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Abstract—In this paper, we proposed a graduated 

non-convexity (GNC) aided outlier mitigation method for the 

improvement of the visual-inertial integrated navigation system 

(VINS) to face the challenge of dynamic environments with 

numerous unexpected outlier measurements. A GNC optical flow 

algorithm was proposed for the detection of the outliers of feature 

tracking in the front-end of VINS by iteratively estimating the 

optical flow and the optimal weightings of feature 

correspondences. Then the feature correspondences with small 

weightings were excluded. However, excessive outlier exclusion 

may cause insufficient constraints on the state, causing 

degeneration of VINS. To solve the problem, this paper proposed 

to detect the potential degeneration based on the degree of 

constraint in different directions of the pose estimation. Then the 

number of features being considered was intelligently adapted 

based on the degeneration level to improve the geometry 

constraint in the coming epochs. We evaluated the effectiveness of 

the proposed method by using two challenging datasets (including 

challenging night scenarios) collected in urban canyons of Hong 

Kong. The results show that the proposed method can effectively 

reject the potential outlier visual measurements, and alleviate the 

degeneration, leading to improved positioning performance in 

both evaluated datasets. 

Index Terms—Visual odometry, VINS, outlier measurements, 

GNC, navigation, optimization method, urban canyons. 

I. INTRODUCTION

HE visual-inertial integrated navigation system (VINS) is

widely studied in the past few years aiming to provide 

accurate state estimation of autonomous systems, e.g 

autonomous driving vehicles (ADV) [1] and unmanned aerial 

vehicles (UAV) [2, 3]. Significant achievements have been 

obtained from the research on the VINS, such as the 

filtering-based methods, including multi-state constraint 

Kalman filter (MSCKF) [4], robust visual-inertial odometry 

(ROVIO) [5], and open source for the visual-inertial navigation 

system (Openvins) [6]. The other research stream is the 
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optimization-based VINS pipelines, including the oriented 

brief simultaneous localization and mapping (ORB-SLAM3) 

[7], open keyframe-based visual-inertial SLAM (OKVIS) [8], 

and monocular visual-inertial systems (VINS-Mono) [9]. The 

recent work in [10] extensively evaluates the performances of 

these existing VINS pipelines by using the popular European 

robotics challenge (EuRoC) datasets [11] with satisfactory 

illumination conditions and sufficient environment features. 

According to the conclusion of [10], if the resource budget of 

computation for the state estimation is sufficient, VINS-Mono 

can provide the best accuracy and robustness among all of the 

evaluated hardware platforms and datasets.  

However, the realistic urbanized road scenarios face more 

challenges, such as unexpected dynamic objects (e.g moving 

vehicles, pedestrians) [12-14], motion blur caused by fast 

vehicle movement [15], etc. To further study the performance 

of the VINS in the challenging outdoor urban canyons, we 

evaluated and analyzed the VINS-Mono [9] based on the 

datasets collected in urban canyons of Hong Kong. According 

to the result [16], the accuracy of VINS was significantly 

decreased in the evaluated urban canyons with the accumulated 

error reaching 34.21 meters in the driving distance of 2.1 

kilometers. The main reason accounting for the large errors is 

that the outliers caused by dynamic objects and motion blur are 

used for further positioning. Specifically, the existence of the 

dynamic objects can lead to incorrect feature tracking between 

consecutive images, thereby resulting in large errors in data 

association in the back-end optimization of VINS. On the other 

hand, the motion blur may increase the noise of visual 

measurements and even fail the feature tracking. Typically, in 

the front-end of VINS, the optical flow [17] is commonly used 

to track the feature correspondences between consecutive 

images. Compared with the descriptor-based feature tracking 

(e.g. ORB descriptor [7]), the optical flow-based tracking is 

characterized by lightweight and satisfactory accuracy [9] 

when the consecutive images are sufficient in texture. 

Therefore, one of the keys to the performance improvement of 

VINS in the urban canyon is to isolate the outlier measurements 

in the feature tracking of the front-end. In this paper, we 

propose a graduated non-convexity-aided optical flow 

(GNC-OF) for the feature tracking in the front-end of VINS to 

detect the potential outlier measurements by using a 

coarse-to-fine process. The detected outlier measurements are 

then excluded from the back-end optimization of VINS. 
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However, based on our previous work in [12], the excessive 

exclusion of visual measurements may lead to degeneration of 

the state estimation. In view of this, this paper proposes a 

method for the identification of the resulted degeneration by 

considering the degree of constraint in different directions of 

pose estimation. Then, the number of features being considered 

is intelligently adapted based on the degeneration level, thereby 

improving the geometry constraint in the coming epochs. 

The main contributions of this paper are listed as follows: 

(1) This paper enables outlier visual measurement detection 

by using a proposed GNC-OF method without reliance on 

complicated semantic segmentation. Meanwhile, this paper is a 

continuous work of [13] and enables outlier detection on an 

epoch-by-epoch basis.  

(2) This paper proposes a novel method for the detection of 

the degeneration caused by the outlier exclusion. Moreover, a 

solution to alleviate the caused degeneration is proposed. 

(3) This paper validates the effectiveness of the proposed 

method based on two challenging datasets (including a night 

scene dataset) collected in urban canyons of Hong Kong.  

The rest of this paper is organized as follows. Related works 

are presented in Section II, which are followed by an overview 

of the proposed method in Section III. The derivation of the 

proposed GNC-OF is elaborated in Section IV. In Section V, 

the visual/inertial integration together with the degeneration 

detection and alleviation are presented. Besides, several real 

experiments were performed for the evaluation of the 

effectiveness of the proposed method in Section VI. Finally, the 

conclusions are drawn, and future work is suggested in Section 

VII. 

II. RELATED WORKS 

A. Existing Works on Visual Outlier Mitigation 

To fill this gap, numerous works [18-20] have been done on 

improving the performance of the VINS in dynamic urban 

scenarios. It is a straightforward way to detect and remove the 

features arising from the dynamic objects by using the 

convolutional neural networks (CNNs), like semantic 

pixel-wise segmentation (SegNet) [21] and single-shot 

multi-box detector (SSD) [22]. An object detection network 

SSD [18] was proposed for moving objects detection based on 

prior knowledge, and the detected dynamic features were 

removed to guarantee the accurate motion estimation. 

Additionally, a semantic optical flow SLAM [20] was proposed 

to detect dynamic features by using the SegNet, thereby making 

full use of the feature’s dynamic characteristic, and the 

dynamic features are removed in the optimization module.  

Instead of the direct removal of the detected features from 

dynamic objects, we proposed to remodel the outlier features in 

[12], and the improved performance is obtained compared with 

the full removal. However, the studied methods in [12] rely on 

the accuracy of object detection, and the potential static 

vehicles detected by CNNs may also be removed. Therefore, a 

multilevel random sample consensus (ML-RANSAC) 

algorithm [23] was proposed to solve the problem of 

discriminating between static and dynamic objects. However, 

these methods heavily rely on the pre-trained network model 

which could be time-consuming. Moreover, the outlier 

measurements arising from motion blur cannot be detected or 

mitigated by using the stream methods. 

The other research stream lies in the utilization of the general 

time-correlated statistical model to detect the potential outlier 

measurements in the front-end or back-end of VINS. The 

previous work [13] proposed to adaptively tune the weightings 

of the visual measurements in the back-end optimization based 

on the quality of feature tracking in several consecutive epochs. 

The work argues that the uncertainty of the feature 

correspondence was highly correlated with the number of times 

for feature tracking. Moreover, an adaptive M-estimator [24] 

was proposed in [13] to mitigate the effects of the potential 

outlier measurements and obtain improved accuracy in the 

evaluated datasets. However, the improvement of the method 

relies on the percentage of the outlier measurements in the 

feature tracking of the front-end and parameter tuning of the 

adaptive M-estimator. The famous switchable constraint [25] 

was studied to probabilistically identify the potential outlier 

measurements inside a combined factor graph optimization 

(FGO) framework, and an improved result was achieved. 

However, the result relies heavily on the initial guess of 

switchable constraints. Recently, the research team from the 

Massachusetts Institute of Technology proposed a graduated 

non-convexity (GNC) aided robust and global outlier rejection 

method [26] to efficiently solve the problem of point cloud 

registration by formulating the robust least-square estimation as 

the combination of weighted least squares and the outlier 

process using the Black-Rangarajan Duality [27]. The work 

solves the non-convexity issue arising from the Geman 

McClure function via the GNC and enables the global and 

optimal estimation of the weightings of corresponding 

measurements simultaneously. However, a distinct boundary 

exists between the inlier and outlier measurements in the 

evaluated dataset, which limits the challenges for detecting the 

outlier measurements, while its potential in other fields is still 

needed to be explored. Inspired by this work [26], this paper 

proposed to formulate a graduated non-convexity-aided optical 

flow for visual outlier mitigation together with an degeneration 

detection and alleviation method. 

