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Abstract 

The material removal rate (MRR) plays a critical role in the chemical mechanical planarization (CMP) process in the semiconductor 

industry. Many physics-based and data-driven approaches have been proposed to-date to predict the MRR. Nevertheless, most of 

them neglect the underlying equipment structure containing essential interaction mechanisms among different components. To fill 

the gap, this paper proposes a novel hypergraph convolution network (HGCN) based approach for predicting MRR in the CMP 

process. The main contributions include: 1) a generic hypergraph model to represent the interrelationships of complex equipment; 

and 2) a temporal-based prediction approach to learn the complex data correlation and high-order representation based on the 

hypergraph. To validate the effectiveness of the proposed approach, a case study is conducted by comparing with other cutting-

edge models, of which it outperforms in several metrics. It is envisioned that this research can also bring insightful knowledge to 

similar scenarios in the manufacturing process. 
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1. Introduction 

Chemical mechanical planarization (CMP) is a critical process 

widely adopted in the semiconductor industry, since the surface 

flatness largely influences the manufacturing quality. The CMP 

process can be used to planarize numerous materials, such as: 

dielectrics, semiconductors, metals, and composites. The 

contact area and pressure of the wafer play an essential role for 

the polishing speed. Meanwhile, the synergistic mechanism 

between chemical reaction and mechanical abrasion has an 

extensive effect on the contact area, which in turn affects the 

wafer surface removal rate (Ludwig and Kuna 2012). Excessive 

material removal rate (MRR) leads to the defect and depression 

of wafers material, which increases the fault rate of CMP (Hong 

et al. 2020). On the contrary, low MRR represents that the wafer 

is not polished sufficiently, which affects its final quality. 

Therefore, MRR serves as one of the important indicators to 

measure its final quality of the polished surface. 

Despite its significance, wafer is normally wrapped in the 

CMP tool between the pad and the wafer carrier, resulting a 

difficulty to estimate the MRR until it finishes the whole 

process. Therefore, it is necessary to predict the MRR during 

the CMP process for prognostics and health management. 

Conventionally, research studies focus on investigating the 

components (Evans et al. 2003) and manufacturing 

environment (Xu et al. 2020) of CMP that affect the MRR. 

Meanwhile, various physics-based mathematical models have 

been established to fit a curve to predict the MRR (H. S. Lee et 

al. 2013) or simulate the manufacturing process (H. Lee and 

Jeong 2011). Furthermore, empowered by the capability to 

collect multimodal CMP data, and the high computation power, 

machine learning, and deep learning approaches have been 

ever-increasingly implemented to predict the MRR. 

Most CMP equipment owns a pre-defined and clear operation 

mechanism that indicates its corresponding connection among 

the inner components and parts (Jia et al. 2018). Nevertheless, 

the structural knowledge contained in the equipment is often 

neglected in the existing MRR prediction models, which can 

play a significant role. On one hand, it can reflect the 

dependency between various components/parts, which serves 

as the fundamental basis for determining the sources of data to 

be considered. On the other hand, although recent work started 

to establish the knowledge graph-based model, it only considers 

the interrelationships such as ‘is part of’, ‘lead to’, ‘has a 

function’  (H. Yan et al. 2020), while ignoring the impact 

propagation among component/parts.  

To address this issue, a proper industrial graph representing 

the structural knowledge of CMP equipment and its 

interrelationship mechanisms should be first established. 

Meanwhile, advanced graph convolution network (GCN) 

approaches (Wu et al. 2021), as the potential solution for 

solution recommendation and prediction, can be further 

leveraged and enhanced to support the MRR prediction process. 

Motivated by this, this paper proposes a novel temporal 

hypergraph convolutional network-based approach for MRR 

prediction in CMP. The rest of this paper is organized as 

follows. Section 2 reviews the related work of the MRR 

prediction, industrial graph applications, and state-of-the-art 

methods of graph-based reasoning. Section 3 introduces the 

proposed methodology of constructing an equipment 

hypergraph model of CMP. Meanwhile, Section 4 presents the 

proposed combined HGCN with GRU model for MRR 

prediction. To validate its effectiveness, Section 5 undertakes a 

comparative study based on an open-source MRR dataset, and 

the experimental results are further discussed in Section 6. At 

last, Section 7 outlines the contributions of this work and 

highlights the future directions. 

2. Related Work 

This section summarizes the related work about MRR 

prediction and provides a comprehensive review of the 

development and categories of industrial graph and the graph-

based reasoning approaches. 

2.1 MRR prediction 

The existing MRR prediction approaches can be divided into 

physics-based and data-driven ones.  One of the most popular 

physical-based approaches is the Preston equation (Evans et al. 

