
A graph-based context-aware requirement elicitation approach in smart

product-service systems

The paradigm of Smart product-service systems (Smart PSS) has emerged

recently owing to the edge-cutting Information and Communication Technology

(ICT) and artificial intelligence (AI) techniques. The unique features of Smart PSS

including smartness and connectedness, value co-creation and data-driven design

manner, enable the collection and analysis of large volume and heterogeneous

contextual data to extract useful knowledge. Therefore, requirement elicitation, as

a critical process for new solution (i.e. product-service) design, can be conducted

in a rather context-aware manner, assured by those massive user-generated data

and product-sensed data during the usage stage. Nevertheless, despite a few works

on semantic modelling, scarcely any reports on such mechanism in today’s smart,

connected environment. Aiming to fill this gap, for the first time, a graph-based

context-aware requirement elicitation approach considering contextual

information within the Smart PSS is proposed. It leverages the pre-defined

product, service, and condition ontologies together with Deepwalk technique, to

formulate those concepts as nodes and their relationships as the edge of the

proposed requirement graph. Implicit stakeholder requirements within a specific

context can be further derived based on such interrelationships in a data-driven

manner. To demonstrate its feasibility and effectiveness, an example of smart bike

share system is addressed to illustrate the requirement elicitation process. It is

hoped that this explorative study can offer valuable insights for the service

providers who would like to extract requirements not only from the voice of

customers but also from the user-generated data and product-sensed data.

Keywords: product-service systems, requirement elicitation, information

modelling, graph embedding, context-awareness, ontology

1 Introduction

Product-service system (PSS) has stepped into a new paradigm named Smart PSS, owing to the

The following publication Wang, Zuoxu; Chen, Chun-Hsien; Zheng, Pai; Li, Xinyu; Khoo, Li Pheng; A graph-based context-aware requirement
elicitation approach in smart product-service systems, International Journal of Production Research, 2021, 59(2), 635-651, 0020-7543 is available
at https://doi.org/10.1080/00207543.2019.1702227

This is the Pre-Published Version.

This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 18 Dec 2019,
available online: http://www.tandfonline.com/10.1080/00207543.2019.1702227

rapid development of Information and Communication Technologies (ICT) (e.g. ubiquitous

connectivity and the online-offline smartness (Zheng et al. 2018)). It enables ever smarter

product-service solution bundles such as predictive maintenance (Szwejczewski, Goffin, and

Anagnostopoulos 2015, Zheng et al. 2019a), remote monitoring (Grubic and Jennions 2018)

and self-adaptability (Zheng, Chen and Shang 2019), to name a few, and accordingly facilitates

more dynamic interactions among stakeholders. As a result, the number of product-service

solutions are continuously growing, and they can be recommended to a high variety of

stakeholders based on their own requirements. However, this can lead to a paradox that

stakeholders may not know which solution suit them best based on their own usage context.

Furthermore, stakeholder requirements vary frequently due to the change of such usage

contexts/usage scenarios, which directly affect the performance of the product-service bundles

(Zheng et al. 2019b). Besides the stakeholder requirements with adjustable parameters, for

instance “change the default temperature of fridge from 8 ℃ to 5℃ ”, lots of stakeholder

requirements without well-predefined parameters are still hidden in the actual usage scenarios,

which might not be realized by the users themselves as well. Hence, exploring the stakeholder

requirements with context-awareness and adjusting the corresponding components in Smart

PSS will significantly affect the final success of Smart PSS (Valencia Cardona et al. 2014).

From this perspective, one can find that requirement elicitation in Smart PSS not only

copes with requirements themselves, but also the specific contexts in which the product-service

solutions are carried out (Pacheco, García, and Reyes 2018). Although there are some studies

applying semantic frameworks, such as ontologies or UML (Kim et al. 2009; McKay and

Kundu 2014) to deal with requirements based on contexts, only one type of data (i.e. text) was

employed. Owing to the smart and connected components (e.g. sensors and interactive user

interfaces) in Smart PSS, huge-volume and heterogeneous data, including both textual data and

sensor data can be collected and further analysed to extract useful requirements with better

annotations. Hence, it makes the requirement elicitation process in Smart PSS as a data-driven

manner, where a new approach for requirement management is required to deal with various

data sources. In addition, based on the heterogeneous real-time data collected which reflects the

current status of usage contexts, it is possible to adjust the requirements not only at the early

design stage but also the usage stage, making Smart PSS requirement management a closed-

loop and ever-evolving ecosystem (Zheng, Wang, and Chen 2019).

Facing the aforementioned challenges, scarcely any study reports on a context-aware

approach together with an appropriate information modelling technique in today’s smart,

connected environment. Aiming to fill this gap, a graph-based context-aware requirement

elicitation approach in the Smart PSS is proposed in this work. It enhanced the existing graph

embedding technique, i.e. Deepwalk, together with the pre-defined product/service/context

ontologies to depict their in-context relations and further to discover prospective user needs. To

better describe the proposed methodology, the rest of this paper is organized as follows. Section

2 gives an overview about the related works. Section 3 defines the research problem in a

formalized way and explains how the requirements represented in the proposed method. Section

4 elaborates the proposed graph-based context-aware requirement elicitation approach. A case

study on smart bike share requirement elicitation is further adopted to demonstrate its feasibility

and effectiveness in Section 5. At last, in Section 6, main contributions and limitations of this

work are concluded, and some future directions are also highlighted.

2 Related works

To clarify the importance of reliable data and information collection, and to further elicit

implicit requirements with consideration of context information through them, related works of

requirement elicitation in PSS are reviewed in this section.

2.1 Requirement elicitation approaches

Requirement elicitation (RE), as the first step of requirement engineering, has the most

widespread concerns (Ambreen et al. 2018), which is to identify the reliable data sources, and

then extract requirements from both explicit ones, e.g. voice of users, and implicit ones, e.g.

sensor data (Hussain, Lockett, and Vasantha 2012). It has been widely adopted in the software

development and product development fields in the past decades. The requirement elicitation

methods are reviewed and discussed mainly from two aspects below.