B. Conventional Optical Flow for Feature Tracking 

Feature tracking plays an important role in determining the 

performance of data association in the back-end of VINS. The 

objective of feature tracking is to find the correct feature 

correspondence between two consecutive frames of images. In 

general, the solutions to perform feature tracking mainly 

include two groups, i.e., the descriptor-based [7] and optical 

flow-based [28] methods. The former, such as the 

ORB-SLAM3 [7], represents the visual features using the ORB 

descriptors. Then, the features detected in two consecutive 

frames are matched based on corresponding descriptors in a 

one-to-many manner. However, brute descriptor-based 

matching may result in a high computational load. Different 

from the descriptor-based feature tracking, the optical 

flow-based method, such as the state-of-the-art Lucas-Kanade 
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(LK) optical flow [17], track the features directly in a 

one-to-one manner, which is adopted in many VINS pipelines, 

such as MSCKF [4], ROVIO [5], Openvins [6], and 

VINS-Mono [9]. 

In theory, the traditional LK optical flow works under three 

key assumptions [17]: (1) Image brightness constancy: the 

same features within two consecutive images should have the 

same brightness; (2) Small motion: the features only involve 

short-term motion; and (3) Spatial smoothness: the pixels 

within a small window of the given features should have the 

same movement. Given a feature represented by 𝐼(𝑢, 𝑣, 𝑡), it is 

detected by using a typical corner-based descriptor [29] where 

𝐼(𝑢, 𝑣, 𝑡) denotes the pixel intensity of the pixel (𝑢, 𝑣) at Time 𝑡. 

When the pixel moves between two consecutive frames over 

time 𝑑𝑡, the corresponding displacement is denoted by (𝑑𝑢, 𝑑𝑣), 

which is a quite small movement [17]. Based on the first 

assumption of LK optical flow, the pixel intensity in two 

consecutive images satisfies the requirements of the following 

equation: 

𝐼(𝑢, 𝑣, 𝑡) = 𝐼(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝑡 + 𝑑𝑡)    (1) 

where 𝐼(𝑢, 𝑣, 𝑡)  and 𝐼(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝑡 + 𝑑𝑡)  denote the 

intensity of the pixel (𝑢, 𝑣) at time 𝑡 and (𝑡 + 𝑑𝑡), respectively. 

By applying the first-order Taylor series expansion, the right 

side of (1) can be formulated as follows [17]: 

𝐼(𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝑡 + 𝑑𝑡) = 𝐼(𝑢, 𝑣, 𝑡) +
𝜕𝐼

𝜕𝑢
𝑑𝑢 +

𝜕𝐼

𝜕𝑣
𝑑𝑣 +

𝜕𝐼

𝜕𝑡
𝑑𝑡   (2) 

where 
𝜕𝐼

𝜕𝑢
 and 

𝜕𝐼

𝜕𝑣
 represent the gradient of the pixel intensity 

concerning 𝑢 and 𝑣, respectively.  
𝜕𝐼

𝜕𝑡
 denotes the gradient of 

the pixel intensity concerning time 𝑡. Again, based on the first 

assumption of LK optical flow, we can get: 

𝜕𝐼

𝜕𝑢

𝑑𝑢

𝑑𝑡
+

𝜕𝐼

𝜕𝑣

𝑑𝑣

𝑑𝑡
= −

𝜕𝐼

𝜕𝑡
       (3) 

Hence, the objective of the optical flow [17] is to solve 

(
𝑑𝑢

𝑑𝑡
,
𝑑𝑣

𝑑𝑡
) to determine the pixel displacement over time 𝑑𝑡. To 

simplify, we define Δ𝑢 =
𝑑𝑢

𝑑𝑡
, Δ𝑣 =

𝑑𝑣

𝑑𝑡
, 𝐼𝑢 =

𝜕𝐼

𝜕𝑢
, 𝐼𝑣 =

𝜕𝐼

𝜕𝑣
, and 

𝐼𝑡 =
𝜕𝐼

𝜕𝑡
. Then (3) can be rewritten as follows [17]: 

[𝐼𝑢 𝐼𝑣] [
Δ𝑢
Δ𝑣

]=−𝐼𝑡         (4) 

There is only one equation but two unknown variables 

(Δ𝑢, Δ𝑣)𝑇, therefore, additional constraints are needed to solve 

the optical flow problems. To fill this gap, the third assumption 

of spatial smoothness is proposed [17], which means all 

neighboring pixels of the detected feature pixel have the same 

movement. Taking a small window of 𝑛 × 𝑛  around the 

detected feature (𝑢, 𝑣) and referring to the spatial smoothness, 

all 𝑛 × 𝑛 pixels have the same movement (Δ𝑢, Δ𝑣)T. Therefore, 

there will be 𝑛 × 𝑛  equations similar to (4). The set of 

equations is represented as follows: 

[

𝐼𝑢1 𝐼𝑣1

𝐼𝑢2 𝐼𝑣2

⋮
𝐼𝑢𝑖

⋮
𝐼𝑣𝑖

] [
Δ𝑢
Δ𝑣

] = − [

𝐼𝑡1
𝐼𝑡2
⋮
𝐼𝑡𝑖

], 𝑖 ∈ (1, 𝑛 × 𝑛)   (5) 

where 𝐼𝑢𝑖 ,  𝐼𝑣𝑖 , and 𝐼𝑡𝑖 denote the image gradients (difference of 

pixel value) along the 𝑢, 𝑣 axis, and over time 𝑡 of 𝑖th pixel in 

the small window of the image. 𝑛 × 𝑛 represents the size of the 

small window. According to (5), there are two unknowns with 

𝑛 × 𝑛 equations, which are over-determined. To address the 

over-determination, the least-squares estimation is used to 

solve (6) as follows: 

[
Δ𝑢
Δ𝑣

] = (𝐀T𝐀)−1𝐀T(−𝑏)       (6) 

with 𝐀 = [

𝐼𝑢1 𝐼𝑣1

𝐼𝑢2 𝐼𝑣2

⋮
𝐼𝑢𝑖

⋮
𝐼𝑣𝑖

] 𝑏 = [

𝐼𝑡1
𝐼𝑡2
⋮
𝐼𝑡𝑖

] 

Specifically, (6) can be further simplified into a compact 

form, expressed as follows: 

[
Δ𝑢
Δ𝑣

] = [
∑ 𝐼𝑢𝑖

2
𝑖 ∑ 𝐼𝑢𝑖𝐼𝑣𝑖𝑖

∑ 𝐼𝑣𝑖𝐼𝑢𝑖𝑖 ∑ 𝐼𝑣𝑖
2

𝑖

]

−1

[
−∑ 𝐼𝑢𝑖𝐼𝑡𝑖𝑖

−∑ 𝐼𝑣𝑖𝐼𝑡𝑖𝑖
]    (7) 

Therefore, the [Δ𝑢 Δ𝑣]T  can be estimated by solving (7). 

Satisfactory accuracy can be obtained by using the LK optical 

flow in the scenarios with sufficient textures and stable 

environmental conditions, and the three listed assumptions can 

be easily satisfied. Unfortunately, its performance significantly 

deteriorates in the highly dynamic urban canyons with an 

obvious change in illumination and multiple motions in a single 

localized region [30] which easily violates the assumptions of 

spatial smoothness. To increase the robustness of the LK 

optical flow against the unexpected large motion, the image 

pyramid aided LK method is proposed, which can separate 

large motion into small movements. However, the performance 

of LK optical is still not guaranteed in complex dynamic urban 

canyons [16].  

 

Fig. 1. Example of a failure of feature tracking of optical flow.  

Fig. 1 shows a scene where the LK optical flow is employed to 

track the features between two consecutive images collected in 

an urban canyon during the night. One of the features is located 

on the car (blue shaded circle) shown in the left figure. We can 

see that the strong motion blur exists on the car from the left 

(first) to the right (second) figure. Consequently, the feature is 

incorrectly tracked to the curb of the road on the right side (as 
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shown by the red circle). To be specific, it is caused by the 

violation of the first assumption of LK optical flow because the 

pixel associated with the same pixel is not the same due to the 

motion blur. Therefore, the incorrect feature tracking may 

cause large errors in data association of the back-end of VINS. 

To detect such incorrect feature tracking, and further improve 

the performance of VINS, this paper proposes an outlier-aware 

GNC optical flow presented in the next section. 

