
A graph-based context-aware requirement elicitation approach in smart 

product-service systems 

The paradigm of Smart product-service systems (Smart PSS) has emerged 

recently owing to the edge-cutting Information and Communication Technology 

(ICT) and artificial intelligence (AI) techniques. The unique features of Smart PSS 

including smartness and connectedness, value co-creation and data-driven design 

manner, enable the collection and analysis of large volume and heterogeneous 

contextual data to extract useful knowledge. Therefore, requirement elicitation, as 

a critical process for new solution (i.e. product-service) design, can be conducted 

in a rather context-aware manner, assured by those massive user-generated data 

and product-sensed data during the usage stage. Nevertheless, despite a few works 

on semantic modelling, scarcely any reports on such mechanism in today’s smart, 

connected environment. Aiming to fill this gap, for the first time, a graph-based 

context-aware requirement elicitation approach considering contextual 

information within the Smart PSS is proposed. It leverages the pre-defined 

product, service, and condition ontologies together with Deepwalk technique, to 

formulate those concepts as nodes and their relationships as the edge of the 

proposed requirement graph. Implicit stakeholder requirements within a specific 

context can be further derived based on such interrelationships in a data-driven 

manner. To demonstrate its feasibility and effectiveness, an example of smart bike 

share system is addressed to illustrate the requirement elicitation process. It is 

hoped that this explorative study can offer valuable insights for the service 

providers who would like to extract requirements not only from the voice of 

customers but also from the user-generated data and product-sensed data. 
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1 Introduction 

Product-service system (PSS) has stepped into a new paradigm named Smart PSS, owing to the 
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rapid development of Information and Communication Technologies (ICT) (e.g. ubiquitous 

connectivity and the online-offline smartness (Zheng et al. 2018)). It enables ever smarter 

product-service solution bundles such as predictive maintenance (Szwejczewski, Goffin, and 

Anagnostopoulos 2015, Zheng et al. 2019a), remote monitoring (Grubic and Jennions 2018) 

and self-adaptability (Zheng, Chen and Shang 2019), to name a few, and accordingly facilitates 

more dynamic interactions among stakeholders. As a result, the number of product-service 

solutions are continuously growing, and they can be recommended to a high variety of 

stakeholders based on their own requirements. However, this can lead to a paradox that 

stakeholders may not know which solution suit them best based on their own usage context. 

Furthermore, stakeholder requirements vary frequently due to the change of such usage 

contexts/usage scenarios, which directly affect the performance of the product-service bundles 

(Zheng et al. 2019b). Besides the stakeholder requirements with adjustable parameters, for 

instance “change the default temperature of fridge from 8 ℃ to 5℃ ”, lots of stakeholder 

requirements without well-predefined parameters are still hidden in the actual usage scenarios, 

which might not be realized by the users themselves as well. Hence, exploring the stakeholder 

requirements with context-awareness and adjusting the corresponding components in Smart 

PSS will significantly affect the final success of Smart PSS (Valencia Cardona et al. 2014).  

From this perspective, one can find that requirement elicitation in Smart PSS not only 

copes with requirements themselves, but also the specific contexts in which the product-service 

solutions are carried out (Pacheco, García, and Reyes 2018). Although there are some studies 

applying semantic frameworks, such as ontologies or UML (Kim et al. 2009; McKay and 

Kundu 2014) to deal with requirements based on contexts, only one type of data (i.e. text) was 

employed. Owing to the smart and connected components (e.g. sensors and interactive user 

interfaces) in Smart PSS, huge-volume and heterogeneous data, including both textual data and 

sensor data can be collected and further analysed to extract useful requirements with better 



annotations. Hence, it makes the requirement elicitation process in Smart PSS as a data-driven 

manner, where a new approach for requirement management is required to deal with various 

data sources. In addition, based on the heterogeneous real-time data collected which reflects the 

current status of usage contexts,  it is possible to adjust the requirements not only at the early 

design stage but also the usage stage, making Smart PSS requirement management a closed-

loop and ever-evolving ecosystem (Zheng, Wang, and Chen 2019).  

Facing the aforementioned challenges, scarcely any study reports on a context-aware 

approach together with an appropriate information modelling technique in today’s smart, 

connected environment. Aiming to fill this gap, a graph-based context-aware requirement 

elicitation approach in the Smart PSS is proposed in this work. It enhanced the existing graph 

embedding technique, i.e. Deepwalk, together with the pre-defined product/service/context 

ontologies to depict their in-context relations and further to discover prospective user needs. To 

better describe the proposed methodology, the rest of this paper is organized as follows. Section 

2 gives an overview about the related works. Section 3 defines the research problem in a 

formalized way and explains how the requirements represented in the proposed method. Section 

4 elaborates the proposed graph-based context-aware requirement elicitation approach. A case 

study on smart bike share requirement elicitation is further adopted to demonstrate its feasibility 

and effectiveness in Section 5. At last, in Section 6, main contributions and limitations of this 

work are concluded, and some future directions are also highlighted. 

2 Related works 

To clarify the importance of reliable data and information collection, and to further elicit 

implicit requirements with consideration of context information through them, related works of 

requirement elicitation in PSS are reviewed in this section. 



2.1 Requirement elicitation approaches  

Requirement elicitation (RE), as the first step of requirement engineering, has the most 

widespread concerns (Ambreen et al. 2018), which is to identify the reliable data sources, and 

then extract requirements from both explicit ones, e.g. voice of users, and implicit ones, e.g. 

sensor data (Hussain, Lockett, and Vasantha 2012). It has been widely adopted in the software 

development and product development fields in the past decades. The requirement elicitation 

methods are reviewed and discussed mainly from two aspects below. 