From the perspective of requirement elicitation stage, most existing studies focus on

extracting requirements in the early design stage rather than the usage stage. The conventional

RE techniques, such as questionnaire, interview and focus group is usually time-consuming

since it will take several weeks or even months for the operating teams to collect the voice of

customers and analyse them. Those methods are still applicable in the early design stage but

not suitable for the usage stage since the risks and requirements of Smart PSS are expected to

be detected quickly and thereby actions are supposed to be taken in a short term. Some

researchers have already realized the necessity of extracting requirements during lifecycle

(Durugbo 2014) and the importance of using the real-time data in the usage stage (Hussain,

Lockett, and Vasantha 2012). With the digitalization of physical products, e.g. via digital twin,

and the mature of ICT techniques, huge volume and more kinds of data can be collected and at

the same time products or PSS have the capability of reconfigure themselves (Abramovici et

al. 2018), making it possible to extract requirements in usage stage and accordingly to improve

the PSS. Lützenberger et al. (2016) realized the importance of exploiting information in usage

stage. Product usage information is emphasized in their work for extracting product design

requirements. Abramovici, Göbel, and Savarino (2017) addressed the feasibility of

reconfiguration of smart products during usage phase based on virtual product twin. Besides

the product usage information from product themselves, dynamic internet data including

product reviews, user attributes and products configurations are utilized for the analysis of

requirements as well (Lai et al. 2019). Though the thought of applying data from usage phase

has been raised up, the applications is still restricted to the functional adjustment (e.g. product

reconfiguration and user demands on product features) of the smart products, the study of

requirement elicitation on usage stage is still scarce.

From the aspect of the types of extracted requirements, explicit requirements (e.g. users’

request) or well-defined requirements (e.g. predicted order quantity) are mostly studied by

researchers (Salman et al. 2018; Murray, Agard, and Barajas 2018; Papanagnou and Matthews-

Amune 2018; Misaghian and Motameni 2018). When dealing with explicit requirements among

the crowdsourcing requirements gathering projects, natural language processing techniques or

text-mining approaches are often applied. Salman et al. (2018) proposed an approach to

automatically cluster functional requirements based on semantic measure. In their approach,

functional requirements are represented as natural language and natural language processing

process, including parsing requirements, tokenization, frequent tokens removal and so on, is

applied simultaneously. Laurent and Huang (2009) utilized website for gathering and

prioritizing requirements in a large-scale and distributed projects. Li et al. (2018) proposed an

effective methodology to classify user requests by employing both project-specific and non-

project-specific keywords and machine learning algorithms. Besides, big data analysis and

machine learning methods are feasible to handle well-defined requirements since they are

usually extracted from historical data (Murray, Agard, and Barajas 2018; Papanagnou and

Matthews-Amune 2018). However, in Smart PSS, the implicit requirements without well-

defined formats, for instance the needs users do not tell service providers or the ones they do

not even realize, are usually omitted. Since they are hidden among user behaviours and usage

scenarios (Shimomura et al. 2018), if we can explore them from the usage phase data, then the

explored implicit requirements suffice to enhance PSS quality and customer satisfactions

(Tukker and Tischner 2017; Wang et al. 2019). Shimomura et al. (2018) proposed a scenario-

based requirement elicitation method to extract keywords which constitute requirements from

persona and scenarios although the data was historical and initial data without updates. Liu et

al. (2017) have attempted to apply user behaviour data to extract requirements and thereby

improve the performance of a software service. A requirement elicitation approach which study

implicit requirements and intends to improve the performance of both products and services in

Smart PSS remains to be further studied.

2.2 Requirement representation schema

Requirement representation schema, as the basis of requirement elicitation, is critical to decide

which techniques and approaches suit for the requirement elicitation process among large scale

and ever-evolving data, which can be further classified into four types, namely, natural

language, hierarchical structure, vector/matrix or tensor, and graph-based representation.

Natural language refers to the human written or spoken language explicitly expressed

by users. It is the most common and intuitive way for users to express their needs, some studies

directly handle natural language for requirement extraction (Eyal Salman et al. 2018; Laurent

and Cleland-Huang 2009). Though both human and machine have capability to handle natural

language nowadays, those product-sensed data which has totally different format with natural

language cannot be organized simultaneously. Thus, natural language has the drawback to

organize heterogeneous types of data.

Hierarchical structure is a conventional requirement representation method. For

instance, requirements abstraction model was proposed by Gorschek and Wohlin (2006) to

decompose requirements into several level of abstraction to offer a continuous link from

detailed requirements to the initial one. Geisberger et al. (2006) constructed a systematic

requirement model called requirement engineering reference model to support the

interdisciplinary requirement exploration. Pohl and Sikora (2007) came up with a COSMOD-

RE, an scenario- and goal-based architecture to support the co-design of requirements for the

intensive software development. Berkovich et al. (2014) put forward a requirement data model

to describe different types of requirements, including the product requirements and their

relationships. Though hierarchical structure is intuitive for designer/engineers to manage the

requirements, it is problematic to conduct large-scale computational analysis, which is

necessary for requirement engineering in Smart PSS.

Vector, matrix or tensors are also a frequently used representation method to deal with

requirements. Murray et al. (Murray, Agard, and Barajas 2018) analysed the customer

transaction behaviours to discover the potential requirements. Hence, they converted the

historical delivery transaction data as time-series vector format, by utilizing so-called dynamic

time wrapping to provide better services. Papanagnou and Matthews-Amune (2018) also

studied the customer transaction behaviours with the consideration of both ERP data and

Internet information. Wang et al (2017) formalized user requirements with several requirement

indices as requirement matrix, where requirements are represented as rows, and compared with

product indices, so as to build up them from low level to high level. Misaghian and Motameni

(2018) adopted tensors which is composed of functional requirements, non-functional

requirements and stakeholders’ preferences. Though vector, matrix and tensors are flexible for

various computational methods, such as deep-learning algorithms, most researchers either

restrict the scope of requirements as well-defined requirements (e.g. predicting future demands)

based on historical data or discuss the importance of the stakeholders’ preference, while

omitting the context of requirements.

Graph is an intuitive way to represent complex system which is usually used in PSS.

Chen and Occeña (2000) developed an expert system to organize requirement information by

employing a graph decomposition algorithm which is adapted from Owen’s algorithm. Kim

and Suzuki (2015) introduced a graph-based social context representation schema by employing

the interactions between service providers, service receivers and physical touchpoints to

retrieve similar cases and exploit related know-hows for further design strategies. Kim et al.

(2009) also proposed PSS representation schema via graphs to organize diverse requirements

and providing a case study of meal assembly kitchen. They all used graph to explore hidden

relationships between various components, rather than the potential requirements lying behind

those components. Based on the strengths of graph, such as good performance for representing

complex systems, suitable for organizing evolving relationships and easy for maintenance, it is

a good representation schema to mine the implicit requirements in Smart PSS. However,

scarcely any studies adapt graph-based representation for requirement elicitation task in PSS.

To summarize, many previous studies had studied RE approaches from the lifecycle

perspective to the operational perspective (as shown in Table 1), but few ones have holistically

considered requirements, especially implicit requirements, based on heterogeneous data

together with context information in both the early design stage and usage stage of Smart PSS.