III. OVERVIEW OF THE PROPOSED METHOD 

The overview of the proposed method is shown in Fig. 2 

which is developed on top of the work in [9]. The inputs of the 

framework are raw images and acceleration as well as 

gyroscope measurements provided by the monocular camera 

and inertial measurement unit (IMU), respectively. While the 

output of the framework is the pose estimation. The framework 

starts with the measurement preprocessing, including IMU 

pre-integration [31] and feature detection modules [29], 

presented in Section V-B and V-C, respectively. These two 

modules follow the work in [9]. Subsequently, the factor graph 

construction is derived based on the IMU factor and visual 

factor, and then the formulation of factor graph optimization is 

presented in Section V-D. The proposed GNC-OF is shown in 

the red-shaded box (first contribution of this paper) in Fig. 2, 

which enables the removal of the outlier features from the 

feature detection module. The blue-shaded box indicates the 

proposed degeneration detection and alleviation method 

(second contribution of this paper). The degeneration factor 

derived from the degeneration detection module can be further 

utilized to benefit the alleviation of the degenerated cases in the 

coming epochs.  

 

Fig. 2. Overview of the proposed method.  

To make the presentation clear, in this paper, matrices are 

denoted as uppercase with bold letters, while the vectors are 

denoted as lowercase with bold letters. Moreover, the variable 

scalars are denoted as italic letters, and the constant scalars are 

denoted as lowercase letters. 

IV. GRADUATED NON-CONVEXITY OPTICAL FLOW  

A. Problem Formulation  

Specifically, (7) can be expressed as an optimization oriented 

objective function as follows: 

min
Δ𝑢∗,Δ𝑣∗

∑ (‖𝑟 (𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

])‖
σ𝑡

𝑖

2

)𝑛2

𝑖=1        (8) 

with 𝑟 (𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

]) = (𝐼𝑡𝑖 − ℎ(𝛀𝑡,𝑖, [
Δ𝑢
Δ𝑣

])) 

where 𝛀𝑡,𝑖  denotes a set of observation measurements 

associated with the 𝑖th pixel inside the window, including the 

position of the feature in the first image frame, the neighboring 

pixels, and the next image frame that is required to estimate the 

optical flow. [Δ𝑢∗ Δ𝑣∗]𝑇 refers to the optimized state that we 

wish to estimate. σ𝑡
𝑖  stands for the uncertainty associated with 

the pixel inside the window. 𝑛2  represents the number of 

observation measurements involved in the window. And the 

function ℎ(∗) denotes the observation function connecting the 

state and the pixel observation, which can be written as follows: 

ℎ(𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

]) =
𝜕(𝐼(𝑢+Δ𝑢,𝑣+Δ𝑣,𝑡+Δ𝑡)−𝐼(𝑢,𝑣,𝑡))

𝜕𝑡
     (9) 

Therefore, the robustified objective function of (8) can be 

expressed as follows: 

min
Δ𝑢∗,Δ𝑣∗

∑ (𝜌 (‖𝑟 (𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

])‖
σ𝑡

𝑖
))𝑛2

𝑖=1      (10) 

where 𝜌(∗) refers to the applied robust function, i.e., Geman 

McClure (GM) function [32] in this paper. According to the 

Black-Rangarajan Duality [27], a robust non-linear least square 

problem (10) is equivalent to the following decoupled 

formulation: 

min
Δ𝑢∗,Δ𝑣∗,𝜔𝑡,𝑖∈𝓦

∑ (𝜔𝑡,𝑖 ‖𝑟 (𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

])‖
σ𝑡

𝑖

2

+ ∅𝜌(𝜔𝑡,𝑖))
𝑛2

𝑖=1  

   (11) 

where 𝜔𝑡,𝑖  denotes the weighting for a given pixel 

measurement from the neighboring window at the epoch 𝑡 , 

satisfying 𝜔𝑡,𝑖 ∈ [0,1]. The variable 𝓦 is a set of weightings of 

𝜔𝑡,𝑖. The function ∅𝜌(𝜔𝑡,𝑖) represents the outlier process that 

encodes the penalty on the weighing 𝜔𝑡,𝑖 , determined by the 

chosen robust function. Therefore, the unknowns of the system 

involve Δ𝑢∗, Δ𝑣∗ and the optimal weighting (𝜔𝑡,𝑖) of the visual 

measurements. The solving of (11) is equivalent to the finding 

of the optimal state estimation of the optical flow and the 

optimal weightings of pixel measurements to minimize the 

summation of the residuals. To simplify the derivation in the 

rest of this paper, we represent the weighted residual 

‖𝑟 (𝛀𝑡,𝑖 , [
Δ𝑢
Δ𝑣

])‖
σ𝑡

𝑖
 using 𝑟̃𝑡,𝑖. 

Typically, the loss function using the Geman McClure 

function [32] for the given error function 𝑟̃𝑡,𝑖 corresponding to 

the 𝑖-th pixel measurement can be formulated as follows: 
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𝛹(𝑟̃𝑡,𝑖) =
(𝑐𝐺𝑀)2(𝑟̃𝑡,𝑖)

2

(𝑐𝐺𝑀)2+(𝑟̃𝑡,𝑖)
2       (12) 

where 𝑐𝐺𝑀 refers to the parameter that determines the shape of 

the Geman McClure function. Fig. 3 shows the Geman 

McClure loss corresponding to residual (𝑟̃𝑡,𝑖) ranging from (-30, 

30) with different 𝑐𝐺𝑀 . The smaller 𝑐𝐺𝑀  introduces stronger 

resistance against the outliers because the impacts of the 

enormous outliers are mitigated by the low curvature long tail. 

However, this may lead to a highly non-convex surface. 

Consequently, it is hard to globally solve (11) by using typical 

nonlinear least square estimation. Thus, we formulate the 

GNC-aided optical flow to solve (11) in a coarse-to-fine 

manner in the next sub-section. 

 

Fig. 3. Illustration of the Geman McClure function with 

different parameters 𝑐𝐺𝑀 annotated with different colors (cyan: 

𝑐𝐺𝑀 = 6, magenta: 𝑐𝐺𝑀 = 12, blue: 𝑐𝐺𝑀 = 18). 

B. Solution to GNC-OF  

The GNC is a popular method for the optimization of a 

universal non-convex cost function [26], and the main idea is 

that a surrogate cost function 𝜌𝜇(∙) is introduced to replace the 

general non-convex cost function 𝜌(∙). The new cost function 

𝜌𝜇(∙) is convex for a certain 𝜇 which changes gradually till the 

original non-convex cost function 𝜌(∙) is recovered. During the 

process, GNC can provide solution to the non-convex problem.  

According to the selected GM estimator, ∅𝜌𝜇
(𝜔𝑡,𝑖)  is 

derived as follows: 

∅𝜌𝜇
(𝜔𝑡,𝑖) = 𝜇𝑐𝐺𝑀

2(√𝜔𝑡,𝑖 − 1)2      (13) 

As 𝜇 tends to +∞, 𝜌𝜇(∙) is convex, and 𝜌𝜇(∙) recovers to be 

non-convex as 𝜇 decreases and get close to 1, as shown in Fig. 

4. 

 

Fig. 4. Illustration of the surrogate function for Geman McClure 

with different control parameters 𝜇  annotated with different 

colors (red: 𝜇 = 1000, green: 𝜇 = 800, blue: 𝜇 = 600, cyan: 

𝜇 = 400, black: 𝜇 = 200). 

Optimize the GNC-OF problem by alternating the following 

four steps: 

Step1. Initialization: The variable is initialized by least 

squares, and the weightings (𝜔𝑡,1, 𝜔𝑡,2, ⋯ , 𝜔𝑡,𝑖) are initialized 

by setting all of them to 1. 

Step2. Variable update: Let weighting 𝜔𝑡,𝑖  be fixed, and 

optimize [
Δ𝑢
Δ𝑣

]. Minimize (14) concerning [
Δ𝑢
Δ𝑣

]. 

min
Δ𝑢∗,Δ𝑣∗,𝜔𝑡,𝑖∈𝓦

∑ (𝜔𝑡,𝑖𝑟̃𝑡,𝑖
2 + ∅𝜌𝜇

(𝜔𝑡,𝑖))
𝑛2

𝑖=1     (14) 

Step3. Weight update: Let [
Δ𝑢
Δ𝑣

] be fixed, and optimize 𝜔𝑡,𝑖 

which can then be solved in a closed-form as: 

𝜔𝑡,𝑖 = (
𝜇𝑐𝐺𝑀

2

𝑟̃𝑡,𝑖
2 +𝜇𝑐𝐺𝑀

2)
2

         (15) 

where 𝑟̃𝑡,𝑖 denotes the residual of pixel value corresponding to 

the 𝑖th pixel.  

Step4. 𝜇 =
𝜇

1.4
, repeat Steps 2 to 4, until 𝜇 < 1. 

Therefore, the state [Δ𝑢∗ Δ𝑣∗]𝑇  together with the 

associated weightings set 𝓦 are obtained for a certain feature 

located at 𝐼(𝑢, 𝑣, 𝑡)  and 𝐼(𝑢 + Δ𝑢∗, 𝑣 + Δ𝑣∗, 𝑡 + 𝑑𝑡) , 

respectively. Ideally, the weightings of all the pixels located 

inside the window reach or get close to 1 if the feature is 

correctly tracked with all the listed three assumptions satisfied. 