2003), which indicates 𝑀𝑅𝑅 = 𝐾𝑝𝑃𝛼𝑉𝛽, where P represents 

the downward pressure push to a wafer, V represents the 

rotating speed, 𝐾𝑝is the Preston coefficient.  Following this 

model, many efforts have been done by adding contact stress, 

relative velocity, and chemical reaction rate into the Preston 

coefficient (H. Lee and Jeong 2011). Also, other research takes 

the size, concentration, distribution of particles, slurry flow 

rate, polishing pad surface topography into consideration (H. S. 

Lee et al. 2013). However, the major limitation of physical-

based approaches lies in the prior assumptions of the model, 

which often may not be correct in practice.  

For the data-driven based approaches, machine learning and 

statistical methods have been widely adopted. For instance,  

the nonlinear Bayesian model (Kong et al. 2010) and the 

decision tree-based model were introduced for MRR prediction 

(Z. Li et al. 2019). Recently, with the rapid development of deep 

learning, a deep belief network was proposed (P. Wang et al. 

2017) (Jia et al. 2018). Furthermore, some derived deep 

learning approaches have been adopted to MRR prediction, 

such as a feature-incorporated approach combined with a 

recurrent neural network and a convolutional neural network 

(K. B. Lee and Kim 2020) and least squares generative 

adversarial network (Kim et al. 2020). Similar to MRR 

prediction in the industrial scenario, when facing the prediction 

problem (e.g. RUL estimation), there have been already mature 

solutions based on deep learning and machine learning 

(Ushakov and Zhang 2019). Nevertheless, they often neglect 

the structural knowledge and underlined interactive mechanism 

of the equipment itself. 

2.2 Industrial graph 

Recent work on industrial graph can be mainly categorized 

into twofold: knowledge management and operation simulation.  

The objective of the former one is to organize the data and 

knowledge from various resources in graph form systematically. 

It normally includes four steps: 1) schema design, 2) knowledge 

extraction, 3) knowledge fusion, and 4) reasoning. Firstly, a 
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schema design is performed to define the node and edge in such 

domain-specific knowledge graph, since the node/edge types 

vary much (Z. Wang et al. 2019). Next, knowledge extraction 

aims to collect triples (i.e., head entity, edge, and tail entity) 

from semi-/un-/constructed data by leveraging the natural 

language processing (H. Yan et al. 2020) and disassembly 

analysis (Weise et al. 2019) . Then, it is essential to fuse the 

similar entities of extracted knowledge by creating an ontology 

link and building a concept graph (X. Li et al. 2020). Finally, 

after constructing the industrial knowledge graph, the querying 

process can be conducted by navigating potential key entities 

for making intelligent decisions (Z. Wang et al. 2019) and 

recommendations (X. Li et al. 2021). 

The latter one aims to digitize parts of the equipment 

information, the system working process, or even the entire 

production process, and connects the data in different vertical 

fields to construct a corresponding industrial graph. The most 

straightforward manner is to transform the working process into 

a graph (Alsafi and Vyatkin 2010) or disassembling the 

components as nodes in the graph (Hedberg et al. 2020). 

Furthermore, an event graph is generated to simulate and 

understand the manufacturing process and represent the event 

logic by setting events as entities in graph form (Tiacci 2020).  

However, both methods fail to represent the synergistic 

impact relation among components and parts in the equipment. 

2.3 Graph-based reasoning 

Graph neural network (GNN) is a prevailing methodology 

utilized to reflect the impact of interactions of graph-based 

structural data (Wu et al. 2021). GNN propagates the node 

attributes until convergence and generates embedding vectors 

for each node. Encouraged by the success of CNNs in computer 

vision, a graph convolution network (GCN) was proposed, 

which utilizes convolution for the spectral graph. After that, 

numerous researchers had developed improved and extensive 

versions of GCN by re-defining the convolution in the graph, 

such as lighten (He et al. 2020), and localize (C. Wang et al. 

2018). Besides, some approaches are based on the spatial graph 

which convolutions on the graph directly (S. Yan et al. 2018). 

Among spatial theories, GraphSAGE (Hamilton et al. 2017) has 

achieved impressive performance, which inductively generates 

node embedding vectors. Furthermore, the attention mechanism 

had used to adjust the weight of the node base on their neighbor 

node (Velicković et al. 2017). In industrial applications, GCN 

has been utilized in manufacturing optimization (Hu et al. 2020), 

and modeling the equipment structure by determined the 

dependencies of sense data (Narwariya et al. 2018) or based on 

the Pearson Correlation Coefficient among their feature (Zhang 

et al. 2020). 

Although some previous efforts attempt to establish the 

connection between pairwise sense data to form a graph. 

However, one interaction or synergistic mechanism in complex 

equipment may be related to more than two components and 

parts in a ‘one-to-many’ or ‘many-to-many’ relationship, which 

is out of the capability and expression of the conventional graph.  

To address the abovementioned research gaps, this paper 

aims to propose a novel hypergraph convolution network 

(HGCN) based approach for MRR prediction in CMP, 

considering both the impact relationships between inherent 

component/parts and temporal features of data collected. 

