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Abstract 24 

Water scarcity is a global concern; 68 countries are facing extremely-high to medium-high risk of water 25 

stress. In this era of crisis, where water conservation is an absolute necessity, the water distribution 26 

networks (WDNs) globally are experiencing significant leaks. These leaks cause tremendous financial 27 

loss and unacceptable environmental hazards, thus further aggravating the water scarcity situation. To 28 

minimize such damage, the adoption of advanced technologies and methodologies for leak detection in 29 

the WDNs is absolutely necessary. In this regard, we have investigated the application of cost-effective 30 

MEMS-based accelerometers. Experiments were conducted on real networks (metal and non-metal 31 

pipes), over the course of ten months, and the acquired acceleration signals were analyzed using a 32 

monitoring algorithm. Monitoring index efficiencies and standard deviations for every leak and no-leak 33 

case was extracted. Two individual [KNN and Decision Tree] and two ensembles [Random Forest and 34 

Adaboost (Decision Tree)] based machine learning models were developed for the accurate 35 

classification of the leak and no-leak cases using extracted features; and separate models were 36 

developed for metal and non-metal pipes. Random Forest outperformed the other machine learning 37 

models and the overall accuracy reached 100% for metal pipes and 94.93% for non-metal pipes. The 38 

machine learning models were further validated using unseen/unlabeled cases and were highly effective 39 

in detecting leaks. This study demonstrated the applicability of MEMS-based accelerometers for leak 40 

detection and established real network-based machine learning models thereby contributing to the 41 

research scarcity in this important area.  42 

 43 
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1. Introduction 45 

Recent statistics show that around 27% of the global population has been living in water-scarce areas since 46 

the mid-2010 with a predicted escalation to more than 42% in 2050 (UN-WWAP 2018). Additionally, 47 

around 50% of the world’s population inhabits areas that suffer from water scarcity at least one month a 48 

year (Boretti and Rosa 2019). To alleviate the severity of this situation, it is necessary to improve the 49 

network capacity and financial operations of existing water distribution networks (WDNs) through effective 50 

water management strategies, such as the minimization of non-revenue water (NRW) (El-Zahab and Zayed 51 

2019). USEPA (2010) reported that NRW typically exceeds 30% in most WDNs, and the percentage can 52 

even be as high as 50% in older networks (Kanakoudis and Muhammetoglu, 2014). The main sources of 53 

NRW include illegal connections, ineffective metering, and leaks (Tariq et al. 2020). However, leaks 54 

usually constitute the largest portion; sometimes reaching 70% of the total NRW (Van Zyl and Clayton, 55 

2007), thus, reduction of pipeline leaks alone can effectively enhance the WDN capacity (Hu et al. 2021).     56 

In Hong Kong, freshwater and seawater are distributed through a pipe network of over 8600 kilometers. 57 

About half of the pipes were laid around 40 years ago as a part of major urban and town development at 58 

that time (Yue and Tang 2011). Subsequent deterioration of the pipes due to aging has resulted in the loss 59 

of water through leaks which was estimated at 25% in 2000 in government-operated water mains (Wong 60 

2018). Consequently, the Water Supply Department (WSD) launched an extensive rehabilitation and 61 

replacement scheme the same year to improve water conservation in Hong Kong (Yue and Tang 2011). 62 

Following the scheme, water loss through leaks was reduced substantially to 15% in 2017, however, 63 

significant improvement is still required as 8,512 leaks were reported in 2017 (WSD 2020). In monetary 64 

terms, this enormous scale of financial loss from water leaks is costing Hong Kong US$173 million 65 

annually (Gupta 2017). Therefore, the Hong Kong government is urgently looking into enhancing its 66 

existing leak detection approaches to curtail the damage. 67 

Vibro-acoustic technologies based on piezoelectric transducers are the most commonly used leak detection 68 

approach in Hong Kong as in other parts of the world (Bakhtawar and Zayed 2021). However, piezoelectric 69 
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technology-based leak detection has certain limitations that make these devices less suitable for a congested 70 

city urban landscape like Hong Kong (Tariq et al. 2020; Hamilton and Charalambous 2013). These 71 

limitations are listed as follows. 72 

• Plastic pipes make up around 35% of the total network in Hong Kong; noise loggers and other 73 

piezoelectric transducers are not-so-effective for plastic pipes due to the attenuation of the sound 74 

signals and frequently leads to false alarms. Other than the type of pipe material, the efficiency of 75 

these technologies greatly varies with pipe diameter and the surrounding environment. In terms of 76 

research, the scale of experimentations using noise loggers and piezoelectric accelerometers is 77 

typically carried out on the lab and test rig scale, with little validation over real networks, thus, 78 

failing to significantly improve the current situation.  79 

• Hydrophones are inconvenient to deploy although effective for plastic pipes.  80 

• The initial cost of deployment for both noise loggers and hydrophones is high.  81 

To overcome these challenges, non-invasive technologies such as using accelerometers can prove helpful. 82 

Accelerometers are vibration-based sensors which are easy to deploy and produce high-frequency signals 83 

with fewer distortions as compared to other sensors like geophones, hydrophones, and pressure sensors 84 

(Almeida et al., 2015; Brennan et al., 2019). In addition, all these prevalent technologies rely on experts 85 

who have to make regular visits for data collection and can only detect leaks effectively over a short distance 86 

(Ismail et al., 2019). These limitations make long-term and long-range leak detection tedious. Technologies 87 

based on Micro-Electro-Magnetic-Sensors can be of great potential to circumvent such limitations.  88 

MEMS-based accelerometers can be more effective for leak detection, combining the benefits of both 89 

MEMS and accelerometers for real networks. They offer a three-dimensional sensitivity, better accuracy, 90 

affordability, and the option to transmit data wirelessly, proving more desirable for Hong Kong conditions 91 

as compared to many other sensing options (Tariq et al., 2020). MEMS accelerometers can provide 92 

significant power and communication savings as compared to other piezoelectric transducers. However, 93 

challenges related to time synchronization, long-time communication, and implementation for real pipe 94 
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networks are frequently cited (Shinozuka et al., 2010). Additionally, there is limited work available on 95 

modeling approaches effective for vibration/acceleration data collected through MEMS-based 96 

accelerometers. For example, Shinozuka et al. (2010) used a PipeTECT wireless sensing system based on 97 

MEMS accelerometers and employed frequency domain analysis for detecting water leaks. El-Zahab et al. 98 