On the contrary, in the case that most of the weightings are 

close to 0, the detected feature tends to be the outlier. The 

recent work in [33] extends their previous work in [26] by using 

the Chi-square test to find the boundary between the inlier and 

outlier. On this basis, we set a threshold of weighting to 

distinguish those outlier pixels as follows: 

𝜔𝑡,𝑖 < 𝜔𝑡ℎ𝑟𝑒𝑠ℎ , 𝜔𝑡,𝑖 ∈ 𝓦       (16) 

where 𝜔𝑡ℎ𝑟𝑒𝑠ℎ  denotes the threshold of weighting. If 𝜔𝑡,𝑖  is 

smaller than the threshold, the corresponding pixel is 

determined to be the outlier pixel. The percentage of such an 

outlier pixel is accumulated to more than half of all pixels in a 

small window, and the corresponding detected feature is 

determined to be the outlier. All the existing features are 

evaluated by using GNC-OF following the same way, and the 

detected outliers are excluded from the front-end of VINS. 

V. DEGENERATION-AWARE VISUAL/INERTIAL INTEGRATION  

A. System States 

In this study, the proposed method is based on VINS [9], and 

the considered state vector is defined as follows: 

χ = [𝐱0, 𝐱1, … , 𝐱𝑛, 𝐱𝑐
𝑏 , λ1, λ2, … λ𝑀] 

𝐱𝑘 = [𝐩𝑏𝑘

𝑤 , 𝐯𝑏𝑘

𝑤 , 𝐪𝑏𝑘

𝑤 , 𝐛𝑎 , 𝐛𝑔], 𝑘𝜖[0, 𝑛]    (17) 

𝐱𝑐
𝑏 = [𝐩𝑐

𝑏 , 𝐪𝑐
𝑏] 
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where 𝑤 denotes the world frame and 𝑏𝑘 represents the body 

(IMU) frame. And 𝐱𝑘 refers to the state of IMU when the kth 

image is captured. IMU state involves the position, velocity, 

and orientation, denoted by 𝐩𝑏𝑘

𝑤 , 𝐯𝑏𝑘

𝑤 , and 𝐪𝑏𝑘

𝑤 , respectively, as 

well as the acceleration bias (𝐛𝑎) and the gyroscope bias (𝐛𝑔) 

denoted in the body frame. It should be noted that the 

orientation is represented by a quaternion, and the coordinate 

transformation is transformed from the subscript to the 

superscript frame. 𝑛  refers to the used keyframes for 

optimization, and 𝑀 stands for the sum of features considered 

for optimization. 𝜆𝑙 refers to the inverse depth of the 𝑙th feature 

observed for the first time, 𝑙 ∈ (1,𝑀) . 𝐱𝑐
𝑏  represents the 

transformation matrix that transforms the camera frame to the 

body frame. In this study, we directly use the extrinsic 

parameter calibrated previously. 

B. IMU Modeling with Pre-integration  

The IMU measurements involve the acceleration bias (𝐛𝑎𝑡
), 

the gyroscope bias (𝐛𝜔𝑡
) and the additive noise (𝐧𝑎, 𝐧𝜔). It is 

worth noting that the noise is assumed to be Gaussian white 

noise. The raw gyroscope ( 𝛚̂𝑡 ) and accelerometer ( 𝐚̂𝑡 ) 

measurements modeling is expressed at Epoch 𝑡 as follows: 

𝐚̂𝑡 = 𝐚𝑡 + 𝐑𝑤
𝑡 𝐠𝑤 + 𝐛𝑎𝑡

+ 𝐧𝑎     (18) 

𝛚̂𝑡 = 𝛚𝑡 + 𝐛𝜔𝑡
+ 𝐧𝜔        (19) 

where 𝐚𝑡  and 𝛚𝑡  denote the expected measurements of the 

accelerometer and gyroscope, and the gravity is represented by 

𝐠𝑤 in the world frame. 𝐑𝑤
𝑡  stands for the rotation matrix that 

transforms the world frame into the body frame at Epoch 𝑡.  

The IMU measurements are utilized to constrain the relative 

motion between two consecutive epochs. Thanks to the high 

frequency of the IMU, there are plenty of inertial measurements 

between the time interval (𝑡𝑘, 𝑡𝑘+1).  Therefore, the IMU 

pre-integration technique [31] is employed to integrate the 

several measurements into a single factor between two 

consecutive frames of 𝑏𝑘  and 𝑏𝑘+1 . Through the given bias 

estimation, the IMU pre-integration is integrated into the 𝑏𝑘 

frame as follows: 

𝛂𝑏𝑘+1

𝑏𝑘 = ∬ 𝐑𝑡
𝑏𝑘

𝑡∈[𝑡𝑘,𝑡𝑘+1 ]
(𝐚̂𝑡 − 𝐛𝑎𝑡

)𝑑𝑡2     (20) 

𝛃𝑏𝑘+1

𝑏𝑘 = ∫ 𝐑𝑡
𝑏𝑘

𝑡∈[𝑡𝑘,𝑡𝑘+1 ]
(𝐚̂𝑡 − 𝐛𝑎𝑡

)𝑑𝑡      (21) 

𝛄𝑏𝑘+1

𝑏𝑘 = ∫
1

2
𝛀(𝛚̂𝑡 − 𝐛𝜔𝑡

)𝛄𝑡
𝑏𝑘𝑑𝑡

𝑡∈[𝑡𝑘,𝑡𝑘+1 ]
    (22) 

𝛀(ω) =

[
 
 
 
 

0 −ω𝑧 ω𝑦 𝜔𝑥

𝜔𝑧 0 −𝜔𝑥 ω𝑦

−𝜔𝑦 𝜔𝑥 0 𝜔𝑧

𝜔𝑥 ω𝑦 𝜔𝑧 0 ]
 
 
 
 

     (23) 

where (𝛂𝑏𝑘+1

𝑏𝑘 , 𝛃𝑏𝑘+1

𝑏𝑘 , 𝛄𝑏𝑘+1

𝑏𝑘 ) refer to the pre-integration items 

that denote the change of position, velocity, and orientation, 

respectively. 𝐑𝑡
𝑏𝑘  and 𝛄𝑡

𝑏𝑘  represent the rotation matrix and 

quaternion, respectively, which transform the body frame at 

Time 𝑡 into the reference frame 𝑏𝑘. (𝜔𝑥, ω𝑦, 𝜔𝑧) stand for the 

angular velocity in the IMU frame.  

Employing the pre-integration items, the position, velocity, 

and orientation of the 𝑏𝑘+1  in the world frame can be 

formulated as follows: 

𝐩𝑏𝑘+1

𝑤 = (𝐩𝑏𝑘

𝑤 + 𝐯𝑏𝑘

𝑤 ∆𝑡𝑘 −
1

2
𝐠𝑤Δ𝑡𝑘

2) + 𝐑𝑏𝑘

𝑤 𝛂𝑏𝑘+1

𝑏𝑘   (24) 

𝐯𝑏𝑘+1

𝑤 = (𝐯𝑏𝑘

𝑤 − 𝐠𝑤∆𝑡𝑘) + 𝐑𝑏𝑘

𝑤 𝛃𝑏𝑘+1

𝑏𝑘     (25) 

𝛄𝑏𝑘+1

𝑏𝑘 = 𝐪𝑤
𝑏𝑘 ⊗ 𝐪𝑏𝑘+1

𝑤          (26) 

where the symbol ⊗ refers to the multiplication between two 

quaternions. Finally, the residual rℬ(∙) for IMU pre-integration 

and system states can be formulated as follows: 

rℬ (Ẑ𝑏𝑘+1

𝑏𝑘 , χ) =

[
 
 
 
 
 
 δ𝛂𝑏𝑘+1

𝑏𝑘

δ𝛃𝑏𝑘+1

𝑏𝑘

δ𝛉𝑏𝑘+1

𝑏𝑘

δ𝐛𝑎

δ𝐛𝜔 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝐑𝑤

𝑏𝑘 (𝐩𝑏𝑘+1

𝑤 − 𝐩𝑏𝑘

𝑤 +
1

2
𝐠𝑤Δ𝑡𝑘

2 − 𝐯𝑏𝑘

𝑤 ∆𝑡𝑘) − 𝛂𝑏𝑘+1

𝑏𝑘  

𝐑𝑤
𝑏𝑘(𝐯𝑏𝑘+1

𝑤 + 𝐠𝑤Δ𝑡𝑘 − 𝐯𝑏𝑘

𝑤 ) − 𝛃𝑏𝑘+1

𝑏𝑘

2 [𝐪𝑏𝑘

𝑤−1
⊗ 𝐪𝑏𝑘+1

𝑤 ⊗ (𝛄𝑏𝑘+1

𝑏𝑘 )−1]
𝑥𝑦𝑧

𝐛𝑎,𝑏𝑘+1
− 𝐛𝑎,𝑏𝑘

𝐛𝜔,𝑏𝑘+1
− 𝐛𝜔,𝑏𝑘 ]

 
 
 
 
 
 
 

   (27) 

where ℬ  denotes the set of IMU measurements. Ẑ𝑏𝑘+1

𝑏𝑘  

represents the observation measurements of the IMU between 

(𝑏𝑘 , 𝑏𝑘+1). δ𝛂𝑏𝑘+1

𝑏𝑘 , δ𝛃𝑏𝑘+1

𝑏𝑘  and δ𝛉𝑏𝑘+1

𝑏𝑘  stand for the position, 

velocity, and orientation residual constraints, respectively. The 

operator [. ]𝑥𝑦𝑧 extracts the imaginary part of a quaternion. δ𝐛𝑎 

and δ𝐛𝜔  represent the accelerometer and gyroscope biases 

constraints, respectively.  

