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Abstract Network intrusions are a big threat to net-
work and system assets, which have become more com-

plex to date. To enhance the detection performance,
collaborative intrusion detection networks (CIDNs) are
adopted by many organizations to protect their resources.

However, such detection systems or networks are typ-
ically vulnerable to insider attacks, so that there is a
need to implement suitable trust mechanisms. In the
literature, challenge-based trust mechanisms are able

to measure the trustworthiness of a node by evaluating
the relationship between the sent challenges and the
received responses. In practice, challenge-based CIDNs

have shown to be robust against common insider at-
tacks, whereas it may still be susceptible to advanced
insider attacks. How to enhance the robustness of such

challenge-based CIDNs remains an issue. Motivated by
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the recent development of blockchains, in this work,
our purpose is to design a blockchained challenge-based

CIDN framework that aims to combine blockchains with
challenge-based trust mechanism. Our evaluation demon-
strates that blockchain technology has the potential to

enhance the robustness of challenge-based CIDNs in the
aspects of trust management (i.e., enhancing the detec-
tion of insider nodes) and alarm aggregation (i.e., iden-

tifying untruthful inputs) under adversary scenarios.

Keywords Intrusion Detection · Collaborative

Network · Insider Attack · Blockchain Technology ·
Challenge-based Trust Mechanism

1 Introduction

Internet-of-Things (IoT) has an excited adoption po-
tential thanks to the connectivity and sensing features,
in which 92% of industrial organizations are expected

to have adopted IoT in some way by the end of 2019,
and the IoT in Banking and Financial Services market
size is expected to grow to $2.03 billion by 2023 [47].
Moreover, a report from Gartner estimated that the
IoT would keep delivering new opportunities for digi-
tal business innovation over the next decade, many of
which can be further boosted by newly developed tech-

nologies like artificial intelligence [12]. Their report also
predicted that up to 14.2 billion things will be connect-
ed by the end of 2019, and will finally reach a total of
25 billion devices by the end of 2021 [11].

The fast growth of IoT devices can bring a lot of
benefits, i.e., facilitating our daily lives, whereas it may
also become a major target by cyber criminals. A se-
curity report from Symantec alerted that the overall
volume of IoT attacks remained consistent and high in
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2018 [56]. In particular, they identified that connect-

ed cameras and routers were the most infected devices,

while worms and bots are still the most commonly dis-

covered IoT attacks. For instance, the Mirai distribut-

ed denial of service (DDoS) worm remained an active

threat, and account for a 16 percent of the detected at-

tacks, which was the third most common IoT threat in

the year of 2018.

To safeguard the security of IoT networks, intrusion

detection systems (IDSs) are one basic and essential se-

curity mechanism. To fit the nature of distributed en-

vironment, collaborative intrusion detection systems or

networks (CIDSs or CIDNs) are deployed to enhance

the performance of a separated IDS, which allow a set

of IDS nodes to exchange required messages and moni-

tor the protected environment [59,64]. An IDS could be

either rule-based (signature-based) or anomaly-based.

The former can compare its stored rules with the in-

coming events, in order to identify an attack [49,60].

The latter identifies a potential threat by discovering

an anomaly over the threshold between its pre-built be-

nign profile and the current profile [50].

For CIDSs or CIDNs, insider attacks are one ma-

jor threat and some kind of trust mechanisms should

be implemented to protect the robustness of detection.

In the literature, challenge-based trust mechanism is

one promising solution, which can measure a node’s

trustworthiness by sending challenges and receiving the

corresponding feedback [8]. A series of research like [8,

9] has proven its effectiveness against common insid-

er attacks; however, recent studies identified that such

challenge-based CIDNs may still be susceptible to ad-

vanced attacks [23–25,28]. For instance, the Passive

Message Fingerprint Attacks (PMFA) [23] enables sus-

picious nodes to cooperate in identifying normal mes-

sages and remain their reputation without being de-

tected. Therefore, there is a need to design more ro-

bust challenge-based CIDNs to ensure the detection ef-

fectiveness. Below are three attributes for a desirable

CIDN framework.

– The CIDN framework should not rely heavily on a

centralized server, which may suffer from a single

point of failure (SPOF).

– The CIDN framework should provide an efficient

and robust trust management process, which can

evaluate nodes’ reputation in an accurate way.

– The CIDN framework should be able to identify un-

truthful or malicious inputs, which are even from

trusted nodes.

