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Abstract: To proactively fulfill multiple stakeholders’ needs in the engineering solution design process, the 

knowledge recommendation approach is adopted as a key element in the knowledge management system. 

Nevertheless, most existing knowledge recommendation approaches cannot simultaneously meet the higher 

standard of in-context accuracy and diversity. To address the issue, this paper proposes a context-aware 

diversity-oriented knowledge recommendation approach, thereby assisting stakeholders to accomplish 

engineering solution design in a smarter manner. Three diversity concerns, namely item-diversity, context-

diversity, and user-diversity are addressed by semantic-based content analysis, context definition and awareness, 

and user profile modelling, respectively. Hence, the proposed approach not only maximizes the diversity of the 

recommended knowledge but also guarantees its accuracy under multiple problem-solving contexts. Moreover, 

a practical engineering solution design case on a Smart 3D printer platform is conducted, to validate the efficacy 

of the proposed approach in providing usable and diverse knowledge items. It is anticipated this work can 

provide useful insights to practitioners in their knowledge-based engineering solution design process.  

Keywords: knowledge recommendation; diversity; context-aware; engineering solution design; engineering 

knowledge 

Notations and Abbreviations 
U Set of users, U = {U1, …, UM} BRHL(U) List of recent L records in the browsing history 

I Set of knowledge items, I = {I1, …, IN} CRH(U) List of records in the creating history 

C Problem-solving context REH(U) List of records in the revising history 

O Operation, O ∈ {Create, Revise, Browse} CxtSim Similarity between two contexts 

∆T Duration of an operation WordSim Similarity between two keywords 

R Behavior record, R = {U, I, C, ∆T, O} ItemSim Similarity between two knowledge items 

L Length of the user’s recent preference ProSim Similarity between two user professions 

v Value of a context feature UserSim Similarity between two users 

w Keyword in a knowledge item REL(I1, I2) Item relevance in solution design 

TP Set of topics, TP = {TP1, …, TPt} Pref(U, I) User’s preference on a knowledge item 

f(w) TF-IDF weight of a keyword Pref(U, I) Preference matrix 

S(I) Sequence number of browsing an item Pro(U, TP) User’s overall profession to a topic 

q(I) Quality of an item Usa(I, C) Item’s usability under a context 

https://doi.org/10.1016/j.knosys.2021.106739 This is the Pre-Published Version. 

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/



 2 / 31 

 

U(I) Users who have browsed I I(U) Items that have filled/prefilled preference 

Pf(U) User’s profession on all keywords Div(RL) Diversity of the recommendation list 

K Number of neighbors N Number of recommended items 

RL List of recommended knowledge items ND Number of deleted items in diversification 

KMS Knowledge management system UCF User-based collaborative filtering 

NDCG Normalized discounted cumulative gain BPR Bayesian Personalized Ranking 

1. Introduction 

To meet the rising user requirements from technical, social, and environmental aspects, engineering R&D 

is no longer restrained in an individual enterprise but becomes an open innovation process. For example, Smart 

Product-Service Systems that bundle e-services to customize the products [1], appear as a novel trend in the 

industry. It allows various stakeholders (e.g. manufacturers, service providers, customers) co-designing the 

functionalities, co-implementing the process, and co-evaluating the performance, which makes the engineering 

solution design process a more multidisciplinary knowledge-intensive design activity. To support the 

stakeholders and fulfill their possible knowledge need with high efficiency and efficacy, a knowledge 

management system (KMS) is essential. When stakeholders encounter technical problems in product design and 

service innovation, KMS is required to proactively supply a few but most-related knowledge items [2], thus 

assisting them to accomplish engineering solution design in a smarter way. 

Directly impacting the performance of using/reusing knowledge resources in engineering solution design, 

the knowledge recommendation approach serves as the key element in KMS. Derived from universal 

recommendation approaches, previous studies of the knowledge recommendation mainly rely on knowledge 

item similarities and user similarities, and aim to improve the accuracy of the recommendation results [3]. 