C. Visual Measurements Modeling  

The visual measurement used in our study is a set of features 

detected by the Shi–Tomasi corner algorithm [29]. In this paper, 

the proposed robust GNC-OF is employed to track the existing 

features. The number of features and spatial distribution is 

based on the work of [9] where the maximum number of 

features is set to 150 to guarantee real-time performance, and 

the distance between two features is 30 pixels to keep features 

uniformly distributed. Considering that  𝑙 th feature is first 

observed in the 𝑒th image, and it is observed again in 𝑗th image. 

Let (𝑢̂𝑙
𝑐𝑒 , 𝑣̂𝑙

𝑐𝑒) denote the pixel position of the 𝑙th feature in the 

𝑒th image of camera frame 𝑐, and let (𝑢̂𝑙

𝑐𝑗
, 𝑣̂𝑙

𝑐𝑗
) denotes the pixel 

position of the 𝑙th feature in the  𝑗th image of camera frame 𝑐. 

Then the expected observation of the 𝑙 th feature in the 𝑗 th 

image is derived as follows: 

[

𝑥𝑐𝑗

𝑦𝑐𝑗

𝑧𝑐𝑗

1

] = (𝐓𝑐
𝑏)−1(𝐓𝑏𝑗

𝑤)−1𝐓𝑏𝑒

𝑤𝐓𝑐
𝑏𝜋𝑐

−1 1

𝜆𝑙

[
 
 
 
 
𝑢̂𝑙

𝑐𝑒

𝑣̂𝑙
𝑐𝑒

1
𝜆𝑙 ]

 
 
 
 

    (28) 

Equation (28) follows the pinhole camera projection model 
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[34]. (𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝑧𝑐𝑗)T is the 3D coordinates of the 𝑙th feature in 

the 𝑗th camera frame 𝑐. b denotes the body frame. 𝑏𝑒  and 𝑏𝑗 

denote the 𝑒th and the 𝑗th body frame, respectively. 𝐓𝑐
𝑏  is the 

transformation matrix that transforms the camera frame into the 

body frame. Similarly, 𝐓𝑏𝑒

𝑤 , 𝐓𝑏𝑗

𝑤  and 𝐓𝑐
𝑏  transform the 

coordinates of the subscript to the superscript one. 𝜋𝑐  is the 

camera projection function, which is related to camera 

intrinsics, and 𝜆𝑙 denotes the inverse depth of the 𝑙th feature in 

the 𝑒th image. 

The 𝐓  is the transformation matrix including translation 

matrix p and rotation matrix R. Therefore, (28) can further be 

formulated as: 

[
𝑥𝑐𝑗

𝑦𝑐𝑗

𝑧𝑐𝑗

] = 𝐑𝑏
𝑐 (𝐑𝑤

𝑏𝒋
(𝐑𝑏𝑒

𝑤 (𝐑𝑐
𝑏 1

𝜆𝑙
𝜋c

−1([
𝑢̂𝑙

𝑐𝑒

𝑣̂𝑙
𝑐𝑒

]) + 𝐩𝑐
𝑏) + 𝐩𝑏𝑒

𝑤 −

𝐩𝑏𝒋

𝑤 ) − 𝐩𝑐
𝑏)         (29) 

Let 𝑝𝑙

𝑐𝑗
 denote the 3D coordinates (𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝑧𝑐𝑗)T. 

𝑝̅𝑙

𝑐𝑗
=

𝑝𝑙

𝑐𝑗

‖𝑝𝑙

𝑐𝑗
‖
          (30) 

where 𝑝̅𝑙

𝑐𝑗
 is the expected observation in the normalized plane. 

Let the observation measurement of the  𝑙th feature in the 𝑗th 

image be 𝑝̂̅𝑙

𝑐𝑗
. 

𝑝̂̅𝑙

𝑐𝑗
= 𝜋𝑐

−1 ([
𝑢̂𝑙

𝑐𝑗

𝑣̂𝑙

𝑐𝑗
])       (31) 

Hence, the residual model of the reprojection can be derived 

as follows: 

r𝒞(Ẑ𝑙

𝑐𝑗
, χ) = (𝑝̂̅𝑙

𝑐𝑗
− 𝑝̅𝑙

𝑐𝑗
)      (32) 

where 𝒞 denotes the set of features that have been observed at 

least twice, r𝒞(∙)  represents the residual of the 𝑙 th feature 

measurement between the two images, and Ẑ𝑙

𝑐𝑗
 denotes the 

measurement of the observation in the 𝑗th image.  

D. Factor Graph Optimization 

The goal of FGO [35] is to minimize the sum of all sensor 

measurement residuals to achieve a maximum posterior 

estimation. The residuals in this paper contain three parts: (1) 

the residual from marginalization; (2) the residual from IMU 

pre-integration; (3) the residual from the visual reprojection, 

consequently the objective function of the system can be 

formulated as follows; 

𝑚𝑖𝑛
𝜒

{‖r𝑝 − H𝑝𝜒‖
2
+ ∑ ‖rℬ (𝑍̂𝑏𝑘+1

𝑏𝑘 , 𝜒)‖
P𝑏𝑘+1

𝑏𝑘

2

+𝑘𝜖ℬ

∑ 𝜌(‖r𝒞(𝑍̂𝑙

𝑐𝑗
, 𝜒)‖

P𝑙

𝑐𝑗

2
)(𝑙,𝑗)𝜖𝒞 }       (33) 

where {r𝑝, H𝑝 }  is the prior information from the 

marginalization operation [36]. Since the sliding window 

optimization technique is adopted in the system, the 

marginalization operation is introduced to convert the 

marginalized states into a prior. rℬ(∙) and r𝒞(∙) are residuals 

for IMU and visual measurements, respectively. The detailed 

information on the residuals is presented in Section V-B and 

Section V-C. P𝑏𝑘+1

𝑏𝑘  and P
𝑙

𝑐𝑗
 are the information matrix of IMU 

measurement and visual re-projection residuals. 𝜌(∙) denotes 

the robust M-estimator [37], and Huber is adopted here. 𝑙 
denotes the 𝑙th feature, and 𝑐𝑗 denotes the 𝑗th camera frame. 

E. Degeneration Detection and Alleviation 

While the rejection of the outlier can help to improve the 

overall system performance by mitigating the impacts of 

incorrect features correspondence association, however, this 

can result in a new degeneration problem. Theoretically, the 

pose of the system is mainly constrained by the visual 

landmarks. More features normally lead to stronger constraints 

on the state estimation. Moreover, more decentralized visual 

landmark distribution also leads to better constraints [13]. Fig. 

5-(a) shows the scene with constraints from decentralized 

visual landmarks. Conversely, Fig. 5-(b) shows the case in 

which very limited visual landmarks are available as 

constraints to the system after the outlier rejection. 

 

Fig. 5. Illustration of the visual landmarks distribution. The 

green circles denote the position of the landmark. The white 

lines denote the connection between the camera and the 

landmarks. (a) state estimation is constrained by more and 

decentralized visual landmarks. (b) state estimation is 

constrained by fewer and centralized visual landmarks. 

1) Jacobian Formulation  

Theoretically, the constrain between the visual landmarks 

and the state of the system is connected by the Jacobian matrix 

of the visual re-projection residual concerning the r𝒞(𝑍̂𝑙

𝑐𝑗
, 𝜒). 

