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Abstract: Unmanned Aerial Vehicles (UAVs) have become necessary tools for a wide range of activi-
ties including but not limited to real-time monitoring, surveillance, reconnaissance, border patrol,
search and rescue, civilian, scientific and military missions, etc. Their advantage is unprecedented
and irreplaceable, especially in environments dangerous to humans, for example, in radiation or
pollution-exposed areas. Two path-planning algorithms for reconnaissance and surveillance are
proposed in this paper, which ensures every point on the target ground area can be seen at least once
in a complete surveillance circle. Moreover, the geometrically complex environments with occlusions
are considered in our research. Compared with many existing methods, we decompose this problem
into a waypoint-determination problem and an instance of the traveling-salesman problem.

Keywords: UAVs; aerial surveillance; coverage path planning; terrain coverage; path planning

1. Introduction

The extensive use of Unmanned Aerial Vehicles (UAVs), also known as aerial drones,
has recently jumped from military to hobby and professional applications [1]. Complete
coverage has become a necessary function for activities including but not limited to border
patrol [2,3], search and rescue [4,5], 3D reconstruction [6,7], infraction inspection [8], and
surveillance and security [9–12], etc. In general, the coverage problem was first put forward
over a 2D grid environment by [13]. We can classify this problem into two main categories
based on vehicle movements. Static coverage focuses on the deployment of hovering
UAVs to reconnoiter over certain terrains [14,15], while dynamic coverage addresses the
reconnaissance and surveillance problem by moving UAVs [16,17].

A survey on computational-intelligence-based UAV path planning can be found
in [18,19], which classifies UAV path-planning methods from the aspect of methodology,
time domain, and space domain, respectively. In a common reconnaissance and surveillance
scenario, a flying vehicle equipped with a downward-facing video camera with a certain
visibility angle can monitor targets of interest on the ground, such as vehicles, humans,
animals, etc. [20,21]. We can evaluate the quality of surveillance in terms of coverage and
resolution [22]. In this case, the low altitude of the traveling path is preferred for a better
resolution of the observed region of the terrain. One of the most significant technical
challenges is to completely cover a given target area with the minimum number of drone
waypoints, which requires every point on the target area to be seen at least once by the
onboard camera during one complete surveillance circle. However, these two evaluation
terms need to reach a suitable compromise to perform an ideal surveillance duty.

This paper presents two novel path-planning algorithms to address the aforemen-
tioned gaps. In contrast to the existing literature, our approach takes both UAV kinematics
constraints and camera-sensing constraints into consideration. In the first algorithm, we
consider the fixed-wing vehicle case, assuming the vehicle flies at a given altitude with
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constant speed and limited turning radius. This Dubins aircraft model is similar to those in
paper [11,23,24]. We present a two-phase strategy to solve this surveillance problem. First,
an easily implementable estimation algorithm is developed, and the minimum number and
locations of waypoints are determined to provide the complete coverage of the target area.
The second phase addresses the allocation of the achieved locations over one or more UAVs
and creates the shortest paths to reconnoiter the corresponding area of interest. The Dubins
paths consist of straight lines and arcs of the circle of a constant radius. To achieve this,
regular triangular patterns and the clustered spiral-alternating method are implemented,
respectively. Our second algorithm concerns the surveillance problem over geometrically
complex environments with varying altitudes and occlusions, such as mountainous terrains
and urban regions. In the first stage, the challenge is to find a set of camera locations called
the vantage waypoint set to provide full coverage of the area of interest, which can be
viewed as a 3D Art Gallery Problem using drones as the observers. In the second stage, one
or several UAVs are determined to conduct the full coverage reconnaissance and surveil-
lance duty along individual routes respecting their kinematic constraints in the optimization
criterion (the shortest time possible). This variant of the combinatorial traveling-salesman
problem is solved by introducing unsupervised learning and Bézier curves.

The rest of the paper is organized as follows. Section 2 presents our approach for the
scenario where UAVs fly at a given altitude. Section 3 then presents the proposed algorithm
for the case where UAVs can fly at different altitudes. Each of these sections starts with the
addressed problem with the necessary background, followed by details of the proposed
surveillance solution. The performance of the algorithms is then evaluated using computer
simulations. Finally, Section 4 concludes the paper.

2. Surveillance Algorithm at a Given Altitude

This section provides a two-stage approach, which is similar to [11,22,25] but more
realistic and efficient. In the first stage, we construct a set of waypoints to be visited by
UAVs. The fundamental idea is to create a triangulation of the terrain. This triangulation
contains several congruent equilateral triangles, and the length of the sides of the triangles
depends on the visibility of UAVs. The second stage aims at producing the shortest smooth
trajectory so that all the waypoints can be visited by UAVs. As we consider fixed-wing
UAVs, the popular Dubins car model is used. Then, the constructed trajectory has several
straight-line segments and arcs. In the following subsections, we first formally state the
problem of interest and then present our approach in detail.