3. CMP hypergraph construction  

To represent the complex impact relationships of multiple 

nodes in the CMP tool, this paper adopts the concept of 

hypergraph (Feng et al. n.d.), of which an edge can join any 

number of nodes. This paper further introduces a CMP 

hypergraph model including three steps: 1) CMP graph data 

modelling; 2) hypergraph construction; 3) heterogeneous data 

correlation by the proposed HGCN-based model. 

3.1 CMP graph data model  

Different from the existing industrial graph, the CMP graph 

data model, aims to reflect the impact among various 

components or parts, and to manage and represent the impact 

relationship and store their features in a graph form. 

In the initial stage, it is essential to determine the components 

or parts involved as nodes in the graph, which are based on the 

physical structure and the operating mechanism. However, they 

are normally constructed in a hierarchical structural 

relationship. Hence, it is necessary to classify the hierarchical 

affiliation of all the nodes of the CMP graph data model into the 

following three levels, as shown in Fig. 1: 1) product-level 

node, as the top-level node in the hierarchical structural 

relationship, representing the product itself; 2) part-level node, 

denoting the individual product module in the second layer; and 

3) component-level node, referring to the ones decomposed by 

the product modules in the third layer to 𝑛𝑡ℎ layer, of which 

the nodes in the 𝑛𝑡ℎ layer contains its corresponding features. 

In the CMP hierarchical structure (see Fig 1), the top-level 

 
Fig. 1. CMP schematic diagram and corresponding hierarchical structure 
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node is a product-level node representing the CMP tool product 

entity. Meanwhile, the CMP equipment modules are regarded 

as the part-level nodes (i.e., the wafer, slurry, wafer carrier, pad, 

and dresser), and the components of each module (e.g., conduit 

of slurry) are depicted in the component-levels, of which the 

𝑛𝑡ℎ layer are linked to the features.  

Apart from the hierarchical structure, there also lies the 

impact relationship among various nodes of the same layer 

horizontally based on the equipment mechanism, such as the 

downward force of the wafer carrier to wafer. To better describe 

and summarize their impact, edges between the nodes can be 

utilized to represent their relationship in a graph-based form. 

Due to the complex relationship lying in the physical or 

chemical reactions between nodes, the types of edges should 

also be categorized as: 1) undirected edge, representing the two 

nodes that have hidden or fuzzy interaction; 2) directed edge, 

denoting that one node has a certain effect/action to the other, 

while not the other way around; and 3) bi-directed edge, 

referring to the certain effect/action on the nodes of each other. 

Based on the hierarchical and horizontal structure, the CMP 

graph data model can be established, as shown in Fig. 2.  

According to the mechanism of CMP (Evans et al. 2003), for 

the part-level nodes (hollow circle in Fig. 2), for instances a 

downward physical force applies to the wafer carrier to push the 

wafer toward the pad, and therefore, a directed edge connects 

from the wafer carrier node to the wafer node. Meanwhile, the 

wafer material is passivated and etched by the slurry chemicals, 

which represents the slurry node has an impact on the wafer 

node. Also, the chemical interaction effect leads to an 

undirected edge connecting from the slurry node to the wafer 

node. Moreover, a downward force applies to the wafer to 

against the pad, and therefore, a directed edge connects from 

the wafer node to the pad node. Furthermore, the dresser is used 

to roughen the pad surface while the pad does not have 

effect/action to it reversely, leading to a directed edge from the 

dresser to the pad. 

For the component-level node (filled circle in Fig. 2), first, in 

the Dresser node, the arm uses to fix the position of the head, 

so an undirected edge is connected from the arm to the head. 

Besides, in the pad node, the pad cooling device and the pad 

heating device heat conduct to the platen, so there are two 

directed edges from the pad cooling and the pad heating to the 

platen respectively. Meanwhile, in the wafer carrier node, as 

shown in Fig. 3, the backing film lay in the bottom, and due to 

the physical downward force to the wafer carrier, directed edges 

connect from the rest of the component-level nodes to the 

backing film. Moreover, the retaining ring and gimbal point 

lean on the carrier house without force, which have undirected 

edges among them. Furthermore, the last component layer 

nodes are connected with their corresponding data features 

(dashed line in Fig. 2). 

3.2 Hypergraph construction 

The CMP graph data model has clarified the relationship 

among different level nodes, while it is still difficult to 

determine the exact mathematical expression or weight of each 

edge due to the limitation of data and prior knowledge available.  

To fill this gap, this paper proposes a hypergraph to represent 

their complex relationship in the CMP equipment. The main 

characteristic of the hypergraph is using a hyperedge to connect 

with multiple nodes which indicates the impact interaction 

among the connected nodes. There are three types of hyperedge 

and summarizes in Table 1.  