Therefore, the work in [38] proposed the detection of the 

potential degeneration via the Jacobian matrix. Given the 

re-observed 𝑙th feature in 𝑏𝑗, the reprojection error is associated 

with two frames 𝑏𝑒 and 𝑏𝑗, then the Jacobian of the 𝑙th feature 

can be derived as follows: 

𝚮𝑗,𝑙
𝑒 =

[
 
 
 

𝜕r𝒞
𝑙

𝜕𝛿𝐩𝑏𝑒
𝑤

𝜕r𝒞
𝑙

𝜕𝛿𝐩𝑏𝑗
𝑤

𝜕r𝒞
𝑙

𝜕𝛿𝐪𝑏𝑒
𝑤

𝜕r𝒞
𝑙

𝜕𝛿𝐪𝑏𝑗
𝑤

]
 
 
 

        (34) 

where r𝒞
𝑙  denotes the reprojection residual of the 𝑙th feature 

between frames 𝑏𝑒  and 𝑏𝑗 . Specifically, the Jacobian 

component for the position and orientation of the frame 𝑏𝑒 can 

be expressed as follows [9]: 
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𝜕r𝒞
𝑙

𝜕𝛿𝐩𝑏𝑒
𝑤 = 𝐑𝑏

𝑐 𝐑𝑤

𝑏𝑗
        (35) 

𝜕r𝒞
𝑙

𝜕𝛿𝐪𝑏𝑒
𝑤 = −𝐑𝑏

𝑐 𝐑𝑤

𝑏𝑗
𝐑𝑏𝑒

𝑤 (𝐑𝑐
𝑏 1

𝜆𝑙
𝑝̂̅𝑙

𝑐𝑒 + 𝐩𝑐
𝑏)∧    (36) 

with 𝑝̂̅𝑙
𝑐𝑒 = 𝜋𝑐

−1 ([
𝑢̂𝑙

𝑐𝑒

𝑣̂𝑙
𝑐𝑒

]) 

Similarly, the Jacobian component for the position and 

orientation of the frame 𝑏𝑗 is as follows: 

𝜕r𝒞
𝑙

𝜕𝛿𝐩𝑏𝑗
𝑤 = −𝐑𝑏

𝑐 𝐑𝑤

𝑏𝑗
       (37) 

𝜕r𝒞
𝑙

𝜕𝛿𝐪𝑏𝑗
𝑤 = 𝐑𝑏

𝑐          (38) 

Therefore, the combined Jacobian matrix considering all the 

visual constraints associated with the current epoch 𝐱𝑛 =

[𝐩𝑏𝑛

𝑤 , 𝐪𝑏𝑛

𝑤 ] can be formulated as follows: 

𝚮𝒞 = [

𝚮𝑗,0
𝑒

⋮
𝚮𝑗,𝛦

𝑒
]        (39) 

where 𝚮𝒞 denotes the Jacobian of all the re-observed features 

at the current epoch. The 𝛦 denotes the number of constraints 

associated with the current (latest) epoch 𝐱𝑛. The size of the 𝚮𝒞 

is 2𝛦 × 6. Note that we only considered the degeneration in the 

position and the orientation estimation, since the other states 

are also associated with the position or orientation. 

2) Degeneration Detection and Alleviation  

To further identify the level of constraints in the given 

measurements, the eigenvalue of the associated Jacobian matrix 

is employed as an indicator in both the global navigation 

satellite systems (GNSS) [39] field, and the Robotic field [38]. 

Recently, the research team from Carnegie Mellon University 

robotics institute proposed to use the associated eigenvalues in 

the evaluation of the degeneracy of the system built by visual 

and lidar, and the experimental results showed an improvement 

in the robustness [38]. The work in [38] argued that 

degeneration occurs when the minimum eigenvalues of the 𝚮𝒞 

is smaller than a given threshold λ𝑡ℎ𝑟𝑒𝑠ℎ . However, there is 

difficulty in adapting a certain value of the λ𝑡ℎ𝑟𝑒𝑠ℎ  to different 

scenarios. For example, a given λ𝑡ℎ𝑟𝑒𝑠ℎ  can be suitable for an 

indoor scenario, while its usability in outdoor scenarios is 

limited. To fill this gap, we proposed the evaluation of both the 

minimum eigenvalue and the ratio between the maximum and 

the minimum eigenvalues.  

Given a matrix 𝚮𝒞, the singular value decomposition (SVD) 

[40] can be expressed as follows: 

𝚮𝒞
𝐓𝚮𝒞 = 𝐔𝚺𝐕𝑇         (40) 

where the matrix 𝐔  is a real 6 × 6 orthogonal matrix. 

Meanwhile, the 𝐕 is a real 6 × 6 orthogonal matrix. The matrix 

𝚺  is a real 6 × 6 diagonal matrix with non-negative real 

numbers on the diagonal. The diagonal entries λ𝑠 = 𝚺𝑠𝑠  are 

considered to be the eigenvalues. The 𝑠 denotes the index of the 

6 eigenvalues associated with the position and orientation, as 

follows: 

𝛌 = [λ1 λ2 λ3 λ4 λ5 λ6]
𝑇     (41) 

Therefore, degeneration is detected if λ𝑚𝑖𝑛 is smaller than an 

experimentally determined threshold λ𝑡ℎ𝑟𝑒𝑠ℎ  or the ratio 
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛
 

is larger than a given threshold λ𝑟𝑎𝑡𝑖𝑜 . The λ𝑚𝑖𝑛  and λ𝑚𝑎𝑥  

denote the minimum and maximum eigenvalues within the 𝛌, 

respectively. Therefore, the degeneration detection above 

considers both the absolute and relative values involved in the 

eigenvalues. Compared with the single λ𝑚𝑖𝑛  considered, the 

benefits of the introduced ratio is to avoid λ𝑚𝑎𝑥 even smaller 

than λ𝑡ℎ𝑟𝑒𝑠ℎ in some extreme conditions. 

To alleviate the degeneration of the system arising from the 

removal of the outlier, we propose to adaptively increase the 

number of features based on the degeneration levels associated 

with related eigenvalues. Considering that the minimum 

eigenvalue is a powerful indicator of degeneration, we propose 

to define the level of degeneration as follows: 

𝐷λ = ‖λ𝑚𝑖𝑛 − λ𝑡ℎ𝑟𝑒𝑠ℎ‖, with λ𝑚𝑖𝑛 < λ𝑡ℎ𝑟𝑒𝑠ℎ   (42) 

where the 𝐷λ  denotes the degeneration factor encoding the 

level of degeneration. Larger 𝐷λ  means that stronger 

degeneration occurs and vice versa. Then the total number of 

features to be detected and tracked will increase in the next 

epoch as follows: 

𝑁𝑓
∗ = 𝑁𝑓 +

𝐷λ

10
, with λ𝑚𝑖𝑛 < λ𝑡ℎ𝑟𝑒𝑠ℎ    (43) 

where the 𝑁𝑓
∗  denotes the total number of features after 

adaptively increasing, and 𝑁𝑓 denotes the number of features 

remaining after the removal of outliers. Therefore, the 

degeneration will be alleviated in the subsequent epochs after 

the addition of more features. Fortunately, the additional 

features can easily be detected in an outdoor environment, and 

these features are also extracted using the Shi–Tomasi corner 

algorithm, and the distance from the existing features is set to 

30 pixels to keep the features uniformly distributed. 

VI. EXPERIMENT RESULTS AND DISCUSSION 

A. Experiment Setup 

Experimental scenes: Two real datasets were collected in 

typical urban canyons of Hong Kong to verify the feasibility of 

the proposed method in this paper. All the data are 

post-processed and the experimental sensor setup is presented 

on the left side of Fig. 6. Figs. 6 (a) and (b) illustrate the scenes 

of the tested urban canyons. A commercial level Xsens MTi 10 

IMU sensor was utilized in the collection of raw IMU data at a 

frequency of 200 Hz. The monocular camera was used to 

collect raw images at a frequency of 10 Hz. The ground truth of 

the pose estimation was provided by the NovAtel SPAN-CPT, 

which is a GNSS (GPS, GLONASS, and BeiDou) real-time 

kinematic (RTK)/inertial navigation system (INS) with 

fiber-optic gyroscopes integrated navigation system. In 

addition, the well-known Inertial Explorer software [41] was 

used to post-process the data from NovAtel SPAN-CPT to 

maximize the accuracy of the ground truth of positioning. All 

the collected measurements were recorded and synchronized 
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based on the timestamp provided by the robot operation system 

(ROS) [42] platform. The baseline distance between the rover 

and the GNSS base station is about 7 km. The intrinsic 

parameters of the camera and the extrinsic parameters between 

the applied camera and the IMU sensor are calibrated based on 

the recommendation of [43]. Different from the extensively 

evaluated EuRoC dataset [11] which was mainly collected in 

indoor scenarios, the applied datasets (even include a night 

scene) collected from urban canyons in this paper comprises 

numerous dynamic objects and unstable illumination 

conditions, which can cause numerous unexpected outlier 

visual measurements. To benefit the research community, we 

open-sourced the evaluated dataset [44] in this paper. 

Experimental Parameters: We set the threshold λ𝑡ℎ𝑟𝑒𝑠ℎ to 

an experimentally determined value of 200 based on our 

recently published urbanNav dataset [45]. The 𝜔𝑡ℎ𝑟𝑒𝑠ℎ is set to 

0.5. 

 

Fig. 6. Experimental setup and the evaluated scenes (a) and (b). 

To stepwise verify the contributions of the proposed method, 

several methods were compared as follows. 