With the support of ICT techniques, the critical phases of eliciting requirements can be

prolonged from only early design stage to usage stage in order to further evolve Smart PSS

design itself. Meanwhile, the research scope is also supposed to be expanded to discover

potential implicit requirements in connection with contexts. In order to conform the

heterogeneous data with various data types to a unified RE method, a general data model

containing context information should be put forward to represent the key information in

requirements. Except for the theoretical breakthrough in RE of Smart PSS, most existing studies

had only investigated the practical applications in product-related fields (e.g. smartphone

design) or service-related fields (e.g. mobile app design). The PSS applications which take both

context and products/services into a holistic consideration remain not well-investigated.

Table 1. Comparison among existing requirement elicitation methods from literature

Reference

Theoretical consideration
Application

consideration

Comparable RE

methods

Lifecycle

consideration (i.e.

on which stage)

System perspective

(i.e. the type of

requirements)

Operational

consideration (data

sources)

Requirements

with context-

aware or not

Case study

(Li et al.

2018)

Crowdsourcing and

topic analysis
Early design stage Explicit requirements

Initial information (i.e.

explicit user requests)
No

Services (software

projects)

(Shimomura

et al. 2018)

Topic analysis based

on persona and

scenarios

Early design stage Explicit requirements

Initial information (i.e.

predefined usage

scenarios)

Yes

PSS (urban

development)

(Lai et al.

2019)
Online data mining Usage stage

Both explicit

requirements and

implicit requirements

Initial information (i.e.

product configuration,

user attributes) and

usage data (i.e. user

reviews)

No

Product-related

(smartphone

design)

(Murray,

Agard, and

Barajas

2018)

Data mining

techniques to extract

well-defined

requirements

Usage stage Explicit requirements

Usage data (i.e.

historical transaction

data)

No

Product-related

（delivery quantity

prediction）

(Liu et al.

2017)

Cybernetics-based

approach
Usage stage Implicit requirements

Usage data (i.e. user

behaviour data)
Yes

Services (software

apps)

3 Problem description and model formulation

3.1 Problem description

To fill the abovementioned research gaps in Section 2, this study intends to extract existing

requirements or implicit requirements based on the usage contexts. Based on a well-known

requirement boilerplate, namely Rupp’s boilerplate (Arora et al. 2014), a requirement can be

represented as “Under what context, system component(s) shall/should/will do process”,

shown as Figure 1.

Figure 1. Requirement representation and its relations with Smart PSS components

Here the context refers to the environmental factors which can affect the performance

of the product-service solutions, such as temperature and location. System components

means either product components or service components in Smart PSS. Process is the

actions that the product/service components can offer, which can be regarded as attributes

belonging to the product/service components. For example, a requirement which expressed

as ‘Under CPU’s temperature is high, the notebook thermal module (computer radiator)

should work’ can be decomposed as two entities, i.e. ‘CPU’s temperature’ and ‘notebook

thermal module’. In this way, totally three kinds of entities constitute the key skeleton of

requirement, namely context, product and service. At the same time the interactions between

them are able to reflect the information among the requirements. By considering the

Context Product(s) Service(s)
Attributes for

products/service

<When/While/Under what context>, <system components(s) > SHALL/SHOULD/WILL <do process>

connections between requirements and components in Smart PSS, eliciting requirements is

to explore the interactions between context(s), product(s) and service(s).

Figure 2. The working flow of the proposed approach

From this perspective, an overall working flow of the proposed requirement

elicitation approach can be seen in Figure 2. Given a context, if there is any historical

requirement containing this context and its links to other products/services, then retrieve

them as a requirement. If it is a new context or there is no links attached to it, then we need

to discover the most relevant products/services among the product family and the service

pool, treating them as a new requirement. Hence, facing the situation of new context or no

links with the given context, the requirement elicitation model can be defined as a link

prediction problem between the context and the other products/services. Furthermore, the

link prediction problem can be transferred as a ranking problem among all the potential

products and services.

3.2 Model formulation

In the proposed approach, a requirement graph is built up. The context, products and

services are treated as nodes in a requirement graph (RG) and their interactions are

represented as the links between the nodes. The RG can be represented as 𝑅𝐺 = < 𝑉, 𝐸 >

where the vertex set 𝑉 = 𝑃 ∪ 𝑆 ∪ 𝐶 is the union of three types of nodes: product components

nodes, service components nodes and context nodes. Edge set E consist of five subsets CP,

CS, PP, SS and CC. The nodes and the pairwise or group relationships are specified from

the information collected in Smart PSS as follows.

3.2.1 Types of nodes

All the nodes are generated from the information from service provider, including

product family structure, service pool and knowledge from domain experts, which is pre-

processed as domain ontologies.

• Products components (𝑷) refers to the components or modules which constitute the

physical system which interact with users in Smart PSS. The information of product

components is organized in a product ontology and represented in a tree diagram,

where component 𝑝𝑖 refers to the ith components or modules.

• Services components (𝑺) means the existing services that the service providers can

offer to users during the usage stage. Similarly, the information of service

components is also stored in a service ontology as a tree diagram, where 𝑠𝑗 is the jth

service in service ontology. To the authors’ knowledge, there is still lack of a

comprehensive consensus about what services can be provided in PSS, let alone to

the services in Smart PSS. Hence, based on the studies from (Abramovici et al. 2009),

a clear scope of service in Smart PSS is clarified, as shown in Figure 3. It mainly

consists of two types of services, namely digitalized services and e-services.

Digitalized services refer to the services which is highly dependent on the physical

products, as an integrated hardware and software bundle such as digital twin of

machine tool, while e-services refer to the software-based services, which are

independent with the physical products, weather forecasting app in smart phone for

example (Zheng, Chen, and Shang 2019).

Figure 3. Types of services in the Smart PSS

Digitalized services

Maintenance service

•Spare parts/material predcition

•Maintenance prediton

Logistic service

Optimisation service

•e.g. Queue
optimization/schedule planning

Implementation service

Monitor service

•Online quality management

•Manufacturing process monitor

•Real-time manufacturing

information tracking

E-services

Training service

Consulting service

Planning services

•e.g. Strategy recommendation

• Usage contexts (𝑪) is the relevant factors which cause various performance while

using the product-service solution. For example, temperature and the wind speed are

two factors which affect the user experience of riding a bike, so they should be

considered while extracting requirements. Besides environment factors, some user

behavioural-based data, for instance riding distance, should also be included into the

usage contexts. A usage context is expressed as 𝑐𝑟, indicating that it is the rth context

in the context ontology.

3.2.2 Co-occurrence relationships between nodes (edges)

Moreover, based on the aforementioned requirement compositions, the possible

relationships are denoted as the edges in-between them, and can be further classified into

five forms, respectively as shown in Figure 4. In this approach, the co-occurrence relations

can be extracted if two nodes appear simultaneously in a user comment.

Product-Product relationship (PP). If two product components co-occurred in users’

comments, they have the PP between them. For example, bike saddle and the seat clamp

appear together in a user comment, then a PP relationship connects the product node ‘saddle’

and the product node ‘seat clamp’.