2.1. Problem Statement

Consider a surveillance problem over one or multiple disjoint surface areas. We have
one or a fleet of fixed-wing UAVs. For simplicity, all the UAVs are identical. They fly at
a constant speed v and their angular velocity is u. In this section, we assume that the UAVs
fly at a given altitude. We describe the UAV motion by the following well-known Dubins
car model [26], which is often used for aircraft, UAVs and missiles [27–30]:

ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = u(t)

(1)

where θ is the vehicle’s heading.
Let (xg, yg) denote the Cartesian coordinates of a point on the ground. Let zg = F(xg, yg)

be the perpendicular elevation of the point (xg, yg) on the terrain. Moreover, let G denote
a given Lebesgue measurable region [31] on the ground with zero elevation, i.e., zg = 0.
In addition, this region G has piecewise boundary. Our goal is to survey the region G by
one or more UAVs. Let Zmax and Zmin be the given constants representing the maximum
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and minimum altitudes of UAVs. Any vantage point (x, y, z) must make the following
constraints hold:

(x, y) ∈ G, z ∈ [Zmin, Zmax], 0 < Zmin < Zmax. (2)

Each UAV carries a fixed EO/IR camera, which is downward-facing to the ground with
a certain visibility angle 0 < α < π. The sensing process is based on pinhole perspective
projection [32], and the quality of the resolution is influenced by both the distance to the
object and the physical parameters. In particular, if we set the camera’s center as UAV’s
position (x, y, z), the UAV can only see points along the z axis with a limited angle of view,
so that a cone-shaped field of view (FOV) with radius

R := z · tan(
α

2
) (3)

is constructed (see Figure 1). A point is invisible if it falls out of the FOV.

α

（x, y, z）

R

visible

invisible

Figure 1. The visibility cone. Object within the FOV can be seen by the drone.

As aforementioned, a surveillance mission should deliver a coverage of the area of
interest with a satisfactory resolution. Moreover, complete coverage means that every point
of the region G is seen at least once in a complete surveillance circle of UAVs. One of the
most significant technical challenges is how to completely cover the target region by the
minimum number of waypoints. The visibility cone enlarges when the UAV flies higher,
but the resolution of the onboard recording is worse. We can choose a certain altitude
that can achieve the required resolution. Here, we select the lowest possible altitude z,
i.e., Zmin < z < Zmax for the best resolution. At this altitude, the generated waypoint
set, which provides complete coverage of the target area with a resolution that cannot be
further better, is preferred to conduct an ideal surveillance mission.

Definition 1. The complete coverage means constraints (2) and (4) are satisfied and every point on
the target area G can be seen at least once in a complete surveillance circle.

In the herein-addressed surveillance problem, we consider one waypoint location
pi ∈ R3 from vantage waypoint set

Let P = {p1, ..., pn} denote the set of the vantage waypoints. Here, pi ∈ R3 is a vantage
waypoint, which should be visited by a UAV. We assume that when a UAV is within δ
distance from point pi, a record such as the photo/video can be taken. Formally, when
a UAV reaches any point p∗i satisfying ||p∗i , pi|| ≤ δ, where ||·, ·|| gives the standard
Euclidean distance, we say the vantage point pi is visited successfully.
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We need some more symbols to complete the problem statement. Let qij denote the
distance between waypoints i and j. Let qi be the minimum distance between a waypoint i
and the terrain. For collision avoidance, the following constraints must be met:

qij ≥ c1, qi ≥ c2 (4)

where c1 > 2δ > 0 and c2 > δ > 0 are given safety margins.
With the above models, the problem of interest is to find the trajectory to visit the

δ-neighborhood of all assigned vantage points. Such a problem involves the optimization
of the sequence of visits, which can be regarded as an instance of the well-known Dubins
vehicle Traveling Salesman Problem (DTSP). As discussed earlier, the final trajectory for
a UAV is a sequence of straight-line segments and circular arcs with the minimum radius
that traverses the δ-neighborhood of all the vantage points.

In DTSP, the shortest path between two configurations must be one of the six possible
combinations: LSL, LSR, LRL, RSL, RSR, and RLR, where ’S’ means going straight and
’L’ and ’R’ denote left and right turn with the minimum turning radius, respectively, see
Figure 2.

Figure 2. Six cases of Dubins curves.

2.2. Surveillance Algorithm

In this subsection, we present the proposed trajectory construction strategy. This
strategy is based on a decomposition of the surveillance problem into a complete coverage
problem and a DTSP. This strategy finds the waypoints to fully cover the area of interest
first, and then plans trajectory along with these waypoints, such that the length of the path
to visit all the waypoints is minimized.