(1) VINS-Mono [9]: The original VINS solution from [9]. 

(2) ORB-SLAM3 [7]: The VINS solution from [7] where 

the ORB features are employed for visual feature detection and 

association. 

(3) VINS-AC-ME [13]: VINS aided by adaptive covariance 

estimation and adaptive M-estimator proposed in our previous 

work [13]. 

(4) VINS-GNC-OF: The original VINS solution from [9] is 

aided by the visual outlier rejection in the front end using the 

proposed GNC in this paper. This is to verify the first 

contribution of this paper. 

(5) VINS-DAOM: The proposed degeneration-awareness 

outlier mitigation for VINS in this study. Note that the proposed 

optical flow, GNC-OF, is included in the front-end of this 

method. 

The improvement from the VINS-AC-ME compared with 

the original VINS-Mono for the positioning estimation has 

been extensively studied in our previous work [13], thus we 

present the results of the VINS-Mono, and VINS-AC-ME 

directly. In this paper, we analyzed the proposed method from 

two parts: the outlier mitigation in the front-end and the. 

degeneration-awareness in the back-end. Interestingly, we 

combined the geometry of the visual feature distribution and 

the quality of the visual feature tracking to estimate the 

uncertainty of visual measurements to further mitigate the 

effects of outlier measurements in the previous work [13], 

while we aim to dive into the fundamental problem of optical 

flow for feature tracking in this study by proposing the 

GNC-OF detection of outliers and the mitigation their effects 

for positioning estimation. 

To evaluate the experimental results, we used the EVO [46] 

tool, which is extensively used for the SLAM algorithms. The 

mean error is defined by the relative pose error (RPE) in the 

EVO. Besides, the final total positioning error is provided, 

which is calculated by the final epoch of the positioning error, 

denoted by FPE. The experimental results are evaluated in the 

local frame, and the first frame is regarded as a reference frame. 

B. Experimental Evaluation in Urban Canyon 1 

1) Positioning Performance Analysis  

The first experiment is conducted in a typical urban canyon 

(Whampoa in Hong Kong) to verify the performance of the 

proposed method. The positioning results are listed in Table 1. 

With the help of the proposed degeneration-awareness and 

outlier mitigation method, the mean error decreased from 0.71 

to 0.40 meters, and the standard deviation (STD) also dropped 

to 0.46 meters. Interestingly, we found that the proposed optical 

flow method can significantly improve the performance when 

compared to the previous method and VINS-Mono results and 

ORB-SLAM3 results, also there was a slight improvement in 

performance due to further degeneration awareness and 

mitigation. To further validate our proposed method, another 

experiment is conducted in a more challenging environment. 

The trajectories of the listed methods and the ground truth 

trajectory are shown in Fig. 7. The length of the trajectory is 

546.131 meters. The trajectory of the proposed method (blue 

curve) is the closest to the reference trajectory (black curve). In 

contrast, the trajectory of the ORB-SLAM3 (cyan curve) has 

the highest deviation from the reference point. The positioning 

error of the listed methods is shown in Fig. 8. There is a 

significant improvement in the accuracy of the proposed 

between epoch 0 and epoch 50. 

TABLE 1. POSITIONING PERFORMANCE OF THE 

LISTED METHODS IN URBAN CANYON 1 

Items 
VINS- 

Mono 

ORB-S

LAM3 

VINS- 

AC-ME 

VINS- 

GNC- 

OF 

VINS- 

DAO

M 

MEAN (m) 0.71 0.86 0.71 0.45 0.40 

FPE (m) 86.09 71.52 65.38 51.63 51.63 

STD (m) 0.98 2.26 0.86 0.54 0.46 

Max (m) 4.03 23.82 3.88 3.02 3.02 

Improveme

nt% 
  0% 36.6% 43.6% 
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Fig. 7. Estimated trajectories of the VINS-Mono and the listed 

methods and reference trajectory in urban canyon 1. 

 

Fig. 8. Positioning errors of the listed methods in urban canyon 

1. 

2) Rotation Performance Analysis  

Table 1 shows that there is a significant improvement in 

positioning accuracy using the proposed method. To further 

validate the effectiveness of the proposed method in improving 

the rotational accuracy, the performance comparisons are 

shown in Table 2. Interestingly, the mean errors of rotation 

from the listed methods are almost the same except for 

ORB-SLAM3. We found that the initialization of 

ORB-SLAM3 is not stable, and its drift is heavy in urban 

canyon 1. Therefore, we take the VINS-Mono methods as the 

baseline, which is more robust. The maximum value increases 

from 4.81 degrees to 6.79 degrees after the detected outliers are 

removed based on the proposed GNC-OF in the front-end, and 

this change means that the removal of excessive outliers can 

also lead to degeneration in rotation. The maximum error drops 

to 4.80 degrees from 6.79 degrees based on the proposed 

degeneration alleviation method, and the improvement can also 

be seen in Fig. 9. The rotation error of VINS-DAOM denoted 

by the blue curve declined compared to the VINS-GNC-OF 

curve denoted by magenta during the first 20 epochs. Therefore, 

the supplemented features based on (43) can effectively 

provide more constraints in the alleviation of the degenerated 

epoch. 

Generally, the improvement in the rotation estimation is 

limited after using the proposed method. On the one hand, the 

rotation usually offers better constraints with the help of the 

gyroscope sensor, which is significantly higher in accuracy 

than the accelerometer inside the employed IMU sensor. 

Moreover, the pitch and the roll angle are globally observable 

[9] which further enhances the accuracy of the rotation 

estimation. Thus, the partial outlier visual measurement 

removal does not necessarily lead to the degeneration of the 

rotation estimation [38].  

TABLE 2. ROTATION PERFORMANCE OF THE LISTED 

METHODS IN URBAN CANYON 1 

Items 
VINS- 

Mono 

ORB-S

LAM3 

VINS-A

C-ME 

VINS- 

GNC-O

F 

VINS- 

DAO

M 

MEAN (°) 0.89 2.04 0.84 0.89 0.87 

FPE (°) 8.42 255.98 7.59 7.46 7.46 

STD (°) 0.94 11.09 0.85 0.98 0.90 

Max (°) 4.81 119.86 4.77 6.79 4.80 

Improveme

nt% 
  4.82% 0.22% 2.13% 

 

Fig. 9. Rotation errors of the listed methods in urban canyon 1. 

C. Experimental Evaluation in Urban Canyon 2  

1) Positioning Performance Analysis  

To validate the reliability of the proposed method, another 

experiment is conducted in urban canyon 2 (Tsim Sha Tsui in 

Hong Kong) during the night, the scene incorporated numerous 

dynamic objects and unstable illumination conditions. The 

positioning results for the listed methods are shown in Table 3. 

The mean error of VINS-Mono is 0.79 meters, with the 

maximum error reaching 5.58 meters. Based on the previous 

work (VINS-AC-ME), the mean error decreases to 0.59 meters. 

The improvement can reach 25.32%. In the previous work, we 

focused on the visual measurement model based on the quality 

50 m

2
0

 m
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of the feature tracking to improve the performance of VINS in 

urban canyons, and thus in this study, we continue to explore 

the quality of feature tracking. The mean error of the proposed 

optical flow VINS-GNC-OF decreased to 0.54 meters and the 

maximum error dropped to 3.51 meters. Furthermore, by 

increasing the features in the back-end of the VINS, the mean 

error further decreased to 0.52 meters compared to the 0.79 

meters of the VINS-Mono, with an improvement of 34.2%, and 

the maximum error decreased to 3.94 meters. The standard 

deviation was also reduced to 0.58 meters. 

Typically, the outlier visual measurements usually involve 

larger residuals. To further elaborate on the reason behind the 

improvement of the proposed GNC-OF in improving the VINS 

through the rejection of the visual measurement outlier, we 

present the residuals of the visual reprojection in the back-end 

of the VINS corresponding to the conventional VINS and the 

GNC-OF aided VINS as shown in Fig. 10. The top and bottom 

figures show the residuals in 𝑢 and 𝑣 directions, respectively. 

The top of Fig. 10 shows that the majority of the residuals lie 

within -3 to 3. With the help of the GNC-OF, the histogram 

tends to be thinner with a smaller standard deviation which 

shows the effectiveness of the proposed method in rejecting the 

visual measurements outliers with larger residuals. A similar 

phenomenon can be found in the 𝑣 direction as shown at the 

bottom of Fig. 10. 

The trajectories of the listed methods and reference 

trajectory are shown in Fig. 11. The total length of the trajectory 

in urban canyon 2 is about 1984.448 meters. The trajectory of 

the proposed method VINS-DAOM (blue curve) is the closest 

to the reference trajectory (black curve). The positioning error 

of the listed methods is shown in Fig. 12. Thus, improved 

performance in positioning is obtained by the proposed method 

(blue line) compared to the original VINS-Mono (red line). 