Recently, blockchain technology has become quite

popular thanks to the success of cryptocurrency Bit-

coin. The Gemalto report [10] indicates that the adop-

tion of blockchains has doubled from 9% to 19% in the

early 2019, and this trend is likely to continue in the

next year and beyond. They also conducted a survey

and found that up to 23% of respondents believed that

blockchain technology would be an ideal solution to use

for securing IoT devices, and 91% of organisations are

likely to consider it in the future. For instance, Amazon

announced its new managed service, Amazon Managed

Blockchain, which allows users to set up and configure

a scalable blockchain network with just a few clicks [2].

With a huge number of devices, blockchains can increas-

ingly be used to monitor and record those communica-

tions and transactions in an IoT environment [31].

At present, blockchain technology has been studied

in many domains like IoT [30,53], transportation [17,

22] and energy [52]. The strong encryption used to se-

cure blockchains can greatly increase the difficulty for

cyber attackers to brute-force their way into private

and sensitive environments. Due to these merits, some

research studies are trying to combine blockchains with

distributed intrusion detection. An early blockchain-

based framework was proposed by Alexopoulos et al. [1],

which aims to protect the alarm exchange among IDS n-

odes. They considered that the raw alarms generated by

IDS monitors are stored as transactions in a blockchain,

replicated among the participating nodes in a peer-to-

peer network. While they did not show any experimen-

tal implementation or results. Tug et al. [57] introduced

CBSigIDS, a framework of collaborative blockchained

signature-based IDSs, by incrementally sharing and build-

ing a trusted signature database via blockchains in a

CIDN network. On the other hand, a blockchain-based

framework called CIoTA was proposed by Golomb et

al. [13], which focused solely on anomaly detection via

updating a trusted detection model.

Contributions. Though some studies have discussed

the intersection between CIDSs and blockchains, to the

best of our knowledge, most existing work except [42]

was initialized at the high level, without specifying a

concrete type of CIDS or CIDN. In particular, Meng et

al. [42] proposed a blockchain-based trust to help en-

hance the trust management. Motivated by the results,

in this work, we also focus on the challenge-based trust

mechanism, and devise a blockchained challenge-based

CIDN framework. Our contributions can be summa-

rized as below.

– To combine the blockchain technology with CIDNs,

we propose a blockchained challenge-based CIDN

framework, which can be workable under both signature-

based and anomaly-based detection. In particular,

blockchains can be served as an additional layer to
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provide the flexibility in practical deployment. Dif-

ferent from previous work like [42], this work con-

siders more adversarial scenarios and discusses the

false alarm rates.

– Under our framework, we demonstrate how to use

blockchains to enhance the robustness of trust man-

agement against attacks, as well as protect the alar-

m aggregation process from malicious inputs. The

enhancement is valid for both signature-based and

anomaly-based detection.

– In the evaluation, we investigate the framework per-

formance in the aspects of trust computation and

alarm aggregation under different adversarial sce-

narios. Our results demonstrate that our framework

can enhance the robustness of trust-based CIDNs

by deploying blockchains, i.e., identifying malicious

nodes and untruthful inputs.

Paper organization. Section 2 introduces research s-

tudies on collaborative intrusion detection and the back-

ground of blockchains. Section 3 describes our frame-

work of blockchained challenge-based CIDNs, and shows

how to use blockchains to enhance the trust manage-

ment and alarm aggregation. Section 4 details our ex-

perimental settings and analyzes the our framework un-

der adversarial scenarios. We discuss some challenges &

future directions in Section 5 and conclude the work in

Section 6.

2 Background and Related Work

In this section, we introduce the background of blockchain

technology and review research studies on distributed
detection systems, collaborative intrusion detection and

blockchain-based detection.

2.1 Background of Blockchains

The original purpose of blockchains is to make pay-

ments between entities without a trust third part by

building a temper-resistant chain. Cryptocurrencies like

Bitcoin have proven to be a phenomenal success. The

underlying blockchain technology provides a decentral-

ized way to build trust in many social and econom-

ic activities, and thus holds a huge promise to change

the future of financial transactions, and even the way

of computation and collaboration. It is an ingenious

combination of multiple technologies such as peer-to-

peer network, consensus protocol over a distributed net-

work, cryptographic schemes, distributed database, s-

mart contract and game theory. Currently, blockchain

has drawn much attention from researchers, as well

as IT and Fintech industry. Both research and indus-

try communities have made significant progresses in

blockchain technologies and applications.

A blockchain node often maintains a list of records

(known as blocks), which are organized in a chronolog-

ical order based on discrete time stamps [65]. A block

is typically comprised of a payload, a timestamp and

a cryptographic hash value. The first block is called

genesis block, and the node behind can connect to the

previous one via a hash value. New blocks are added in

a sequential manner with the next block containing a

hash of the previous block. A new block can be gener-

ated once the previous block enters in the blockchain.