From the perspective of requirement elicitation stage, most existing studies focus on 

extracting requirements in the early design stage rather than the usage stage. The conventional 

RE techniques, such as questionnaire, interview and focus group is usually time-consuming 

since it will take several weeks or even months for the operating teams to collect the voice of 

customers and analyse them. Those methods are still applicable in the early design stage but 

not suitable for the usage stage since the risks and requirements of Smart PSS are expected to 

be detected quickly and thereby actions are supposed to be taken in a short term. Some 

researchers have already realized the necessity of extracting requirements during lifecycle 

(Durugbo 2014) and the importance of using the real-time data in the usage stage (Hussain, 

Lockett, and Vasantha 2012). With the digitalization of physical products, e.g. via digital twin, 

and the mature of ICT techniques, huge volume and more kinds of data can be collected and at 

the same time products or PSS have the capability of reconfigure themselves (Abramovici et 

al. 2018), making it possible to extract requirements in usage stage and accordingly to improve 

the PSS. Lützenberger et al. (2016) realized the importance of exploiting information in usage 

stage. Product usage information is emphasized in their work for extracting product design 

requirements. Abramovici, Göbel, and Savarino (2017) addressed the feasibility of 

reconfiguration of smart products during usage phase based on virtual product twin. Besides 

the product usage information from product themselves, dynamic internet data including 



product reviews, user attributes and products configurations are utilized for the analysis of 

requirements as well (Lai et al. 2019). Though the thought of applying data from usage phase 

has been raised up, the applications is still restricted to the functional adjustment (e.g. product 

reconfiguration and user demands on product features) of the smart products, the study of 

requirement elicitation on usage stage is still scarce. 

From the aspect of the types of extracted requirements, explicit requirements (e.g. users’ 

request) or well-defined requirements (e.g. predicted order quantity) are mostly studied by 

researchers (Salman et al. 2018; Murray, Agard, and Barajas 2018; Papanagnou and Matthews-

Amune 2018; Misaghian and Motameni 2018). When dealing with explicit requirements among 

the crowdsourcing requirements gathering projects, natural language processing techniques or 

text-mining approaches are often applied. Salman et al. (2018) proposed an approach to 

automatically cluster functional requirements based on semantic measure. In their approach, 

functional requirements are represented as natural language and natural language processing 

process, including parsing requirements, tokenization, frequent tokens removal and so on, is 

applied simultaneously. Laurent and Huang (2009) utilized website for gathering and 

prioritizing requirements in a large-scale and distributed projects. Li et al. (2018) proposed an 

effective methodology to classify user requests by employing both project-specific and non-

project-specific keywords and machine learning algorithms. Besides, big data analysis and 

machine learning methods are feasible to handle well-defined requirements since they are 

usually extracted from historical data (Murray, Agard, and Barajas 2018; Papanagnou and 

Matthews-Amune 2018). However, in Smart PSS, the implicit requirements without well-

defined formats, for instance the needs users do not tell service providers or the ones they do 

not even realize, are usually omitted. Since they are hidden among user behaviours and usage 

scenarios (Shimomura et al. 2018), if we can explore them from the usage phase data, then the 

explored implicit requirements suffice to enhance PSS quality and customer satisfactions 



(Tukker and Tischner 2017; Wang et al. 2019). Shimomura et al. (2018) proposed a scenario-

based requirement elicitation method to extract keywords which constitute requirements from 

persona and scenarios although the data was historical and initial data without updates. Liu et 

al. (2017) have attempted to apply user behaviour data to extract requirements and thereby 

improve the performance of a software service. A requirement elicitation approach which study 

implicit requirements and intends to improve the performance of both products and services in 

Smart PSS remains to be further studied. 

2.2 Requirement representation schema  

Requirement representation schema, as the basis of requirement elicitation, is critical to decide 

which techniques and approaches suit for the requirement elicitation process among large scale 

and ever-evolving data, which can be further classified into four types, namely, natural 

language, hierarchical structure, vector/matrix or tensor, and graph-based representation. 

Natural language refers to the human written or spoken language explicitly expressed 

by users. It is the most common and intuitive way for users to express their needs, some studies 

directly handle natural language for requirement extraction (Eyal Salman et al. 2018; Laurent 

and Cleland-Huang 2009). Though both human and machine have capability to handle natural 

language nowadays, those product-sensed data which has totally different format with natural 

language cannot be organized simultaneously. Thus, natural language has the drawback to 

organize heterogeneous types of data. 

Hierarchical structure is a conventional requirement representation method. For 

instance, requirements abstraction model was proposed by Gorschek and Wohlin (2006) to 

decompose requirements into several level of abstraction to offer a continuous link from 

detailed requirements to the initial one. Geisberger et al. (2006) constructed a systematic 

requirement model called requirement engineering reference model to support the 



interdisciplinary requirement exploration. Pohl and Sikora (2007) came up with a COSMOD-

RE, an scenario- and goal-based architecture to support the co-design of requirements for the 

intensive software development. Berkovich et al. (2014) put forward a requirement data model 

to describe different types of requirements, including the product requirements and their 

relationships. Though hierarchical structure is intuitive for designer/engineers to manage the 

requirements, it is problematic to conduct large-scale computational analysis, which is 

necessary for requirement engineering in Smart PSS.  