2.2.1. Stage One: Waypoint Generation

In the first stage of the strategy, a method similar to [9] to estimate the minimal
number of waypoint locations with coordinates on a given plane zp = z that is parallel to
the ground is used. Then, the strategy finds the minimum altitude z to sense the achieved
2D coordinate.

The constructed triangulation consists of equilateral triangles, and the length of the
side of all the triangles is

√
3R, where R is the radius of the vision-cone as defined in (3).

We denote the direction of a side of a triangle with respect to a certain direction (such
as the x-axis) as the angle of the triangle and we use λ ∈ [0, π

3 ) to represent this angle.
Additionally, we denote (x0, y0) as the coordinate of one of the vertices (see Figure 3a).
Then, a triangulation can be represented by ∆(λ, x0, y0). Moreover, in any triangle, the line
segments connecting the center point, denoted by C, and the vertices divide the triangle
into three congruent Voronoi cells. For instance, we use different colors to indicate these
cells in Figure 3b. In an equilateral triangle with side length

√
3R, the distance between
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any two points in the same Voronoi cell is within R the radius of the FOV. It is obvious that
the drone located at the same Voronoi cell to any point of the area of interest can cover at
least this point of the area.

Given similar environments in [9], the minimum number and the positions of waypoints
are determined while decreasing the altitude z by 1 m each time from z = Zmin = 120 m, and
λ, x0, y0 are randomly generated. Referring to the comparison results between [9,33], it is
apparent that the method of [33] needs more waypoints than [9] to cover the same area at
a similar altitude. So, the proposed method applies [9] for waypoint generation.

ｙ

3R

（x0,  y0）

λ

x

(a) Triangulation ∆(λ, x0, y0).

C

FOV

R

(b) Equilateral triangle is made of three con-
gruent Voronoi cells.

Figure 3. (a) Triangulation consists of equilateral triangles; (b) Congruent Voronoi cell.

2.2.2. Stage Two: UAV Path Planning for Surveillance

We consider that the UAVs fly along Dubins paths. DTSP, as an extension of the
Traveling Salesman Problem (TSP), assumes the salesman travels along the Dubins path,
where the travel cost is proportional to length of the path [34]. The algorithms to derive the
Dubins path can determine the shortest path connecting vantage waypoints generated in
the first phase.

We briefly discuss two algorithms to address the DTSP problem, which are the al-
ternating algorithm [34] and the spiral algorithm [25]. The alternating algorithm is an
approximation algorithm to solve DTSP with given lower and upper bounds on solution
quality. This algorithm computes the sequence of visits first uses the optimal solver for
Euclidean TSP (ETSP) and then connects two waypoints by either an alternating straight-
line and Dubins arc segments. The spiral algorithm is another popular DTSP surveillance
algorithm. It links the chain of the convex hull of the given sets of waypoints. The shape of
the resulting path resembles a spiral respecting the turning radius constraints.

When the waypoints are spare, i.e., when two waypoints are far enough with respect to
the turning radius, the alternating algorithm computes the shortest path. By contrast, when
the waypoints are dense, the spiral algorithm has been shown to be superior. In addition,
the spiral algorithm is also more suitable for surveillance duty at low altitudes. The
clustered spiral-alternating algorithm [35], which is actually a combination of the above two
algorithms, is used in this paper to improve the effectiveness and efficiency of surveillance.
To apply this algorithm we need to cluster the waypoints manually or by other methods.
After clustering, waypoints in a cluster are dealt by the spiral algorithm. After this, the
spiral paths for different clusters are combined, and the alternating line segments are
replaced with Dubins segments to form the shortest path. From the observed result of
total path length, the clustered spiral-alternating algorithm is always shorter than the
original spiral algorithm in clusters. Compared to the alternating algorithm, the clustered
spiral-alternating algorithm has fewer sharp turns.
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The proposed scheme is also applicable when the target area consists of multiple
disjointed areas (no overlaps). One of the most straightforward ways is to assign as many
UAVs as the disjoint areas. The merits of the method include its simplicity, adaptability,
and robustness against restricted communication among UAVs.

2.3. Simulation Results

In this section, computer simulation results are presented to demonstrate the effective-
ness of the proposed approach.

2.3.1. Single-Area Surveillance

We first consider the vantage waypoints in a 700 × 900 m2 single area as shown in
Figure 4a,b, which demonstrates the Voronoi diagram of the waypoints.

(a) Waypoint positions. (b) Voronoi diagram.

Figure 4. Single-area surveillance scenario.