Service-Service relationship (SS). In users’ comments, various services can be

suggested under the same context, hence SS should be considered between two service

elements to present the co-occurrence between them. As an example, under the scenario of

bike theft, ‘install camera’ or ‘install bike dock with locks’ are two different but similar

services. A SS relationship should be added between service node ‘install camera’ and the

service node ‘install bike dock with locks’.

Context-Context relationship (CC). In reality, some product-service bundles can suit

for various contexts, hence it is possible that different context appearing in same user

comment. In order to imitate this phenomenon, the CC between contexts should be specified

in the requirement graph.

Product-Context relationship (PC). If a product mentioned when users descripting the

context, then PC exists in the graph. If product node ‘saddle’ and context node ‘high

humidity’ are mentioned together by users, then a PC relationship exist between them.

Context-Service relationship (CS). If related services are suggested with the context,

then CS exist. Similarly, if service node ‘change saddle’ are suggested by users with the

context node ‘high humidity’, then they are connected by CS relationship.

Figure 4. Schema of five different relationships between nodes

In this way, a requirement graph with three types of nodes and five types of edges can

be built up, as shown in Figure 4. The requirements in the form of sentences are treated as

the edges which contain heterogeneous nodes in RG, denoted as < 𝑝𝑖, 𝑠𝑗 , 𝑐𝑟 > in a

mathematical way.

4 Proposed graph-based PSS requirement elicitation approach

Since the core of the requirement elicitation approach intends to predict the most relevant

products/services based on the usage context, which is specified as a link prediction task in

the former section, we proposed an enhanced Deepwalk-based approach to elicit requirement

in this section. It is a continuous work based on our previous contribution (Z. Wang et al.

2019). The overall flowchart of the requirement elicitation approach is shown as Figure 5.

Figure 5. The overall flowchart of the proposed requirement elicitation approach

4.1 Input: Requirement graph

Based on the model aforementioned, the RG is represented as 𝑅𝐺 = < 𝑉, 𝐸 > where

the vertex set 𝑉 = 𝑃 ∪ 𝑆 ∪ 𝐶 is the union of product components, service components and

context components. In order to represent the finite RG in a mathematical manner, an

adjacency matrix 𝑨 ∈ ℝ|𝑉|×|𝑉| is defined to represent it, in which each element is:

𝑎𝑖,𝑗 = {
1, 𝑖𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 ℎ𝑎𝑣𝑒 𝑒𝑑𝑔𝑒

0, 𝑒𝑙𝑠𝑒
 (1)

The adjacency matrix 𝑨 is a diagonal matrix where its diagonal elements are zero. The

three types of nodes, i.e. 𝑃, 𝑆 and 𝐶, are all denoted as one-hot encoding using binary code

Requirement
graph

• Input

Get the node
sequence• Step 1

Get the node
embeddings

• Step 2

Predict the most
relevant nodes

• Step 3

via Random
walk

via
SkipGram

by computing
the node
similarity

{0,1} to represent elements with dimension |𝑉|. If there is a large-scale requirement graph

with millions of nodes, then the dimension |𝑉| will also be millions, which is significantly

high. At the same time, the vertices’ matrix 𝑉 ∈ ℝ|𝑉|×|𝑉| is a sparse matrix in which only

one element in a vector is 1 and all other elements are 0. Furthermore, by using one-hot

encoding, the distance of any two nodes are same all the time, which cannot show their

proximity in RG.

To avoid these defects, dimension reduction is required for the sake of computation

efficiency (Cai, Zheng, and Chang 2018) and we intend to represent nodes as low-

dimensional embeddings. The distance between two ‘embeddings’ will be closer if they have

similar implications. These advantages make embeddings a good format to perform machine

learning tasks (Jin et al. 2016), for instance link prediction. Motivated by this, in this work,

the high-dimensional one-hot encoding nodes are transformed into low-dimensional

embeddings, and further analysis is performed on these embeddings subsequently.

4.2 Step 1: Get the sequence order via Random Walk

Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) is one of the graph embedding methods

for learning latent representations of the nodes in a graph. The Deepwalk algorithm consists

of two main components, namely random walk generator and Skipgram (Mikolov et al.

2013). It uses truncated random walks to generate node sequences and treats the sequences

as the equivalent of sentences. A random walk is denoted as a vector which is rooted at

vertex 𝑣𝑖 within a window 𝑤, i.e. 𝑊𝑣𝑖
= {𝑣𝑖−𝑤, 𝑣𝑖−𝑤+1, … , 𝑣𝑖−𝑤 − 1, 𝑣𝑖+𝑤, }. The chosen of

the variant nodes in a walk is a stochastic process. Table 2 shows the pseudo code of

generating a random walk in a requirement graph.

Table 2.The pseudo code of a random walk generation procedure

The algorithm architecture of a random walk generation procedure

Input: walk_length 𝑙, start_node 𝑣𝑖, requirement graph 𝑅𝐺

Output: a random walk W

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

Initialisation:

Given adjacency matrix 𝐴 to represent requirement graph RG

Given walk_length 𝑙

Given start node 𝑣𝑖

Set an empty list W as a random walk

Set 𝑙′ as the current walk length in the random walk W

Generate the random walk:

WHILE 𝑙′ < 𝑙 do :

 IF no. of current_node_neighbor >0 do:

 Append a random node among current_node_neighbor to the walk

 ELSE break

 END IF

END WHILE

RETURN 𝑊

END

4.3 Step 2: Get the node embeddings via SkipGram

In terms of the node sequences 𝑊 generated via random walk, we aim to learn the latent

semantic embeddings for each node in requirement graph G. SkipGram (Mikolov et al. 2013)

as a language model is adopted in this subsection to learn the mapping function between the

nodes and their embeddings. A mapping function Φ: 𝑣 ∈ 𝑉 ⟼ ℝ|𝑉|×𝑑 is introduced, where

𝑑 ≪ |𝑉|. It intends to maximize the co-occurrence probability among the nodes that appear

within a window 𝑤 , i.e. maximize the co-occurrence probability

𝑃𝑟 ({𝑣𝑖−𝑤, ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝑣𝑖}) of the nodes when given one node to predict both

the right and left nodes of the given one. This is what the requirement elicitation approach

intends to solve, namely, to predict the relevant products/services based on the given context

node where SkipGram is a suitable model to derive the embeddings of nodes. The task of

using one node to predict the nodes on both sides can be formulated as an optimization

problem with the objective function as below:

 𝑚𝑖𝑛
𝛷

− 𝑙𝑜𝑔 𝑃𝑟({𝑣𝑖−𝑤, ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝑣𝑖}) (2)

Considering the embeddings of the nodes, the objective function can be denoted as:

 𝑚𝑖𝑛
𝛷

− 𝑙𝑜𝑔 𝑃𝑟({𝑣𝑖−𝑤, ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝛷(𝑣𝑖)}), (3)

, where 𝛷(𝑣𝑖) is the embedding of vertex 𝑣𝑖 . Furthermore, the SkipGram model

approximates the co-occurrence probability in Equation (3) using an independence

assumption as:

 𝑃𝑟({𝑣𝑖−𝑤, ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑤|𝛷(𝑣𝑖)} = ∏ Pr (𝑣𝑗|𝛷(𝑣𝑖))𝑖+𝑤
𝑗=𝑖−𝑤,𝑖≠𝑗 (4)

For the sake of computational efficiency, hierarchical Softmax and stochastic gradient

descent (SGD) are utilized to approximate the probability distribution and to optimize the

parameters, respectively.