After constructing the CMP graph data model in Fig. 2, it 

needs to consider which edge can be merged as a hyperedge 

based on their operation mechanism. For the part-level nodes, 

firstly the wafer node is influenced by both the wafer carrier 

node and the slurry node. Because the downward force is 

applied on the wafer, leading to its contact area is changed in 

the chemical reaction with slurry. Simultaneously, the wafer is 

removed by the chemical reaction of the slurry which also 

influent the effect of original downward pressure on the wafer 

node. Therefore, it is difficult to distinguish how the slurry and 

the wafer carrier influence the wafer module respectively, it 

needs to merge these two edges as a hyperedge to represent the 

associated impact relationship. Secondly, the wafer and the 

dresser are setting up on the pad vertically, both of which are 

applied a downward force pushing the pad node indirectly. Both 

the wafer node and the dresser node have certain actions on the 

same pad node, thereby it is difficult to divide them separately. 

Accordingly, a hyperedge connecting the wafer node and the 

dresser node to the pad node should be used to represent this 

associated impact relationship. After analyzing the relationship 

between different part-level nodes, a hypergraph is generated 

and each of the part-level nodes contains one or more associated 

component-level nodes, as shown in Fig. 4. 

Table 1. Different type of hyperedge and its vector 
Edge type Head entity Tail entity Example Vector 

Undirected 1 1 
  

Directed 1 -1 
  

Bi-directed 1 1 
  

 

 
Fig. 2.  CMP graph data modelling 

  

 
Fig. 3.  Assembly of the wafer carrier  
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Furthermore, the hypergraph construction of component-

level nodes also follows the same analysis logic. In the Pad 

module, the heat conduct transfers from the pad cooling device 

and the pad heating device to the platen, because the heat 

conduct is discrete and hard to calculate separately, a directed 

hyperedge connects from pad cooling and pad heating to the 

platen. Meanwhile, in the wafer carrier node, the retaining ring, 

the carrier housing, and the gimbal point set up on the backing 

film with a downward physical force. Hence there is a 

hyperedge connects from the former three component-level 

nodes to the backing film node. Additionally, the retaining ring 

and the gimbal point place nearby the carrier housing 

horizontally, therefore there are undirected edges connects from 

the retaining ring and the gimbal point to carrier housing 

separately. After the analysis of the CMP mechanism, the visual 

hypergraph can be seen in Fig 4 which contains directed 

hyperedges and undirected hyperedges, and its corresponding 

hypergraph matrix can be applied according to Table 1.  

4. HGCN-BASED Model 

  This paper introduces the HGCN-based model to predict 

the wafer removal rate in the CMP. The input data in the 

proposed model have samples across different time dimensions 

and each feature in the sample belongs to a corresponding part-

level node or component-level node. The schematic diagram of 

the HGCN-based model is shown in Fig. 5 and the main 

notations is shown in Table 2. This paper focuses on modeling 

the interrelationships among the part-level nodes, and the 

component-level nodes follow the same modeling process. 

4.1 Embedding layer 

The different part-level nodes contain different number of 

features which are uneven and difficult for the subsequent 

modules to use. Therefore, this paper proposes the embedding 

layers to transfer the different dimensions vector into the same 

fixed dimension ( 128 dimensions). The embedding equation is 

as follows: 

𝑧𝑗 = 𝑧𝑗
′𝑤𝑧 + 𝑏𝑧 , (1.) 

where 𝑧𝑗

′
 denotes the part-level node with original features, 

𝑧𝑗  denotes the embedding vector of part-level node, 𝑤𝑧 ∈

ℝ𝑜𝑑×𝑒𝑑  denotes the embedding matrix, od is the original 

dimension and ed is the embedding dimension. For instance, 

part-level node wafer has 3 features, therefore for each 

timestamp t, its vector is 𝑧𝑝𝑎𝑑,𝑡
′ ∈ ℝ1×3

. After embedding layer, 

𝑧𝑝𝑎𝑑,𝑡
′  transfers to 𝑧𝑝𝑎𝑑,𝑡 ∈ ℝ1×128 , which contains larger 

representation spaces. 

 
Fig. 4.  CMP hypergraph 

 
Fig. 5.  The schematic diagram of the HGCN-based model 

Table 2. The main notations and definitions in this paper 
Notations Space Definitions 

𝑛 ℝ The total number of timestamps 

𝑧𝑡
′ ℝ1×k part-level node with original k-features 

𝑧𝑡 ℝ1×128
 

part-level node embedding vector before 

Piecewise aggregate approximation 

𝑥𝑡
′ ℝ1×128

 
part-level node embedding vector after Piecewise 

aggregate approximation 

𝑥𝑡 ℝ5×128
 

embedding representations of five part-level nodes 

at timestamp t 

𝐴 ℝ5×2
 hypergraph matrix 

𝑥𝑡
𝑙
 ℝ5×128

 
the node embedding vectors at 𝑙𝑡ℎ layer at 

timestamp t 

ℎ𝑡  ℝ5×128
 

output vector of Gated Recurrent Unit at 

timestamp t 

ℎ𝑡𝑘 ℝ1×128
 the 𝑘𝑡ℎ node embedding vector at timestamp t 

ℎ𝑡𝑖
′  ℝ1×128

 
the 𝑖𝑡ℎ node embedding vector after graph 

attention mechanism at timestamp t 

𝐻′ ℝ1×640
 the hypergraph embedding vector 
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4.2 Piecewise aggregate approximation 

The length of timestamps of each wafer sample is different. 