However, under the engineering solution design scenario, these accuracy-centric recommendation approaches 

will bring two fatal issues, namely, monotony topics and long-tail issues. For the first issue, since similar items 

share similar accuracy in the recommendation, these approaches are inclined to provide a list of items that are 

most accurate but narrowly ranged in one or a few topics, which cannot fulfill the needs for multidisciplinary 

knowledge in product/service solution design [4]. For example, in co-developing an online maintenance service 

for a 3D printer to improve its sustainability, stakeholders need to thoroughly determine the service logic in the 

maintenance workflow, where all possible working conditions and corresponding cost/benefit analyses are 

necessary to concern. In this situation, knowledge items in multiple disciplines are simultaneously demanded, 

like printing constraints under different working conditions, failure modes in mechanical and electrical structure, 

material properties of the selected filaments, conflicts between the printing schedule and maintenance schedule, 

and the corresponding impacts to the environment and business [5]. If the recommended knowledge just covers 

a single or only a few aspects, stakeholders are hard to proceed with their solution design process and come up 

with a comprehensive solution. In this case, the knowledge recommendation approach will lose the usability 

and efficacy in supporting engineering solution design. Therefore, the diversity of the recommendation list 

should be a concern. 
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For the second issue, among all pieces of knowledge stored in KMS, only a small portion of frequently-

rated items are more likely to be recommended, and in turn, more follow-up browsing records/user ratings are 

generated on these popular items. The rest and majority, named long-tail items, are hard to participate in the 

recommendation process and then gradually become discarded. As a long-term result, the suggested items are 

highly homogeneous to what stakeholders have received in the past [6], thus contributing to the unexpectedly 

poor performance in engineering solution design. Actually, different problem-solving contexts occur in the 

engineering solution design, where stakeholders will probably raise context-dependent questions and only 

generate specific knowledge needs beyond his/her expertise [7]. Popular knowledge items may fit for the 

majority of contexts and stakeholders, but reversely lose their pertinence in a specific case. Therefore, it is 

necessary to regard stakeholders’ expertise and their facing contexts in the recommendation process, thus 

maximizing the pertinency of the provided knowledge and minimizing the occurrence of the already-known 

pieces in the recommendation list. 

Aiming to fill the abovementioned gaps and supply higher satisfying results for engineering solution 

design, this paper proposes a context-aware diversity-oriented knowledge recommendation approach (CDKR), 

which fully concerns the diversities derived from knowledge items, problem-solving contexts, and user 

professions. The main contributions of this paper have threefold: (1) identifying three diversity requirements 

for the knowledge recommendation approach used in engineering solution design; (2) introducing two effective 

information sources to support engineering knowledge recommendation; and (3) proposing a user profession-

based prefilling process and a context-based diversification strategy. 

The remainder of this paper is organized as follows. Section 2 briefly introduces previous studies related 

to recommendation approaches and diversity strategies, proposes concerns in recommending knowledge for 

engineering solution design, and summarizes issues and requirements for CDKR. Section 3 proposes the 

framework of CDKR and articulates all its modules. To evaluate the performance of the proposed approach, 

Section 4 provides a case study using real data collected in the solution design of a Smart 3D printer platform, 

and further compared the proposed methodologies with former studies. At last, the conclusion and future work 

are highlighted in Section 5.  

2. Related works 

2.1 Recommendation approaches and diversity strategies 

Learning and predicting users’ interest according to their profiles and historical rating behaviors, the 

personalized recommender system is an essential tool to solve the ‘information overload’ issue [8]. The 

universal recommendation approaches leveraged in the recommender system can be mainly categorized into 

five types [2-3, 9]: demographic/social-network-based recommendation (DB/SNB), content-based/keyword-

based recommendation (CB/KB), collaborative filtering (CF), ontology/knowledge-based recommendation 

(OB/KB), and hybrid filtering (HF), are briefly summarized in Table 1. Although multiple recommendation 



 4 / 31 

 

manners rely on different processing of user’s profiles and historical rating behaviors, what they share is that 

they based on similarity computation, either of users, items, or both. Besides, the performance evaluation of 

these manners focuses overwhelmingly on only one important factor, namely, the accuracy in reproducing 

known user opinions that have been removed from a test dataset [10]. 