Figure 5 shows the single UAV surveillance path generated by the spiral algorithm [34],
the alternating algorithm [25], the genetic algorithm [17], Grey Wolf Optimizer (GWO)
algorithm in [36], and the clustered spiral-alternating algorithm [35], respectively. We eval-
uated the selected clustered spiral-alternating algorithm with mentioned four algorithms
in terms of path length and number of sharp turns. The path generated by clustered spiral-
alternating algorithm Figure 5e is shorter than the spiral algorithm (SA) Figure 5a and Grey
Wolf Optimizer (GWO) algorithm Figure 5c, and fewer sharp turns than the alternating
algorithm (AA) Figure 5b and genetic algorithm (GA) Figure 5d. The straight-line segments
and the Dubins segments are represented by yellow and red segments, respectively. The
average execution times for the above methods are shown in Table 1. The average execution
times for the above methods are shown in Table 1. The SA and AA are faster than the
GWO, GA, and the proposed method. However, the proposed method has a far shorter
path length than the SA method and fewer sharp turns than the AA method. The proposed
method is available as an option when there is a tradeoff between the execution time and
optimal path.

Table 1. Average execution times (seconds) for the different algorithms.

Algorithm Time (s)

SA 3.21

AA 3.69

GWO 16.14

GA 10.36

Proposed 4.84
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(a) Spiral algorithm: 2258.16 m. (b) Alternating algorithm: 1825.80 m.

(c) Grey Wolf Optimizer (GWO) algorithm: 3200.70 m. (d) Genetic algorithm:1900.30 m.

(e) Cluster spriral-alternating algorithm: 1827.32 m.

Figure 5. UAV surveillance trajectory—Single UAV.

2.3.2. Multiple Disjoint Areas Surveillance

The multiple disjoint surface area in a 600 × 600 m2 terrain is shown in Figure 6.
In the first stage, the minimum number and position of the waypoints of our region of
interest are generated and shown in Figure 6a, and the δ-neighborhood of each individual
vantage waypoint location is in Figure 6b. Then, the path is achieved using clustered
spiral-alternating algorithm and Dubins curves. For our results in Figure 6c, two clusters
are assigned to two UAVs, respectively. In addition, the coverage of the area of interest is
achieved when both finish their surveillance circle. It makes the quick parallel surveillance
possible and the subsequent task allocations simple.

In the single UAV scenario, we can use only one drone to carry out the surveillance.
With the consideration of computation efficiency, we decide to keep one obtained path and
regenerate the other cluster’s path. The final surveillance planning with Dubins curves
by the proposed algorithm shows in Figure 6d. The simulation result demonstrated the
validation of the algorithm.
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(a) Vantage waypoint set of the target area (b) δ-neighborhood of vantage waypoint set

(c) Two UAV, two paths (d) Proposed UAV path

Figure 6. Proposed UAV surveillance in multiple disjoint surface area.

3. Surveillance Algorithm at Different Altitudes

This section considers a more challenging and realistic situation involving surveillance
in geometrically complex environments, such as mountainous terrains and urban regions.
Because the video camera can only see the points within its cone-shaped field of view
(FOV), the FOV can be reduced when facing any kind of obstacle. Similar to our previous
section, we address the mentioned problems separately, decoupling them into the waypoint-
generation part and trajectory determination part.

3.1. Problem Statement

We consider the dynamic coverage problem in the target area, where UAVs keep flying
through each pre-defined waypoint during surveillance and take video. The vehicle’s
kinematic model at the point p = (x, y, z) can be described as follows: ẋ

ẏ
ż

 = v

 cos θ cos ψ
sin θ cos ψ

sin ψ

 (5)

where θ is the turning angle and ψ is the pitch (climb/dive) angle. The state of our drone is
s = (p, θ, ψ).

Several assumptions described in the last section also apply to the model of the terrain.
In the addressed reconnaissance and surveillance scenario, our UAV is equipped with a
downward-facing video camera with a certain visibility angle. It can monitor the relatively
small targets of interest on the ground with the required level of details within its FOV.
Figure 7 is the onboard camera with a given visibility angle 0 < α < π. The drone at
(x, y, z) can only see points (xg, yg, zg) that are inside the cone-shaped field of view (FOV)
of radius on the target area

R(zg) := (z− zg) · tan(
α

2
),

z > zg.
(6)
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visible
α

occluded

（x, y, z）

R

Figure 7. Occlusion effects on camera sensing.

The problem becomes to find the trajectory that goes through the δ-neighborhood of all
assigned vantage points, which take the optimization of the sequence of visits into account,
i.e., a variant of the combinatorial traveling-salesman problem. The final trajectory is
connected by a sequence of piecewise cubic Bézier curves that traverse the δ-neighborhood
of all assigned vantage points. A n degree Bézier curve can be parametrized as:

Γ(t) =
n

∑
i=0

Pibi,n(t) (7)

where Pi stands for the i-th control point, and 0 ≤ t ≤ 1. bi,n(t) is named the Bernstein
polynomial and defined as follows:

bi,n(t) =
(

n
i

)
ti(1− t)n−i (8)

and 0 ≤ t ≤ 1. The binomial coefficient is given by(
n
i

)
=

n!
i!(n− i)!

