports.*!%-*13-216-217

Moreover, in several reports, bimetallic organic com-
pounds tend to exhibit a higher cycling stability than the
monometallic ones when used as SC electrode materials.
A series of Zn-doped Ni-MOFs (224-226) exhibited over
88% capacitance retention after 3000 cycles, which is far
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(A) © FIGURE 18 A, Ball-stick
& e R4 model of 257 along the c-axis.
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larger than that of the non-doped Ni-MOF (66%).>°> The
Ni/Co-MOF (229) also showed a higher cycling stability
than that of Ni-MOF synthesized under the same condi-
tion (Figure 17C).?°” The enhancement of cycling stabil-
ity of bimetallic MOFs can be ascribed to the change of
MOF's structure and morphology when they were modi-
fied by heterometal elements. It was suggested that the
flower-like microspheres of 224 to 226 aggregated by
the nanosheets could provide interconnected open pores
(Figure 17D),?*> which not only should be favorable for
the diffusion of electrolytes but also could effectively help
buffer the volume variation during the charge/discharge
process.>**?*” For 229, it was inferred that the inter-
connected rods would support the structure to alleviate
the structure collapse during the charge/discharge pro-
cess.””’ Besides, it was reported that disordered structure
was beneficial to enhance the electrochemical and struc-
ture stability. Therefore, the bimetallic MOFs with low-
crystalline states are caused by the introduction of het-
erometal ions, which would possess a higher rate capaci-
tance and a better cycling stability.”*

Besides using mixed metal salts in the synthetic pro-
cesses or doping heterometal elements in the post-synthe-
sis, another approach to construct bimetallic organic
compounds is to adopt ferrocene-derivatized ligands to
coordinate with metal ions directly.”***' Rajak and
coworkers synthesized a 3D inclined polycatenated Co-
MOF (257, Figure 18A) with mixed ligands (H,FcDC and

bipy).’® It was found that, compared to the Co-MOF with
bipy ligand only, the introduction of highly electro-active
ferrocene based ligand H,FcDC not only enhances the
structural integrity and flexibility but also improves
the electrochemical performance. Khrizanforov and
coworkers synthesized two 2D Co-based coordination
polymers, [Co(H,0),(Fc[P(O)(H)O],)-2H,0],, (258) and
[Co(Fc[P(O)(H)O],)], (259) (Figure 18B).**! Figure 18C
illustrates the charge transfer mechanism between differ-
ent oxidation states of iron and cobalt in two coordina-
tion polymers. The C, of the electrode based on 259
reached 2517 Fg~', which has been the highest C,
among all bimetallic organic compounds so far, and is
very close to the highest value (2572 F g™, 51) for all
metal-organic compounds.'"”

4 | CHALLENGES AND OUTLOOK

In summary, the metal-organic compounds of the first
transition metal series have attracted extensive attention
for the application in the SC field, by virtue of their rich
redox activities, optimizable synthesis protocols, abundant
active sites, adjustable porous structures, high surface
areas and diverse topological architectures. The perfor-
mance of partial SC electrodes based on metal-organic
compounds has surpassed that of the traditional electrode
materials such as carbon-based materials, metal oxides/
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nitrides/carbides/sulfides/hydroxides and conductive poly-
mers. In this article, the first-transition-series metal-
organic compounds and their composites as SC electrode
materials are reviewed comprehensively in terms of ligand
selection, synthesis strategy, structural characterization
and electrochemical performance. Despite the great pro-
gresses in the development of metal-organic compounds
as SC electrode materials in the past decade, these mate-
rials are still confronted with several challenges. To realize
the commercialization of SCs based on metal-organic com-
pounds and satisfy the requirements of practical applica-
tions in our daily life, the design and research strategies to
overcome the bottlenecks are listed as follows:

1. Most metal-organic compounds lack sufficient con-
ductivity in their pristine forms. A widely adopted
approach to fabricate SC electrode from less conduc-
tive materials is to introduce the conductive matrices
(such as carbon-based materials and conductive poly-
mers). However, in some cases, the composition of
metal-organic compounds with conductive matrices
could block their inherent porosities, decrease the sur-
face area and the number of active sites, impede the
mobility of ions and electrons, and result in enhanc-
ing the cycling stability at the cost of sacrificing the
specific capacitance and energy density. For compos-
ite formation strategy, morphology, structure, reaction
mechanism and electrochemical properties of the
composites should be optimized in light of the syn-
thetic methods and preparation processes to develop
more advanced materials.