Vector, matrix or tensors are also a frequently used representation method to deal with 

requirements. Murray et al. (Murray, Agard, and Barajas 2018) analysed the customer 

transaction behaviours to discover the potential requirements. Hence, they converted the 

historical delivery transaction data as time-series vector format, by utilizing so-called dynamic 

time wrapping to provide better services. Papanagnou and Matthews-Amune (2018) also 

studied the customer transaction behaviours with the consideration of both ERP data and 

Internet information. Wang et al (2017) formalized user requirements with several requirement 

indices as requirement matrix, where requirements are represented as rows, and compared with 

product indices, so as to build up them from low level to high level. Misaghian and Motameni 

(2018) adopted tensors which is composed of functional requirements, non-functional 

requirements and stakeholders’ preferences. Though vector, matrix and tensors are flexible for 

various computational methods, such as deep-learning algorithms, most researchers either 

restrict the scope of requirements as well-defined requirements (e.g. predicting future demands) 

based on historical data or discuss the importance of the stakeholders’ preference, while 

omitting the context of requirements.  

Graph is an intuitive way to represent complex system which is usually used in PSS. 

Chen and Occeña (2000) developed an expert system to organize requirement information by 

employing a graph decomposition algorithm which is adapted from Owen’s algorithm. Kim 



and Suzuki (2015) introduced a graph-based social context representation schema by employing 

the interactions between service providers, service receivers and physical touchpoints to 

retrieve similar cases and exploit related know-hows for further design strategies. Kim et al. 

(2009) also proposed PSS representation schema via graphs to organize diverse requirements 

and providing a case study of meal assembly kitchen. They all used graph to explore hidden 

relationships between various components, rather than the potential requirements lying behind 

those components. Based on the strengths of graph, such as good performance for representing 

complex systems, suitable for organizing evolving relationships and easy for maintenance, it is 

a good representation schema to mine the implicit requirements in Smart PSS. However, 

scarcely any studies adapt graph-based representation for requirement elicitation task in PSS. 

To summarize, many previous studies had studied RE approaches from the lifecycle 

perspective to the operational perspective (as shown in Table 1), but few ones have holistically 

considered requirements, especially implicit requirements, based on heterogeneous data 

together with context information in both the early design stage and usage stage of Smart PSS. 

With the support of ICT techniques, the critical phases of eliciting requirements can be 

prolonged from only early design stage to usage stage in order to further evolve Smart PSS 

design itself. Meanwhile, the research scope is also supposed to be expanded to discover 

potential implicit requirements in connection with contexts. In order to conform the 

heterogeneous data with various data types to a unified RE method, a general data model 

containing context information should be put forward to represent the key information in 

requirements. Except for the theoretical breakthrough in RE of Smart PSS, most existing studies 

had only investigated the practical applications in product-related fields (e.g. smartphone 

design) or service-related fields (e.g. mobile app design). The PSS applications which take both 

context and products/services into a holistic consideration remain not well-investigated. 



Table 1. Comparison among existing requirement elicitation methods from literature 

Reference  

Theoretical consideration  
Application 

consideration 

Comparable RE 

methods 

Lifecycle 

consideration (i.e. 

on which stage) 

System perspective 

(i.e. the type of 

requirements) 

Operational 

consideration (data 

sources) 

Requirements 

with context-

aware or not 

Case study 

(Li et al. 

2018) 

Crowdsourcing and 

topic analysis 
Early design stage Explicit requirements 

Initial information (i.e. 

explicit user requests) 
No 

Services (software 

projects) 

(Shimomura 

et al. 2018) 

Topic analysis based 

on persona and 

scenarios 

Early design stage Explicit requirements 

Initial information (i.e. 

predefined usage 

scenarios) 

Yes 

PSS (urban 

development) 

(Lai et al. 

2019) 
Online data mining Usage stage 

Both explicit 

requirements and 

implicit requirements 

Initial information (i.e. 

product configuration, 

user attributes) and 

usage data (i.e. user 

reviews) 

No 

Product-related  

(smartphone 

design) 

(Murray, 

Agard, and 

Barajas 

2018) 

Data mining 

techniques to extract 

well-defined 

requirements 

Usage stage Explicit requirements 

Usage data (i.e. 

historical transaction 

data) 

No 

Product-related  

（delivery quantity 

prediction） 

(Liu et al. 

2017) 

Cybernetics-based 

approach 
Usage stage Implicit requirements 

Usage data (i.e. user 

behaviour data) 
Yes 

Services (software 

apps) 



3 Problem description and model formulation 

3.1 Problem description 

To fill the abovementioned research gaps in Section 2, this study intends to extract existing 

requirements or implicit requirements based on the usage contexts. Based on a well-known 

requirement boilerplate, namely Rupp’s boilerplate (Arora et al. 2014), a requirement can be 

represented as “Under what context, system component(s) shall/should/will do process”, 

shown as Figure 1. 

 

Figure 1. Requirement representation and its relations with Smart PSS components 

Here the context refers to the environmental factors which can affect the performance 

of the product-service solutions, such as temperature and location. System components 

means either product components or service components in Smart PSS. Process is the 

actions that the product/service components can offer, which can be regarded as attributes 

belonging to the product/service components. For example, a requirement which expressed 

as ‘Under CPU’s temperature is high, the notebook thermal module (computer radiator) 

should work’ can be decomposed as two entities, i.e. ‘CPU’s temperature’ and ‘notebook 

thermal module’. In this way, totally three kinds of entities constitute the key skeleton of 

requirement, namely context, product and service. At the same time the interactions between 

them are able to reflect the information among the requirements. By considering the 

Context Product(s) Service(s)
Attributes for

products/service

<When/While/Under what context>, <system components(s) > SHALL/SHOULD/WILL <do process>



connections between requirements and components in Smart PSS, eliciting requirements is 

to explore the interactions between context(s), product(s) and service(s).  