(2018) employed statistical modeling approaches coupled with the monitoring index methodology 99 

developed by Martini et al. (2017). However, current studies are not insightful for the purpose of 100 

experimentation on real-life networks and real leaks. Thus, to explore the accuracy and efficiency of such 101 

methods, the current study uses MEMS-based accelerometers for real water networks. The current 102 

objectives of the research are three-fold: 1) investigating the capability of cost-effective MEMS-based 103 

accelerometers in detecting leaks in the WDN; 2) developing the leak thresholds using a monitoring index-104 

based algorithm to identify the leak and no-leak cases in real networks; and 3) establishing accurate machine 105 

learning-based leak detection models, thus minimizing the handling of false alarms.   106 

2. Literature Review 107 

Accelerometers are versatile and sensitive sensors used for acceleration measurements. These small-sized 108 

devices are non-destructive, easy to deploy, and convenient to use for efficient leak detection in water 109 

pipelines. Pipe vibrations caused by leaks have higher acceleration values on the surface as compared to 110 

other vibration sources. Based on this principle, accelerometers can detect the constant difference between 111 

acceleration values over time so as to differentiate between leak and no-leak situations (Marmarokopos et 112 

al., 2018). Various studies have demonstrated the use of accelerometers for detecting water leaks. For 113 

example, Hunaidi and Chu (1999) and Gao et al. (2005) investigated the application of piezoelectric 114 

accelerometers in small diameter metal and plastic pipes. Martini et al. (2015) developed an algorithm 115 

enabling early detection of burst leaks in service pipes. The algorithm was expressed as a ‘monitoring index’ 116 

developed using the standard deviations of the leak signals expressed in Equation 1. 117 

𝑀𝐼𝑗 =
1

𝑁
∑(𝜎𝑗,𝑘)

𝑁

𝑘=1

… … … … (1) 118 
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where 𝜎𝑗,𝑘 is the kth element of the vector including the 𝑁 lowest standard deviation values of the jth 119 

dataset. Using threshold values, the algorithm serves as a useful tool for the characterization of acceleration 120 

data in the leak and no-leak cases. Martini et al. (2017) further compared two mono-axial piezoelectric 121 

accelerometers measuring radial and axial accelerations, respectively, with a hydrophone. Small diameter 122 

plastic pipes were used for the experimentation under different scenarios to check the performance of the 123 

sensors. It was found that the radial accelerometer covered a much narrow frequency bandwidth as 124 

compared to the axial accelerometer and the hydrophone. Thus, it is only effective for leak detection over 125 

short distances. Both the accelerometers failed to detect distant leaks, even after pre-filtering the data, as a 126 

result of the signal attenuation in the plastic pipes. Marmarokopos et al. (2018) also supported this finding 127 

by showing the applicability of accelerometers for detecting near-distant leaks in plastic pipes. Their study 128 

used a high signal-to-noise ratio piezoelectric accelerometer in a laboratory setting and analyzed the signals 129 

in both time and frequency domains. El-Zahab et al. (2016) demonstrated the same algorithm as Martini et 130 

al. (2015) on a lab scale using a more sensitive type of accelerometer based on micro-electro-mechanical-131 

system (MEMS) technology. The experiments were performed on both metal and plastic pipes. This study 132 

established the accuracy of MEMS accelerometers by varying the distance between leak and 133 

accelerometers. Encouraged by the results, El-Zahab et al. (2018) further designed machine learning-based 134 

models which provided highly accurate results on lab-scale experiments.  135 

Among the more recent studies, Ismail et al. (2019) compared different vibration sensors on the basis of 136 

their sensitivity, accuracy, power consumption, and cost. The study conducted testbed experimentation 137 

which indicated the superiority of tri-axial accelerometers for plastic pipes over other sensors. Okosun et 138 

al. (2019) used a highly sensitive piezoelectric sensor, integrated with an amplifier to ensure a low signal-139 

to-noise ratio over a wide frequency range. Their sensor system showed the viability for long-term leak 140 

detection in plastic pipes. Kampelopoulos et al. (2020a) used adaptive filtering to reduce noise and 141 

established thresholds for leak detection parameters such as kurtosis, correlation, power spectral density, 142 
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and energy. Their system showed particular efficiency in detecting high power leaks up to a distance of 143 

75m.  144 

However, existing studies have some major shortcomings. Firstly, the scale of experiments and the 145 

implications of their findings to real networks are limited. Most of the studies use laboratory and testbed 146 

settings with artificially simulated leaks to study different parameters that impact on the leak problem in 147 

water pipes. For example, Zahab et al. (2016) used a lab setup with simulated leaks to study the effect of 148 

pipe material and diameter on the leakage. El-Zahab et al. (2018) used a similar setup to test one leak at a 149 

time where the leaks were simulated using valve openings, and claimed high accuracy for the tested 150 

algorithms in their ability to detect leaks. Although such studies demonstrate the possible ability of 151 

accelerometers to detect leaks in a water distribution system, however, in real pipe networks, there may be 152 

more than one leak and their locations are not so obvious to predict in the system. Additionally, the nature 153 

of the acceleration data collected under real conditions is expected to be very different because of ambient 154 

noise impacts. For the case of accelerometers, the ambient noise effect can be a big problem resulting in 155 

high pre-processing efforts. It should be noted that noise signals may not follow the assumptions stated in 156 

most correlation models while predicting leaks. In such situations, false alarms pose a threat and may result 157 

in high repair costs.  158 

Secondly, the pipe geometries used in the reported experiments are also relatively simple. Most of the 159 

experiments used a straight pipe or a pipe with bends to demonstrate the leak problem (Martini et al., 2015; 160 

Mostafapour & Davoudi, 2013). However, the real pipe networks in urban environments are not represented 161 

by such simplifications. There is also limited information available about the underground conditions and 162 

records available concerning repairs and pipe replacements so it is difficult to assess the leak environment 163 

accurately. The leak experimentation for real networks is also hindered by site condition factors e-g the 164 

shape or size of the valve may not be suitable for accelerometer deployments or the site may be difficult to 165 

access. It is also possible that there may not be any consecutive valves available to carry out cross-166 

correlation studies. The dynamics of leak detection in real water distribution networks are, therefore, much 167 
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more complex as compared to controlled experiments. In the context of this discussion and the highlighted 168 

limitations, it becomes necessary to demonstrate accelerometer technology in real water networks. Our 169 

current research, thus, uses MEMS-based accelerometers for leak detection experimentation on real 170 

networks in Hong Kong WDNs. The demonstrated analyses method extends the MI methodology 171 

developed by Martini et al. (2015) on rich real leak and no leak data. MI-based leak thresholds on real leaks 172 

are also suggested. Using statistical rationalization and initial inferences, useful inferences about the leak 173 

and no leak classification of the data are suggested. Further, machine learning-based classification models 174 

are developed and demonstrated for more efficient and accurate leak detection helping decision-makers in 175 

timely repairs and pipe rehabilitation planning.     176 

3. Research Methodology 177 

The overall research approach for our study, illustrated in Figure 1, consisted of four distinct phases: 1) 178 

research background and conceptualization, 2) data collection on real networks, 3) data analysis, and 4) 179 

development of machine learning models. The first phase dealt with (a) leak problem identification in Hong 180 