Since the VINS can only provide the relative pose estimation 

continuously, the smaller attitude estimation can lead to 

significant drift in the long term, as shown by the green curve in 

Fig. 11. To mitigate the overall drift in VINS, one promising 

solution is to integrate the globally referenced GNSS 

positioning and the locally smooth estimation from VINS, and 

this will be the focus of one of our future works.  

TABLE 3. POSITIONING PERFORMANCE OF THE 

LISTED METHODS IN URBAN CANYON 2 

Items 
VINS- 

Mono 

ORB-S

LAM3 

VINS-AC

-ME 

VINS- 

GNC-

OF 

VINS- 

DAO

M 

MEAN (m) 0.79 Fail 0.59 0.54 0.52 

FPE (m) 38.81 Fail 81.79 36.91 37.20 

STD (m) 0.96 Fail 0.75 0.60 0.58 

Max (m) 5.58 Fail 7.26 3.51 3.94 

Improveme

nt% 
  25.3% 31.6% 34.2% 

 

Fig. 10. The residuals of visual reprojection in the 𝑢 and 𝑣 

directions of conventional (VINS-Mono) and the proposed 

method (VINS-GNC-OF). 

 

Fig. 11. Estimated trajectories of the VINS-Mono and the 

listed methods and reference trajectory in urban canyon 2. 

 

Fig. 12. Positioning errors of the listed methods in urban 

canyon 2. 

2) Discussion: Analysis of Residuals and Weightings for 

GNC-OF in Front End of VINS 

To show further details of the tracking feature using the 

conventional optical flow and the proposed GNC-OF, we 

selected a challenging case of urban canyon 2 as shown in Fig. 

13. The left image and right images are two consecutive frames 

from epochs 351 and 352, respectively. Intuitively, the 

50 m

2
0

 m
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conventional optical flow-based feature tracking method finds 

an incorrect feature correspondence with a matching pair of 

feature A (in epoch 351) and feature C (in epoch 352) as feature 

A should be located on a road lane line. We can see that the 

incorrectly tracked feature C is located under a light condition 

with a very similar pixel value to the road lane line. As a result, 

the conventional optical flow-based tracking feature method 

gets into the local minimum leading to an incorrect tracking 

feature. Figure 13-(c) shows the residuals of the pixel values 

associated with the matching pairs of feature A (in epoch 351) 

and feature C (in epoch 352). We can see that the maximum 

residual reached 150 due to the incorrect tracking feature. 

Moreover, the incorrectly tracked feature C introduces a large 

error compared with the correctly tracked feature B which can 

significantly degrade the performance of the data association in 

the back-end of the VINS.  

The proposed GNC-OF correctly tracked the feature with a 

matching pair of feature A (in epoch 351) and feature B (in 

epoch 352). Fig. 13-(a) shows the detail of the residual 

associated with the tracking feature. Interestingly, we can see 

that the shape of the road lane line can also be seen in the 

residual heat map. The deeper color indicates larger residuals. 

Furthermore, the larger residuals mainly occurred on the 

boundary of the road lane line. Fig. 13-(b) shows the estimated 

weightings of the pixel positions surrounding the feature pair A 

and B. The bluer color indicates the smaller weightings. As 

expected, the pixel positions with larger residuals are 

associated with smaller weightings, which subsequently leads 

to the rejection of the outlier measurements. As a result, feature 

A is correctly tracked as feature B in epoch 352.  

 

Fig. 13. Analysis of the residuals and weightings of the feature tracking of conventional optical flow from OpenCV and the 

feature tracking from GNC-OF at epochs 351 and 352. 

3) Discussion: Degeneration Detection and Analysis in Back 

End of VINS 

As mentioned in the experimental setup, we experimentally 

set the parameter of λ𝑡ℎ𝑟𝑒𝑠ℎ  to 200 to detect the potential 

degeneration. Subsequently, we presented some of the detected 

degeneration scenes as shown in Fig. 14. We found that all the 

minimum eigenvalues in Fig. 14 (a) to (c) are smaller than 200 

and the related RPE is larger than the mean error of 0.54 meters 

(Table 3). This phenomenon shows that the positioning error 

tends to increase due to insufficient feature constraints 

(degeneration). However, many factors can cause large errors 

such as poor illumination, dynamic objects, and feature 

distribution. Fig. 14 (d) shows that although the minimum 

eigenvalue is 192.34, with an RPE of 0.243 meters. This is 

because the limited high-quality features are used as the 

constraints of the state. In addition, the vehicles in Fig. 14 (d) 

have no movement, and thus there are no dynamic features. Fig. 

14 (g) to (i) are detected as healthy cases because the minimum 

eigenvalues are more than 200  with relatively small RPE 

values. Specifically, the detected feature in Fig. 14 (g) to (i) are 

more uniformly distributed compared to the degeneration case 

in Fig. 14 (a) to (c). Compared to the degeneration case defined 

using minimum eigenvalue, the maximum eigenvalues in Fig. 

14 (e) and (f) are even smaller than 200, and thus the ratio 

between λ𝑚𝑎𝑥 and λ𝑚𝑖𝑛  are used to identify the degeneration. 

The ratio is also obtained in the same way as Fig. 14. 
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Fig. 14. Illustration of the degeneration and healthy case with associated maximum and minimum eigenvalues, and relative 

positioning errors. The red and blue circles are the detected features, and the red circle denotes that the feature is tracked more times 

than the blue one. 

To examine the degeneration case after the removal of 

outliers by the proposed GNC-OF, and we analyzed the 

histogram of the minimum eigenvalues concerning the 

translation estimation before outlier removal (conventional 

VINS-Mono) and after outlier removal (proposed 

VINS-GNC-OF), as shown in Fig. 15. The x-axis denotes the 

minimum eigenvalues for translation estimation. The y-axis 

represents the volume associated with each bin of the histogram. 

Statistically, we found that the number of minimum 

eigenvalues (near 0 to 200) increases after the rejection of the 

outlier feature using the proposed method. This is due to the 

enhanced degeneration caused by the rejection of the visual 

measurements, where the smaller eigenvalue means that the 

corresponding direction has fewer constraints than the larger 

one.  

 

Fig. 15. The histogram of the minimum eigenvalues 

concerning the translation estimation before outlier removal 

(conventional VINS-Mono) and after outlier removal 

(proposed VINS-GNC-OF). 

 

D. Discussion: Computational Time Cost Analysis  

To analyze the real-time performance of the proposed 

method, a computational cost study is provided in Table 4. 

Especially, our processor is based on Intel(R) Core(TM) 

i7-9750H CPU @ 2.60GHz. Table 4 compares the processing 

time in the front-end and back-end of the conventional method 

and proposed method, respectively. The feature tracking is 

time-consuming in the front-end, thereby our proposed method 

needs 0.04 seconds more than the traditional method. Overall, 

the performance of our proposed method can be real-time. 

TABLE 4. COMPUTATION COST STUDY OF THE 

VINS-MONO AND THE PROPOSED METHOD IN URBAN 

CANYON 1 

Items 

Conventional Proposed  

Front 

End 

Back 

End 

Front 

End 

Back 

End 

MEAN (s) 0.09 0.05 0.13 0.02 

STD (s) 0.02 0.01 0.03 0.01 

Max (s) 0.18 0.10 0.22 0.08 

VII. CONCLUSIONS  

Achieving satisfactory positioning of VINS in urban canyons 

is challenging due to the influence of numerous factors, such as 

dynamic objects and illumination conditions. Different from 

the previous work [13], this study excludes the outliers detected 

from the front-end of VINS, while also detecting and removing 

the resulting degeneration. Given the degeneration level, the 

actual number of features is considered to be significant in the 

RPE: 0.243 m

Max Eigenvalue: 6208.01

Min Eigenvalue: 192.34

RPE: 0.796 m

Max Eigenvalue: 500.09

Min Eigenvalue: 142.16

RPE: 0.554 m

Max Eigenvalue: 1893.89

Min Eigenvalue: 44.68

RPE: 1.36 m

Max Eigenvalue: 123.03 

Min Eigenvalue: 35.42

RPE: 0.366 m

Max Eigenvalue: 1600.36

Min Eigenvalue: 468.64

RPE: 0.35 m

Max Eigenvalue: 3841.61

Min Eigenvalue: 678.79

RPE: 1.23 m

Max Eigenvalue: 86.35

Min Eigenvalue: 26.17

RPE: 0.088 m

Max Eigenvalue: 5806.09

Min Eigenvalue: 1292.29

(d)

(b) (c)

(g)

(e)

(h)

(f)

(i)

RPE: 0.723 m

Max Eigenvalue: 1179.31

Min Eigenvalue: 112.11

(a)
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mitigation of the degenerated performance. The improved 

performance is demonstrated in both experiments in urban 

canyons 1 and 2.  

Future studies will focus on investigating the integration of 

VINS positioning with a global navigation satellite system to 

provide more robust and accurate positioning for vehicular 

navigation. 
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