4.4 Step 3: Predict the most relevant nodes

After getting the node sequences via random walk and learning the embeddings Φ(𝑣𝑖) ∈

ℝd of the nodes via SkipGram model, we can transfer the task of computing the similarity

of nodes as computing the distance between the embeddings of the corresponding nodes. In

order to simplify the algorithm complexity, cosine similarity is adopted to compute the

proximity of the nodes, which is shown as follow.

 S(𝑣𝑖, 𝑣𝑗) = cos(𝑣𝑖 , 𝑣𝑗) =
𝛷(𝑣𝑖)∙𝛷(𝑣𝑗)

‖𝛷(𝑣𝑖)‖∙‖𝛷(𝑣𝑗)‖
 (5)

In the context of Smart PSS, the optimized requirement should contain both products

and services based on the given context. Therefore at least three nodes should be included

in a requirement, composing a tuple <P, C, S>. Since both the similarities 𝑠𝑃𝐶 and 𝑠𝐶𝑆will

be calculated, a total similarity 𝑠𝑡 score should be set up as well, which is denoted as:

 𝑠𝑡 = 𝑠𝑃𝐶 × 𝑠𝐶𝑆 (6)

The pseudo code of the link prediction including the aforementioned similarity

computation is listed in Table 3. Tuples with related nodes and top 10 similarities are

extracted. Tuples go through the direct-connected nodes and indirect-connected nodes with

the given initial nodes, embracing implicit relationships which may not be expressed by

customers. By leveraging the approach described above, when a node among the

requirement graph was triggered by high frequency, its related nodes with high co-

occurrence relations are also extracted. Those derived nodes and the original given node are

connected with either direct or indirect edges, and their combination constitutes the explicit

or implicit requirements.

Table 3. The pseudo code of extracting similarities between nodes

The algorithm architecture of extracting similarities between nodes

Input: id of the start node, adjacency matrix 𝐴 of the requirement graph, vertex set 𝑉 and the

embeddings set Φ of nodes

Output: rank of similarity between nodes

1:

2:

3:

4:

5:

6:

Initialisation:

Given adjacency matrix 𝐴 to represent requirement graph RG

Given the id of the start node 𝑣0, set the id as 𝑖𝑑0

Given the embeddings set Φ of nodes

Set an empty list 𝑆 as the rank of similarity between nodes

Compute the similarity between nodes:

Get the embedding Φ𝑜 of the start node

For product node 𝑝𝑖 in vertex set 𝑉 do:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

 Get the embedding Φ𝑝𝑖
 of the product node 𝑝𝑖

 Compute the similarity between the start context node and the current product node

 𝑠𝑃𝐶 =
Φ𝑜∙Φ𝑝𝑖

‖Φ𝑜‖∙‖Φ𝑝𝑖
‖

 For service node 𝑠𝑗 in vertex set 𝑉 do:

 Get the embedding Φ𝑠𝑗
 of the service node 𝑠𝑗

 Compute the similarity between the start context node and the current service

 node 𝑠𝐶𝑆 =
Φ𝑜∙Φ𝑠𝑗

‖Φ𝑜‖∙‖Φ𝑠𝑗
‖

 Compute the total similarity based on the current product node and service

 node 𝑠𝑡𝑖𝑗
= 𝑠𝑃𝐶 × 𝑠𝐶𝑆

 Append the current 𝑠𝑡𝑖𝑗
 to the list 𝑆

 End for

End for

Rank the similarity score:

Rank the elements in list 𝑆 from high to low

RETURN rank of similarity between nodes

END

5 Experiment and results

To empirically demonstrate the proposed approach, an illustrative example of smart bike

design improvement is adopted to demonstrate how the proposed method works empirically.

It is aimed to explore the stakeholder requirements which contains relative components (i.e.

products and/or services) and the specific contexts in a smart bike system.

5.1 Dataset preparation

The data comes from a crowdsourcing activity of review collection about bike ridings

in Melbourne with the objective of drafting Bicycle Plan 2016-2020, and the raw data can

be found online via https://data.melbourne.vic.gov.au/Transport-Movement/Public-

comments-on-2016-20-Bicycle-Plan/8kn4-yjni. Totally 1350 comments, 1000 individual

spots and 4500 supports were collected from the public. To simplify the problem and reduce

https://data.melbourne.vic.gov.au/Transport-Movement/Public-comments-on-2016-20-Bicycle-Plan/8kn4-yjni
https://data.melbourne.vic.gov.au/Transport-Movement/Public-comments-on-2016-20-Bicycle-Plan/8kn4-yjni

the computation time, only the first 100 comments are selected for analysis. Among the 100

comments, 117 pieces of information are extracted, and they are treated as nodes. Their

properties such as ID, content and category are stored as a .csv dictionary for retrieval and

are partially listed in Table 4. Only 108 nodes with the aforementioned co-occurrence

relationships are used for requirement extraction.

Table 4. A partial list of smart bike node properties

id(n) content Category

0 bike Products

1 car Products

2 parked cars Products

3 drinking fountains Products

4 sensors on traffic light Products

5 tree Products

… … …

40 foot traffic is high Context

41 too many overtaking Context

42 heavy bike traffic Context

43 traffic congestion at peak time Context

44 traffic congestion at intersection Context

45 traffic congestion at major routes Context

… … …

109 add clear guide sign beside roads Services

110 build underpass Services

111 raise pavement to footpath level Services

112 rearrange bike traffic light Services

… … …

Except for the node dataset, edge datasets including P-C, C-S, P-P, C-C and S-S are

organized as well, as shown in Table 5. They are extracted from crowdsourcing public

comments for the Bicycle Plan 2016-2020, where edges are built in accordance with the

node IDs.