Kong, (b) literature review of accelerometers-based studies, algorithms for handling acceleration signals, 181 

and machine learning-based classification techniques, and (c) finalization of the research methods. The 182 

second phase lasted over ten months and acceleration signals for both leak and no-leak cases from different 183 

pipe types and materials were collected. The third phase occurred in parallel to the second phase. In this 184 

phase, we (a) examined the collected acceleration signals, (b) analyzed the collected acceleration signals 185 

and developed leak thresholds using a monitoring indexed-based algorithm, and (c) provided the necessary 186 

monitoring index efficiencies (leak thresholds) and standard deviations which were used to develop 187 

machine learning models in the fourth phase. Performance measurement and validation of the developed 188 

models were also conducted in the fourth phase. For developing machine learning models, both individual 189 

and ensemble methods were applied. Among the individual methods, Decision Trees and K-Nearest 190 

Neighbor (KNN) were applied due to their ability to effectively handle numerical data. Among the 191 
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ensemble methods, 1) Random Forest which is an ensemble of Decision Tree, and 2) Adaboost to boost 192 

Decision Tree were used.  193 

[Insert Figure 1] 194 

4. Leak Thresholds: Procedures and Development 195 

4.1. Data acquisition system 196 

A MEMS accelerometers-based high time-synchronized data acquisition system from the German brand 197 

‘Beanair’ was used for experiments on real networks. The complete system comprised five triple-axis 198 

accelerometers (model AX3D with a sensitivity of ±2g), a gateway, a beanscape software (data acquisition 199 

software), and a laptop (for storing data and visualizing signals). The gateway had to be connected to the 200 

laptop using an Ethernet cable whereas the accelerometers transferred signals through the gateway 201 

wirelessly. The maximum sampling rate of the accelerometers with all three-axis in use was 1,000 202 

samples/second and with one-axis in use was 3,000 samples/second, respectively. However, on-site 203 

preliminary investigations revealed that only measurements taken along the radial sensing successfully 204 

detected leaks. The measurements along the axial directions in real networks are often impractical as 205 

accelerometers are placed on valves not the actual pipes. Therefore, this study only used the radial sensing 206 

direction for signals collection with a sampling rate of 3,000 samples/second in the streaming mode. The 207 

complete MEMS-based data acquisition system is showed in Figure 2.  208 

[Insert Figure 2] 209 

4.2. Experimental design and protocols 210 

A rigorous experimental campaign was designed to collect acceleration signals, from pipes of all sizes and 211 

materials, across various sections of the WDN in Hong Kong. The objective was to collect signals for both 212 

leak and no-leak cases to establish leak thresholds. Therefore, signals were collected at the time of leakage 213 

and after repair. However, it was necessary to establish leak thresholds before starting experiments for 214 

collecting leak signals; no-leak signals during normal network operations confirmed as no-leak sites by the 215 
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Hong Kong Water Supply Department (WSD) in advance, were collected for several hours (multiple mid-216 

nights), and analyzed using a monitoring algorithm (details are given later). Signals collected after repair 217 

added an additional layer of confirmation for the leak thresholds.  218 

The procedures for taking measurements at the leak site in collaboration with the WSD and a local 219 

contractor were as follows: 1) the WSD received alarms of a potential leak and informed the local contractor 220 

of the site location; 2) our research team along with the local contractor visited the site the same day at 221 

midnight. Mid-night was selected to keep night flow at a minimum and reduce background noise from 222 

traffic and other sources.  223 

4.3. Data collection 224 

The experiments were conducted over the course of ten months from October 1st, 2020 to July 31st, 2021. 225 

At any particular potential leak location, the accelerometers were placed on the available gate valves or fire 226 

hydrants near the leak location. The actual placement of accelerometers in the field is shown in Figure 3. 227 

The duration of signal collection varied from 300 seconds to several thousand seconds depending upon the 228 

number of site locations to be covered each night, the distance between different site locations, and the site 229 

conditions. A snapshot of the acceleration signal is given in Figure 4. Besides signals, notes were taken 230 

regarding 1) the distance between the potential leak and the accelerometer, 2) the distance between 231 

accelerometers if more than one accelerometer was used, and 3) any nearby noise-generating sources. Later, 232 

the leak/no-leak status was confirmed with the WSD. If the WSD stated that it was a false alarm, the case 233 

was closed and signals were stored as no-leak signals. If the WSD confirmed it as a true leak, our research 234 

team and the local contractor again visited the site at midnight on the same day of repair and again collected 235 

the signals. Following the above-mentioned protocols, leak and no-leak signals of 993 cases in total from 236 

75 different sites in Hong Kong were collected. The collection of signals from such a large number of sites 237 

at different locations brought representativeness of the whole WDN as most of the boundary conditions and 238 

functional characteristics of the distribution system were taken into account. 239 
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[Insert Figure 3] 240 

[Insert Figure 4] 241 

4.4. Signal processing 242 

Our study used a standard deviation-based monitoring algorithm developed by Martini et al. (2017) for 243 

signal processing and the development of leak thresholds. The main advantages of this algorithm include 244 

1) its suitability for raw signals derived from accelerometers; 2) no additional requirement of any signal 245 

pre-processing; and 3) proven effectiveness both in lab-based and field-based experiments. El-Zahab et al. 246 

(2018) used this algorithm to differentiate between leak and no-leak states employing lab-scale 247 

experiments, whereas Martini et al. (2017) found its efficacy in real networks for above-ground service 248 

connection pipes. However, none of the studies tested the practicality of this algorithm for underground 249 

pipes. Our preliminary studies in the Hong Kong water supply network, before designing the actual 250 

experiments, confirmed the applicability of this algorithm for underground pipes. This utility was further 251 

confirmed by the local contractor, who has been involved in the leak detection process for over 20 years in 252 

Hong Kong. Throughout the course of our study, the standard deviation-based monitoring algorithm has 253 

been found to be extremely effective in detecting leaks, even more than all the other traditional feature-254 

based algorithms (tested in our study) which required extensive signals pre-processing. The mathematical 255 

approach behind the algorithm can be summarized in the following steps:  256 

1) Acceleration readings per second (g) were collected as mentioned in the previous sections; 257 

2) Every 100 seconds, the standard deviations of the g readings were computed. For example, for an 258 

hour-long (3600 seconds) reading, 36 standard deviations were computed (Figure 5); 259 