Table 1. Summary of universal recommendation approaches 
Manners Representatives Principles Pros Cons 

DB/SNB [11-12] Users with similar personal profiles / 

social relationships will have similar 

interests 

•  Easy to conduct 

•  Low computing cost 

•  New item problem 

•  Data collection issue due to 

privacy concerns 

CB/KB [13-15] Recommend items that have similar 

content to the user's past liked items 
•  Transparency 

•  User independence 

•  New user problem 

•  Overspecialization 

•  Heterogeneous data problem 

CF [16-19] Find similar users and recommend their 

favorite items (user-based CF); or find a 

similarly rated item and recommend it to 

the same user (item-based CF) 

•  No overspecialization 

•  Few input data needed 

•  Both new user and new item 

problems (cold start) 

•  Rating sparsity problem 

•  Long-tail issue 

OB/KB [9, 20-21] Leverage domain ontology/knowledge 

graph to match items and user interests 
•  Explainable 

•  No cold-start problem 

•  No rating sparsity 

•  No long-tail problem  

•  High cost in acquiring expert 

knowledge and constructing 

domain ontology 

•  High difficulty in reasoning 

HF [22-25] A combination of two or more 

abovementioned recommendation 

manners; or containing some novel deep 

learning/graph-based models. 

•  Overcome the most of 

limitations 

•  High cost and difficulties in 

the combination 

However, for practical concern, a highly accurate recommendation may not be necessarily the targeted 

one. For instance, some popular but generic items may cater to massive users, which are more likely to be 

recommended [26]. Given this, introducing a diversity strategy will better fulfill users’ needs. It will bring more 

recommendation opportunities to some less-accurate items. The diversity in the personalized recommendation 

is formally defined as the average dissimilarity between all pairs of items in the recommendation list (RL), as 

calculated in Eq. 1 [27]. Sim(Ii, Ij) indicates the similarity of two items in the list, and |RL| indicates the length 

of the list. 

( )
( )( )

( )
,

1 ,

1 1
2

i j j i
i jI RL I RL I I

Sim I I
Div RL

RL RL

∈ ∈ ≠
−

=
−

∑ ∑
       (Eq. 1) 

Based on this fundamental equation, studies in diversity-oriented recommendation mainly focus on two 

folds, namely, proposing more appropriate dissimilarity/similarity computing manners for the diversity 

evaluation, and developing better diversification strategies in recommendation algorithms [3]. For diversity 

evaluation, more delicate calculations are performed by evolving Eq. 1, which further clarifies the item 
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dissimilarity/similarity using the Gini coefficient, normalized discounted cumulative gain (NDCG), or other 

metrics [28-29]. The evaluation process is also refined to concentrate more on the user’s experience and includes 

additional factors like choice probability, preferred genres/topics, and user satisfaction [4, 6, 23, 26, 30]. As for 

diversification strategies, its nature is a trade-off between diversity and accuracy. One common and easy-to-

conduct strategy is post-filtering, which recommends top N+ND accurate items first, and then removes ND items 

to achieve the highest diversity [31], or just select top N representative items after the clustering [32]. Another 

strategy regards this trade-off as a multi-objective optimization, which leverages swarm intelligence, simulated 

annealing, genetic algorithms, or other heuristic algorithms to re-rank the recommendation list and achieves a 

Pareto Optimality on all the metrics (e.g. precision, recall, diversity, and serendipity) [33-35]. 

2.2 Recommend knowledge for engineering solution design 

In nowadays engineering solution design, advanced IoT techniques facilitate sensing data collection from 

ubiquitous-connected machines [36]. Meanwhile, massive stakeholders are also enabled to contribute their 

information through various channels (e.g. mobile crowdsensing networks [37]). A large volume of valuable 

knowledge is hence available and accessible to all the stakeholders in product/service operations and 

innovations. Under this novel situation in engineering solution design, although recommendation approaches 

mentioned in Section 2.1 can be directly transplanting to recommend knowledge items, two perspectives are 

further concerned to achieve an ideal knowledge recommendation performance.  

