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Abstract: To overcome the limitation in flight time and enable unmanned aerial vehicles (UAVs) to
survey remote sites of interest, this paper investigates an approach involving the collaboration with
public transportation vehicles (PTVs) and the deployment of charging stations. In particular, the
focus of this paper is on the deployment of charging stations. In this approach, a UAV first travels
with some PTVs, and then flies through some charging stations to reach remote sites. While the travel
time with PTVs can be estimated by the Monte Carlo method to accommodate various uncertainties,
we propose a new coverage model to compute the travel time taken for UAVs to reach the sites.
With this model, we formulate the optimal deployment problem with the goal of minimising the
average travel time of UAVs from the depot to the sites, which can be regarded as a reflection of
the quality of surveillance (QoS) (the shorter the better). We then propose an iterative algorithm to
place the charging stations. We show that this algorithm ensures that any movement of a charging
station leads to a decrease in the average travel time of UAVs. To demonstrate the effectiveness of
the proposed method, we make a comparison with a baseline method. The results show that the
proposed model can more accurately estimate the travel time than the most commonly used model,
and the proposed algorithm can relocate the charging stations to achieve a lower flight distance than
the baseline method.

Keywords: drones; unmanned aerial vehicle (UAV); surveillance and monitoring; charging stations;
public transportation vehicles; advances in robotic applications; robot sensing; vision-based sensing

1. Introduction

Among the various promising applications of unmanned aerial vehicles (UAVs), aerial
surveillance is the one that has attracted the greatest attention in recent years; it can be used
for the protection of assets, people or objects, the investigation of crimes, and intelligence
gathering. Aerial surveillance systems based on UAVs have become increasingly mature
in these application tasks. They are not only cost-efficient, but also demonstrate high
reliability and security [1]. This kind of multi-robot system can quickly explore large areas,
such as mountainous regions, that are hard to reach for humans. It can significantly reduce
the labour cost [2]. Thus, they have become an advanced means with which to replace
human beings, efficiently and safely, in repeated surveillance missions [3]. Another main
advantage of using UAVs for surveillance is the high probability of having a line-of-sight
(LoS) with ground objects, which may be difficult to achieve with ground-based sensing
units [4]. Extensive research has been conducted on the topics relevant for aerial surveil-
lance, such as UAV video/image processing [5–7] and the deployment of UAVs [8–11].
The video/image processing techniques provide the visual sensing information required
in various applications, and the approaches to the deployment of UAVs enable UAVs to
find optimal/sub-optimal positions from which to conduct surveillance.
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Although UAVs can achieve a high surveillance performance compared to other ex-
isting means, a challenging issue is the constrained flight time. In general, most of the
commercial UAV products are powered by an onboard battery. Since the payload of a UAV
is limited, the onboard battery cannot be very large, which results in a limitation of the
capacity. Without carrying any other payload, a typical DJI Matrice 600 Pro model can
only fly for 40 minutes with a fresh battery [12]. While improving the battery capacity and
efficiency is indeed a solution, some other solutions have been investigated to increase the
flight duration of UAVs. One promising solution is to install solar panels, which would en-
able UAVs to harvest solar energy [13] for flight time improvement. However, it is difficult
to apply in complex environments, such as urban environments, due to the presence of
many buildings. These can create shadows, and when UAVs fly into the shadows, their
energy-harvesting rate reduces significantly. Another approach considers the usage of mo-
bile chargers [14–16]. This method provides UAVs with the opportunity to replenish their
battery, and it is more reliable than the solar-power harvesting approach. These mobile
chargers, which are usually carried by some ground vehicles, are also controllable. How-
ever, in urban environments, these vehicles may create other issues—for example, finding
where to park. Moreover, these vehicles may further worsen congested roads, if widely
used. To alleviate the drawback of using mobile chargers, a method exploiting public
transportation vehicles (PTVs) such as buses, trams and trains has been proposed [17–20].
Similar to human transportation within a city, a UAV can also travel with these vehicles
as a passenger (on the roof of the vehicles). Differently to the mobile-charger approach,
PTVs are existing vehicles travelling within urban areas. As such, this approach does not
introduce extra vehicles to congested roads. When travelling with these vehicles, a UAV
can simply turn off the motors to save energy. Thus, this approach has the potential to
significantly improve the effective flight distance of UAVs.

We consider the example of using UAVs to survey several sites in a large-scale area.
Practical applications include information broadcasting when wireless communication
infrastructures are down, security/policing, traffic management, and parcel delivery [21,22].
We can classify the sites into three groups, based on their locations. The first group consists
of sites that are within the flight range of UAVs departing from their depot. Any site in this
group can be surveyed by a UAV without any other support. Roughly speaking, the sites
in this group are located within a disk centred at the depot (see Figure 1); we call these
sites the close sites. The second group consists of the sites that cannot be reached directly
by UAVs from their depot, but can be reached with the support of PTVs. These sites are
close to the routes of PTVs. If we assume that the UAVs can only leave and return to
PTVs when the latter stops, and that the energy consumption when travelling with PTVs is
negligible, the sites in the second group are roughly within the disks centred at these stops
(see Figure 1). The sites in the second group are called relatively far sites. The sites in the
third group are those cannot be reached, even with the support of PTVs. In other words,
these sites are outside of the disks centred at the depot and the stops; see Figure 1. These
are called far sites.