3) To establish the leak thresholds, only a subset of the 10 lowest standard deviations of no-leak 260 

signals were used for each mid-night in equation 2.  261 

𝑀𝐼𝑗 = 𝑚𝑒𝑎𝑛 (𝜎𝑗 , 10) … … … … (2) 262 
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The selection of the subset helped to minimize perturbations caused by external sources. The lowest 263 

leak threshold was named as the monitoring index (𝑀𝐼𝑜). Monitoring indexes were established for 264 

different pipe types and diameters as given in Table 1.  265 

4) Since the presence of a leak in a pipe causes the 𝑀𝐼𝑗 values to increase and the comparison of such 266 

values with 𝑀𝐼𝑜 can be used for providing a warning about the leak. Therefore, the monitoring 267 

index efficiencies 𝑀𝐼𝐸  of each pipe type were established using equation (3) which provided a clear 268 

indication of a leak in case the value was exceeded.   269 

𝑀𝐼𝐸𝑥 =
𝑀𝐼𝑗

𝑀𝐼𝑜
… … … … (3) 270 

5) In case of a leak, the 𝑀𝐼𝐸  values were computed and compared with the 𝑀𝐼𝐸  values for specific 271 

pipe types. Typically, the 𝑀𝐼𝐸  values of the leaked pipes exceeded the 𝑀𝐼𝐸  values of non-leaked 272 

pipes (Figure 6 for example).  273 

[Insert Figure 5] 274 

[Insert Table 1] 275 

 [Insert Figure 6] 276 

5. Development of Leak Detection Model 277 

Leak detection in WDNs is a binary classification problem that can be solved by applying machine learning 278 

algorithms to accurately recognize leak and no-leak states using acceleration signals/data (Ravichandran et 279 

al. 2021). The main component typically include 1) collection of acceleration data from lab or field-based 280 

experiments (field-based in our case); 2) feature extraction using a signal processing algorithm; 3) the 281 

development of machine learning algorithms-based leak detection models using extracted features; and 4) 282 

application of machine learning models to reach a binary decision on leak or no-leak classification on the 283 

a) testing dataset; and b) validation dataset. It is now a widely accepted fact that machine learning is an 284 

effective approach in dealing with binary classification problems (Ravichandran et al. 2021). A simple 285 
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schematic diagram representing the general framework of such a binary classification process is given in 286 

Figure 7, explained as follows.  287 

[Insert Figure 7] 288 

• As per this framework, firstly, a large set of diverse data is collected. This data are then divided 289 

into modeling and validation datasets. Likewise, the acceleration data in our case was divided into 290 

modeling and validation datasets. The validation dataset was separated randomly before the 291 

application of machine learning whereas the modeling dataset was divided into training and testing 292 

datasets using the ratio of 80/20 (i.e. 80% of the data was used for training the models and 20% 293 

was used for testing the models).  294 

• In the second step, the data was used to extract quality features that are very crucial for the 295 

performance of machine learning models. These features vary with the type of application and 296 

without extracting good features, the development of accurate machine learning models is not 297 

possible. In our case, the signal processing algorithm was used to extract the useful 𝑀𝐼𝐸  values for 298 

developing the high-performance machine learning models.  299 

• In the third step, machine learning models were developed using different machine learning 300 

algorithms. The choice of machine learning algorithms is again application dependent and depends 301 

on factors including training data size, output accuracy, speed of training time, data structure, 302 

number of features, trial and error, etc. Machine learning can be supervised, unsupervised, and 303 

reinforcement type. In our case, supervised machine learning was used. Machine learning models 304 

were developed using KNN, Decision Tree, Random Forest, and Adaboost algorithms. The process 305 

involved training the models using the training dataset. This process was repeated for each machine 306 

learning algorithm. 307 

• In the fourth step, the performance of the trained machine learning models was evaluated on the 308 

testing data and the average AUROC (area under receiver operating curve) was derived for each 309 

model. However, AUROC might be misleading for an imbalanced dataset (Wang et al. 2021), so 310 
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other performance measures including class precision, class recall, and F1 scores were computed 311 

for the testing dataset. Finally, the performance of the trained machine learning models were 312 

compared on the testing dataset and the best models were selected. The best-performing models 313 

were then applied to the validation dataset.  314 

The overall procedure of developing machine learning models for our study is illustrated in Figure 8.     315 

[Insert Figure 8] 316 

5.1. Input data for machine learning models 317 

The input of the model was 1) 𝑀𝐼𝐸  values acquired through the signal processing algorithm for each leak 318 

and no-leak cases in the modeling dataset, and 2) standard deviations of g (acceleration) values of the same 319 

cases. Other combinations such as 𝑀𝐼𝐸  values and the averages of the g values; 𝑀𝐼𝐸  values alone; standard 320 

deviations of the g values alone, etc. were also attempted as inputs but didn’t provide desired results. An 321 

open data science software RapidMiner, specially designed for developing predictive models using machine 322 

learning, was used in our study. Out of the total of 993 cases, 816 cases (166 leak and 650 no-leak cases) 323 

were used in the modeling dataset while the remaining 177 cases were separated randomly before applying 324 

the machine learning algorithms to be used as the validation set. The dataset comprised cases from 1) metal 325 

pipes including stainless steel (SS), galvanized iron (GI), cast iron (CI), and ductile iron (DI); and 2) non-326 

metal pipes included polyethylene (PE), Un-plasticized poly-vinyl chloride (UPVC). Pipe diameters ranged 327 

from 50mm to 300mm.  328 

5.2. Input data pre-processing 329 

Input data pre-processing was carried out to understand the data before applying machine learning 330 

algorithms. Since most machine learning models work on the balanced class principle, an imbalanced 331 

dataset should be preprocessed for reliable classification (Choi et al. 2020). Imbalanced datasets are 332 

typically challenging for almost all machine learning algorithms as they tend to neglect minority cases. 333 

Therefore, the imbalanced data should be resampled to produce a class-balanced dataset.  334 
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In binary classification problems, a balanced dataset can be achieved through under-sampling and 335 

oversampling (Wang et al. 2021). Under-sampling balances the dataset by deleting the majority of 336 

observations arbitrarily. However, under-sampling suffers from the risk of discarding useful cases, thus, 337 

deteriorating the majority class distribution. Oversampling doesn’t suffer from such risks as oversampling 338 

increases the minority observations. The synthetic minority oversampling technique (SMOTE) is the most 339 

representative example of oversampling which generates artificial minority cases by interpolating existing 340 

minority cases (Wang et al. 2021; Choi et al. 2020). Since SMOTE can effectively overcome overfitting to 341 

large extent, this technique was applied to the modeling dataset to address the class imbalance problem. 342 