First, unlike recommending music/movies, which has simple item representations, shallow logical 

inferences, and domain-independent applications, recommending knowledge largely relies on some 

prerequisites, namely, knowledge representation and reasoning. Knowledge representation processes the 

structured (e.g. numerical sensing records), semi-structured (e.g. formatted annotations) or unstructured (e.g. 

natural language discussions) datasets collected from engineering solution design into a unified format, and 

knowledge reasoning establishes the semantical and logical relationship among the formalized knowledge items 

[7, 38]. As briefly summarized in Table 2, multiple pre-processing techniques are leveraged in representing and 

reasoning knowledge items that have various sources and types. To fulfill the prerequisites, ontology techniques 

are widely adopted to define the concepts, instances, and relations embedded in the unstructured and semi-

structured data, and natural language processing (NLP) techniques and graph-based techniques can further 

extract and infer the complex semantic relations. 
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Table 2. Prerequisites in recommending knowledge for engineering solution design 
Studies Recommended knowledge Data source Data type Key pre-processing techniques 

[26] Documents for design tasks Industrial knowledge base Unstructured Ontology; NLP 

[39-40] Component information for 

solving requirement 

Online user discussion Unstructured Ontology; Graph embedding  

[41] Novel functionalities and 

solutions 

Online webpages Semi-structured Ontology; NLP; Graph-based 

computing 

[42] Maintenance plans Industrial cases Semi-structured Ontology; Case-based reasoning 

[43] Empirical rules for 

product/service reconfiguration 

Standard surveys Structured Rough set; Cluster analysis 

[44] Design principles for service 

innovation 

Operational logs Structured Co-relation analysis 

Besides, since knowledge items are generated and leveraged under certain engineering scenarios, the 

context-dependency will largely impact the effectiveness of knowledge items in engineering solution design 

[45-46]. Therefore, the second concern in recommending knowledge items for engineering solution design is 

problem-solving contexts. These contexts are problematic situations characterized by the corresponding 

objectives and constraints, which desire specific knowledge to solve [2]. Considering the sorts and contents that 

can be cost-effectively collected from sensing devices and stakeholders’ profiles, problem-solving contexts in 

engineering solution design can be modelled with four domain-independent types of features [41], namely, (1) 

Physical context (information about the surrounding environment, like time, speed, temperature); (2) 

Operational context (information about the running status, like error code, software version, maintenance 

history); (3) Social context (information about the nearby products and services, like peer product family, third-

party service provider, spare part supplier); and (4) User context (information about the stakeholders and their 

usage, like demographics, usage experience). Obviously, when different problem-solving contexts occurred, 

stakeholders’ unuttered knowledge needs will be altered, and the knowledge recommendation list needs to be 

diversified accordingly. 

2.3 Summary 

2.3.1 Issues in current knowledge recommendation approaches for engineering solution design 

To assist stakeholders in engineering solution design in a smarter manner, higher standards of in-context 

accuracy and diversity are proposed in realizing a proactive knowledge supply. Summarized from the recent 

literature about knowledge recommendation and diversification strategies, two main issues are identified in the 

application scenario of engineering solution design.  

Firstly, a comprehensive evaluation of the diversity of knowledge items is missing. In the conventional 

scenario of recommending music/movies with diversification strategies, the diversity calculation of Eq. 1 is 

simply evaluated by the similarity/dissimilarity of tags or genres of items. However, in the scenario of 

engineering solution design, knowledge items are transdisciplinary and context-dependent. To define and 
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evaluate the diversity among knowledge items, a delicate inspection on the content of each item is necessary. 

Semantic relations among keywords, logical relations among sentences, and re-occurrence relations among 

problem-solving contexts should be concerned [2, 45]. 

Secondly, although a better diversity is achieved using current diversification strategies, regardless of 

users’ facing contexts and actual knowledge needs, there is some randomness in filtering or re-ranking the initial 

recommendation list [33]. In fact, in engineering solution design, it is meaningless to recommend an irrelevant 

engineering knowledge item under a particular problem-solving context, though including this item in the 

recommendation list may result in a higher diversity. Meanwhile, if the user has strong backgrounds in specific 

fields and has already gained enough knowledge in solving some sorts of engineering solution design tasks, 

he/she may not generate the needs for the corresponding knowledge items. In designing the context-based 

diversification strategy for engineering solution design, the already-known items should be perceived first, and 

then re-ranked to latter positions, or filtered out with higher priorities. 