In this paper, we pay special attention to the surveillance of far sites, and we propose
an approach that exploits PTVs and charging stations. In this approach, it is required to
compute the travel time of UAVs from the depot to the sites. The travel time can be divided
into two parts: one is the time spent travelling with PTVs, and the other is time spent
travelling, with utilisation of the deployed charging stations, to reach the sites themselves.
Considering that the travel time of PTVs is uncertain (due to various road traffic conditions),
we can use the Monte Carlo method [23] to estimate the expected travel time with PTVs.
Special attention is then paid to the deployment of charging stations. We propose a new
coverage model to compute the travel time when UAVs travel through the charging stations
to reach the sites. With this model, we formulate the optimal deployment problem with
the goal of minimising the average travel time of UAVs from the depot to the sites, which
can be regarded as a reflection of the quality of surveillance (QoS) (the shorter the better).
We then propose a sub-optimal algorithm that relocates the charging stations iteratively.
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We show that this algorithm ensures that any movement of a charging station leads to
a decrease in the average travel time of UAVs. To demonstrate the effectiveness of the
proposed method, we make a comparison with a baseline method. The results show that
the proposed model can more accurately estimate the travel time than the commonly used
model, and the proposed algorithm can relocate the charging stations to achieve a lower
flight distance than the baseline method.

Group 1

Group 2

Group 3

Depot

Stop

Charging station

Figure 1. Illustration of the surveillance system and the grouping of sites based on their locations.
The sites in the first group are located within a disk (in the ideal case) centred at the depot (green
area). The sites in the second group are located within a disk centred at a vehicle stop (blue area).
The sites in the third group are which are not covered by the first and second groups (orange area).
A site located in the overlapping part of group two and group three can be reached by a UAV from
a PTV.

The main contributions of this paper are summarised as follows:

• A new coverage model that can compute the travel time of UAVs from the depot to
the sites more accurately than the commonly used model.

• A sub-optimal deployment method that guarantees that any relocation of a charging
station leads to a decrease in the average travel time of UAVs.

The rest of the paper is organised as follows. Section 2 discusses the relevant pub-
lications, and we sketch where this paper stands in the literature. Section 3 introduces
the system model and formulates the studied problem. Section 4 presents the proposed
charging station deployment methods. Section 5 presents simulation results to demonstrate
the effectiveness of the proposed methods. Finally, Section 6 concludes the paper and
presents future research directions.

2. Related Work

In this section, we review the relevant publications and clarify the difference between
the current paper and existing work.

There is a rich literature on UAV-based aerial surveillance on various types of targets,
ranging from stationary areas to moving objects such as vehicles and humans [4,8,9,11].
For stationary areas, interesting theoretical research results have been presented in [8] for
the deployment of UAVs to monitor objects in a given bounded area. An asymptotically
optimal deployment, based on construction, is presented, which guarantees a minimum
number of UAVs required to fully monitor the area of interest. For moving targets, with
local knowledge but no global information, only locally optimal coverage of the moving
targets can be achieved [11].

The problem considered in this paper relates to charging facility deployment for
electric vehicles [24] and patrol station deployment for conventional vehicles. In general,
the deployment of such facilities takes into account geographical conditions, because the
facilities are relatively large. Alternatively, geographical conditions may not be necessary in
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the deployment of charging stations for UAVs—since such a charging station is small [25],
it can even be deployed by roads. Charging facilities for electric vehicles are usually
deployed in redundancy. That is, a charged electric vehicle can travel a distance that is
much longer than the average distance between two charging facilities. Such redundancy
is generally due to competition between different suppliers. In contrast, we deploy the
charging stations for UAVs in a way that does not lead to unnecessary redundancy.

A UAV can either recharge or replace its battery at a charging station. It can then
fly further, either to continue its current mission or to conduct other missions. Targeting
the parcel-delivery application, the authors of [26] focus on a UAV station deployment
problem. They consider a scenario where the customers are located far from a warehouse.
A single UAV station is equipped with a fleet of UAVs, and it can be activated by the
arrival of a truck that has parcels to be delivered. Then, the UAVs deliver the parcels
to customers. The reference [27] formulates a charging station deployment optimisation
problem with the goal of maximising the coverage of customers in a given area following
the mixed-integer programming framework. A heuristic algorithm is presented for the
setting where the feasible positions of charging stations are given by a discretised set.
The work in [28] considers a similar problem, but the objective is to minimise the total
system cost, including the charging stations, UAV ownership, service congestion, etc. In a
different approach to [27,28], the paper [29] considers the deployment of charging stations
in a continuous space, and a decentralised method is presented which can achieve the
locally optimal coverage of customers. Targeting the application of inspecting a given set
of sites, the reference [30] considers deploying charging stations at some sites so that a
UAV can complete all the inspection tasks using the smallest amount of time; the authors
additionally pay attention to the route planning problem for the UAV.

The problem that we will consider relates to the coverage control problem. Coverage
control is a type of system partitioning and is an interesting problem in coordinated
networks of mobile robots for environmental monitoring. A network of mobile robots is
required to cover a region so that the event detection rate is maximised or the detection time
is minimised [31]. The region of interest is often partitioned into a number of sub-regions
(which is equal to the number of robots), and the robots can be optimally deployed in
each sub-region [32]. Researchers have also investigated the coverage control for a group
of heterogeneous robots [33]. The deployment of charging stations for UAVs shares the
spirit of coverage control, in that all the sites in the area of interest should be reachable
from at least one charging station. However, in the charging station deployment problem,
the objective is to minimise the average time to reach the sites from the depot. Thus,
the charging station deployment problem has a tree-like structure, while the general
coverage control problem can be fully distributed.