(9)

The used cubic Bézier curve is defined by four control points (P0, P1, P2, P3), and can
be expanded as

Γ(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t2(1− t) + P3t3. (10)

As the final trajectory Γ is closed and smooth curve, which consists of n Bézier curves,
two consecutive curves Γi and Γj with control points (Pi

0, Pi
1, Pi

2, Pi
3) and (Pj

0, Pj
1, Pj

2, Pj
3)

should be connected at the same endpoint:

Pi
3 = Pj

0 (11)
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And the tangents ti
a and ti

b with length
∣∣ti

a
∣∣ and

∣∣ti
b

∣∣ of Γi and Γj must point to the same
direction to connect a sequence of Bézier curves into a smooth path:

l j
ati

b = li
btj

a (12)

where

ti
a = Pi

1 − Pi
0, ti

b = Pi
3 − Pi

2, li
a =

∣∣∣ti
a

∣∣∣, li
b =

∣∣∣ti
b

∣∣∣. (13)

Compared with the constant speed Dubins, the multi-motor model can slow down
turning and accelerate on fairly straight paths. For the UAV model, the multi-rotor UAV is
preferred to the Dubins model with limited curvature. Therefore, the goal is to find the
fastest traveling route for UAV under the limit of maximum speed and acceleration, instead
of finding the shortest path under the limit of Dubins speed. In this case, this section does
not consider minimizing the length of the track, but considers the expected travel time of
the path.

3.2. Surveillance Algorithm

In this section, first, we try to find the vantage waypoint set that can completely cover
the area of interest, and then search for a smooth trajectory along with these locations at
different altitudes as quickly as possible, so as to minimize the completion time of visiting
all the locations. We decompose the surveillance problem into a drone version of the 3D
Art Gallery Problem and an instance of the combinatorial traveling-salesman problem.

3.2.1. Stage One: Vantage Waypoint Set Generation

The problem of finding the set of vantage waypoints can be regarded as a drone
version of the 3D Art Gallery Problem. It has been proved to be NP-hard [37], and the
approximation approach is always employed. In this section, we use a method similar
to [38] to estimate the minimal number of the waypoints by method in [39], and the
vantage waypoint set P = {p1, ..., pn}, pi ∈ R3 in two major steps. In the first step, the
2D coordinates (xi, yi) of each vantage waypoints are determined. With the achieved 2D
coordinates (xi, yi), the optimal altitudes zi are in the second step.

We assumed the terrain G is a polygon with n vertices, and G1, ...,Gi are obstacles
inside G with n1, ..., ni vertices, respectively. Let E1, ..., Ei be inside polygons of G1, ...,Gi,
respectively. In addition, each Ei has same number of vertices ni as Gi. We can consider Ei
as and “top” face, and Gi as the corresponding “bottom” face of each obstacle polyhedron
model. P is obtained from G without G1, ...,Gi, which is a non-convex polygon with i
“holes”. Let c > 0 be a given constant, we assume that the relative even area’s altitude
|zg| ≤ c, and c + c2 ≤ Zmin holds. In addition, let d̂e := max

{
de, d̂l

}
, de is the maximum

distance between (xi, yi) to the corresponding vertices of Ei, and b is the maximum altitude
of the terrain points corresponding to the Ei and its side quadrilaterals. Let dl be the
maximum length of the triangulation triangles sides whose vertex is one of the two end
points. The developed Vantage Waypoint Set Generation algorithm can be found in
Algorithm 1.

The number of waypoints in vantage waypoint set P is less than or equal to n+2n1+···+2nk+2k
3 ,

because the color with the minimum number of vertices will be selected after painting
all vertices of the triangulation T̂ by 3-coloring method (see from line 5–6 of Algorithm 1,
vertices in T̂ is n + 2n1 + · · ·+ 2nk + 2k). For any waypoint pi = (xi, yi, zi) generated by
Algorithm 1, (xi, yi) ∈ G by line 2, and lines 9–12 guarantee Zmin ≤ zi ≤ Zmax. As a result,
(2) still hold. According to the construction (see line 1–4), every triangle of T̂ can find a
waypoint located at one of its vertices. Moreover, any point outside the obstacles G1, ...,Gi
falls in one of the triangles of triangulation T , the drone located at one of the three vertices
of this particular triangle can see this point with the altitude determined by line 10–12.
Furthermore, for the“side” face of each obstacle, there exists a waypoint located at one
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of the four vertices with the altitude determined by line 10–11 can see any point of this
“side” face. In addition, it is apparent that any point of a“top” face is visible to the drone
located at the altitude determined by line 12. Consequently, the terrain G can be completely
covered by n+2n1+···+2nk+2k

3 waypoints or fewer.