The big feature of a block is that the recorded data in

any block could not be modified without the alteration

of all subsequent blocks [40]. The high-level review of

blockchains is depicted in Fig. 1.

A blockchain can be generally classified into two cat-

egories: public blockchain and permissioned blockchain [65].

The former enables anyone to join and contribute to the

network like Bitcoin [43] and Ethereum [63]. A public

blockchain is completely open and anyone is free to join

& leave. Everyone can participate in the major activi-

ties of the blockchain network including reading, writ-

ing and auditing the ongoing activities on the public

blockchain network. The latter allows only verified en-

tities to join the network, and perform only certain ac-

tivities on the network like Hyperledger [15]. For exam-

ple, Such blockchains would grant special permissions

to each participant to have permissions to read, access

and write pre-defined information on the blockchains.

Blockchain nodes can make a decision-making process

via consensus algorithms. There are some requirements

for consensus algorithms in blockchains. For instance,

the algorithm should collect all the agreements from

chain nodes. Each node should aim at a better agree-

ment to fit a whole interest.

There are may studies focused on consensus mech-

anism. For instance, Badertscher et al. [3] introduced

the first global universally composable (GUC) treat-

ment of PoS-based blockchains in a setting that cap-

tures arbitrary numbers of parties that may not be

fully operational (i.e., dynamic availability. They de-

vised a PoS-based protocol called “Ouroboros Genesis”

that enables new or offline parties to safely (re-)join and

bootstrap their blockchain from the genesis block with-

out any trusted advice (such as checkpoints) or assump-

tions regarding past availability. With the model allow-

ing adversarial scheduling of messages in a network with

delays and captures the dynamic availability of partic-

ipants in the worst case, they proved the GUC security

of Ouroboros Genesis against a fully adaptive adversary

controlling less than half of the total stake. Kiffer et
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Fig. 1 The high-level review of blockchains.

al. [16] developed a simple Markov-chain based method

for analyzing consistency properties of blockchain pro-

tocols. Their approach could be used to address a num-

ber of basic questions about consistency of blockchains

such as providing a tighter guarantee on the consisten-

cy property of Nakamoto’s protocol, analyzing a family

of delaying attacks and extending them to other proto-

cols, and giving the first rigorous consistency analysis

of GHOST. Wan et al. [61] presented a hybrid consen-

sus protocol named Goshawk, in which they combined

a two-layer chain structure with two-level PoW mining

strategy and a ticket-voting mechanism. They showed

that Goshawk could offer three key properties such as

high efficiency, strong robustness against “51%” attack

of computation power, and good flexibility for future

protocol updating.

Pass et al. [46] proposed a new paradigm called

Thunderella for achieving state machine replication by

combining a fast, asynchronous path with a (slow) syn-

chronous “fall-back” path. With this paradigm, they

provided a new resilient blockchain protocol (for the

permissionless setting), by assuming that a majority

of the computing power is controlled by honest player-

s, and optimistically, transactions could be confirmed

as fast as the actual message delay in the network if

3/4 of the computing power is controlled by honest

players, and a special player called the “accelerator”

is honest. Daian et al. [4] presented a provably secure

proof-of-stake protocol called Snow White, which was

publicly released in 2016. It provides a formal, end-to-

end proof of a proof-of-stake system in a truly decen-

tralized, open-participation network. They identified a

core “permissioned” consensus protocol, and proposed

a robust committee re-election mechanism such that the

consensus committee can evolve in a timely manner and

always reflect the most recent stake distribution. They

also introduced a formal treatment of costless simula-

tion issue and gave both upper- and lower-bounds that

characterize exactly what setup assumptions are needed

to resist costless simulation attacks.

2.2 Related Work

In real-world applications, a separate IDS often has

no information about its deployed environment, which

opens a chance for attackers and cyber-criminals. Due

to the lack of contextual information, it becomes very

hard for a single IDS to figure out complicated and ad-

vanced attacks. To address this issue, there is a signifi-

cant need for building a distributed system or collabora-

tive network to enhance the detection performance [64].

Distributed systems. Distributed systems have

been widely used in various domains over many years.