Table 5. A partial list of smart bike edges

Product Source_id Context Target _id

bike 0 cars block bikes 52

car 1 cars block bikes 52

parked cars 2 bike lanes zig zag 66

drinking fountains 3 thirsty cyclists 69

sensors on traffic light 4 waste of time for cyclists 50

camera 7 bike theft 68

dock 8
no adequate space for both cars
and bikes

54

dock 8 no greenery 61

dock 8 bike theft 68

… … … …

Context Source_id Service Target_id

bike theft 68 add cameras near bike docks 100

bike theft 68 add docks 101

thirsty cyclists 69 build drinking fountains 102

no clear bike lane signage 65 build separate bike lanes 103

tram stop 71 build new bike lane 104

park 73 build new bike lane 104

… … … …

Product Source_id Product Target_id

bike 0 ramp 26

bike 0 car 1

car 1 bike 0

car 1 ramp 26

sensors on traffic light 4 bike traffic light 17

tree 5 shrub 6

tree 5 dock 8

… … … …

Context Source_id Context Target_id

heavy bike traffic 42 too many overtaking 41

too many overtaking 41 heavy bike traffic 42

no clear bike lane signage 65 traffic congestion at intersection 44

need to press the button to
activate the traffic light for
cyclists

82
no clear signage that if the traffic
light is activated or not

47

need to press the button to
activate the traffic light for
cyclists

49
no clear signage that if the traffic
light is activated or not

47

… … … …

Service Source_id Service Target_id

add docks 35 add cameras near bike docks 34

add cameras near bike docks 34 add docks 35

add clear signage on bike
lane

106 build separate bike lanes 37

widen bike lane 119 build separate bike lanes 37

widen bike lane 119
add clear signage at the
beginning of bike lane

104

… … … …

5.2 Construction of a requirement graph

The requirement graph was constructed in terms of the edge lists, completed through a

graph database, Neo4j. A total of 119 nodes constitute the graph including 108 ones with

edges are shown in Figure 6. In the graph, yellow nodes with contents stands for the product

nodes. Similarly, green nodes and blue nodes with content refer to service nodes and context

nodes, respectively. Initially, 119 nodes are all represented with one-hot encoding in ℝ119.

Among the 119-dimensional vectors, only positions which have edges with other nodes will

be represented as ‘1’ and the rest of positions without edges are represented as ‘0’, becoming

sparse vectors.

Figure 6. Requirement graph of Smart Bike Ridings

5.3 Requirement elicitation process

The goal of this phase is to project the nodes into a relatively low-dimensional space

and then extract the similarity between nodes. By leveraging Deepwalk, the 108 nodes with

edges are embedded into a 16-dimensional space ℝ16. The learned representation in ℝ16 can

be easily conducted by computational operation. As already mentioned, cosine similarity

between two nodes are computed to represent the correlation of nodes. The codes are

completed by Python on Jupyter Notebook. Given the id of initial context node, the approach

is able to return the other two most relevant nodes as tuples. Tuples are ordered by similarity

high to low. Serval results are shown in Table 6.

For example, in Table 6, from the first tuple which begins with context node ‘Traffic

congestion at intersection(c)’, the two most relevant nodes are ‘paint bike refuge at right

place(s)’ and ‘painted bike refuge(p)’ with a similarity value of 0.98, indicating that no

painted bike refuge might cause the traffic congestion at intersections. And the requirement

extracted from this tuple can be expressed as ‘When the traffic congestion at intersection,

bike refuge should be painted at right place’. Similarity, other tuples can be recovered as

requirements as well, serving as reference for designers/engineers to make further design

improvements in Smart PSS.

In summary, the extracted tuples reveal the direct relationship and indirect relationship

between nodes, which effectively assist the designers/engineers to find the problem hidden

behind the large volume and heterogenous context/product/service information.

Table 6. Part of extracted tuples

Initial context nodes Product/service node Product/service node Similarity

Traffic congestion at

intersection(c)
paint bike refuge at right place(s) bike refuge(p) 0.98

no greenery(c) shrub(p) plant greenery(s) 0.978

construction blocks bike lane(c)
gutter(p)

reinstate the bike lane once the

construction is complete(s)
0.974

gutter(p) build new bike lane(s) 0.916

waste of time for cyclists(c)

rearrange bike traffic light(s) sensors on traffic light(p) 0.97

rearrange bike traffic light(s) traffic island(p) 0.967

build underpass(s) sensors on traffic light(p) 0.956

cyclists and drivers use same

lanes(c)

revamp bike lane(s) bus lane(p) 0.964

widen car lane(s) bus lane(p) 0.948

no clear bike lane signage(c)
bus lane(p) revamp bike lane(s) 0.932

paint bike refuge at right place(s) painted bike refuge(p) 0.91

bike theft(c)
add docks(s) camera(p) 0.94

add cameras near bike docks(s) camera(p) 0.928

Bad at right turn(c) right turn sign(p) add clear signage on traffic light(s) 0.945

no adequate space for both cars and

bikes(c)
make bike docks end to end(s) dock(p) 0.939

CBD(c) ban cars(s) bus lane(p) 0.91

 (‘c’ = context, ‘p’ = product, ‘s’=service)

5.4 Discussion

From the experiment result of the smart bike-sharing system example, it reveals that the

proposed graph-based RE approach can achieve the effective elicitation of user’s implicit

requirements in the specific context, with co-related product and/or services components

triggered accordingly. Hence, user behavior can be readily recognized and leveraged to the

redesign of engineering products and its generated services with context-awareness. Meanwhile,

compared to the existing studies of which requirements are expressed by natural language with

pre-defined template, the proposed context-product-service data model is novel and effective

to organize the requirements in a data-driven manner. This result was proved by the successful

transformation between the natural language requirements and the <P, C, S> tuples without

losing key information. Furthermore, by using the algorithm of obtaining the nodes embeddings,

the proximity between nodes and the reasonable meanings of requirements are both retained,

as demonstrated by the results with high similarity in Table 6. Owing to the advantages of the

proposed generic RE methodology, it can be readily extended to many other applications in the

Smart PSS field, such as smart water dispenser maintenance service for smart living (Zheng et

al. 2019), and automatic engineering product-service change management in smart

manufacturing (Zheng, Chen, Wang 2019), to name a few.

Nevertheless, in order to adopt the proposed graph-based RE approach in practice, several

managerial insights should be addressed as well. Firstly, at the operational level,

managers/operation teams are expected to apply the graph databases to store and operate the

heterogeneous data to fit the proposed requirement graph and the context-product-service data

model. It requires the transformation from relational database (SQL-based ones) to the NoSQL

database. Secondly, at the product-service design level, a context-awareness module which can

process contextual information and judge the states of usage scenarios is supposed to be

embedded into the smart products as well. This can be achieved by the embedded AI of the

microcontroller, and regarded as one of the key components apart from the hardware and

software components. Moreover, at the system infrastructure (technology stack) level, due to

the exponential increase of ever smarter devices in the future, a cloud-edge computing platform

will be the ideal basis for the proposed approach to handle the large-volume IoT data, avoiding

the large consumption of computation resources, energy and bandwidth with high response time

(Zheng, Wang, and Chen 2019). Last but not least, management actions including user incentive

mechanisms, which can enhance the level of context-awareness with stakeholders’ contributed

reliable data sources should also be considered.