The leak cases were segregated from the modeling dataset and duplicated to attain the same number of leak 343 

and no-leak cases. Data balancing was only conducted on the modeling dataset; the validation dataset was 344 

still imbalanced.  345 

5.3. Performance evaluation of machine learning models 346 

For binary classification, the performance of machine learning models can be evaluated using statistics 347 

derived from the confusion matrix. This matrix basically provides information about the predicted and 348 

target classes by a machine learning algorithm and contains four entries, as depicted in Figure 9, where true 349 

positive (TP) represents the number of positive cases identified correctly; true negative (TN) represents the 350 

number of negative cases identified correctly; false positive (FP) represents the number of negative cases 351 

incorrectly identified as positives; and false-negative (FN) represents the number of positive cases 352 

incorrectly identified as negatives. From these statistics, the ROC curve can be plotted considering two 353 

metrics simultaneously, namely true positive rate (TPR) and false-positive rate (FPR). TPR, as given in 354 

equation 4, is the ratio of the number of positive cases identified correctly to the number of true positive 355 

cases, whereas FPR, as given in equation 5, is the ratio of the number of negative cases identified as positive 356 

cases to the number of true negative cases. AUROC indicates the models’ capability to successfully 357 

differentiate between positive and negative cases. AUROC ranges from 0 to 1; the higher the AUROC the 358 
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better the performance of the model (Wang et al. 2021) and a value lower than 0.7 is considered poor (Choi 359 

et al. 2020). The overall accuracy of the model is defined in equation 6.  360 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … (4) 361 

𝐹𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑁
… … … … (5) 362 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
… … … … (6) 363 

[Insert Figure 9] 364 

However, AUROC is not sufficiently sensitive for an imbalanced set, therefore, class precision, class recall, 365 

and F1 scores were computed to evaluate the classification performance. Class recall, as given in equation 366 

7, is basically the same as TPR. Class precision, as given in equation 8, is the ratio of the number of correctly 367 

identified positive cases to the total number of positive cases. 368 

𝑐𝑙𝑎𝑠𝑠 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … (7) 369 

𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … (8) 370 

The F1 score, ranging from 0 to 1, provides a harmonic mean between class precision and recall. The higher 371 

the F1 score, the better the performance of the model. This score provides information about the model’s 372 

preciseness (i.e. how many cases are classified accurately) and robustness (i.e. how many hard-to-classify 373 

cases are missed) (Kampelopoulos et al. 2020b; Mishra 2018). The formula for calculating the F1 score is 374 

given in equation (9). 375 

𝑐𝑙𝑎𝑠𝑠 𝑟𝑒𝑐𝑎𝑙𝑙 = 2 𝑋 
1

1
𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑐𝑙𝑎𝑠𝑠 𝑟𝑒𝑐𝑎𝑙𝑙

… … … … (9) 376 

 377 
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5.4. Model implementation and performance 378 

The application of machine learning models for leak and no leak classification in water distribution 379 

networks (WDN) is relatively new. Therefore, a thorough literature review of studies involving similar 380 

applications was conducted for the selection of appropriate algorithms. For example, Fan et al. (2021) used 381 

a hypothetical EPANET hydraulic model to mimic real WDN conditions and used an artificial neural 382 

network (ANN) to train and test the model. At the DMA level, Cantos et al. (2020) developed similar leak 383 

detection ANN and support vector machine (SVM) models based on hydraulic data. Guo et al. (2021) 384 

presented another classification model focusing on efficient leakage detection under noisy conditions. The 385 

study found the time-frequency convolutional neural network (CNN) performed more accurately under 386 

different signal-to-noise (SNR) conditions as compared to other machine learning models. El-Zahab et al. 387 

(2018) used Decision Tree, SVM, and Naïve Bayes to develop leak detection models using acceleration 388 

data from the lab-based experiments. Ravichandran et al. (2021) used ensemble-based algorithms and 389 

established machine learning models for leak detection using acoustic data from WDNs in North American 390 

Cities. They further compared the performance of machine learning models with K-nearest Neighbor 391 

(KNN) and ANN. Due to the scarcity of the relevant work published in the literature on leak detection using 392 

machine learning modeling in real WDNs, it is useful to learn from other similar applications of supervised 393 

learning. Machine learning models for leak detection in gas pipelines offer an interesting reference point. 394 

Kim et al. (2021) recently presented a deep learning-based model for leak localization and leak size 395 

estimation in subsea gas pipelines. da Cruz et al. (2020) used acoustic data for developing an ensemble-396 

based leak detection model for low-pressure gas pipelines. Likewise, Ramotsoela et al. (2019) used two 397 

machine learning-based models based on SVM and decision trees for leak detection in noisy industrial 398 

conditions. They found SVM to perform better in noisy conditions. Apart from gas pipelines, supervised 399 

learning has also been employed in condition assessment and failure prediction of sewer pipelines. Moradi 400 

et al. (2019) elaborated on the use of several machine learning and deep learning-based models for the 401 
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purpose, especially CNN, for sewer defect classification, defect detection, and classification. However, 402 

training of CNN-based models is expensive.  403 

The literature review provided ample insights into various requirements of implementing machine learning 404 

algorithms for real WDNs. For example, ANN and ensembles work well on large data and are not-so-405 

sensitive to outliers (Kayaalp et al. 2017; Kutylowska 2015). KNN and SVM are less prone to overfitting, 406 

however, KNN is computationally more efficient (Ayadi et al. 2020; Kang et al. 2017). Decision Tree 407 

provides an easy interpretation of results through visualization (Winkler et al. 2018). Besides, all these 408 

above-mentioned algorithms are stable and robust (Alobaidi et al. 2019). Our study applied all these 409 

algorithms to check their viability in real WDNs and made a comparison of the results to establish the best 410 

models. Since signal attenuation is higher in non-metal pipes than metal pipes, therefore, it was appropriate 411 

to develop separate metal and non-metal-based models. For the sake of the development of accurate models 412 

and provide a suitable comparison, the algorithms that didn’t achieve good accuracy for both metal and 413 

non-metal pipes were dropped for further analysis. For example, ANN and SVM didn’t achieve acceptable 414 

accuracy for both metal and non-metal pipes whereas Naïve Bayes failed to achieve acceptable accuracy 415 

for non-metal pipes. Therefore, Decision Tree, KNN, and two Ensemble algorithms (Random Forest and 416 

Adaboost) based machine learning were implemented and compared. The best performing models can be 417 

used standalone for leak detection or can be used in a voting system i.e. a case will be declared as a leak if 418 

the majority of algorithms predict the case as a leak. 8:2 training and the testing datasets were used for each 419 

model and parameters for machine learning algorithms were kept the same for both metal and non-metal-420 

based models.  421 

5.4.1. Decision Tree 422 

Decision Tree is one of the most widely used supervised learning-based algorithms. It gives a flow-chart-423 

like structure with internal nodes, branches, and leaves (terminal nodes), where each internal node 424 

represents a test on the attribute, each branch donates the test outcome, and each leaf provides the class 425 

label. The main advantage of a decision tree lies in its easy interpretability through a visual flowchart and 426 
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requires little effort for data preparation. However, decision trees tend to overfit the data (El-Zahab et al. 427 