Algorithm 1 Vantage Waypoint Set Generation

1: procedure STEP I
2: Construct polygon P without “holes” by i non-intersect diagonals with n + n1 +

... + ni + 2i vertices
3: Cut P into triangulation T , whose vertices are P ’s, and sides are either P ’s or its

diagonals.
4: Build the dual graph of T̂ by enlarging T by the vertices of Ei
5: Paint the vertices of the triangulation T̂ by 3-coloring method in [39]
6: The minimum number of vertices subset of the three is selected as the 2D coordinates

(xi, yi) of the vantage waypoint set
7: end procedure
8: procedure STEP II
9: while zi ≤ Zmax do

10: if (xi, yi) is not a vertex of any polygons Ei,Gi then

zi := max
{

Zmin, c + dl
tan( α

2 )

}
11: else if (xi, yi) is a vertex of some polygons Ei,Gi then

zi := max
{

Zmin, b + c2 +
d̂e

tan( α
2 )

}
12: else

zi := max
{

Zmin, a + c2 +
d̂l

tan( α
2 )

}
13: end if
14: end while
15: end procedure
16: return vantage waypoint set P = {p1, ..., pn}, pi = (xi, yi, zi)

3.2.2. Stage Two: UAV Path Planning for Surveillance

As mentioned in the previous section, the final trajectory includes the δ-neighborhood
of the set of vantage waypoints to reduce the completion time. We do not directly tackle
the coverage problems by visiting the neighborhoods. Regarding the kinematic constraints
of the UAV, the variant of the combinatorial traveling-salesman problem is solved by
introducing Self-Organizing Map (SOM) and Bézier curves.

As we assumed that the UAV will return to the initial location p1 after the complete
reconnaissance tour, δ = 0 for the initial location. With the vantage waypoint set P =
{p1, ..., pn}, pi ∈ R3 generated above, and the given initial location p1 and δ, we can
determine the final trajectory Γ as a sequence Σ = (σ1, . . . , σn) of Bézier curves Γi, 1 ≤ i ≤ n.
The final trajectory Γ = (Γσ1 , . . . , Γσn), 1 ≤ σi ≤ n, we need to minimize the estimation of
the travel time E(Γ), which can be determined from (10). To simplify the model, we employ
the Model Predictive Controller (MPC) for path following, and the vertical and horizontal
movements of the drone are individually considered. We denote aver, vver, ahor, vhor as
maximal vertical and horizontal accelerations and speeds, respectively. We also assume
that the initial and final velocity of the drone is zero, so that the drone will start from the
initial location p1 with zero velocity and return back to it in the end. The estimation of the
travel time E(Γ) and the profile of the velocity can be computed by the method in [40] by

maximum possible tangent acceleration atan =
√

a2
hor − a2

rad, arad is the radial acceleration.
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The adaptation can be considered to be a movement of the waypoint locations towards
the alternate location sp and a new location of each adapted waypoint location ν becomes
ν′ and it follows the standard SOM learning [41].

ν′ = ν + µ f (σ, d)
(
sp − ν

)
(14)

where µ is the learning rate, σ is the learning gain, d is the distance of ν from the winner
waypoint location ν∗, and f (σ, d) is the neighboring function.

f (σ, d) =

{
e
−d2

σ2 for d < 0.2M
0 otherwise

(15)

where M is the current number of neurons in the SOM.
The surveillance planning algorithm will stop the adaptation if i ≤ imax or ν∗ are

negligibly close to their respective sp, or all winner waypoint locations are inside the
δ-neighborhood of the respective initial waypoint location. Local Iterative Optimization
(LIO) [42] is a procedure that optimizes the whole trajectory locally, e.g., it can consecutively
optimize θi, ψi, li

a, and li
b in the loop with waypointνi−1, νi, and νi+1. The reason (5) can

optimize variables θi, ψi, li
a independently is tangent vector ti

a and ti−1
b implicitly satisfy

the smooth constraint (12). ti
a and ti−1

b are related to the same waypoint νi.
Otherwise, go to Step 3. An intersection of the straight-line segment (sp, p) with the

sphere in R3 shaped δ-neighborhood of p is used to determine the alternate location sp
towards which the network is adapted instead of p to save the travel time.