2.3.2 Requirements for a novel knowledge recommendation approach 

To meet with the abovementioned gaps, a novel knowledge recommendation approach for engineering 

solution design should be developed. Concerning the perspectives of diversity and context-awareness, three 

requirements are proposed for this novel approach:  

1) Item-diversity: Analyze semantic meanings in knowledge items. Semantic-level content analysis is 

required to evaluate the dissimilarity/similarity of knowledge items in Eq.1, thus diversifying items using their 

containing concepts and relevance relations. 

2) Context-diversity: Provide context-based recommendations. To consider the context-dependency in 

knowledge items, the knowledge recommendation approach needs to adjust its recommendation list, with the 

concern of problem-solving context information in the current task of engineering solution design. 

3) User-diversity: Self-adjust for the backgrounds of stakeholders. As a further specified concern to the 

User context, stakeholders’ levels of mastering an engineering domain are essential. It enables a more targeted 

prediction on their actual knowledge need in the knowledge recommendation for engineering solution design. 

3. A context-aware diversity-oriented knowledge recommendation approach 

3.1 The overall framework 

Aiming to achieve high in-context accuracy and diversity simultaneously, this paper proposes a context-

aware diversity-oriented knowledge recommendation approach (CDKR) for smart engineering solution design. 

Figure 1 depicts the overall flowchart of this approach, which contains four modules.  
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Figure 1. The overall flowchart of the proposed approach 
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The first module is constituted of three inter-related historical data resources. Among them, the 

engineering knowledge base stores knowledge items, and these items include accumulated cases and lesson-

learned documents in the previous engineering solution design. As a typical data resource for the 

recommendation approach, user’s behavior records on knowledge items (e.g. browsing, creating, or revising 

the items) are also collected and leveraged. Besides, a novel data resource, sensing records for engineering 

solution design (e.g. operational logs for product/service components), is involved in the recommendation. It 

contains abundant problem-solving context information and can be cost-effectively collected with IoT-enabled 

smart sensors. 

Aiming to address the three requirements proposed in Section 2.3.2, the second and third modules, data 

pre-processing and context-aware diversity-oriented data analytics, derive three diversity-oriented data 

analytics models, namely, semantic-based content analysis aimed at item-diversity, context definition & 

awareness aimed at context-diversity, and user profile modelling aimed at user-diversity. As several former 

studies and research outcomes provide some mature methodologies for constructing domain-specific ontology 

[26, 47-49], perceiving context information [39-41, 50], and modelling user preference with behavior records 

[16, 23, 26], the process for data pre-processing will be briefly introduced. The subsequent processes, including 

knowledge items representation and similarity calculation, context-based topic division, and user profile 

modelling, will be illustrated with details in this paper. 

The last module interacts with the user, who is a stakeholder encountering a particular problem-solving 

context in engineering solution design. A user profession-based collaborative filtering manner with context-

based diversification strategies is conducted to recommend appropriate knowledge items, so as to assist him/her 

in accomplishing engineering solution design tasks. After the recommendation, the system will continue to 

record his/her following browsing/creating/revising behaviors, preparing for the next time recommendation and 

periodical updates of computing models. 

3.2 Data pre-processing 

3.2.1 Construct domain-specific ontology for evaluating semantic relations 

Defining all the concepts and their relations in a particular engineering domain, domain-specific ontology 

lays the foundation for a semantic-based similarity calculation in the proposed manner. A typical process for 

constructing ontology is based on the taxonomies in engineering domains [47]. Taxonomy reveals the superior-

subordinate relations among terms, and it usually serves as an index for the knowledge base in the related 

domain. An example of taxonomy is shown in Figure 2.  
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Figure 2. An illustrative taxonomy of Digital Twin used for engineering solution design 

To merge the taxonomies and establish a complete ontology, a co-occurrence-based analysis on the 

contents of knowledge items stored in the knowledge base will largely alleviate the burden of domain experts. 