 

Figure 2. The working flow of the proposed approach 

From this perspective, an overall working flow of the proposed requirement 

elicitation approach can be seen in Figure 2. Given a context, if there is any historical 

requirement containing this context and its links to other products/services, then retrieve 

them as a requirement. If it is a new context or there is no links attached to it, then we need 

to discover the most relevant products/services among the product family and the service 

pool, treating them as a new requirement. Hence, facing the situation of new context or no 

links with the given context, the requirement elicitation model can be defined as a link 

prediction problem between the context and the other products/services. Furthermore, the 



link prediction problem can be transferred as a ranking problem among all the potential 

products and services. 

3.2 Model formulation 

In the proposed approach, a requirement graph is built up. The context, products and 

services are treated as nodes in a requirement graph (RG) and their interactions are 

represented as the links between the nodes. The RG can be represented as 𝑅𝐺 = < 𝑉, 𝐸 > 

where the vertex set 𝑉 = 𝑃 ∪ 𝑆 ∪ 𝐶 is the union of three types of nodes: product components 

nodes, service components nodes and context nodes. Edge set E consist of five subsets CP, 

CS, PP, SS and CC. The nodes and the pairwise or group relationships are specified from 

the information collected in Smart PSS as follows. 

3.2.1 Types of nodes 

All the nodes are generated from the information from service provider, including 

product family structure, service pool and knowledge from domain experts, which is pre-

processed as domain ontologies. 

• Products components (𝑷) refers to the components or modules which constitute the 

physical system which interact with users in Smart PSS. The information of product 

components is organized in a product ontology and represented in a tree diagram, 

where component 𝑝𝑖 refers to the ith components or modules. 

• Services components (𝑺) means the existing services that the service providers can 

offer to users during the usage stage. Similarly, the information of service 

components is also stored in a service ontology as a tree diagram, where 𝑠𝑗 is the jth 

service in service ontology. To the authors’ knowledge, there is still lack of a 



comprehensive consensus about what services can be provided in PSS, let alone to 

the services in Smart PSS. Hence, based on the studies from (Abramovici et al. 2009), 

a clear scope of service in Smart PSS is clarified, as shown in Figure 3. It mainly 

consists of two types of services, namely digitalized services and e-services. 

Digitalized services refer to the services which is highly dependent on the physical 

products, as an integrated hardware and software bundle such as digital twin of 

machine tool, while e-services refer to the software-based services, which are 

independent with the physical products, weather forecasting app in smart phone for 

example (Zheng, Chen, and Shang 2019).  

 

Figure 3. Types of services in the Smart PSS 

Digitalized services 

Maintenance service

•Spare parts/material predcition

•Maintenance prediton 

Logistic service

Optimisation service

•e.g. Queue 
optimization/schedule planning

Implementation service

Monitor service

•Online quality management

•Manufacturing process monitor

•Real-time manufacturing 

information tracking 

E-services 

Training service

Consulting service

Planning services

•e.g. Strategy recommendation



• Usage contexts (𝑪) is the relevant factors which cause various performance while 

using the product-service solution. For example, temperature and the wind speed are 

two factors which affect the user experience of riding a bike, so they should be 

considered while extracting requirements. Besides environment factors, some user 

behavioural-based data, for instance riding distance, should also be included into the 

usage contexts. A usage context is expressed as 𝑐𝑟, indicating that it is the rth context 

in the context ontology.  

3.2.2 Co-occurrence relationships between nodes (edges) 

Moreover, based on the aforementioned requirement compositions, the possible 

relationships are denoted as the edges in-between them, and can be further classified into 

five forms, respectively as shown in Figure 4. In this approach, the co-occurrence relations 

can be extracted if two nodes appear simultaneously in a user comment.  

Product-Product relationship (PP). If two product components co-occurred in users’ 

comments, they have the PP between them. For example, bike saddle and the seat clamp 

appear together in a user comment, then a PP relationship connects the product node ‘saddle’ 

and the product node ‘seat clamp’. 

Service-Service relationship (SS). In users’ comments, various services can be 

suggested under the same context, hence SS should be considered between two service 

elements to present the co-occurrence between them. As an example, under the scenario of 

bike theft, ‘install camera’ or ‘install bike dock with locks’ are two different but similar 

services. A SS relationship should be added between service node ‘install camera’ and the 

service node ‘install bike dock with locks’. 



Context-Context relationship (CC). In reality, some product-service bundles can suit 

for various contexts, hence it is possible that different context appearing in same user 

comment. In order to imitate this phenomenon, the CC between contexts should be specified 

in the requirement graph.  

Product-Context relationship (PC). If a product mentioned when users descripting the 

context, then PC exists in the graph. If product node ‘saddle’ and context node ‘high 

humidity’ are mentioned together by users, then a PC relationship exist between them. 

Context-Service relationship (CS). If related services are suggested with the context, 

then CS exist. Similarly, if service node ‘change saddle’ are suggested by users with the 

context node ‘high humidity’, then they are connected by CS relationship. 

 

Figure 4. Schema of five different relationships between nodes 

In this way, a requirement graph with three types of nodes and five types of edges can 

be built up, as shown in Figure 4. The requirements in the form of sentences are treated as 

the edges which contain heterogeneous nodes in RG, denoted as < 𝑝𝑖, 𝑠𝑗 , 𝑐𝑟 > in a 

mathematical way. 

4 Proposed graph-based PSS requirement elicitation approach 

Since the core of the requirement elicitation approach intends to predict the most relevant 



products/services based on the usage context, which is specified as a link prediction task in 

the former section, we proposed an enhanced Deepwalk-based approach to elicit requirement 

in this section. It is a continuous work based on our previous contribution (Z. Wang et al. 

2019). The overall flowchart of the requirement elicitation approach is shown as Figure 5.  