6 Conclusion

Smart PSS are fairly complex and ever-evolving eco-systems with the aim of satisfying

individual customer’s requirements. By embracing the cutting-edge ICTs, large-scale context

data become more readily accessed by companies via hardware sensing and crowdsourcing

channels with both human and machine intelligence. Companies can leverage on them to extract

large amount of useful information, especially the user requirements, to facilitate their solution

design. Hence, a proper requirement elicitation approach considering context data in the usage

stage is required to assist the service providers to find out the implicit requirements which has

potential to improve the performance of their product-service bundles, so that the companies

can preserve their competitiveness and high profits in today’s fierce market. As an exploratory

study, this paper proposed a novel graph-based context-aware requirement elicitation method

in the Smart PSS, and further discussed the relationships between products, usage conditions

and services. The main contributions of this work can be summarized into three aspects:

A novel graph-based requirement representation manner was defined. In this paper, a

generic requirement graph schema was introduced, where requirements are treated as sentences,

while key information is regarded as nodes or words in sentences. Hence, by merging all three

types of nodes and five co-occurrence relations, the requirement elicitation task is standardized

as the problem of mining the co-occurrence relations between key information of requirements

with computation efficiency.

A Context-Product-Service (CPS) data model which can represent the key information of

the requirements was proposed. It is a general data model which can conform to the

heterogeneous data with various data types. By applying the proposed data model, the

requirements in Smart PSS can be enriched by not only textual data but also context data

composed of multiple sensor data, making the context-awareness possible while extracting

requirements in Smart PSS.

A systematic context-aware requirement elicitation method was proposed. Requirements

can be extracted from the direct and indirect relationships between nodes based on their high

co-occurrence probability. Requirements can be extracted with higher reliability by integrating

context information, which aims to recur the problem scenarios into the task.

Moreover, an illustrative example of requirement elicitation for smart bike-share system

is further utilized to validate the feasibility and effectiveness of the proposed graph-based

requirement elicitation approach. Despite these achievements, this research still has some

limitations. For instances, this proposed approach only considers the structure of graph, while

the edge weights also embrace lots of information (e.g. strength of the co-occurrence

relationship). Hence, it should be considered in the graph, as the input of requirement elicitation

model as well. Furthermore, factors dramatically affect the quality of Smart PSS (e.g. safety

and dynamics of requirements) should also be involved in the graph. Nevertheless, the authors

hope this paper can be seen as the foundation to clarify the task of requirement elicitation in the

Smart PSS context. Meanwhile, some future research works can be further explored to 1) use

ontology learning techniques or knowledge graph to introduce external concepts (including

product concepts, service concepts and context concepts) into the existing requirement graph

in order to evolve it in a long term, and 2) apply the extracted stakeholder requirements to assist

stakeholders for decision makings (e.g. reconfigure the functions of the product-service

bundles) in the usage phase in order to achieve value co-creation of Smart PSS with the

participation of users.

Acknowledgement

The authors wish to acknowledge the financial support from the National Research Foundation

(NRF) Singapore and Delta Electronics International (Singapore) Pte Ltd., under the Corporate

Laboratory@ University Scheme (Ref. SCO-RP1; RCA-16/434) at Nanyang Technological

University, Singapore.

References

Abramovici, M, M Neubach, M Schulze, and C Spura. 2009. “Metadata Reference Model for

IPS2 Lifecycle Management.” In . Cranfield University Press.

Abramovici, Michael, Jens Christian Göbel, and Philipp Savarino. 2017. “Reconfiguration of

Smart Products during Their Use Phase Based on Virtual Product Twins.” CIRP Annals

66 (1): 165–168.

Abramovici, Michael, Philipp Savarino, Jens Christian Göbel, Stefan Adwernat, and Philip

Gebus. 2018. “Systematization of Virtual Product Twin Models in the Context of Smart

Product Reconfiguration during the Product Use Phase.” Procedia CIRP 69 (1): 734–

739.

Ambreen, Talat, Naveed Ikram, Muhammad Usman, and Mahmood Niazi. 2018. “Empirical

Research in Requirements Engineering: Trends and Opportunities.” Requirements

Engineering 23 (1): 63–95.

Arora, Chetan, Mehrdad Sabetzadeh, Lionel C Briand, and Frank Zimmer. 2014. “Requirement

Boilerplates: Transition from Manually-Enforced to Automatically-Verifiable Natural

Language Patterns.” In , 1–8. IEEE.

Berkovich, Marina, Jan Marco Leimeister, Axel Hoffmann, and Helmut Krcmar. 2014. “A

Requirements Data Model for Product Service Systems.” Requirements Engineering 19

(2): 161–186.

Cai, Hongyun, Vincent W Zheng, and Kevin Chang. 2018. “A Comprehensive Survey of Graph

Embedding: Problems, Techniques and Applications.” IEEE Transactions on

Knowledge and Data Engineering.

Chen, Chun-Hsien, and Luis G Occeña. 2000. “Knowledge Decomposition for a Product

Design Blackboard Expert System.” Artificial Intelligence in Engineering 14 (1): 71–

82.

Durugbo, Christopher. 2014. “Strategic Framework for Industrial Product-Service Co-Design:

Findings from the Microsystems Industry.” International Journal of Production

Research 52 (10): 2881–2900. doi:10.1080/00207543.2013.857054.

Eyal Salman, Hamzeh, Mustafa Hammad, Abdelhak-Djamel Seriai, and Ahed Al-Sbou. 2018.

“Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical

Clustering.” Information 9 (9): 222.

Geisberger, Eva, Manfred Broy, Juergen Kazmeier, Daniel Paulish, and Arnold Rudorfer. 2006.

“Requirements Engineering Reference Model (REM).”

Gorschek, Tony, and Claes Wohlin. 2006. “Requirements Abstraction Model.” Requirements

Engineering 11 (1): 79–101.

Grubic, Tonci, and Ian Jennions. 2018. “Remote Monitoring Technology and Servitised

Strategies – Factors Characterising the Organisational Application.” International

Journal of Production Research 56 (6): 2133–2149.

doi:10.1080/00207543.2017.1332791.

Hussain, Romana, Helen Lockett, and Gokula Vijaykumar Annamalai Vasantha. 2012. “A

Framework to Inform PSS Conceptual Design by Using System-in-Use Data.”

Computers in Industry 63 (4): 319–327.

Jin, Zhipeng, Ruoran Liu, Qiudan Li, Daniel D Zeng, YongCheng Zhan, and Lei Wang. 2016.