For example, Prras et al. [48] introduced EMERALD

(Event Monitoring Enabling Responses to Anomalous

Live Disturbances) in 1997, which aimed to monitor

malicious behaviors across different layers in a large net-

work. It can model distributed high-volume events and

correlate them using traditional IDS techniques. Snapp

et al. [51] presented a distributed Intrusion Detection

System (DIDS), which could improve the monitoring

process with data reduction method and centralized

data analysis. Then, COSSACK system [45] was de-

veloped to reduce the impact of DDoS attack, which

could work without the support and inputs from hu-

mans, i.e., it could generate rules and signatures in an

automatic way. Then, DOMINO (Distributed Overlay

for Monitoring InterNet Outbreaks) [66] was proposed,

aiming to enhance the collaboration process among dif-

ferent nodes. They particularly used an overlay design

to achieve a heterogeneous, scalable, and robust mech-

anism. PIER [14] was an Internet-scale query engine

and a kind of querying-based system. It could help dis-

tribute dataflows and queries in a better way.

Collaborative intrusion detection. A collabo-

rative system encourages an IDS node to collect and

exchange information with other nodes. Li et al. [18]

found that most distributed intrusion detection archi-

tectures could not be scalable under different communi-

cation mechanisms. Thus, they proposed a distributed

detection system by means of a decentralized routing
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infrastructure. However, one big limitation is that all

nodes in their approach should be intra trusted. This

may lead to insider attacks, which are one big challenge

for various distributed systems and networks.

To protect distributed / collaborative systems a-

gainst insider attacks, it is very important to design

suitable trust mechanisms to measure the reputation of

notes in detection systems and networks. As an exam-

ple, an overlay IDS was proposed by Duma et al. [5],

which could identify insider attacks. It consists of a

trust-aware engine for correlating alarms and an adap-

tive trust mechanism for handling trust. Then Tuan [58]

applied game theory to help enhance the detection per-

formance in a P2P network. They found that if a trust

system was not incentive compatible, the more numbers

of nodes in the system, the less likely that a malicious

node would be identified.

Fung et al. [8] proposed a kind of challenge-based

CIDNs, which could evaluate the trustworthiness of an

IDS node based on the received answers to the chal-

lenges. They first proposed a collaboration framework

for host-based IDSs with a forgetting factor, which can

emphasize on the recent behavior of a node. To en-

hance such challenge mechanisms, Li et al. [19] claimed

that IDS nodes may have different sensitivity levels in

identifying particular intrusions. Then they proposed a

concept of intrusion sensitivity (IS) that measures the

detection sensitivity of an IDS for a particular intru-

sion. They also designed an intrusion sensitivity-based

trust management model [20] that could automatically

allocate the values by using machine learning classifiers

like KNN classifier [36]. They also performed a study

to investigated the effect of intrusion sensitivity on de-

tecting pollution attacks, where a set of malicious nodes

collaborate to affect alert rankings by offering untruth-

ful information [21]. They indicated that IS can help

decrease the reputation of malicious nodes quickly, and

the allocation can be automatic using machine learning

classifiers [29]. Other related work regarding how to im-

prove the performance of intrusion detection can refer

to [6,7,32–35,38,39,62].

Blockchain-based intrusion detection. The ap-

plication of blockchains in the field of intrusion detec-

tion has been studied, but it is still an emerging topic.

Alexopoulos et al. [1] described a framework to show

how to combine a blockchain with a CIDS. They con-

sidered a set of raw alarms produced by each IDS as

transactions in a blockchain. Hence all collaborating n-

odes could use a consensus protocol to ensure the trans-

action validity before delivering them in a block. This

can ensure that the stored alarms are tamper resistant

in the blockchain. The major limitation is that they did

not provide any results or implementation detail.

Then Meng et al. [40] provided the first review re-

garding the intersection of blockchains and intrusion

detection, and introduced the potential application of

such combination. They indicated that blockchains can

help improve the IDS performance in the aspects of

data sharing, trust computation and alarm exchange.

For anomaly detection, Golomb et al. [13] described a

framework called CIoTA, which could apply blockchain-

s to perform anomaly detection in a distributed manner

for IoT devices. By contrast, Li et al. [27] demonstrated

how to use blockchains to enhance the performance of

collaborative signature-based IDSs via building a veri-

fiable rule database. On the other hand, some studies

investigated how an IDS can help protect blockchain ap-

plications. Steichen et al. [55] introduced an OpenFlow-

based firewall named ChainGuard, which could help

protect blockchain-based SDN and identify malicious

traffic and behavior in the network. Meng et al. [41]

then designed a blockchain-based framework to enhance

the security of medical smartphone networks.

Different from our previous study [26], in this work,

we extend our idea in the following aspects. We consider

another advanced insider attack - SOOA in our evalua-

tion (under either simulated and practical environmen-

t); and we further validate our framework performance

in a practical CIDN environment through collaborating

with an IT organization.