2. A more straightforward way to conquer the above
issues is to develop metal-organic compounds with
inherently high conductivities. Compared to the highly
porous but less conductive metal-organic compounds
in 3D topologies, those in 2D topologies can achieve
sufficiently high levels of conductivities through their
planar w-conjugated frameworks without the assistance
of conductive matrices. Although the use of
n-conjugated building blocks of large formula weight
for 2D structures may cause a risk in the loss of the spe-
cific gravimetric capacitance, this category of materials
and their composites are still promising candidates.

3. To realize higher capacitance, the porous metal-
organic compounds can serve as templates for prepar-
ing pseudocapacitive materials. The capacitance of
these composites can be largely improved due to the
extremely high theoretical capacitance values of
pseudocapacitive materials such as transition metal
oxides. However, it is worth mentioning that the
instinctively low structural and chemical stability of
pseudocapacitive materials may limit the cycling per-
formances of their electrode composites.

_WILEY_L#or*

4. As discussed in Section 3, doped monometallic MOFs
with heterometal ions to form bimetallic compounds
tend to help achieve superior capacitances. Theoreti-
cally, the doping ions which have smaller ionic radii
may create more vacancies and consequently more
holes in the MOF structures for improving the electri-
cal conductivity, while the doping ions which have
larger radii could enlarge the interlayer distances to
allow more space for electrolyte diffusion. By optimiz-
ing the ratio of heterometal ions, the capacitance can
be improved significantly.

5. To date, the research of metal-organic compounds as
SC electrode materials still mainly focuses on the
aqueous electrolytes or gel electrolytes prepared from
aqueous solutions. The electrolysis voltage of water
(1.23 V) hinders the SCs based on metal-organic com-
pounds from the applications when wide potential
windows are required. The limitation of metal-organic
compounds in aqueous media may be originated from
their solubility in organic conductive ionic liquids.
The development of oleophobic metal-organic com-
pounds for the SC electrodes would extend their appli-
cations to a wider potential window.

6. There is still a lack of fundamental understanding into
the electrochemical mechanism of metal-organic com-
pounds and the interaction effects of each component
in the composites. Most researchers believe the electro-
chemical behaviors of metal-organic compounds to be
originated from the pseudocapacitive mechanism, while
only a few examples showed the EDLC mechanism.
More efforts on exploring the electrochemical mecha-
nism associated with the experimental characterizations
and theoretical studies should be made to conduct the
targeted improvement of the SC performances.

7. The processes of electrode fabrication and device
assembling are yet to be optimized and several impor-
tant factors are even obscure in most reports, such as
current collector variety, binder variety, mass ratios of
active materials and binders, the volume of liquid
electrolytes, etc. These factors can play a significant
role in the electrochemical performance. Optimized
design of electrodes and SC devices should be taken
into account in future research endeavors.

To conclude, metal-organic compounds are still very
promising active materials for SCs in spite of their exis-
ting challenges, especially those from the first transition
metal series. So far, considerable research efforts have
been made to use metal-organic compounds not only in
SC devices with high performances, but also diverse SC
applications at the laboratory scale, such as on-chip
micro-SCs, portable all-solid-state SCs, wearable flexible
SCs, AC line-filtering SCs and battery-SC hybrid devices.
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With the rapid development of metal-organic compounds
in recent years, a bright future is believed to come for this
new type of functional materials.
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