Therefore, it is necessary to reduce to the same timestamp 

length for training efficiently. This paper introduces Piecewise 

aggregate approximation (PAA) to convert different wafer 

samples into the same length, and the targeted length sets as the 

minimal time length among all the wafer samples. The 

mathematical algorithm of the PAA can be written as:   

𝑥𝑖
′ =

𝑛

𝑚
∑ 𝑧𝑗

𝑚
𝑛

𝑖

𝑗=
𝑚
𝑛

(𝑖−1)+1
, (2.) 

where 𝑧1, … , 𝑧𝑚  denote a wafer sample with m timestamps, 

and 𝑛 is the minimal time length. 𝑥1
′ , … , 𝑥𝑛

′  are the n number 

of 128-dimensional vectors. Each 𝑥𝑡
′ ∈ ℝ1×128 represents the 

specific node embedding vector in timestamp t. Because the 

CMP tool has five part-level nodes, we concatenate them into 

𝑥𝑡 ∈ ℝ5×128, and represent the equipment structure. Hence, we 

employ 𝑥1, … , 𝑥𝑛 to denote embedding representations of five 

part-level nodes in n timestamps. 

4.3 Hypergraph convolution network 

The hypergraph convolution network (HGCN) (Feng et al. 

n.d.) is introduced to learn the data correlation and output 

refined embedding vectors with the same dimensions. By 

applying the Fourier transform to the spectral convolution and 

inverse Fourier transform, the HGCN can be iterated as the 

following function: 

𝑥𝑡
𝑙 = 𝜎 (𝐷𝑣

−
1
2𝐴𝑊𝐷𝑒

−1𝐴𝑇𝐷𝑣 

−
1
2𝑥𝑡

𝑙−1Θ𝑙−1) , (3.) 

where 𝑥𝑡
0 = 𝑥𝑡, 𝜎 denotes the sigmoid function, 𝑊 denotes 

the trainable diagonal matrix, 𝐷𝑣  and 𝐷𝑒  denote the diagonal 

matrices of edges degrees and the nodes degrees, 𝐴 denotes 

hypergraph matrix which calculates from Table 1 and CMP 

hypergraph (Fig 4), and Θϵℝ𝐶1∗𝐶2 , denotes the convolution 

filter to inverse transform to the spatial domain,  𝐶1  and 𝐶2 

are the feature dimensions before and after convolution. This 

hypergraph iteration equation utilizes the core idea of graph 

convolutional networks. As shown in Fig. 6, the HGCN can 

achieve node-edge-node transformation so that it can extract the 

high order features base on the hypergraph structure. Initially, 

𝑥𝑡
𝑙 multiplies of 𝐴𝑇 can transform the node level embedding 

vectors into hyperedge embedding vectors, representing gather 

information to the hyperedges. Subsequently, by multiplying 

matrix 𝐴, it can generate the refined node embedding vectors 

which means aggregated their related hyperedge embedding 

vectors (the lower part of Fig 6). Therefore, by utilizing this 

node-hyperedge-node mechanism, the HGCN can extract the 

high-order feature efficiently.  

For the hypergraph of part-level nodes in Fig. 4, it contains 

two hyperedges and five part-level nodes, hence A ∈ ℝ5×2 . 

The 𝑥𝑡
𝑙 ∈ ℝ5×128  in Eq. (3) is one timestamp unit of the whole 

temporal data, and its dimensions remain the same through the 

HGCN layer. 

4.4 Gated Recurrent Unit 

After applying HGCN in each timestamp, it generates 

sequence data 𝑥1
𝑙 , … , 𝑥𝑛

𝑙 . Establishing a Gated recurrent unit 

(GRU) model for the sequence data to obtain the prediction. 

The main idea of GRU is to use a gate mechanism (i.e., update 

gate and reset gate). The mathematical algorithm of GRU is as 

follows: 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡
𝑙 + 𝑈𝑧ℎ𝑡−1), (4.) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡
𝑙 + 𝑈𝑟ℎ𝑡−1), (5.) 

ℎ�̂� = tanh(𝑊ℎ𝑥𝑡
𝑙 + 𝑈ℎ(𝑟𝑡⨀ℎ𝑡−1) + 𝑏ℎ) , (6.) 

ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ𝑡−1 + 𝑧𝑡⨀ℎ�̂� , (7.) 

where ℎ𝑡   is the output vector, and 𝑊𝑧 ,  𝑊𝑟 ,  𝑊ℎ , 𝑈𝑧 , 𝑈𝑟 , 

𝑈ℎ, 𝑏ℎ are the trainable parameters. Setting the hidden layer 

number as same as the input dimensions, hence ℎ𝑡 ∈ ℝ5×128. 

4.5 Hypergraph attention mechanism 

GRU module’s output ℎ𝑡  represents the vertical 

concatenation of the nodes’ embedding vectors, denotes ℎ𝑡𝑘 ∈
ℝ1×128  as the 𝑘𝑡ℎ  node in the graph. Also, ℎ𝑡𝑘  can be 

refined by applying graph attention mechanism. In this 

hypergraph attention mechanism, it considers its first order 

neighbor to calculate its attention coefficient 𝑎𝑖𝑗 . Also, the 

nodes will treat as neighbors if they connect with a hyperedge 

in the hypergraph. The updated ℎ𝑡𝑖
′ ∈ ℝ1×128 can be iterated 

by: 

ℎ𝑡𝑖
′ = 𝜎 (∑ 𝑎𝑖𝑗𝑊𝑎

𝑗𝜖𝑁𝑖

ℎ𝑡𝑗) , (8.) 

where 𝑊𝑎  is the trainable weight matrix, and 𝑎𝑖𝑗  is the 

impact factor, which can be calculated as follows: 

𝑎𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(λ𝑇[𝑊𝑎ℎ𝑡𝑖||𝑊𝑎ℎ𝑡𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(λ𝑇[𝑊𝑎ℎ𝑡𝑖||𝑊𝑎ℎ𝑡𝑗]))𝑘∈𝑁𝑖

, (9.) 

where 𝑁𝑖  denotes the neighbor of the 𝑖𝑡ℎ  node, λ is the 

weight vector applies in the LeakyReLU function, and || is the 

concatenation process. The refined output from the hypergraph 

attention mechanism can be readout as a graph embedding 

vector by concatenating them horizontally, denotes the graph 

embedding vector as 𝐻′ = [ℎ𝑡1
′ , … , ℎ𝑡5

′ ] and 𝐻′ ∈ ℝ1×640. 

4.6 Comprehensive representation 

Overall, the architecture of the HGCN-based model is shown 

in Fig 7. Although it can handle the heterogeneous vectors of 

the equipment structure, statistical features also benefit to the 

prediction result. Therefore, this proposed algorithm 

concatenates three statistical metrics of each feature: standard 

deviation, skewness, and kurtosis with the graph embedding 

vector as the comprehensive representation and denotes it as  

 
Fig. 6.  The illustration of HGCN 
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𝐻′′ = [𝐻′, 𝑋𝑒𝑥𝑡𝑟𝑎], where 𝑋𝑒𝑥𝑡𝑟𝑎 is the feature set of statistical 

metrics. Hence, the final estimated value can be calculated 

through a fully connected layer as: 

 

𝑥ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑅𝑒𝐿𝑈(𝑊𝑑 ∗ 𝐻′′ + 𝑏ℎ1), (10) 
𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑜 ∗ 𝑥ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏ℎ2, (11) 

where ReLU is the non-linear active function, 𝑊𝑑 , 𝑊𝑜 , 

𝑏ℎ1, 𝑏ℎ2 are the trainable parameters. Finally, the model trains 

through backpropagation with the mean square error as the loss 

function: 

𝐿 =
1

𝑛
∑ (𝑦𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑦𝑡𝑟𝑢𝑒)

2𝑛

𝑖
(12) 

5. Case Study 

To demonstrate the effectiveness of the proposed approach 

in a generic manner, one open dataset obtained from the 

competition of PHMS 2016 of the wafer CMP(P. Wang et al. 

2017) is adopted to predict the average material removal rate.  

5.1 Data Description 

The dataset contains multiple sensory signals collecting 

from a CMP that removes the material from wafers. This paper 

selects 14 features out of 25 total features, which are relevant to 

the parts and components in the CMP tool. They mainly include 

the usage of the polish-pad backing film, dresser, polishing 

table, dresser table, wafer carrier sheet, the flow rate of slurry, 

and the pressure of different components. Besides, the time 

length ranges from 199 to 5492, but they all correspond to one 

MRR (target). The dataset includes two stages: A and B. The 

number of the total dataset of stage A is 376859 and 

corresponding to 1166 wafers records (i.e., a distinct wafer id 

has many timestamps but one corresponding MRR) and the 

total dataset of stage B is 295885 and corresponding to 815 

wafers records this experiment split 80% of the dataset as the 

training dataset and the rest as the test dataset. Table 3 provides 

numerical details on the training and test dataset. 