In a different, yet related context, i.e., UAV video/image processing, existing publi-
cations have studied processing the videos taken by UAVs when they are at some fixed
position. From simple to complex, several typical problems have been investigated, such as
road detection [34], vehicle detection and tracking [35], and traffic parameter extraction [36].
Popular methods include the use of convolutional neural networks (CNNs) [37] to analyse
individual frames, as well two consecutive frames, of a UAV’s footage [38]. However, these
approaches are only suitable for the case where the UAV can hover at a certain attitude.
Indeed, this state is often difficult to achieve, especially when there is a wind gust. To ad-
dress this, some researchers have investigated the ego-motion issue as generated either
intentionally, by a remote operator, or as an external factor, such as caused by the wind.
The first approach to this problem is called the image registration [39]. This is a method
that attempts to turn the moving background into a fixed background, which allows tra-
ditional methods for background subtraction to be used. The second approach is based
on optical flow [40], which extracts the motion pattern from videos and is often combined
with unsupervised learning for estimating the UAV ego-motion. Thus, the video/image
processing approaches provide fundamental application-dependent sensing information.
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3. Problem Statement

We consider an aerial surveillance system with several key components: a depot, a fleet
of UAVs, a set of sites, PTVs, and charging stations. The UAVs are energy-constrained. We
assume that a PTV can accept one UAV on its roof. The sites to be surveyed are distributed
in an urban area, and they are classified into three groups as discussed in Section 1. We
only focus on the surveillance of the sites in the third group. Table A1 summarises the
main symbols used in the paper.

The problem under investigation is the optimal deployment of charging stations, so
that the sites of interest can be surveyed by UAVs in the shortest time (a reflection of the
QoS). In particular, we consider a remote area that contains a vehicle stop. Departing from
the depot (denoted by D), a UAV can reach this stop by boarding some number of PTVs.
We focus on deploying a number n of charging stations in this remote area. For simplicity,
an additional charging station (denoted by p0) is deployed at the vehicle stop. Suppose that
a fully charged battery allows a UAV to fly for a distance of 2R. The charging station at the
vehicle stop serves the sites in a circular area centred at p0 of radius R—see the blue area
in Figure 1. Then, our focus is on finding locations for the other n charging stations. Let
p1, . . . , pn denote the locations of these n charging stations, which are to be decided. It is
worth pointing out that this paper focuses on the high-level planning problem. The relevant
low-level control issues, such as the UAV dynamics, the accuracy of UAV positioning and
landing, and external disturbances (gust and wind) are not considered in the paper.

The public transportation network, the depot, the deployed charging stations, and
the sites form a graph, which can be used to plan paths for UAVs to survey the sites. Let
G(V, E) denote this graph. The vertex set V consists of the depot D, the vehicle stops,
charging stations p1, . . . , pn, and the sites. The edge set E contains directed links from one
stop node to another, representing public transportation services between them. It also
contain undirected links between any two stop nodes, any two charging station nodes,
and any pair of a charging station node and a site node—these represent UAV flight
between these locations. It is worth mentioning that if two charging station nodes pi and
pj (i 6= j, i, j ∈ [0, n]) are connected in the graph G, we have

|pi, pj| ≤ 2R, (1)

where |·, ·| gives the standard Euclidean distance between two points. It is also worth
mentioning that any site node is connected to a charging station node within range R. Note
that the flight range R corresponds to flight along straight lines. If a UAV encounters some
obstacle, such as a building, this straight line assumption is not valid. However, we can
avoid this issue by setting the flight altitude to be higher than any local buildings.

Moreover, a site node can be connected with another charging station node if the sum
of distances to the two charging station nodes is no larger than 2R. In the example shown in
Figure 2, the top site s1 only connects with the charging station node p2, while the bottom
site s2 connects with the charging station nodes p1 and p2. We note that if a site connects
with two charging stations, it is located inside an ellipse with these charging stations as
the foci and passes the intersection points of the circles centred at these charging stations
of radius R; see Figure 2. In the graph G, a site is reachable from any charging station
connecting with the site. In Figure 2, s1 can be reached from the charging station p2, while
s2 can be reached from the charging stations p1 and p2. Constructing the graph G in this
way leads to a shorter delivery time for sites such as s2 in Figure 2. If s2 is not connected
with p1, but only with p2, in the graph G, a UAV has to fly to p2 and then to s2. Certainly,

|p1, p2|+ |p2, s2| ≥ |p1, s2|. (2)

Note that connecting s2 with p1 does not mean that we can disconnect s2 and p2.
The link between s2 and p2 is necessary, as it enables the UAV to return after completing
the delivery. This is because,

|p1, s|+ |s, p2| ≤ 2R. (3)
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𝑝0

𝑝1

𝑝2

Charging station

site

𝑅

𝑠1

𝑠2

Figure 2. Illustrative example of the connections between site nodes and charging station nodes. Al-
though both s1 and s2 are located within the circle centred at p2, s1 connects with p2 but not p1, while
s2 connects with both p1 and p2. This is because |p1, s1|+ |s1, p2| > 2R, while |p1, s2|+ |s2, p2| ≤ 2R.

Let S denote the set of sites in the area of interest. Let ρs(t) denote the probability
that a request to survey site s ∈ S is placed at time t of a day. This probability is highly
application-dependent and can be easily obtained from historical data. Let ts and t f be
the earliest time and the latest time of placing a survey request, respectively. Then, we

have
∫ t f

ts
ρs(t)dt = 1. In addition, let λs be the weight of the site s ∈ S. This weight is

the frequency of surveying the site. For two sites, the weight of the more important site is
larger, and as such it needs to be surveyed more frequently than the other. We assume that
both the probability and the weight of a site are known.