3 Our Proposed Framework

As discussed above, there are already some studies in-

vestigating the intersection of collaborative intrusion

detection and blockchains. In practice, the implemen-

tation of blockchains may depend on the specific types

of trust mechanisms, while most current studies mainly

focused on a generic CIDS without considering a par-

ticular trust mechanism. In this section, we focus on

challenge-based trust mechanism and propose a blockchain-

based CIDN framework.

In the literature, the previous work [42] also target-

ed on a challenge-based CIDN. Differently, our work

does not develop a blockchain-based trust, but uses

blockchains to verify the received feedback (trust man-

agement) and the received alarm ranking (alarm ag-

gregation). There are no results on alarm aggregation

provided by the work [42].

3.1 Framework Design

Fig. 2 depicts the high-level framework of blockchained

challenge-based CIDNs. Obviously, an IDS module is a
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Fig. 2 Blockchained challenge-based CIDN framework: a high-level review.

basic component for CIDNs. There are some other ma-

jor components: collaboration component, trust man-

agement component, P2P communication, and chain

component.

– Collaboration component is mainly responsible for

assisting a node in computing the trust values of an-

other node by sending out normal requests or chal-

lenges. This component can also help a tested node

deliver its feedback when receiving a request or chal-

lenge. As an example, Fig. 1 shows that when node

A sends a request or challenge to node B, it can

receive the corresponding feedback.

– Trust management component is responsible for e-

valuating the reputation of other nodes via a specif-

ic trust approach. Challenge-based mechanism is a

kind of trust approach that computes the trust val-

ues through comparing the received feedback with

the expected answers. Each node can send out ei-

ther normal requests or challenges for alert ranking

(consultation). To further protect challenges, the o-

riginal work [8] assumed that challenges should be

sent out in a random manner and in a way that

makes them difficult to be distinguished from a nor-

mal alarm ranking request.

– P2P communication. This component is responsible

for connecting with other IDS nodes and providing

network organization, management and communi-

cation among IDS nodes.

– Chain component. This component aims to enhance

the robustness of trust management by connecting

the node with the blockchain, i.e., uploading infor-

mation, voting and receiving decisions.

Blockchain layer. This layer makes the framework

different from traditional CIDN architectures, through

allowing to establish a consortium blockchain. A sepa-

rate layer attempts to facilitate the migration from the

traditional framework to our blockchain-based frame-

work, without the need of changing the infrastructure

much. This framework is also workable under both signature-

based and anomaly-based systems. That is, this lay-

er provides an interface for both detection approach-

es to connect with blockchains. Taking malicious feed-

back as an example, each chain node can check and

share the suspicious feedback with the chain, and oth-

er chain nodes can help verify the feedback based on

their experience. This can help either build a trusted

rule database [27] or enhanced profile [13].

In such network, every IDS node can select its own

partners according to defined policies, and maintain a

list of nodes called partner list. When a node wants to

join the CIDN, it first has to apply and get a unique

proof of identity (e.g., a public and a private key pair)

via a trusted certificate authority (CA). As depicted in

Fig. 1, if node B asks for joining the network, it has to

send a request to a CIDN node, say node A. Then, node

A makes a decision and sends back an initial partner

list, if node C is accepted. A node can typically send

two types of messages to other nodes: namely, challenge

and normal request.

– A challenge mainly contains a set of IDS alarms,

where a testing node can send these alarms to the

tested nodes requested for labeling alarm severity.

Because the testing node knows the severity of these

alarms in advance, it can judge and measure the
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satisfaction level for the tested node, based on the

received feedback.

– A normal request is sent by a CIDN node for alarm

aggregation, which is an important feature of such

collaborative networks in order to improve the de-

tection performance of a single detector. The aggre-

gation process usually considers the feedback from

only highly trusted nodes. When receiving a request,

a node should send back the corresponding alarm

ranking information as their feedback.

3.2 Trust Management

Node expertise. In this work, we consider three ex-

pertise levels for an IDS node as low (0.1), medium (0.5)

and high (0.95). The expertise of an IDS can be using

a beta function described as below:

f(p′|α, β) =
1

B(α, β)
p′α−1(1− p′)β−1

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt
(1)

where p′(∈ [0, 1]) is the probability of intrusion ex-

amined by the IDS. f(p′|α, β) means the probability

that a node with expertise level l responses with a val-

ue of p′ to an intrusion examination of difficulty level

d(∈ [0, 1]). A higher value of l means a higher probabil-

ity of correctly identifying an intrusion while a higher

value of d means that an intrusion is more difficult to

detect. In particular, α and β can be defined as [9]:

α = 1 +
l(1− d)

d(1− l)
r

β = 1 +
l(1− d)

d(1− l)
(1− r)

(2)

where r ∈ {0, 1} is the expected result of detection.