We can easily extend the described mechanism into multiple UAV versions by two prin-
cipal methods:

1 Once the surveillance path for single UAV is generated, we can distribute multiple
UAVs travel along the same path as the single UAV, but with different initial position
to avoid collisions. To avoid collisions, the initial deployment of UAVs must be
coordinated with the drone’s velocity and the length of the path, by, for instance,
evenly spacing the appropriate number of UAVs along the determined trajectory.
Thereafter, each UAV can perform its surveillance duty independently without further
coordination. This method can markedly reduce the surveillance circle or duration,
and significantly increase the frequency and intensity of surveillance.

2 The vantage waypoint set can be partitioned into several subsets, and dedicated
UAV(s) can traverse through each subset independently. In the case of multiple UAVs,
we may use the aforementioned method to perform collision-free monitoring tasks.

We also analyze the complexity of the algorithm. In each learning epoch, the computa-
tional complexity depends on the number of waypoints n and the number of neurons in
the SOM network M. Notice the SOM is a two-layered neural network, whose input layer
is the locations of vantage waypoints P = {p1, ..., pn}, pi ∈ R3, and output layer is an array
of adapted waypoint locations N = {ν1, ..., νM}. As the algorithm regenerates the loop N
with winner waypoints between n− 2n (see from line 8 of Algorithm 2), the complexity of
the path-planning procedure is O(n2).

3.3. Simulation Results

To verify the effectiveness of the proposed algorithm, two simulation scenarios are
given in this section. The target area is 20 m by 20 m terrain with i = 3 random shaped
obstacles are shown in Figure 8a, and the obstacles have n1 = 3, n2 = 4, n3 = 4 vertices,
respectively. The average execution times for the above methods are shown in Table 2, and
the average velocities and coverage times for the different algorithms are shown in Table 3.
Furthermore, the simulation is conducted with the following parameters in Table 4.
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Algorithm 2 UAV Path-Planning Algorithm

1: Create the loop N with n waypoint locations around the initial location p1
2: Set the learning gain γ = 12.41n+ 0.6, the learning rate µ = 0.5, and the gain decreasing

rate η = 0.1. Set the epoch counter i = 1, imax = 100.
3: while the termination condition has not been reached do
4: for p ∈ Π(P) do
5: for each learning epoch do
6: determine ν∗ and sp
7: Adapt ν∗ and its neighbors towards sp using (7)
8: remove all non-winner waypoint locations and perform LIO-based optimiza-

tion of the trajectory
9: Update learning parameters: γ = (1− η)γ, i = i + 1

10: end for
11: end for
12: end while
13: return final trajectory Γ

Table 2. Average execution times (seconds) for the different algorithms.

Algorithm Single-Area Single UAV Single-Area Multiple UAVs
(Two UAVs, Two Paths)

TOS 3.48 4.53

3DAA 4.74 5.12

EA 5.30 5.91

Proposed 5.14 6.35

Table 3. Average velocity (meter/second) and coverage time (second) for the different algorithms.

Algorithm Scenario Average Velocity (m/s) Minimum
Coverage Time (s)

TOS
Single-Area Single UAV 6.5 22.2

Single-Area Multiple UAVs
(Three UAVs, three paths)

5.1 7.4

3DAA
Single-Area Single UAV 6.5 13.6

Single-Area Multiple UAVs
(Two UAVs, two paths)

6.5 8.7

EA
Single-Area Single UAV 6.6 12.5

Single-Area Multiple UAVs
(Two UAVs, two paths)

6.8 6.5

Proposed
Single-Area Single UAV 6.8 7.9

Single-Area Multiple UAVs
(Two UAVs, two paths)

6.8 4.2

Table 4. Simulation Parameters.

Camera

θ Hmin c1 c2 c
π
2 4 m 1 m 0.5 m 0.2 m

Mobility of UAV for proposed method Mobility of UAV for time-optimal method

aver ahor vver vhor az vz v f

0.5 m/s2 1.2 m/s2 0.5 m/s 1.2 m/s 0.5 m/s2 0.5 m/s 1.2 m/s
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3.3.1. Single-Area Single UAV

To confirm the performance of our monitoring strategy in a complex environment,
we performed validation in the following scenario. First, we apply the proposed Vantage
Waypoint Set Generation in step one to obtain the waypoint set that can fully cover the
target area. Figure 8b shows the δ-neighborhood of all 10 waypoint locations at different
heights from 6.4 m to 23.3 m. Secondly, we compare the proposed UAV path with the
three mentioned methods’ paths in terms of operation time and surveillance quality. In
accordance with surveillance quality, we take the smoothness of the path, path length, and
whether the uncovered area exits into consideration. Under the same velocity profiles
as our proposed method, the time-optimal strategy (TOS) [43], evolutionary algorithm
(EA) [44], and 3D Alternating algorithm (3DAA) then run under the same environment.
The proposed algorithm (see Figure 8c) and evolutionary algorithm (see Figure 8e) are
superior to the time-optimal surveillance path-planning algorithm (see Figure 8d) and
3D alternating algorithm see Figure 8f) in terms of operation time. The time-optimal
surveillance path-planning algorithm is the most straightforward method and smoothest
path among them. Nonetheless, it inevitably neglects the problems caused by occlusion, so
we may need to apply the geometric calculation to calculate the uncovered part and deploy
other unmanned aerial vehicles to cover it completely. On the other hand, the evolutionary
algorithm has a longer path and more sharp turns.
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(e) Evolutionary algorithm (f) 3D Alternating algorithm