We now introduce a function, τ(u, v, t), which computes the shortest travel time from
node u ∈ V to node v ∈ V when a UAV departs from node u at time t. If the nodes u
and v are not connected, neither directly nor via any other nodes in G, τ(u, v, t) = ∞, ∀t.
In practice, the travel time of an edge in the graph G can be different at different times.
Even at the same time on different days, the duration of travel can be different due to the
stochastic nature of public transportation networks. Since the travel time of the shortest
path between two nodes may vary over time and be uncertain, so too for the graph G.
The time-variance of G can be reflected by the timetables of public transportation services.
The uncertainty of these services, due to factors such as congestion, can be modelled as
random noise. We follow the label-setting algorithm used in [20] to construct the shortest
path between two nodes, and then adopt Monte Carlo simulations [23] to account for the
uncertainty. The Monte Carlo method is an ideal method for computing probabilities and
expectations when the analytical integration is impossible or impractical. Although the
Monte Carlo estimation is not exact, we understand that when a sufficiently large number
of random variables are generated, the error of approximation can become arbitrarily
small. In the considered context, by generating a sufficient number of simulations, we
can obtain the mean travel time between nodes u and v for a particular starting time t.
Without introducing a new symbol, we use τ(u, v, t) in the rest of the paper to represent
this mean travel time. We consider that a UAV replaces its battery at a charging station,
and that the charging stations organise the charging of the used battery during spare time.
Since the time for such a replacing operation can be much shorter than the flight time
between two charging stations or the travel time between two vehicle stops, it is assumed
to be negligible.

With this function, we can represent the average time required to survey a site when
departing from the depot. Specifically, the average time for a UAV to reach a site s, when
the UAV leaves the depot at time t, can be represented by τ(D, s, t). As the starting time,
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i.e., the time a site surveillance request is activated, may be uncertain, we consider the
mathematical expectation of the average travel time for surveying site s, which is denoted
by Ts(p1, . . . , pn) and is given as follows:

Ts(p1, . . . , pn) =
∫ t f

ts
ρs(t)τ(D, s, t)dt. (4)

Here, [ts, t f ] is the time window during which a site surveillance request can be activated.
Note that the average travel time for a site s, i.e., Ts(p1, . . . , pn), is now represented by
a function of the locations of charging stations, i.e., p1, . . . , pn. It is also worth noting
that such an average travel time also depends on the edges in G, which represent the
public transportation services. The reason for not including this factor as an adjustable
variable is that the public transportation services are not controllable by a supplier. Instead,
from the point of a supplier, only the locations of the charging stations, i.e., p1, . . . , pn, can
be controlled.

Problem Statement: The charging station deployment problem aims to find the
locations of the charging stations, i.e., p1, . . . , pn, that minimise the weighted average travel
time of the sites. It can be formulated as follows:

min
p1,...,pn

∑
s∈S

λsTs(p1, . . . , pn). (5)

There are some constraints that the deployment needs to satisfy. Firstly, any site s
must be covered by at least one charging station, i.e.,

|s, pi| ≤ R, ∃i ∈ [1, n], ∀s ∈ S. (6)

Moreover, every charging station is connected with p0, i.e.,

τ(pi, p0, 0) < ∞, ∀i ∈ [1, n]. (7)

Note that in (7) we can set the time, i.e., the third entry of the function τ(u, v, t), as any
value—not only zero.

Remark 1. Note that for a site, the charging station that covers it is not necessarily on the
shortest path for a UAV to serve it. For example, in Figure 2, a UAV serves the site s2 via
p1, not p2. Connecting s2 with p2 enables the UAV to return after completing the delivery,
because |p1, s|+ |s, p2| ≤ 2R. Moreover, constructing the graph G in the aforementioned way leads
to a shorter travel time for sites such as s2 in Figure 2. We can imagine that if s2 is not connected
with p1, but only with p2, in the graph G, a UAV has to fly to p2 and then to s2. This would lead to
a longer travel time; see (2). This issue requires us to clarify the charging station via which each site
is surveyed by a UAV in the shortest time.

4. Proposed Method

In this section, we discuss the proposed method to address the problem presented
by (5)–(7). We start with the introduction of two basic concepts used throughout the de-
velopment of our approach (Section 4.1). Then, we propose the deployment method for
the simple case with a single charging station (Section 4.2), then for the complex case with
multiple charging stations (Section 4.3).

4.1. Coverage Models

We introduce the following two fundamental concepts.

Definition 1 (The charging stations that cover a site). A site s is said to be covered by a charging
station pi if one of the below two conditions holds:

• The distance between the site s and the charging station pi is no more than R, i.e., |pi, s| ≤ R [41].
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• There exists another charging station pj such that the summation of the distances between the
two charging stations and the site is no greater than 2R, i.e., |pi, s|+ |pj, s| ≤ 2R.

Definition 2 (The charging station to survey a site). A site s is said to be surveyed from a
charging station pi if the charging station pi is the last charging station on the shortest path from
the depot to the site s in the graph G.

From the above two definitions, we can see that there may exist multiple charging
stations that cover a site. However, generally, there is only one charging station surveying a
site, since the charging station that surveys a site should be the last one on the shortest path–
see Definition 2. We also understand that the charging station via which a site is surveyed
also covers the site. However, the charging station that covers a site is not necessarily the
one via which to survey the site. Typical examples are given in Figure 2. The site s1 is
covered by the charging station p2, and the site s2 is covered by the charging stations p1
and p2. The site s1 is surveyed via the charging station p2 (the only charging station that
covers s1), while the site s2 is surveyed via the charging station p1 (one of the charging
stations that cover s2).

Definition 1 reveals an interesting and useful property. That is, if a site is located
within an ellipse formed by two charging stations (with the positions of the two charging
stations as the foci, and with the ellipse passing the intersection points of the two R-radius
circles that centred at the charging stations), this site can be covered by more than one
charging station. Again, taking Figure 2 as an example, site s2 is inside such an ellipse
(see the red one around p1 and p2), while site s1 is not. Thus, site s2 is covered by two
charging stations.