 

Figure 5. The overall flowchart of the proposed requirement elicitation approach 

4.1 Input: Requirement graph 

Based on the model aforementioned, the RG is represented as 𝑅𝐺 = < 𝑉, 𝐸 > where 

the vertex set 𝑉 = 𝑃 ∪ 𝑆 ∪ 𝐶 is the union of product components, service components and 

context components. In order to represent the finite RG in a mathematical manner, an 

adjacency matrix 𝑨 ∈ ℝ|𝑉|×|𝑉| is defined to represent it, in which each element is: 

𝑎𝑖,𝑗 =  {
1, 𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 ℎ𝑎𝑣𝑒 𝑒𝑑𝑔𝑒

0, 𝑒𝑙𝑠𝑒 
   (1) 

The adjacency matrix 𝑨 is a diagonal matrix where its diagonal elements are zero. The 

three types of nodes, i.e. 𝑃, 𝑆 and 𝐶, are all denoted as one-hot encoding using binary code 

Requirement
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{0,1} to represent elements with dimension |𝑉|. If there is a large-scale requirement graph 

with millions of nodes, then the dimension |𝑉| will also be millions, which is significantly 

high. At the same time, the vertices’ matrix 𝑉 ∈  ℝ|𝑉|×|𝑉| is a sparse matrix in which only 

one element in a vector is 1 and all other elements are 0. Furthermore, by using one-hot 

encoding, the distance of any two nodes are same all the time, which cannot show their 

proximity in RG.  

To avoid these defects, dimension reduction is required for the sake of computation 

efficiency (Cai, Zheng, and Chang 2018) and we intend to represent nodes as low-

dimensional embeddings. The distance between two ‘embeddings’ will be closer if they have 

similar implications. These advantages make embeddings a good format to perform machine 

learning tasks (Jin et al. 2016), for instance link prediction. Motivated by this, in this work, 

the high-dimensional one-hot encoding nodes are transformed into low-dimensional 

embeddings, and further analysis is performed on these embeddings subsequently. 

4.2 Step 1: Get the sequence order via Random Walk  

Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) is one of the graph embedding methods 

for learning latent representations of the nodes in a graph. The Deepwalk algorithm consists 

of two main components, namely random walk generator and Skipgram (Mikolov et al. 

2013). It uses truncated random walks to generate node sequences and treats the sequences 

as the equivalent of sentences. A random walk is denoted as a vector which is rooted at 

vertex 𝑣𝑖  within a window 𝑤, i.e. 𝑊𝑣𝑖
= {𝑣𝑖−𝑤, 𝑣𝑖−𝑤+1, … , 𝑣𝑖−𝑤 − 1, 𝑣𝑖+𝑤, }. The chosen of 

the variant nodes in a walk is a stochastic process. Table 2 shows the pseudo code of 

generating a random walk in a requirement graph. 

  



Table 2.The pseudo code of a random walk generation procedure 

The algorithm architecture of a random walk generation procedure 

Input: walk_length 𝑙, start_node 𝑣𝑖, requirement graph 𝑅𝐺 

Output: a random walk W 

 

1: 

2: 

3: 

4: 

5: 

 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

 

Initialisation: 

Given adjacency matrix 𝐴 to represent requirement graph RG 

Given walk_length 𝑙 

Given start node 𝑣𝑖 

Set an empty list W as a random walk 

Set 𝑙′ as the current walk length in the random walk W 

Generate the random walk: 

WHILE 𝑙′ < 𝑙 do : 

 IF no. of current_node_neighbor >0 do: 

  Append a random node among current_node_neighbor to the walk 

 ELSE break 

 END IF  

END WHILE 

RETURN 𝑊 

END 

4.3 Step 2: Get the node embeddings via SkipGram  

In terms of the node sequences 𝑊 generated via random walk, we aim to learn the latent 

semantic embeddings for each node in requirement graph G. SkipGram (Mikolov et al. 2013) 

as a language model is adopted in this subsection to learn the mapping function between the 

nodes and their embeddings. A mapping function Φ: 𝑣 ∈ 𝑉 ⟼ ℝ|𝑉|×𝑑 is introduced, where 

𝑑 ≪ |𝑉|. It intends to maximize the co-occurrence probability among the nodes that appear 

within a window 𝑤 , i.e. maximize the co-occurrence probability 

𝑃𝑟 ({𝑣𝑖−𝑤,  ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝑣𝑖}) of the nodes when given one node to predict both 

the right and left nodes of the given one. This is what the requirement elicitation approach 

intends to solve, namely, to predict the relevant products/services based on the given context 

node where SkipGram is a suitable model to derive the embeddings of nodes. The task of 



using one node to predict the nodes on both sides can be formulated as an optimization 

problem with the objective function as below: 

 𝑚𝑖𝑛
𝛷

− 𝑙𝑜𝑔 𝑃𝑟({𝑣𝑖−𝑤,  ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝑣𝑖}) (2) 

Considering the embeddings of the nodes, the objective function can be denoted as: 

 𝑚𝑖𝑛
𝛷

− 𝑙𝑜𝑔 𝑃𝑟({𝑣𝑖−𝑤,  ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝛷(𝑣𝑖)}), (3) 

, where 𝛷(𝑣𝑖)  is the embedding of vertex 𝑣𝑖 . Furthermore, the SkipGram model 

approximates the co-occurrence probability in Equation (3) using an independence 

assumption as:  

 𝑃𝑟({𝑣𝑖−𝑤,  ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝛷(𝑣𝑖)} =  ∏ Pr (𝑣𝑗|𝛷(𝑣𝑖))𝑖+𝑤
𝑗=𝑖−𝑤,𝑖≠𝑗   (4) 

For the sake of computational efficiency, hierarchical Softmax and stochastic gradient 

descent (SGD) are utilized to approximate the probability distribution and to optimize the 

parameters, respectively. 