For a fixed difficulty level, the node with higher level

of expertise can achieve higher probability of correctly

detecting an intrusion. For example, a node with exper-

tise level of 1 can accurately identify an intrusion with

guarantee if the difficulty level is 0.

Node Trust Evaluation. To measure the reputa-

tion of a target node, a testing node can deliver chal-

lenges via a random generation process. Then the test-

ing node can calculate a score to indicate the satisfac-

tion. According to [8], we can evaluate the reputation

of a node i according to node j as follows:

T ji = (ws

∑n
k=0 F

j,i
k λtk∑n

k=0 λ
tk
− Ts)(1− x)d + Ts (3)

where F j,ik ∈ [0, 1] is the score of the received feed-

back k and n is the total number of feedback. λ is a

forgetting factor that assigns less weight to older feed-

back response. ws is a significant weight depending on

the total number of received feedback, if there is on-

ly a few feedback under a certain minimum m, then

ws =
∑n

k=0 λ
tk

m , otherwise ws = 1. x is the percentage of

“don’t know” answers during a period (e.g., from t0 to

tn). d is a positive incentive parameter to control the

severity of punishment to “don’t know” replies. More

details about equation derivation can be referred to [8].

Satisfaction Evaluation. Intuitively, satisfaction

can be measured between an expected feedback (e ∈
[0, 1]) and an actual received feedback (r ∈ [0, 1]). In

addition, we can construct a function F (∈ [0, 1]) to

derive the satisfaction score as follows [8,9]:

F = 1− (
e− r

max(c1e, 1− e)
)c2 e > r (4)

F = 1− (
c1(r − e)

max(c1e, 1− e)
)c2 e ≤ r (5)

where c1 controls the degree of penalty for wrong es-

timates and c2 controls satisfaction sensitivity. A large

c2 means more sensitive. In this work, we set c1 = 1.5

and c2 = 1 based on the simulation in [9].

In combination with blockchains. The blockchained

challenge-based CIDN can be treated as a consortium

blockchain, as each node should be verified by a CA and

get their key pair. It is a key to enhance the robustness

of trust computation by measuring the received feed-

back. In this case, we can submit the received feedback

to the chain for verification. If it is not passed, then the

feedback can be considered as a suspicious one.

3.3 Alarm Aggregation

Alarm aggregation is a critical process, which can help

a CIDS / CIDN make a decision. Intuitively, a node

performing the process can request the alarm rankings

from other trusted nodes in its partner list. For instance,

node j can aggregate the feedback Rj(a) from others,

and make a decision, e.g., the aggregated ranking of

alert a, by using a weighted majority method as below.

Rj(a) =

∑
T≥r T

j
i D

j
iRi(a)∑

T≥r T
j
i D

j
i

(6)

where Ri(a)(∈ [0, 1]) indicates the aggregated rank-

ing of alert a by node i, r means a trust threshold that
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node j only accepts the alarm ranking from those n-

odes whose reputation is higher than this threshold.

T ji (∈ [0, 1]) indicates the reputation of node i accord-

ing to node j. Dj
i (∈ [0, 1]) describes how many hops

between these two nodes.

In combination with blockchains. The alarm

aggregation is a critical process in CIDNs, in which an

IDS node decides whether there is an intrusion or not.

In real-world applications, some malicious nodes may

have high reputation at first (e.g., betrayal nodes) and

can send untruthful alarm feedback. To avoid the neg-

ative impact, the blockchained challenge-based CIDN

can submit the received alarm ranking to the chain for

validation. If any suspicious clues are found, then the

received alarm feedback can be discarded.

4 Evaluation

In this section, we aim to evaluate the performance of

our framework in a simulated and a practical CIDN

environment, respectively. We mainly consider two ad-

vanced insider attacks: random poisoning attack [37],

where malicious nodes could send untruthful feedback

with a possibility, which can be tuned according to the

requirements from different environments; and Special

On-Off Attack (SOOA) [24,25], which can keep giving

truthful responses to one node while providing untruth-

ful answers to other nodes.

The simulated environment contains 50 nodes that

are randomly distributed in a 12 × 12 grid region. We

deployed an IDS, e.g., Snort [54] and Zeek [67] in each

node, and all IDS nodes can find their own partners

after communicating with others within a time period.