It should be pointed out that Definition 1 is superior to other existing definitions,
which are based on only the first condition of Definition 1 (see [41] and the references
therein), with respect to the travel time of a UAV from the depot to a site. This is crucial
when the site is located within one of the aforementioned ellipses, i.e., being covered by
more than one charging station, because the second condition promises to result in a shorter
path through which a UAV can conduct the surveillance mission. In particular, if only
the first condition of Definition 1 is considered, the site s2 in Figure 2 is covered by the
charging station p2. Then, when we plan the path for a UAV to survey the site s1, we will
find the path D → · · · → p0 → p1 → p2 → s2. However, with the second condition of
Definition 1, the site s2 is also connected with p1 in the graph G. Thus, the path for a UAV
can be D → · · · → p0 → p1 → s2. Clearly, |p1, p2|+ |p2, s2| ≥ |p1, s2|, where the equality
holds only when s2 is located on the line segment connecting p1 and p2. With Definition 2,
no matter how many nodes are connected to a site s in the graph G, we can deduce the
charging station via which to survey the site.

In the subsequent sections, we will use these definitions to develop our approach for
deploying charging stations.

4.2. Deployment of a Single Charging Station

In this section, we present the method for deploying a single charging station.
As mentioned in Section 3, p0 has already been deployed at a vehicle stop near the

area of interest. Thus, we consider the deployment of the second charging station p1. One
necessary assumption in this simple scenario is that the sites to be surveyed are located
somewhere such that there exist feasible positions for the second charging station to serve
the sites. Otherwise, there is no solution to the deployment problem. A geometric view
of this assumption is that the sites are close to a vehicle stop, and they are not distributed
very sparsely. Moreover, there are some sites that are outside the disk with radius of R
centred at p0. Otherwise, the charging station p0 is sufficient to serve them.

Given the positions of p0 and p1, we first construct the circles centred at p0 and p1 with
the radius of R, which are denoted by O0 and O1, respectively. As discussed in Section 4.1,
we can construct an ellipse with p0 and p1 as the foci which passes through the intersections
of the circles O0 and O1—see Figure 3. Such an ellipse divides the disk centred at p1 into
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two parts. The first one is the part inside the ellipse, denoted by A—see the yellow part in
Figure 3. The second one is the part outside the ellipse, denoted by B—see the blue part in
Figure 3. By Definition 1, the sites in A are covered by both p0 and p1, while those in B are
only covered by p1. For the sites in A, according to Definition 2, it is p0 that serves them,
while for those in B, it is p1 that serves them.

𝑝0

𝑝1

𝑠2

𝑠1

𝑅

𝐴

𝐵

𝑂0

𝑂1

Figure 3. Illustration of the coverage of two charging stations p0 and p1.

For a site s ∈ A, the average travel time can be computed by:

Ts(p1) =
∫ t f

ts
τ(D, p0, t)dt +

∫ t f

ts
ρs(t)|p0, s|dt

=
∫ t f

ts
τ(D, p0, t)dt + |p0, s|.

(8)

In (8), Ts(p1) is the average flight time from the depot D to site s ∈ A. We only take p1
as an input, since we consider the deployment of this single charging station. τ(D, p0, t) is
the travel time from the depot D to the charging station p0 when the UAV departs at time t.

Then,
∫ t f

ts
τ(D, p0, t)dt gives the mathematical expectation of this travel time. Moreover,∫ t f

ts
ρs(t)|p0, s|dt = |p0, s|, because |p0, s| is independent of time t and

∫ t f
ts

ρs(t)dt = 1.
Similarly, for a site s ∈ B, the average travel time can be computed by:

Ts(p1) =
∫ t f

ts
τ(D, p0, t)dt +

∫ t f

ts
ρs(t)(|p0, p1|+ |p1, s|)dt

=
∫ t f

ts
τ(D, p0, t)dt + |p0, p1|+ |p1, s|.

(9)

Then, the weighted average travel time for all sites in S is given by:

1
|S|
(

∑
s∈A

λs(
∫ t f

ts
τ(D, p0, t)dt + |p0, s|) + ∑

s∈B
λs(
∫ t f

ts
τ(D, p0, t)dt + |p0, p1|+ |p1, s|)

)
=
∫ t f

ts
τ(D, p0, t)dt +

1
|S|
(

∑
s∈A

λs|p0, s|+ ∑
s∈B

λs(|p0, p1|+ |p1, s|)
) (10)

From (10) we can see that, given the first charging station p0, the weighted average
travel time for the sites in S only depends on the position of the second charging station p1,
since the mathematical expectation of the travel time from the depot D to p0 is fixed when
given p0 and G.

Therefore, the problem of deploying one charging station is reformulated as:

min
p1

1
|S|
(

∑
s∈A

λs|p0, s|+ ∑
s∈B

λs(|p0, p1|+ |p1, s|)
)

(11)
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subject to
|s, p1| ≤ R, ∀s ∈ S. (12)

It should be pointed out that we only need to consider the sites that are outside the
circle O0. The reason is that, given p0, the travel time for the sites in O0 is known, which
does not need to be optimised.

The main difficulty in addressing the above problem lies in its discontinuity. The vari-
able p1 not only determines the flight time in part B, but also impacts the parts A and B. p1
is defined in a continuous space. A small change of p1 may lead to different parts A and B,
which may result in a large jump in terms of the travel time. Consider a site that is on the
boundary of A and B. In this case, the site belongs to part A. However, when we move p1
a small amount, it is possible that this site falls into part B. Clearly, this creates a jump in
the travel time of this site, which further leads to a discontinuity in the overall weighted
travel time.