4.4 Step 3: Predict the most relevant nodes 

After getting the node sequences via random walk and learning the embeddings Φ(𝑣𝑖) ∈

ℝd of the nodes via SkipGram model, we can transfer the task of computing the similarity 

of nodes as computing the distance between the embeddings of the corresponding nodes. In 

order to simplify the algorithm complexity, cosine similarity is adopted to compute the 

proximity of the nodes, which is shown as follow. 

 S(𝑣𝑖, 𝑣𝑗) = cos(𝑣𝑖 , 𝑣𝑗) =
𝛷(𝑣𝑖)∙𝛷(𝑣𝑗)

‖𝛷(𝑣𝑖)‖∙‖𝛷(𝑣𝑗)‖
  (5) 



In the context of Smart PSS, the optimized requirement should contain both products 

and services based on the given context. Therefore at least three nodes should be included 

in a requirement, composing a tuple <P, C, S>. Since both the similarities 𝑠𝑃𝐶  and 𝑠𝐶𝑆will 

be calculated, a total similarity 𝑠𝑡 score should be set up as well, which is denoted as: 

 𝑠𝑡 = 𝑠𝑃𝐶 × 𝑠𝐶𝑆 (6) 

The pseudo code of the link prediction including the aforementioned similarity 

computation is listed in Table 3. Tuples with related nodes and top 10 similarities are 

extracted. Tuples go through the direct-connected nodes and indirect-connected nodes with 

the given initial nodes, embracing implicit relationships which may not be expressed by 

customers. By leveraging the approach described above, when a node among the 

requirement graph was triggered by high frequency, its related nodes with high co-

occurrence relations are also extracted. Those derived nodes and the original given node are 

connected with either direct or indirect edges, and their combination constitutes the explicit 

or implicit requirements.  

Table 3. The pseudo code of extracting similarities between nodes 

The algorithm architecture of extracting similarities between nodes 

Input: id of the start node, adjacency matrix 𝐴 of the requirement graph, vertex set 𝑉 and the 

embeddings set Φ of nodes 

Output: rank of similarity between nodes 

 

1: 

2: 

3: 

4: 

 

5: 

6: 

Initialisation: 

Given adjacency matrix 𝐴 to represent requirement graph RG 

Given the id of the start node 𝑣0, set the id as 𝑖𝑑0 

Given the embeddings set Φ of nodes 

Set an empty list 𝑆 as the rank of similarity between nodes 

Compute the similarity between nodes:  

Get the embedding Φ𝑜 of the start node  

For product node 𝑝𝑖 in vertex set 𝑉 do: 



7: 

8: 

 

 

9: 

10: 

11: 

12: 

 

13: 

 

14: 

15: 

16: 

 

17: 

18: 

 

 Get the embedding Φ𝑝𝑖
 of the product node 𝑝𝑖 

 Compute the similarity between the start context node and the current product node 

 𝑠𝑃𝐶 = 
Φ𝑜∙Φ𝑝𝑖

‖Φ𝑜‖∙‖Φ𝑝𝑖
‖
  

 For service node 𝑠𝑗 in vertex set 𝑉 do: 

  Get the embedding Φ𝑠𝑗
 of the service node 𝑠𝑗 

  Compute the similarity between the start context node and the current service

  node 𝑠𝐶𝑆 = 
Φ𝑜∙Φ𝑠𝑗

‖Φ𝑜‖∙‖Φ𝑠𝑗
‖

  

  Compute the total similarity based on the current product node and service  

  node 𝑠𝑡𝑖𝑗
= 𝑠𝑃𝐶 × 𝑠𝐶𝑆 

  Append the current 𝑠𝑡𝑖𝑗
 to the list 𝑆 

 End for 

End for 

Rank the similarity score: 

Rank the elements in list 𝑆 from high to low 

RETURN rank of similarity between nodes 

END 

5 Experiment and results 

To empirically demonstrate the proposed approach, an illustrative example of smart bike 

design improvement is adopted to demonstrate how the proposed method works empirically. 

It is aimed to explore the stakeholder requirements which contains relative components (i.e. 

products and/or services) and the specific contexts in a smart bike system. 

5.1 Dataset preparation 

The data comes from a crowdsourcing activity of review collection about bike ridings 

in Melbourne with the objective of drafting Bicycle Plan 2016-2020, and the raw data can 

be found online via https://data.melbourne.vic.gov.au/Transport-Movement/Public-

comments-on-2016-20-Bicycle-Plan/8kn4-yjni. Totally 1350 comments, 1000 individual 

spots and 4500 supports were collected from the public. To simplify the problem and reduce 

https://data.melbourne.vic.gov.au/Transport-Movement/Public-comments-on-2016-20-Bicycle-Plan/8kn4-yjni
https://data.melbourne.vic.gov.au/Transport-Movement/Public-comments-on-2016-20-Bicycle-Plan/8kn4-yjni


the computation time, only the first 100 comments are selected for analysis. Among the 100 

comments, 117 pieces of information are extracted, and they are treated as nodes. Their 

properties such as ID, content and category are stored as a .csv dictionary for retrieval and 

are partially listed in Table 4. Only 108 nodes with the aforementioned co-occurrence 

relationships are used for requirement extraction.  