5.2 Average removal rate prediction 

Hypergraph matrix. Due to the limited features, it fails to 

construct the complete CMP graph data model as shown in Fig 

5. Nevertheless, since all the features in the open dataset are 

related to the part-level nodes, this paper considers only 

involves those ones holistically. Following the same analysis 

described in Section 3.2, its hypergraph data model and 

corresponding hypergraph matrix H can be represented, as 

shown in Fig. 8. 

Performance metrics. To evaluate the performance, the error 

will be measured by the following metrics:  

𝑀𝑆𝐸 =
1

𝑚
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑚

𝑖=1

, (13) 

the full name of MSE is mean squared error, which measures 

the average squared difference between the estimated values 

and the actual value. 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑦�̂�|

𝑚

𝑖=1

, (14) 

the full name of MAE is mean absolute error, which measures 

the errors between the estimated values and the actual value 

expressing the same phenomenon. 

Hyperparameters. This experiment uses an Adam optimizer 

with an initial learning rate of 0.01, the dimensions number of 

each vector is 128, the dropout rate of 0.1 for all feedforward 

layer, the MSE as the loss function, and the heads number of 

graph attention mechanism is 1, the number of HGCN layer is 

2, the epoch is 100, and the batch size is 128.  

Comparable cutting-edge models. To validate the 

advantages of the proposed model, it is compared with cutting-

edge models adopted in the prognostic and health management 

field with the same hyperparameters, as listed below: 

CNN-MR: Deep convolutional neural network-based 

regression approach (B et al. 2016).  

LSTM-MR: Long Short-Term Memory approach for 

prediction (Zheng et al. 2017). 

GRU-MR: Gated Recurrent Unit model for prediction (Y. 

Yan et al. 2019). 

Auto-Encoder + DNN: Using Auto-Encoder to generate 

additional features and feed them with the original features into 

DNN(Ren et al. 2018). 

The experiment is conducted with a 5-fold cross-validation 

mechanism, data normalization, and early stop for generating a 

stable and better result. The comparison results with cutting-

 
Fig. 7.  The detailed structure of HGCN-based model for part-level nodes 

 
Fig. 8.  The matrix of the CMP hypergraph structure 

Table 3. Training and test dataset numerical statistics 

Type Training dataset Test dataset 

Total number of observations 535591 137153 

Number of wafers 1584 397 

Number of wafers of stage A 932 234 

Number of observations of stage A 301045 75814 

Number of wafers of stage B 652 163 

Number of observations of stage B 234546 61339 
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edge approaches can be seen in the upper part of Table 4 of each 

metric. 

Meanwhile, the effectiveness of the HGCN-based model is 

validated by comparing the proposed model with the models 

without different submodules, and the verification result can be 

seen in the lower part of Table 4 of each metric. Hereby, 1) the 

proposed model without the HGCN layer represents the node 

embedding vectors remain the same after the construction of 

hypergraph and before the hypergraph attention mechanism; 2) 

the proposed model without hypergraph means all the 

operations related to the graph will be removed, such as 

hypergraph convolution layer and graph attention mechanism, 

and graph readout process; 3) the proposed model without 

statistical features represents the model does not concatenate 

with the statistical feature before DNN; and 4) the proposed 

model without temporal features represents train the DNN 

model only with the statistical features. 

Furthermore, to validates the correctness of the hypergraph 

matrix form, the experiment compares the proposed hypergraph 

matrix with other matrix and the random matrix, of which the 

experiment results are shown in Table 5.  

6. Discussion 

Based on the experiment results obtained from Table 4 and 

Table 5, some further analysis can be conducted as follows. 

Comparison with baselines. According to Table 4, the 

proposed HGCN-based model outperforms the other cutting-

edge models: CNN-MR, LSTM-MR, GRU-MR, and Auto-

Encoder + DNN, in both Stage A and Stage B of MRR. The 

result shows that by combining the equipment structure as a 

hypergraph form into a deep learning approach, this structure 

can provide meaningful and beneficial knowledge for the 

prediction task, and hence the proposed hypergraph 

construction method is effective. Theoretically, the hyperedge 

links with more than two nodes, representing the synergistic 

mechanism involves more than two components in the complex 

equipment. The convolution layer exploits the complex and 

high-order relationships in the hypergraph for representation 

learning. Therefore, the proposed model outperforms other 

cutting-edge models which neglect the structural knowledge. 

Effective of HGCN-based structure. One unique 

characteristic of the proposed HGCN-based model is that it 

contains a hypergraph structure and uses hypergraph 

convolution layers to learn the hidden data correlation. To 

validate its effectiveness, four scenarios are considered as 

shown in Table 4, where the proposed model achieves the 

lowest MSE and MAE compared with the ones without 

different submodules. Also, the HGCN, hypergraph, statistical 

features have positive contributions to the prediction accuracy. 