To address the problem, we reformulate it as an integer linear problem (ILP). Suppose
there is a set of candidate positions where we are allowed to deploy the charging station.
Let C = {c1, c2, . . . , cm} denote such a set. Let xk be a binary variable. xk = 1 if the charging
station is located at the candidate ck; xk = 0 otherwise. Moreover, given these candidates,
we can constructs the parts A and B correspondingly. For the candidate ck, let Ak and Bk
denote the corresponding parts. Then, the problem is formulated as follows:

min
x1,...,xm

m

∑
k=1

xk
(

∑
s∈Ak

λs|p0, s|+ ∑
s∈Bk

λs(|p0, p1|+ |p1, s|)
)

(13)

subject to
m

∑
k=1

xk = 1, (14)

xk ∈ {0, 1}, ∀k = 1, . . . , m. (15)

It is worth pointing out that the above formulation constraint (12) has already been
taken into account in the process of constructing the parts Ak and Bk. If a candidate
position cannot enclose all the sites to be surveyed, it has already been removed from the
candidate list.

Now, the problem is in the well-known form of an ILP, and many existing solvers are
available for this purpose.

4.3. The Deployment of Multiple Charging Stations

In this section, we focus on the more challenging scenario with n charging stations,
i.e., p1, . . . , pn.

Suppose the charging stations are initially deployed at p1, . . . , pn, and the two afore-
mentioned conditions hold, i.e., all the sites are covered by at least one charging station
(see (6)), and each charging station is connected with p0 (see (7)). With these assumptions,
we can construct a tree structure for the charging stations, including p0. In particular, p0
is the root of this tree, and any other vertex connects with p0 via the shortest path. This
is the so-called minimum spanning tree. For any vertex j in the tree, let Pj denote the
shortest path from the root p0 to vertex j. Clearly, this path gives the shortest travel time
for UAVs. Moreover, let |Pj| denote the number of vertices on this path, and let Pj[k] denote
the kth vertex on the path. In particular, Pj[1] = p0, and Pj[|Pj|] = pj. With this symbol,
the requirement that any charging station must connect with p0 can be formulated as:

|Pj[k], Pj[k + 1]| ≤ 2R, ∀k = 1, . . . , |Pj| − 1. (16)

Moreover, let φ(j) denote the parent vertex of vertex j on the path Pj. It is clear that
in the minimum spanning tree, any vertex other than the root has a unique parent vertex,
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while each vertex may have more than one child vertex. Let ψ(j) denote the set of child
vertices of vertex j.

Now, for any pair of child-parent vertices, we can construct the corresponding ellipse
following the method discussed in Section 4.2. It is worth pointing out that there always
exists such an ellipse for a pair of child-parent vertices if their distance is less than 2R.
For the extreme case, i.e., their distance equals 2R, such an ellipse reduces to a line segment
connecting the child and parent charging stations. Similarly to Section 4.2, let Oj and
Oφ(j) denote the circles centred at pj and pφ(j) of radius R, respectively. Let Aφ(j)j and
Bφ(j)j denote the two parts of Oj separated by the ellipse constructed from pj and pφ(j), see
Figure 4.

𝑝𝜙(𝑗)

𝑝𝑗

𝑅

𝑂𝑗
𝐴𝜙 𝑗 𝑗

𝐵𝜙 𝑗 𝑗

𝑂𝜙(𝑗)

𝑝𝑢

𝑝𝑣

𝜓 𝑗 = {𝑢, 𝑣}

Figure 4. Illustration of the coverage of a pair of child-parent charging stations pj and pφ(j). Vertex
φ(j) is the parent of vertex j, and the set of the child vertices of Vertex j consists of u and v, i.e.,
ψ(j) = {u, v}.

For the sites in the part of Aφ(j)j, the travel time for UAVs is broken down into
three legs:

1. from D to p0,
2. from p0 to pφ(j),
3. from pφ(j) to the sites.

For the sites in the part of Bφ(j)j, the travel time for UAVs is broken down into four legs:

1. from D to p0,
2. from p0 to pφ(j),
3. from pφ(j) to pj.
4. from pj to the sites.

Similarly to Section 4.2, we only pay attention to the travel time from p0 to the sites.
For ease of presentation, let F1(p0, pφ(j)) denote the travel time from p0 to pφ(j). Let Sj
denote the subset of sites within the circle Oj. Let F2(pφ(j), pj) be the average travel time
from pφ(j) to the sites in Sj. Then, we have

F2(pφ(j), pj) =
1
|Sj|

(
∑

s∈Aφ(j)j

|pφ(j), s|+ ∑
s∈Bφ(j)j

(|pφ(j), pj|+ |pj, s|)
)
. (17)
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The deployment of multiple charging stations can then be obtained by solving the
below problem:

min
p1,...,pn

1
n

n

∑
j=1

(
F1(p0, pφ(j)) + F2(pφ(j), pj)

)
. (18)

Clearly, (18) gives the average travel time of UAVs from p0 to the sites.
The direct method to solve the above problem is to convert the problem to its discrete

version, as used for the simple case with just one charging station. However, such a method
may not greatly simplify the problem—in addition to the variables that decide which
candidate locations are chosen for charging station deployment, we must also introduce
variables to satisfy the connectivity requirement for each charging station. Clearly, this
will make the corresponding ILP contain much more variables; as such, an existing ILP
solver may take a very long time to finish analysing the problem. We therefore present a
sub-optimal method that can solve the problem quickly.

We observe that the movement of a vertex in the constructed tree influences the travel
time to the sites covered by itself, its child, and its downstream vertices. However, this
movement does not impact that of the sites covered by upstream vertices. Thus, moving a
vertex only affects the travel time of the sites covered by its branch; we will call the vertex
that we consider the sub-root of the branch. Another observation is that the vertices in a
branch can be classified into two groups: the neighbour vertices of the sub-root, that are
directly connected with the sub-root (this group includes the sub-root itself); and the non-
neighbour vertices, that are not connected with the sub-root directly. For non-neighbour
vertices, the movement of the sub-root only affects the first part in (18), but not the second
part. We can call this impact the indirect impact. For the neighbour vertices, the movement
of the sub-root affects both parts in (18). In this case, the impact is named the direct impact.
In the method to be presented, we relocate a vertex by taking into account both its direct
and indirect impacts. In particular, a vertex is relocated to another position if the overall
impact provides a decrease in the average travel time to the sites in its branch. We move
the vertex to the position that can obtain the maximum decrease in the average travel time.