“Predicting User’s Multi-Interests with Network Embedding in Health-Related Topics.”

In , 2568–2575. IEEE.

Kim, Yongse, and Kumiko Suzuki. 2015. “Social Context Representation in Product-Service

Systems with Internet of Things.” Open Journal of Social Sciences 3 (07): 187.

Kim, YS, E Wang, SW Lee, and YC Cho. 2009. “A Product-Service System Representation

and Its Application in a Concept Design Scenario.” In . Cranfield University Press.

Lai, Xinjun, Qixiang Zhang, Qingxin Chen, Yunbao Huang, Ning Mao, and Jianjun Liu. 2019.

“The Analytics of Product-Design Requirements Using Dynamic Internet Data:

Application to Chinese Smartphone Market.” International Journal of Production

Research 57 (18): 5660–5684.

Laurent, Paula, and Jane Cleland-Huang. 2009. “Lessons Learned from Open Source Projects

for Facilitating Online Requirements Processes.” In , 240–255. Springer.

Li, Chuanyi, Liguo Huang, Jidong Ge, Bin Luo, and Vincent Ng. 2018. “Automatically

Classifying User Requests in Crowdsourcing Requirements Engineering.” Journal of

Systems and Software 138 (April): 108–123. doi:10.1016/j.jss.2017.12.028.

Liu, Lin, Qing Zhou, Jilei Liu, and Zhanqiang Cao. 2017. “Requirements Cybernetics:

Elicitation Based on User Behavioral Data.” Journal of Systems and Software 124: 187–

194.

Lützenberger, Johannes, Patrick Klein, Karl Hribernik, and Klaus-Dieter Thoben. 2016.

“Improving Product-Service Systems by Exploiting Information From The Usage Phase.

A Case Study.” Procedia CIRP 47: 376–381.

McKay, Alison, and Saikat Kundu. 2014. “A Representation Scheme for Digital Product

Service System Definitions.” Advanced Engineering Informatics 28 (4): 479–498.

doi:10.1016/j.aei.2014.07.004.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of

Word Representations in Vector Space.” ArXiv Preprint ArXiv:1301.3781.

Misaghian, Negin, and Homayun Motameni. 2018. “An Approach for Requirements

Prioritization Based on Tensor Decomposition.” Requirements Engineering 23 (2):

169–188.

Murray, Paul W, Bruno Agard, and Marco A Barajas. 2018. “Forecast of Individual Customer’s

Demand from a Large and Noisy Dataset.” Computers & Industrial Engineering 118:

33–43.

Pacheco, Carla, Ivan García, and Miryam Reyes. 2018. “Requirements Elicitation Techniques:

A Systematic Literature Review Based on the Maturity of the Techniques.” IET

Software 12 (4): 365–378.

Papanagnou, Christos I, and Omeiza Matthews-Amune. 2018. “Coping with Demand Volatility

in Retail Pharmacies with the Aid of Big Data Exploration.” Computers & Operations

Research 98: 343–354.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. 2014. “Deepwalk: Online Learning of Social

Representations.” In , 701–710. ACM.

Pohl, Klaus, and Ernst Sikora. 2007. “COSMOD-RE: Supporting the Co-Design of

Requirements and Architectural Artifacts.” In , 258–261. IEEE.

Shimomura, Yoshiki, Yutaro Nemoto, Takatoshi Ishii, and Toshiyuki Nakamura. 2018. “A

Method for Identifying Customer Orientations and Requirements for Product–Service

Systems Design.” International Journal of Production Research 56 (7): 2585–2595.

Szwejczewski, Marek, Keith Goffin, and Zissis Anagnostopoulos. 2015. “Product Service

Systems, after-Sales Service and New Product Development.” International Journal of

Production Research 53 (17): 5334–5353.

Tukker, Arnold, and Ursula Tischner. 2017. New Business for Old Europe: Product-Service

Development, Competitiveness and Sustainability. Routledge.

Valencia Cardona, AM, R Mugge, JPL Schoormans, and HNJ Schifferstein. 2014. “Challenges

in the Design of Smart Product-Service Systems (PSSs): Experiences from

Practitioners.” In Proceedings of the 19th DMI: Academic Design Management

Conference. London, UK: Design Management Institute.

Wang, Yahui, Suihuai Yu, and Ting Xu. 2017. “A User Requirement Driven Framework for

Collaborative Design Knowledge Management.” Advanced Engineering Informatics 33

(August): 16–28. doi:10.1016/j.aei.2017.04.002.

Wang, Zuoxu, Chun-Hsien Chen, Pai Zheng, Xinyu Li, and Li Pheng Khoo. 2019. “A Novel

Data-Driven Graph-Based Requirement Elicitation Framework in the Smart Product-

Service System Context.” Advanced Engineering Informatics 42: 100983.

Xu, Zheng, Lin Mei, Kim-Kwang Raymond Choo, Zhihan Lv, Chuanping Hu, Xiangfeng Luo,

and Yunhuai Liu. 2018. “Mobile Crowd Sensing of Human-like Intelligence Using

Social Sensors: A Survey.” Neurocomputing 279: 3–10.

Zheng, Maokuan, Xinguo Ming, Liya Wang, Dao Yin, and Xianyu Zhang. 2017. “Status

Review and Future Perspectives on the Framework of Smart Product Service

Ecosystem.” Procedia CIRP 64: 181–186. doi:10.1016/j.procir.2017.03.037.

Zheng, Pai, Chun-Hsien Chen, and Suiyue Shang. 2019. “Towards an Automatic Engineering

Change Management in Smart Product-Service Systems–A DSM-Based Learning

Approach.” Advanced Engineering Informatics 39: 203–213.

Zheng, Pai, Tzu-Jui Lin, Chun-Hsien Chen, and Xun Xu. 2018. “A Systematic Design

Approach for Service Innovation of Smart Product-Service Systems.” Journal of

Cleaner Production.

Zheng, Pai, Yang Liu, Fei Tao, Zuoxu Wang, and Chun-Hsien Chen. 2019. “Smart Product-

Service Systems Solution Design via Hybrid Crowd Sensing Approach.” IEEE Access

7: 128463–128473.

Zheng, Pai, Zuoxu Wang, and Chun-Hsien Chen. 2019. “Industrial Smart Product-Service

Systems Solution Design via Hybrid Concerns.” In Procedia CIRP. Zhuhai &

Hongkong, China. doi:10.1016/j.procir.2019.02.129.

Zheng, Pai, Zuoxu Wang, Chun-Hsien Chen, and Li Pheng Khoo. 2019. “A Survey of Smart

Product-Service Systems: Key Aspects, Challenges and Future Perspectives.” Advanced

Engineering Informatics 42: 100973.