2018; Hamoud et al. 2018; Sharma and Kumar 2016).  428 

The parameters for Decision Tree were set as follows: Criterion = gain_ratio; maximal depth = 10; apply 429 

pruning = yes; confidence = 0.1; minimal gain = 0.01; minimal leaf size = 2; minimal size for split = 4; 430 

number of pre-pruning alternatives = 3. The results for Decision Tree models for both non-metal and metal-431 

based pipes are given in Tables 2 and 3, respectively. The Decision Tree approach showed a very high 432 

accuracy of 99.18% for metal pipes and didn’t miss a single leak, and its class recall for leaks reached 433 

100%. However, the Decision Tree model for non-metals pipe showed a relatively low accuracy of 84.78% 434 

and missed 14 leaks, therefore, the class recall is on the lower side at 79.71%.  435 

To check the quality of retrieved data per class, class precisions were computed. The class precision for no-436 

leak data is higher in the case of the non-metal-based model but was the same for the metal-based model. 437 

F1 scores almost reaching 1.00 show the robustness of the metal-based model. Figure 10 shows the Decision 438 

Tree model for metal and non-metal pipes.   439 

[Insert Table 2] 440 

[Insert Table 3] 441 

[Insert Figure 10] 442 

5.4.2. K-Nearest Neighbour 443 

KNN predicts the category of new data, on the basis of similarities with K training data which are nearest 444 

to new data (Quy et al. 2019; Soldevila et al. 2017). Afterward, KNN places the new data in the category 445 

with the highest probability. KNN is typically very effective for large datasets and provides good results 446 

even for small datasets if the data is noise-free and labeled, however, finding the K number that provides 447 

the highest accuracy can be complex and time-consuming (Fereidooni et al. 2021; Ravichandran et al. 448 

2021).  449 

The parameters for KNN models were set as follows: K = 5; weighted vote = yes; measure types = mixed 450 

measures; mixed measures = mixed Euclidean distance. The results for KNN models for metal and non-451 
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metal pipes are given in Tables 2 and 3, respectively. The accuracy of the metal-based KNN model was 452 

exactly 96.72%% and the model classified both leak (except 1) and no-leak cases (except 3) precisely. For 453 

the non-metal-based model, the accuracy of the model was 89.86%. KNN, however, missed 8 leaks, and 454 

therefore its class recall 88.41%. The quality of retrieved data per class was similar in the case of no-leak 455 

and leak cases as depicted from class precisions of the non-metal-based model. In terms of F1 scores, the 456 

model showed similar performance for both leak and no-leak cases. 457 

5.4.3. Ensembles 458 

Ensemble modeling is the process of generating diverse models and using their combinations to predict the 459 

outcomes (Rayaroth and Sivaradje 2019; Kayaalp et al. 2019). Ensembles techniques are typically deployed 460 

to boost performance or reduce the likelihood of errors from one single model (Ravichandran et al. 2021; 461 

Shirzad and Safari 2019). Our study adopted two popular ensemble learning algorithms: Random Forest 462 

and Adaboost. Random Forest relies on multiple decision trees, built from the sub-set of the dataset. 463 

Random forest takes votes on predictions from each tree and based on the majority votes predicts the final 464 

outcome (Shirzad and Safari 2019; Butterfield et al. 2018). The parameters for Random Forest were set as 465 

follows: Number of trees = 100; criterion = gain ratio; maximal depth = 10; apply pruning = no; random 466 

splits = no; guess subset ratio = yes; voting strategy = confidence vote. Adaboost, on the other hand, assists 467 

in combining weak classifiers into one single strong classifier, by putting more weight on the cases that are 468 

difficult to handle than on the cases which are already handled well (Desarda 2019). Our study attempted 469 

Adaboost using Decision Tree as a weak classifier following the suggestion of Thongkam et al. (2008) and 470 

Kim and Upnega (2014). The parameters for Adaboost (Decision Tree) were set as follows: Iterations = 10; 471 

Criterion = gain_ratio; maximal depth = 10; apply pruning = yes; confidence = 0.1; minimal gain = 0.01; 472 

minimal leaf size = 2; minimal size for split = 4; number of pre-pruning alternatives = 3.   473 

Both ensemble models, Random Forest and Adaboost (Decision Tree) increased the accuracy of individual 474 

Decision Tree models for non-metal pipes. The accuracy of Random Forest and Adaboost (Decision Tree) 475 

came out to be 94.93% and 94.20%, respectively. However, Random Forest increased the class recall to 476 
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91.30% and the model only missed 6 leaks. Adaboost (Decision Tree), on the other hand, missed 10 leaks. 477 

Therefore, its class recall for leaks was 85.51%. As a matter of fact, KNN missed a fewer number of leaks 478 

than Adaboost and its class recall is higher at 88.41%. In order to check the overfitting, F1 scores were 479 

computed which also showed extremely good results. Again, Random Forest showed better results in F1 480 

matric among all the models.  481 

For metal-based pipes, both machine learning ensemble models performed remarkably well. The accuracy 482 

of Random Forest reached 100%. The accuracy of Adaboost (Decision) came out to be 99.18%, exactly 483 

similar to the individual Decision Tree model and Adaboosting didn’t help in increasing the accuracy. None 484 

of the ensemble models and Decision Tree missed any leak. Decision Tree and Adaboost (Decision Tree) 485 

missed one no-leak case.  486 

5.5. Comparative ROC 487 

Since SMOTE was used for data balancing, comparative ROC curves were plotted to further confirm the 488 

performance of the models (Figure 11). Figure 11(a) shows that the AUROC values for all four metal-based 489 

models were higher than 0.9. Among the non-metal-based models, the AUROC value for the Decision Tree 490 

model was less than 0.9, relatively lower than the other three models. Therefore, this model was dropped 491 

for the validation analysis. This omission was also justified from the accuracy histograms in Figure 12 492 

which clearly shows the inferior performance of the Decision Tree non-metal-based model. In addition, this 493 

model missed the highest number of leaks in comparison to other models (Figure 13) and caused the highest 494 

number of false alarms (Figure 14). 495 

In terms of comparative performance, Random Forest achieved the highest accuracy among both metal and 496 

non-metal-based models. All four metal-based models performed equally well in detecting leaks, as three 497 

of the models, except KNN, didn’t even miss a single leak. However, Random Forest missed the lowest 498 

number of leaks among non-metal models. Metal-based models in general performed better than non-metal-499 

based models.  500 
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[Insert Figure 11] 501 