Figure 8. (a) the given environment, (b) the vantage waypoint set by the proposed method, UAV surveillance trajectory
using (c) proposed strategy, (d) time-optimal strategy in [43], (e) evolutionary algorithm [44] and (f) 3D Alternating
algorithm—Single UAV.

3.3.2. Single-Area Multiple UAVs

In this scenario, multiple UAVs are being used for full coverage reconnaissance and
surveillance missions. The same waypoint positions are shown in Figure 8b. Figure 9a
shows two drones in different initial positions share the same route. Figure 9b shows the
situation where each UAV has a separate track to cover part of the terrain. Moreover, when
both complete their monitoring circle, the coverage of the region of interest is realized.
In both scenarios, the duration of covering the region of interest is obviously increased,
so the average time of covering any point between two continuous times is reduced by
about 47%. In other words, the points of interest are monitored more often. We also deploy
three UAVs to cover each individual obstacle as a comparison. However, the uncovered
part due to the overlapping of the flight surfaces is inevitable. Another two methods are
applied for two UAVs to conduct the surveillance duty in Figure 9d,e. In this case, the
evolutionary algorithm generates a smoother path than the proposed one. However, the
proposed algorithm still outperforms the 3D alternating algorithm with a shorter length
and fewer sharp turns. Table 3 shows the average velocity and minimum coverage time in
both scenarios. The proposed approach shown in Figure 8c has the minimum coverage
time in the single UAV scenario, and Figure 9a has the minimum coverage time in the
multiple UAV scenario. Table 2 shows the computational time of the simulation above.
The time-optimal strategy and 3D alternating algorithm take less time to cover the target
area than the other two methods because of the lower computation load. Moreover, the
evolutionary algorithm compromises the surveillance quality with computation time.
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Figure 9. UAV surveillance trajectories using (a,b) proposed strategy and (c) time-optimal strategy in [43], (d) evolutionary
algorithm [44], and (e) 3D alternating algorithm—Multiple UAVs

4. Conclusions and Future Work

We consider the dynamic coverage problem over the target area, where UAVs keep
flying through each pre-defined waypoint during surveillance and taking video. In the
first part, we propose a two-stage strategy to cover the target area completely at a given
height. We tackle this thorny problem by decomposing it into a variant of the waypoint-
determination problem and an instance of the Dubins Traveling Salesman Problem. An
asymptotically optimal waypoint-generation algorithm is proposed, in the sense that
the number of waypoints is closing to the minimum number of the waypoints as the
target area tends to infinity. In addition, the proposed method considers solving the Dubins
Vehicle Traveling-Salesman Problem (DTSP) by introducing the clustering spiral alternation
algorithm, thus its performance is guaranteed to be better or the same as the benchmark
methods. Furthermore, the trajectory takes into account the kinematics constraints of
the UAV.

In the second part, we consider the reconnaissance and surveillance of UAV flying
in complex geometric environments, such as mountainous and urban areas. We propose
a two-stage strategy to completely cover the target area with different heights. The main
contribution of this paper includes providing a method to determine the minimum number
of waypoints that need to be visited and drawing a track at a given height to monitor the
area, as well as an occlusion-aware UAV monitoring strategy based on UAV kinematic
constraints and obstacle occlusion. The operation time and surveillance quality including
smoothness, path length, and whether the uncovered area exits are considered to compare
the performance of the described approach with the state of the art. The unsupervised
learning method Self-Organizing Map (SOM) and Bézier curves are used to generate a
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smooth and fast trajectory for the UAV. The proposed method achieves closer performance
to the best performance among benchmarks. The performance and effectiveness of the
two proposed algorithms have been confirmed by extensive computer simulations in
different scenarios.

In the future research of occlusion-aware UAV surveillance, the change of the envi-
ronment during the mission is an inevitable technical challenge to build an effective and
efficient UAV surveillance system. For instance, drones should be able to change, adapt,
modify and optimize paths to handle the occlusions by moving obstacles. It would be very
interesting to modify the trajectories of the UAVs during the mission execution to avoid
the occlusion effects by large moving objects.
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