We also collaborated with an IT company to explore

the framework performance in a practical CIDN envi-

ronment with 80 nodes. The consortium blockchain was

deployed in a mid-end computer with Intel(R) Core (T-

M)i6, CPU 2.5GHz with 100 GB storage.

To evaluate the trustworthiness of partner nodes,

each node can send out challenges randomly to its part-

ners with an average rate of ε. There are two levels of

request frequency: εl and εh. For the nodes that have a

unclear trust value around the threshold, the frequen-

cy should be set as high εh. The detailed parameters

are shown in Table 1. All the settings are maintained

similar to relevant work [8,20,24].

4.1 Under Simulated Environment

Trust evaluation and alarm aggregation under
random poisoning attack. We randomly selected three

expert nodes to perform the random poisoning attack.

Table 1 Parameter settings in the experiment.

Parameters Value Description

λ 0.9 Forgetting factor
m 10 Lower limit of received feedback
d 0.3 Severity of punishment
εl 10/day Low request frequency
εh 20/day High request frequency
r 0.8 Trust threshold
Ts 0.5 Trust value for newcomers
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Fig. 3 The trust values under random poisoning attack be-
tween traditional and our framework.
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Fig. 4 Classification errors under random poisoning attack
during the alarm aggregation process.

A malicious node under random poisoning attack enjoys

a possibility of 1/2 in sending out malicious feedback.

Fig. 3 depicts the reputation of malicious nodes under

both traditional framework and our blockchain-based

framework.

– It is observed that the trustworthiness of malicious

nodes could be reduced faster under our framework

than that under the traditional framework. This is

because traditional framework cannot identify al-

l malicious feedback nodes as the malicious nodes

only behave untruthfully with a possibility.

– By contrast, our framework leverages the applica-

tion of blockchains and each feedback could be ver-

ified by all chain nodes. This can greatly increase

the successful rate of detecting malicious feedback.
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Fig. 5 The trust values under SOOA between traditional and
our framework.
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Fig. 6 Classification errors under SOOA during the alarm ag-
gregation process.

Thus, our framework can decrease the reputation of

malicious nodes in a fast manner.

Similarly, we also selected three expert nodes ran-

domly to deliver false alarm rankings to a node that

performs alarm aggregation. We mainly consider a false

negative (FN) rate and a false positive (FP) rate. Fig. 4

presents the error rates of alarm aggregation under both

traditional framework and our framework.

– It is found that the errors under the traditional

framework are generally high with FN=33.3% and

FP=34.8%. This is because as the traditional frame-

work cannot identify malicious nodes efficiently, e.g.,

under the random poisoning attack, so that these

malicious nodes could still make a negative impact

on the alarm aggregation.

– In the comparison, our framework could reduce the

error rates significantly, i.e., with FN=10.8% and

FP=11.9%. There are two major reasons. One is

that our framework can help identify malicious n-

odes in a quick manner, e.g., under the random poi-

soning attack. Also, in our framework, the received

alarm rankings can be submitted to the chain for

verification, and it is easier to detect untruthful in-

puts, even from trusted nodes, i.e., betrayal nodes.

Trust evaluation and alarm aggregation under
SOOA. Regarding this kind of attack, intruders can

keep sending truthful responses to one node, while send-

ing malicious responses to another node. In this work,

we followed the experimental settings (T4U2) in [24,

25]: namely, among six partner nodes, there are two

malicious nodes that can response maliciously. Fig. 5

and Fig. 6 shows the trust values and false rates under

SOOA.

– For the detection of malicious nodes, Fig. 5 shows

that our framework could reduce the reputation of

malicious nodes steadily and rapidly, but the tradi-

tional framework would suffer from SOOA, i.e., the

reputation of malicious nodes would be around the

threshold. This is because SOOA nodes can provide

truthful feedback to certain nodes, while acting un-

truthfully to others. This may affect the trust com-

putation of target nodes.

– For the false rates, as the traditional framework

could only detect the malicious nodes in a unsta-

ble manner, attackers may still make an impact on

the alarm aggregation, i.e., resulting in errors with

FN=31.2% and FP=28.4%. By contrast, our frame-

work can greatly reduce the errors by verifying the

feedback, reaching FN=12.2% and FP=11.1%. The

blockchain allows identifying malicious feedback even

from trusted nodes.

Overall, our results indicate that our framework can

enhance the robustness of challenge-based CIDNs in the

aspects of both trust management and alarm aggrega-

tion, through integrating with blockchains.