The correctness of hypergraph matrix. The experiment also 

compares the difference performance brought by mechanism-

based hypergraph matrix and different matrices. As shown in 

Table 5, the proposed hypergraph matrix achieves better 

performance than the proposed undirected hypergraph matrix 

(all hyperedges are undirected), identity matrix, and random 

matrix. This experiment verifies the correctness of the proposed 

hypergraph matrix and further proves that the proposed 

hypergraph construction method can express the impact 

relationship efficiently. 

Limitations. Despite the above advantages, some parts of the 

model in this research work are simplified, for instances: 1) 

Weighting. The proposed model only reflects the different 

impaction by training the node’s weight matrix, but assuming 

all the hyperedge have the same weight. However, the impact 

relationship is varying from different components, which are 

influenced by its nodes and hyperedges. 2) Hyperedge. The 

hypergraph attention mechanism treats the nodes connected 

with the same hyperedge as the first order neighbor, which may 

not be precise enough as a fully connected edge. 

In summary, this proposed model can effectively predict 

MRR in the CMP tool, by learning the complex and high-order 

correlations among the heterogeneous data in the representative 

hypergraph. As a generic methodology proposed, it can also be 

further implemented in similar scenarios in the manufacturing 

process with complex impact relationships. 

Table 5. HGCN-based model performance of different matrix 

 Different hypergraph matrix Stage A Stage B 

 

MSE 

Proposed matrix 0.000084 0.036816 

Proposed matrix without 
direction 

0.000086 0.036852 

Identity matrix 0.000094 0.037134 

Random matrix 0.000091 0.037219 

 

MAE 

Proposed matrix 0.009034 0.150175 

Proposed matrix without 

direction 
0.009150 0.150220 

Identity matrix 0.009519 0.150494 

Random matrix 0.009403 0.150715 

 

Table 4. Performance comparison 

 model Stage A Stage B 

MSE 
 

CNN-MR (B et al. 2016) 0.000098  0.037468  

LSTM-MR (Zheng et al. 2017) 0.000105  0.037490  

GRU-MR (Y. Yan et al. 2019) 0.000149  0.038041  

Auto-Encoder + DNN (Ren et al. 

2018) 
0.000094  0.037589  

Proposed model without HGCN layer 0.000077  0.037357  

Proposed model without hypergraph 0.000078  0.038248  

Proposed model without statistical 
features  

0.000093  0.037757  

Proposed model only with statistical 

features 
0.000080  0.037392  

Proposed model 0.000075  0.036672  

MAE 

CNN-MR (B et al. 2016) 0.009669  0.162875  

LSTM-MR (Zheng et al. 2017) 0.008618  0.161538  

GRU-MR (Y. Yan et al. 2019) 0.009353  0.163359  

Auto-Encoder + DNN (Ren et al. 

2018) 
0.009467  0.162468  

Proposed model without HGCN layer 0.008572  0.161841  

Proposed model without hypergraph 0.008590  0.163655  

Proposed model without statistical 
features  

0.009487  0.163352  

Proposed model only with statistical 

features 
0.008561  0.160379  

Proposed model 0.007523  0.159504  
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7. Conclusion 

MRR prediction plays a critical role in the CMP process. 

However, existing methodologies normally neglect the 

structural knowledge of the CMP tool, which contains a large 

amount of hidden information that can also improve the MRR 

prediction. To tackle this challenge, this paper firstly provided 

a novel framework to construct a CMP hypergraph data model, 

which represents the impact relationship of different 

components and parts in the CMP tool. Secondly, this paper 

proposes a novel HGCN-based model to learn the data 

correlation and to aggregate the node information in hypergraph 

for MRR prediction with temporal data. A case study was 

conducted revealing that the proposed HGCN-based model is 

capable to combine the hypergraph structure and node features 

effectively, and it outperforms the cutting-edge models in MRR 

prediction. The key contributions of this research can be 

summarized as follow: 

1) Proposed a systematic manner to transform the complex 

equipment structure into the representative hypergraph data 

model, which can reflect the complex impact relationship 

among components and parts effectively. 

2) Introduced a novel approach to embedding the node with 

various features and different time lengths into the fixed 

dimensions and time length, which benefits subsequent model 

training effectively and rapidly.  

3) Proposed the HGCN-based model for MRR prediction. 

This model integrated the HGCN, hypergraph attention 

mechanism and GRU, which can learn the heterogeneous data 

correlation more efficiently. As the experiment result shown, it 

outperformed previous cutting-edge models in several metrics. 

Apart from the case study of MRR prediction in the CMP 

tool, it is envisioned that this research can also bring insightful 

ideas or guide to relevant tasks among other complex 

manufacturing process. However, this research work still has 

some limitations as pointed out in Section VI. Taking all these 

factors into consideration, it is recommended that future works 

can be done to: 1) involve the environmental effect of the 

complex equipment (e.g., the chamber pressure), which may 

also affect the performance of equipment; 2) consider the 

weightings of hyperedge; and 3) describe the neighbor 

relationship of different orders in the hypergraph. 
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