As per our discussion, the relocation of a leaf vertex (a vertex that does not have any
child vertices ) can be achieved using the method discussed in Section 4.2 because a leaf
vertex’s movement only impacts the sites covered by itself. However, the relocation of a
non-leaf vertex is complex. To present the relocation method for the latter case, we need to
introduce some more symbols. Let Ni denote the number of the sites in the branch of vertex
i which are indirectly impacted by vertex i. Let Gi denote the average travel time from
vertex i to these sites. If i is a leaf vertex or the parent of a leaf vertex, Ni = 0 and Gi = 0,
because the sites in the branch of vertex i are all directly impacted by vertex i. Let H1(pj)
denote the average travel time from the parent of vertex j, i.e., φ(j), to all the indirectly
impacted sites in the branch of vertex j. If ∑i∈ψ(j) Ni = 0, H1(pj) = 0; otherwise, H1(pj) is
computed as follows:

H1(pj) =
∑i∈ψ(j) Ni(Gi + |pi, pj|+ |pj, pφ(j)|)

∑i∈ψ(j) Ni
. (19)

In (19), the term Gi + |pi, pj|+ |pj, pφ(j)| gives the average travel time from vertex φ(j)
to the sites in the branch of vertex i (where i ∈ ψ(j)) that are indirectly impacted by vertex
j. Clearly, H1(pj) is a function of pj, and other information in (19), including Ni, Gi, and
pφ(j), is known if the downstream vertices and the parent vertex are fixed.

Let H2(pj) be the average travel time from vertex φ(j) to the sites that are in the branch
of node j and are directly impacted by vertex j. These sites include the ones covered by
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vertex j and the child vertices of vertex j. The number of the sites is |Sj|+ ∑i∈ψ(j) |Si|. Then,
H2(pj) is computed as follows:

H2(pj) =
1

|Sj|+ ∑i∈ψ(j) |Si|

[
∑

s∈Aφ(j)j

|pφ(j), s|+ ∑
s∈Bφ(j)j

(|pφ(j), pj|+ |pj, s|)+

∑
i∈ψ(j)

(
∑

s∈Aji

|pj, s|+ ∑
s∈Bji

(|pj, pi|+ |pi, s|) + ∑
s∈Si

|pj, pφ(j)|
)]

.

(20)

The term ∑S∈Aφ(j)j
|pφ(j), s|+ ∑s∈Bφ(j)j

(|pφ(j), pj|+ |pj, s|) in (20) gives the total travel
time from vertex φ(j) to the sites in Sj. The term ∑s∈Aji

|pj, s|+ ∑s∈Bji
(|pj, pi|+ |pi, s|) +

∑s∈Ci
|pj, pφ(j)| in (20) gives the total travel time from vertex φ(j) to the sites in Si, where

i ∈ ψ(j). Clearly, H2(pj) is a function of pj, and other information in (20) is known if the
downstream vertices and the parent vertex are fixed. Differently from H1(j), which can be
zero, H2(j) > 0, because there exists a subset of sites that are directly impacted by vertex j.
If this subset is empty, there is no need to have vertex j.

Let H(pj) denote the average travel time from vertex φ(j) to all the indirectly and
directly impacted sites covered by vertex j. Then,

H(pj) =
(|Sj|+ ∑i∈ψ(j) |Si|)H2(pj) + ∑i∈ψ(j) Ni H1(pj)

|Sj|+ ∑i∈ψ(j) |Si|+ ∑i∈ψ(j) Ni
. (21)

Moreover, the average travel time from vertex 0 to all the sites in the branch of vertex
j is given by L(p0, pφ(j)) + H(pj), where L(p0, pφ(j)) denotes the travel time from vertex
0 to vertex φ(j). If at any time we only move one vertex in the constructed tree, say
vertex j, for the purpose of reducing the average travel time, we only need to consider
H(pj), because L(p0, pφ(j)) is fixed. Therefore, we can relocate pj to a new place that
minimises (21), provided that the topology of the constructed tree remains and vertex j
does not lose any of its covered sites.

Moreover, since the values of N and G are required in the computation of H1(pj)
in (19), we need a general formula for them to relocate each node in a decentralised manner.
Given the values of N and G of the child vertices of vertex j, we can compute these values
for vertex j as follows:

Nj = ∑
i∈ψ(j)

(Ni + ∑
k∈ψ(i)

|Sk|), (22)

Gj =
1
Nj

∑
i∈ψ(j)

(
Ni(Gi + |pi, pj|) + ∑

s∈Aji

|pj, s|+ ∑
s∈Bji

(|pj, pi|+ |pi, s|)
)

. (23)

The values of N and G propagate in upstream order. For a certain vertex, these values
can be computed once those of its child vertices have been computed.