4.2 Under Practical Environment

To validate our framework, we further perform an ex-

periment in a practical CIDN environment by collabo-

rating with an IT organization. The environment con-

sists of 80 CIDN nodes and connect with the Internet

via DMZ. In particular, our framework was deployed

with the help of security administrators from the par-

ticipating organization due to privacy concerns. Similar

to our simulated experiment, we also considered two in-

sider attacks: random poisoning attack and SOOA. We

repeated the experiment three times and recorded the

average value. Fig. 7 and Fig. 8 depicts the trust values

and false rates under both attacks.

– Fig. 7 presents the reputation of malicious nodes

under two attacks. It is found that the traditional

framework cannot identify malicious nodes quick-

ly, making attackers a chance to harm the network

without being detected. In contrast, our framework
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Fig. 8 Alarm aggregation errors under both attacks between
traditional and our framework.

can decrease the trustworthiness of malicious nodes

in a fast and stable manner. The observations are

similar to the results in the simulated environment.

– Fig. 8 depicts the error rates of alarm aggregation

between the traditional framework and our frame-

work. It is observed that both attacks could cause

higher error rates around 30% under the traditional

framework. Instead under our framework, the error

rates could be greatly reduced to around 10%, i.e.,

for SOOA, our framework reached FN=8.72% and

FP=8.27%.

On the whole, the results under the practical envi-

ronment validate the performance of our approach. The

security managers from the participating organization

also confirmed the observations. Thus, the blockchain-

based framework can enhance the robustness of challenge-

based CIDNs by verifying the feedback and the received

alarm ranking with the blockchain technology.

5 Discussion and Challenges

Though blockchain technology can bring a lot of ben-

efits, it is still at a developing stage, which may suffer

from many challenges from both inside and outside [40].

– Energy and cost. The computational power is a con-

cern for blockchain applications in real-world sce-

narios. For example, Proof of Work (PoW) may re-

quire huge amounts of energy while doing bitcoin

mining, where the electricity consumption could rise

to 7.7GW by the end of 2018, which is almost half

a percent of the world’s electricity consumption.

– Security and privacy. Though Bitcoin has been wide-

ly adopted, it does not mean that it is safe. There

are existing some types of attacks. Taking eclipse

attack as an example, as the chain nodes have to

keep constant communication to compare data, an

attacker can fool it into accepting false data if he

/ she has successfully compromised that node [44].

This results in wasting network resources or accept-

ing fake transactions. There is a need to enhance

the security of blockchain itself.

– Complexity and speed. Blokchain is a complex sys-

tem that is hard to be established from scratch. A

single mistake may cause the whole system to be

compromised. Due to the complexity, it also suffer-

s data storage and transaction speed issues. As a

study, we only tried a proof-of-concept chain to in-

vestigate the performance. It is an important topic

to exploit the performance when the blockchain runs

for a while.

– Blockchain attacks. In the beginning of a blockchain,

the node number may be in a small scale, which

makes it vulnerable to many attacks during the growth.

For instance, assume there are only 30 nodes, if a

single entity successfully controls just or more than

51 percent of the blockchain nodes, then it has a

high probability to control the whole outputs. The

blockchain attacks are out of the scope, but it is an

interesting topic for future work.

– Blockchain implementation. In this work, we use a

proof-of-concept (PoC) implementation of blockchain-

s to explore the performance of our approach. We

plan to use a real blockchain to validate our ap-

proach as future work.

– Real time detection. The main purpose of involv-

ing blockchain technology is to enhance the collab-

orative intrusion detection without a trusted third

party. While the blockchain may cause some delays

during the detection with the increasing size. This

may degrade the performance of real time detection.

This is one of our future work to investigate the real

time performance of detection.
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– Challenge and normal request. The challenge-based

CIDNs use IDS alarms as the challenge, but it is

an interesting topic to investigate the use of other

information as the challenge.

6 Conclusion

Challenge-based collaborative intrusion detection pro-

vides an important solution to improve the detection

performance of a separate detector; however, it may still

be vulnerable to advanced attacks in practical deploy-

ment. Motivated by the fast development of blockchain

technology, in this work, we propose a blockchained

challenge-based CIDN framework by leveraging the ben-

efits offered by the blockchain. Our framework enables

nodes to form a consortium chain and improve the ro-

bustness of challenge-based CIDNs by verifying the re-

ceived feedback and alarm rankings. In the evaluation

under both random poisoning attack and SOOA, our

results demonstrate that our framework can enhance

the robustness of CIDNs in the aspects of trust manage-

ment by detecting advanced malicious nodes, and alarm

aggregation through identifying untruthful inputs and

reducing error rates.
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