[Insert Figure 12] 502 

[Insert Figure 13] 503 

[Insert Figure 14] 504 

5.6. Model correlations and sensitivity 505 

The relation between independent variables and dependent variables can be checked through correlation 506 

coefficients. A positive correlation means that by increasing the value of the independent variable, the value 507 

of the dependent variable increases. In the case of binary classification (leak and no-leak), it means that by 508 

increasing the value of the independent variable the no-leak state changes to the leak state. Both independent 509 

variables (standard deviation and MIE values) are positively correlated to the dependent variable which 510 

shows the importance of both variables in detecting leaks. However, the correlation coefficient (0.211) of 511 

the MIE values is a bit higher than the correlation coefficient (0.140) of the standard deviation values.  512 

To check the importance of independent variables and model sensitivity, the models' accuracy and the 513 

number of leaks missed were checked by training models using one independent variable at one time (i.e. 514 

models were developed using MIE values alone and standard deviation values alone) and the results were 515 

compared with models trained using both independent variables. From Table 4, it is clear that the models 516 

built on both MIE and standard deviation values together outperformed the model trained using single 517 

variables. Standard deviation-based models, nevertheless, performed better than MIE-based models. In fact, 518 

the standard deviation Adaboost model, in the case of non-metal pipes, missed fewer leaks in comparison 519 

to the original MIE plus standard deviation model, however, the overall accuracy was lower.   520 

[Insert Table 4] 521 

6. Validation of Models and Utilization  522 

The models were validated through the validation of 177 cases which were separated from the model after 523 

the data collection. Data balancing was not conducted on the validation set, which contained 102 metal 524 

cases and 77 non-metal cases. Validation of the metal cases was carried out using all four models, however, 525 
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for the validation of non-metal cases, the Decision Tree model was omitted due to its low accuracy on 526 

different performance metrics. Machine learning models were not supplied with leak and no-leak labels for 527 

the validation set and the accuracy of the validation set was later checked by comparing with the real leak 528 

states and the results were computed manually.   529 

The results of both metals and non-metals pipes are given in Table 5. It is interesting to note that all models 530 

correctly identified no-leak cases for metal pipes. For metal pipes, although the accuracy of all four models 531 

was similar on the testing set, KNN detected the highest number of leaks accurately and only missed one 532 

leak. All the other three models missed three leaks and surprisingly all of them failed to correctly identify 533 

the state of the same three cases (IDs = 957, 958, and 959). KNN, however, was successful in identifying 534 

the leak state for cases 957 and 958, however, failed to identify case 959 with 59% confidence. For non-535 

metal pipes, Random Forest and Adaboost (Decision Tree) correctly identified all leak and no leak cases. 536 

KNN also identified all leak cases correctly, however, failed to identify five no-leak cases correctly.    537 

In Hong Kong, noise loggers lead to a high percentage of false alarms, achieving such a high accuracy with 538 

accelerometers in detecting leaks is quite promising. Both metal and non-metals were unable to classify 539 

only a very few cases (considering both training and validation set) which is acceptable as this classification 540 

accuracy can be enhanced by looking at the results of different models simultaneously and continuous 541 

training of models with new data. The accuracy of non-metal pipes can be further increased by developing 542 

models for individual pipe materials such as polyethylene-based models.    543 

[Insert Table 5] 544 

7. Conclusions, Limitations, and Future Works 545 

This research investigated the application of MEMS-based accelerometers for leak detection in real pipe 546 

networks. The leak detection problem was formulated as a binomial problem to identify the leak and no-547 

leak cases using acceleration data. Firstly, a Monitoring index-based algorithm was used for signal analysis 548 

and to distinguish between 993 leak and no-leak cases collected from 75 different sites in Hong Kong. The 549 
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cases were collected from sites of different pipe materials and types. Secondly, monitoring index 550 

efficiencies obtained from the data analysis and standard deviations were used to demonstrate the 551 

effectiveness of machine learning models in detecting leaks. 816 cases were utilized to develop individual 552 

[KNN and Decision Tree] and ensemble (Random Forest and Adaboost (Decision Tree)] machine learning 553 

models. The remaining 177 cases were used as a validation set to further verify the performance of the 554 

models.   555 

All types of individual and ensemble metal-based models acquired very high overall accuracy in leak 556 

detection; Random Forest, in fact, reached 100% accuracy. Apart from 1 missed leak by KNN, all the other 557 

models accurately identified all the leaks. However, on the validation set, KNN performed the best and 558 

missed only one leak. The other three models missed 3 leaks each.  559 

Among the non-metal pipes, ensembles models performed well and the accuracy reached over 94% for both 560 

the models. Among individual models, KNN reached almost 90% accuracy. Decision Tree, however, didn’t 561 

perform so well and reached around 85% accuracy and hence, drop for subsequent validation analysis. 562 

KNN, Random Forest, and Adaboost (Decision Tree) were also unable to classify some leak cases, with 563 

Random Forest missed the lowest number of leak cases at 6. The ensemble models performed remarkably 564 

well in detecting no-leak cases and only provided one false alarm each. The performance of KNN and 565 

ensemble models was further confirmed with a validation set. Ensemble models worked perfectly with the 566 

validation set, and KNN led to five false alarms. From the results, it can be safely deduced that all the 567 

selected metal and non-metal-based models can be extremely effective in detecting leaks using MEMS 568 

accelerometers in real networks.  569 

MEMS-based accelerometers provide a cheap technology in comparison to noise loggers, and our study 570 

has proven the effectiveness of this technology in leak detection, however, there are certain limitations that 571 

might hinder the application of MEMS accelerometers-based leak detection models in water networks. 572 

Firstly, the accelerometers used in our study were battery-powered devices and a single accelerometer can 573 

only provide data for 30 minutes after charging. Therefore, these devices can only be used for temporary 574 
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monitoring and require personnel to replace accelerometers every night. Secondly, the accelerometers can’t 575 

be placed very far from the gateway unless a long-distance transmission antenna is used which might be 576 

costly. Basically, the technology used in our study needs further maturity in terms of wireless connectivity 577 

and data transfer. The third limitation is about the leak detection models themselves as the models were 578 

developed using monitoring indexes and standard deviations. The models didn’t use traditional features 579 

such as spread, level, frequency centroid, etc. The impact of the inclusion of such features on the models’ 580 

accuracy needs to be checked. Fourthly, ideally, separate models should have been developed using the 581 

dataset for each pipe type and diameter. However, due to the limitations on the data collection, two types 582 

of models, metal and non-metal-based models, were developed and tested on the different types of pipes 583 

and materials. Although the model succeeded in detecting leaks for a vast majority of cases, however, its 584 

accuracy can be further enhanced by developing individual models and administrating a large-scale 585 

validation.  586 

Considering the limitations, future work will be conducted on developing feature-based machine learning 587 

models for accelerometers. These models will use the traditional features such as spread, level, maximum 588 

amplitude, peak frequency, kurtosis, etc., extracted from the acceleration signals collected in this study. 589 