Table 4. A partial list of smart bike node properties 

id(n) content Category 

0 bike Products 

1 car Products 

2 parked cars Products 

3 drinking fountains Products 

4 sensors on traffic light Products 

5 tree Products 

… … … 

40 foot traffic is high Context 

41 too many overtaking Context 

42 heavy bike traffic Context 

43 traffic congestion at peak time Context 

44 traffic congestion at intersection Context 

45 traffic congestion at major routes Context 

… … … 

109 add clear guide sign beside roads Services 

110 build underpass Services 

111 raise pavement to footpath level Services 

112 rearrange bike traffic light Services 

… … … 

 

Except for the node dataset, edge datasets including P-C, C-S, P-P, C-C and S-S are 

organized as well, as shown in Table 5. They are extracted from crowdsourcing public 

comments for the Bicycle Plan 2016-2020, where edges are built in accordance with the 

node IDs.  

 

 



Table 5. A partial list of smart bike edges 

Product Source_id Context Target _id 

bike 0 cars block bikes 52 

car 1 cars block bikes 52 

parked cars 2 bike lanes zig zag 66 

drinking fountains 3 thirsty cyclists 69 

sensors on traffic light 4 waste of time for cyclists 50 

camera 7 bike theft 68 

dock 8 
no adequate space for both cars 
and bikes 

54 

dock 8 no greenery 61 

dock 8 bike theft 68 

… … … … 

Context Source_id Service Target_id 

bike theft 68 add cameras near bike docks 100 

bike theft 68 add docks 101 

thirsty cyclists 69 build drinking fountains 102 

no clear bike lane signage 65 build separate bike lanes 103 

tram stop 71 build new bike lane 104 

park 73 build new bike lane 104 

… … … … 

Product  Source_id Product  Target_id 

bike 0 ramp 26 

bike 0 car 1 

car 1 bike 0 

car 1 ramp 26 

sensors on traffic light 4 bike traffic light 17 

tree 5 shrub 6 

tree 5 dock 8 

… … … … 

Context Source_id Context  Target_id 

heavy bike traffic 42 too many overtaking 41 

too many overtaking 41 heavy bike traffic 42 

no clear bike lane signage 65 traffic congestion at intersection 44 

need to press the button to 
activate the traffic light for 
cyclists 

82 
no clear signage that if the traffic 
light is activated or not 

47 

need to press the button to 
activate the traffic light for 
cyclists 

49 
no clear signage that if the traffic 
light is activated or not 

47 

… … … … 

Service Source_id Service  Target_id 

add docks 35 add cameras near bike docks 34 

add cameras near bike docks 34 add docks 35 

add clear signage on bike 
lane 

106 build separate bike lanes 37 

widen bike lane 119 build separate bike lanes 37 

widen bike lane 119 
add clear signage at the 
beginning of bike lane 

104 

… … … … 
 



5.2 Construction of a requirement graph 

The requirement graph was constructed in terms of the edge lists, completed through a 

graph database, Neo4j. A total of 119 nodes constitute the graph including 108 ones with 

edges are shown in Figure 6. In the graph, yellow nodes with contents stands for the product 

nodes. Similarly, green nodes and blue nodes with content refer to service nodes and context 

nodes, respectively. Initially, 119 nodes are all represented with one-hot encoding in ℝ119. 

Among the 119-dimensional vectors, only positions which have edges with other nodes will 

be represented as ‘1’ and the rest of positions without edges are represented as ‘0’, becoming 

sparse vectors.  

 

Figure 6. Requirement graph of Smart Bike Ridings 



5.3 Requirement elicitation process 

The goal of this phase is to project the nodes into a relatively low-dimensional space 

and then extract the similarity between nodes. By leveraging Deepwalk, the 108 nodes with 

edges are embedded into a 16-dimensional space ℝ16. The learned representation in ℝ16 can 

be easily conducted by computational operation. As already mentioned, cosine similarity 

between two nodes are computed to represent the correlation of nodes. The codes are 

completed by Python on Jupyter Notebook. Given the id of initial context node, the approach 

is able to return the other two most relevant nodes as tuples. Tuples are ordered by similarity 

high to low. Serval results are shown in Table 6.  

For example, in Table 6, from the first tuple which begins with context node ‘Traffic 

congestion at intersection(c)’, the two most relevant nodes are ‘paint bike refuge at right 

place(s)’ and ‘painted bike refuge(p)’ with a similarity value of 0.98, indicating that no 

painted bike refuge might cause the traffic congestion at intersections. And the requirement 

extracted from this tuple can be expressed as ‘When the traffic congestion at intersection, 

bike refuge should be painted at right place’. Similarity, other tuples can be recovered as 

requirements as well, serving as reference for designers/engineers to make further design 

improvements in Smart PSS. 

In summary, the extracted tuples reveal the direct relationship and indirect relationship 

between nodes, which effectively assist the designers/engineers to find the problem hidden 

behind the large volume and heterogenous context/product/service information.  

 



Table 6. Part of extracted tuples 

Initial context nodes Product/service node Product/service node Similarity 

Traffic congestion at 

intersection(c) 
paint bike refuge at right place(s) bike refuge(p) 0.98 

no greenery(c) shrub(p) plant greenery(s) 0.978 

construction blocks bike lane(c) 
gutter(p) 

reinstate the bike lane once the 

construction is complete(s) 
0.974 

gutter(p) build new bike lane(s) 0.916 

waste of time for cyclists(c) 

rearrange bike traffic light(s) sensors on traffic light(p) 0.97 

rearrange bike traffic light(s) traffic island(p) 0.967 

build underpass(s) sensors on traffic light(p) 0.956 

cyclists and drivers use same 

lanes(c) 

revamp bike lane(s) bus lane(p) 0.964 

widen car lane(s) bus lane(p) 0.948 

no clear bike lane signage(c) 
bus lane(p) revamp bike lane(s) 0.932 

paint bike refuge at right place(s) painted bike refuge(p) 0.91 

bike theft(c) 
add docks(s) camera(p) 0.94 

add cameras near bike docks(s) camera(p) 0.928 

Bad at right turn(c) right turn sign(p) add clear signage on traffic light(s) 0.945 

no adequate space for both cars and 

bikes(c) 
make bike docks end to end(s) dock(p) 0.939 

CBD(c) ban cars(s) bus lane(p) 0.91 

 (‘c’ = context, ‘p’ = product, ‘s’=service)