Now, we have enough symbols to present our method. Suppose that at the initial
positions p1, . . . , pn, the n charging stations cover all the sites in S. We construct the
minimum spanning tree for the vertices with p0 as the root. Assume that all the edges in
the tree are not longer than 2R. With the initial positions, we can compute the subset of
sites covered by each vertex. The main procedure of our method repeatedly relocates the
vertices in sequence. When we relocate a vertex, the relocation of all its child vertices needs
to be performed beforehand. In the case where two sibling vertices are to be relocated,
either of them can be relocated first. With this rule, we start the relocation from the leaf
vertices and then up to their parents. Specifically, for a leaf vertex, we find the position
for this vertex as discussed in Section 4.2. For a non-leaf vertex, we find the position for
the vertex by minimising (21) so that the topology of the constructed tree does not change
when the vertex is moved, and the vertex does not lose any sites. After the relocation,
the values of N and G of this vertex are updated by (22) and (23). After the relocation of
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all the nodes, we update the subset of sites covered by each vertex, as well as the sets A
and B. These procedures repeat until the vertices can no longer be moved. The termination
condition is that all the vertices stay at the previous positions in one round of relocation.
This method is summarised in Algorithm 1.

Algorithm 1 Relocating the vertices in the minimum spanning tree
Input: p0, p1, . . . , pn
Output: p1, . . . , pn

1: Construct the minimum spanning tree with p0, p1, . . . , pn by taking p0 as the root.
2: Compute the subset of sites covered by each vertex.
3: Construct a relocating sequence.
4: while Termination condition is unsatisfied do
5: for Each vertex j in the sequence do
6: if Node j is a leaf vertex then
7: Find the new position by solving the problem (13) subject to (14) and (15).
8: Nj ← 0, Gj ← 0.
9: else

10: Find the new position by minimising (21) subject to that the topology of the
tree does not change when vertex j relocates, and vertex j does not lose any sites.

11: Update Nj and Gj by (22) and (23).
12: end if
13: end for
14: Update the subset of sites covered by each vertex.
15: end while

For a given set of sites, Algorithm 1 ensures that any movement of a vertex leads to
a lower average travel time; we prove this as follows. Algorithm 1 consists of two main
procedures. One is the relocation of vertices in sequence, and the other is the update of
customers covered by each vertex. For the former, we only relocate one vertex at any time,
and we relocate it only if the average travel time reduces for downstream sites impacted by
the vertex. As analysed above, such a relocation does not influence upstream sites. Thus,
the relocation procedure ensures the decrease in the average travel time. Regarding the latter,
for the given locations of any pair of parent-child vertices, the proposed grouping model
ensures that any site can be served, and that the travel time for any customer is the lowest.
Therefore, Algorithm 1 relocates the vertices to positions with a lower average travel time.

5. Simulation Results

In this section, we demonstrate the effectiveness of the proposed algorithms via several
typical case studies.

We first show the superiority of the coverage models proposed in Definitions 1 and 2.
To better understand the performance, we compare with a baseline method, which groups
the sites based on the shortest distance between sites and charging stations, and then moves
the charging station to the mass centre of the sites [41]. We consider two simple cases with
one charging station to be deployed with some randomly placed sites in Figures 5 and 6.
Here, R = 15 km. The resulting positions for the charging station found via the proposed
method and the baseline method are shown. In the case shown in Figure 5, the average
travel distance of the UAV from p0 to the sites is 26.2 km for the proposed method. Given
a certain flight speed, we can acquire the corresponding travel time. For the same set of
sites, the average travel distance achieved by the baseline method is 30.8 km. In the case
shown in Figure 6, the proposed method achieves an average travel distance of 21.7 km,
while for the same set of sites, the baseline method achieves an average travel distance of
26.6 km. For these cases, we can see that the proposed coverage model leads to a shorter
travel distance than the baseline method.
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Figure 5. Comparison of the proposed method and baseline method in the first simple case with one
charging station. The sites are represented by red dots.
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Figure 6. Comparison of the proposed method and baseline method in the second simple case with
one charging station. The sites are represented by red dots.

We also consider some complex cases with more charging stations, and the results
are shown in Figures 7 and 8. In Figure 7, we deploy four charging stations using both
the proposed method and the baseline method. From the initial positions shown in
Figure 7a, these two methods relocate the charging stations to those shown in Figure 7b,c,
respectively. Figure 7d shows the average travel distance of UAVs from p0 to the sites.
Clearly, the proposed method achieves an average lower travel distance. We can also see a
similar result in Figure 8.
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Figure 7. Cont.
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Figure 7. Comparison of the proposed method and baseline method in the case with four charging
stations. The sites are represented by red dots.
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Figure 8. Comparison of the proposed method and baseline method in the case with five charging
stations. The sites are represented by red dots.

6. Conclusions

In this paper, we considered an approach that exploits PTVs and charging stations
to improve UAV flight time. In this approach, a UAV first travels with some PTVs, and
then flies through any required charging stations to reach the remote sites to be surveyed.
The travel time with PTVs can be estimated using the well-known Monte Carlo method.
We mainly investigated the deployment problem of charging stations, which assist UAVs
to conduct aerial surveillance. We proposed a new coverage model, which is based on
elliptical regions. This model can accurately characterise the travel time of UAVs through
the deployed charging stations. Based on such a model, we formulated the deployment
problem and proposed a sub-optimal method. This is an iterative method, and we proved
that, in each round of relocation, the average travel time of UAVs reduces. The effectiveness
of the proposed method has been verified via computer simulations. One limitation of
the current approach is that we relocate a charging station by numerically evaluating the
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candidate sites. An interesting and useful future research direction is to study the analytical
solution to this issue.
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Appendix A

Table A1. Main symbols used in the paper.

Symbol Meaning

D Depot of UAVs
R Flight distance corresponding to half of the onboard battery
n Number of charging stations to be deployed
pi Location of charging station i
S The set of sites to be surveyed
s Position of site s
G Graph formed by vehicle stops, depot, sites and charging stations

ρs(t) The probability that the site s needs to be surveyed at time t of a day
λs The weight of site s

τ(u, v, t) Travel time from node u to node v when the UAV starts at time t
Ts(p1, . . . , pn) The average travel time of UAV to survey site s
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