The accuracy of the developed models will be compared with the models presented in this study. Later, 590 

feature-based machine learning models and the models presented in this study will be combined to further 591 

improve the leak detection accuracy and performance.  592 
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List of Tables 746 

Table 1: Monitoring indexes for the no-leak state of various pipe type 747 

Pipe type Pipe diameter (mm) MIo 

Polyethylene 50 0.005133 

Polyethylene 80 0.001192 

Polyethylene 100 0.001162 

Polyethylene 150 0.001434 

Polyethylene 200 0.001549 

Galvanized Iron 50 0.001352 

Galvanized Iron 80 0.001614 

Galvanized Iron 100 0.001385 

Ductile Iron 100 0.001546 

Ductile Iron 150 0.001225 

Ductile Iron 300 0.001221 

Stainless Steel 100 0.001254 

Un-plasticized Polyvinyl Chloride 40 0.006291 

Un-plasticized Polyvinyl Chloride 100 0.001138 

Asbestos Cement 150 0.001126 

 748 

Table 2: Leak detection results for metal-based models 749 

Models Results 

  

KNN  Accuracy=96.72% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak 58 1 98.31% 0.97 

Predicted as Leak 3 60 95.24% 0.97 

Class Recall (%) 95.08% 98.36% - - 

Decision Tree Accuracy=99.18% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  60 0 100% 0.99 

Predicted as Leak  1 61 98.39% 0.99 

Class Recall (%) 98.36% 100% - - 

Random Forest Accuracy =100% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  61 0 100% 1.00 

Predicted as Leak  0 61 100% 1.00 

Class Recall (%) 100% 100% - - 

Adaboost 

(Decision Tree) 

Accuracy=99.18% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  61 0 100% 0.99 

Predicted as Leak  1 61 100% 0.99 

Class Recall (%) 98.36% 100% - - 

 750 
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 751 

Table 3: Leak detection results for non-metal-based models 752 

Models Results 

  

KNN  Accuracy=89.86% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak 63 8 88.73% 0.90 

Predicted as Leak 6 61 91.04% 0.90 

Class Recall (%) 91.30% 88.41% - - 

Decision Tree Accuracy=84.78% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  62 14 81.58% 0.85 

Predicted as Leak  7 55 88.71% 0.84 

Class Recall (%) 89.86% 79.71% - - 

Random Forest  Accuracy =94.93% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  68 6 91.89% 0.95 

Predicted as Leak  1 63 98.44% 0.95 

Class Recall (%) 98.55% 91.30% - - 

Adaboost 

(Decision Tree) 

Accuracy=94.20% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 

score 

Predicted as No Leak  68 10 87.18% 0.93 

Predicted as Leak  1 59 98.33% 0.92 

Class Recall (%) 98.55% 85.51% - - 

 753 

 754 

Table 4: Comparative analysis of models developed by changing the number of attributes 755 

Model Missed Accuracy 

Type MIE Std MIE+Std MIE Std MIE+Std 

KNN Metal 4 3 1 95.08% 95.90% 96.72% 

Decision Tree Metal 5 2 0 95.90% 96.72% 99.18% 

Random Forest Metal 3 2 0 95.90% 97.54% 100% 

Adaboost (Decision Tree) Metal 5 2 0 95.90% 96.72% 99.18% 

KNN Non-metal 13 12 8 86.96% 89.13% 89.86% 

Random Forest Non-metal 16 9 6 84.78% 91.30% 94.93% 

Adaboost (Decision Tree) Non-metal 15 8 10 86.96% 92.03% 94.20% 

 756 

 757 

 758 

 759 

 760 
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Table 5: Validation set results 761 

Models Results 

Metal-based models 

KNN  Accuracy=99.02% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak 39 1 97.50% 0.99 

Predicted as Leak 0 62 100% 1.00 

Class Recall (%) 100% 98.41% - - 

Decision Tree Accuracy=97.06% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak  39 3 92.86% 0.96 

Predicted as Leak  0 60 100% 0.98 

Class Recall (%) 100% 95.24% - - 

Random Forest Accuracy=97.06% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak  39 3 92.86% 0.96 

Predicted as Leak  0 60 100% 0.98 

Class Recall (%) 100% 95.24% - - 

Adaboost 

(Decision Tree) 

Accuracy=97.06% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak  39 3 92.86% 0.96 

Predicted as Leak  0 60 100% 0.98 

Class Recall (%) 100% 95.24% - - 

Non-metal-based models 

KNN  Accuracy=93.33% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak 19 0 100% 0.88 

Predicted as Leak 5 51 91.07% 0.95 

Class Recall (%) 79.17% 100% - - 

Random Forest Accuracy=100% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak  24 0 100% 1 

Predicted as Leak  0 51 100% 1 

Class Recall (%) 100% 100% - - 

Adaboost 

(Decision Tree)  

Accuracy=100% True No 

Leak 

True 

Leak 

Class 

Precision 

F1 score 

Predicted as No Leak  24 0 100% 1 

Predicted as Leak  0 51 100% 1 

Class Recall (%) 100% 100% - - 
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 767 

Figure 1. Research methodology 768 
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Figure 2. MEMS accelerometers-based data acquisition system 770 
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 773 

Figure 3. (a) Map showing leak on 150PE pipe - (b) Placement of accelerometer on gate valve (80GV) 774 
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Figure 4. An example of acceleration signal acquired through the data acquisition system 778 

 779 

 780 

 781 

Figure 5. Standard deviations for an hour-long no-leak data (100SS pipe) 782 
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Figure 6.  An example of monitoring index efficiencies (80GIL pipe) 787 
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Figure 7. Framework for machine learning-based binary classification process790 
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Figure 8. Development of machine learning models for leak detection 793 
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Figure 9. Confusion Matrix 795 
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Figure 10 (a). Decision Tree model for metal pipes 797 
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Figure 10 (b). Decision Tree model for non-metal pipes 800 
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Figure 11 (a). AUROC for metal-based models  803 
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Figure 11(b). AUROC for non-metal-based models 805 
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Figure 12. Comparison of accuracy of machine learning models 809 
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Figure 13(a). Number of leaks missed by metal-based machine learning models 811 
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Figure 13(b). Number of leaks missed by non-metal-based machine learning models 815 
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Figure 14(a). False alarms metal-based machine learning models 822 
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Figure 14(b). False alarms by non-metal-based machine learning models 826 
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