5.4 Discussion 

From the experiment result of the smart bike-sharing system example, it reveals that the 

proposed graph-based RE approach can achieve the effective elicitation of user’s implicit 

requirements in the specific context, with co-related product and/or services components 

triggered accordingly. Hence, user behavior can be readily recognized and leveraged to the 

redesign of engineering products and its generated services with context-awareness. Meanwhile, 

compared to the existing studies of which requirements are expressed by natural language with 

pre-defined template, the proposed context-product-service data model is novel and effective 

to organize the requirements in a data-driven manner. This result was proved by the successful 

transformation between the natural language requirements and the <P, C, S> tuples without 

losing key information. Furthermore, by using the algorithm of obtaining the nodes embeddings, 

the proximity between nodes and the reasonable meanings of requirements are both retained, 

as demonstrated by the results with high similarity in Table 6. Owing to the advantages of the 

proposed generic RE methodology, it can be readily extended to many other applications in the 

Smart PSS field, such as smart water dispenser maintenance service for smart living (Zheng et 

al. 2019), and automatic engineering product-service change management in smart 

manufacturing (Zheng, Chen, Wang 2019), to name a few. 

Nevertheless, in order to adopt the proposed graph-based RE approach in practice, several 

managerial insights should be addressed as well. Firstly, at the operational level, 

managers/operation teams are expected to apply the graph databases to store and operate the 

heterogeneous data to fit the proposed requirement graph and the context-product-service data 

model. It requires the transformation from relational database (SQL-based ones) to the NoSQL 

database. Secondly, at the product-service design level, a context-awareness module which can 

process contextual information and judge the states of usage scenarios is supposed to be 



embedded into the smart products as well. This can be achieved by the embedded AI of the 

microcontroller, and regarded as one of the key components apart from the hardware and 

software components. Moreover, at the system infrastructure (technology stack) level, due to 

the exponential increase of ever smarter devices in the future, a cloud-edge computing platform 

will be the ideal basis for the proposed approach to handle the large-volume IoT data, avoiding 

the large consumption of computation resources, energy and bandwidth with high response time 

(Zheng, Wang, and Chen 2019). Last but not least, management actions including user incentive 

mechanisms,  which can enhance the level of context-awareness with stakeholders’ contributed 

reliable data sources should also be considered. 

6 Conclusion  

Smart PSS are fairly complex and ever-evolving eco-systems with the aim of satisfying 

individual customer’s requirements. By embracing the cutting-edge ICTs, large-scale context 

data become more readily accessed by companies via hardware sensing and crowdsourcing 

channels with both human and machine intelligence. Companies can leverage on them to extract 

large amount of useful information, especially the user requirements, to facilitate their solution 

design. Hence, a proper requirement elicitation approach considering context data in the usage 

stage is required to assist the service providers to find out the implicit requirements which has 

potential to improve the performance of their product-service bundles, so that the companies 

can preserve their competitiveness and high profits in today’s fierce market. As an exploratory 

study, this paper proposed a novel graph-based context-aware requirement elicitation method 

in the Smart PSS, and further discussed the relationships between products, usage conditions 

and services. The main contributions of this work can be summarized into three aspects: 

A novel graph-based requirement representation manner was defined. In this paper, a 

generic requirement graph schema was introduced, where requirements are treated as sentences, 



while key information is regarded as nodes or words in sentences. Hence, by merging all three 

types of nodes and five co-occurrence relations, the requirement elicitation task is standardized 

as the problem of mining the co-occurrence relations between key information of requirements 

with computation efficiency.  

A Context-Product-Service (CPS) data model which can represent the key information of 

the requirements was proposed. It is a general data model which can conform to the 

heterogeneous data with various data types. By applying the proposed data model, the 

requirements in Smart PSS can be enriched by not only textual data but also context data 

composed of multiple sensor data, making the context-awareness possible while extracting 

requirements in Smart PSS. 

A systematic context-aware requirement elicitation method was proposed. Requirements 

can be extracted from the direct and indirect relationships between nodes based on their high 

co-occurrence probability. Requirements can be extracted with higher reliability by integrating 

context information, which aims to recur the problem scenarios into the task.  

Moreover, an illustrative example of requirement elicitation for smart bike-share system 

is further utilized to validate the feasibility and effectiveness of the proposed graph-based 

requirement elicitation approach. Despite these achievements, this research still has some 

limitations. For instances, this proposed approach only considers the structure of graph, while 

the edge weights also embrace lots of information (e.g. strength of the co-occurrence 

relationship). Hence, it should be considered in the graph, as the input of requirement elicitation 

model as well. Furthermore, factors dramatically affect the quality of Smart PSS (e.g. safety 

and dynamics of requirements) should also be involved in the graph. Nevertheless, the authors 

hope this paper can be seen as the foundation to clarify the task of requirement elicitation in the 

Smart PSS context. Meanwhile, some future research works can be further explored to 1) use 



ontology learning techniques or knowledge graph to introduce external concepts (including 

product concepts, service concepts and context concepts) into the existing requirement graph 

in order to evolve it in a long term, and 2) apply the extracted stakeholder requirements to assist 

stakeholders for decision makings (e.g. reconfigure the functions of the product-service 

bundles) in the usage phase in order to achieve value co-creation of Smart PSS with the 

participation of users. 
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