Specifically, if two terms frequently co-occur in the knowledge items, an additional semantic relation is 

established to link two terms in the ontology. Then, the domain experts will determine the type and weight of 

this relation, as referenced in Table 3. When all pairs of terms have been traversed, a complete domain-specific 

ontology is established. 

Table 3. Type and weight of semantic relations in the ontology, referred from [48-49] 
Type of semantic relation Weight Instance 

Same / Synonym / Abbreviation 1.0 Engine Synonym Motor; IoT Abbreviation Internet of things 

Similar 0.95 Transportation Similar Logistics 

Is_a (superior-subordinate) 0.7 CAD model Is_a Data model 

Cause / Effected_by 0.6 Anomaly detection Cause Fault analysis 

Part_of 0.5 RFID Part_of IoT 

Before / After 0.3 Predictive maintenance Before Production scheduling 

(NULL) 0.0 (No relation established) 

Antonym -1.0 Negative sample Antonym Positive sample 

3.2.2 Perceive problem-solving context in smart engineering solution design 

In engineering solution design, stakeholders encountering different problem-solving contexts will raise 

different knowledge need. To diversify the recommendation list, massive product-sensed data and stakeholder-
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contributed data collected from IoT-enabled smart sensors can be leveraged to perceiving the context 

information [50]. 

Based on the context features summarized in Section 2.2, a specific problem-solving context can be 

encoded with key-value modeling, as illustratively shown in Figure 3. Specifically, for a problem-solving 

context containing p context features, a p-dimensional vector is encoded, namely, 1 2, ,..., p
pC v v v = ∈   , 

where vi is the value for the ith context feature. Note that the data collected from sensing devices and 

stakeholders’ profiles are heterogeneous, Table 4 also lists out some frequently used data analysis manners for 

typical data sources in context value determination [39-40]. Based on the vectors, the similarity between two 

problem-solving contexts, 1 1 1
1 1 2, ,..., pC v v v =    and 2 2 2

2 1 2, ,..., pC v v v =   , can be hence computed with Eq. 2. 

( ) ( ) ( )
1 2 1 2

1 2 1 2
1 2

1

1 , 0, 01, , , ,
0

p
i i i i

i i i i
i

v v v v
CxtSim C C bool v v bool v v

p else=

 = ≠ ≠
= = 


∑     (Eq. 2) 

 
Figure 3. Encode problem-solving context with context features 

Table 4. Data analysis manners in context value determination 
Data sources Stakeholder-contributed data Product-sensed data 

 Structural text or tag Natural language Numerical value Numerical value 

Analysis manners Table headers & elements Keyword extraction Predefined rules Predefined rules 

 Formal concept analysis Named-entity recognition Fuzzy rules Pattern recognition 

 Schema-based annotation Syntax analysis Rough sets Case-based reasoning 

 Predefined template Sentiment analysis Classifiers Decision tree 

 …… …… …… …… 

3.2.3 Model user preference with behavior records 

In recommending items of music/movies, user ratings on the items are leveraged for modelling user 

preference. However, it is sometimes hard to collect enough ratings, and also cannot guarantee the collected 

ratings truly reflect users’ feelings. Behavior records, which are abundant and more difficult to be manipulated, 

are hence introduced instead. In this paper, a piece of behavior record can be represented as R = {U, I, C, ∆T, 

O}, indicating that a user U operates (O, includes Create, Revise and Browse) on a knowledge item I under a 

problem-solving context C with a duration of ∆T. Some sample behavior records are shown in Table 5. 
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Table 5. Sample behavior records sequentially logged by KMS 
Record User Knowledge Item Context Duration (s) Operation 

1 U1: Jiang I46: Prevent a clogged extruder (173 words) [2, 3, 3, 2, 0, 2, 2, 1] 96 Browse 

2 U3: Li I33: Signs of overheating (44 words) [3, 2, 2, 1, 1, 1, 2, 2] 114 Browse 

… … … … … … 

76 U4: Hao I21: First layer issues (154 words) [2, 1, 1, 0, 0, 1, 1, 3] 330 Revise 

… … … … … … 

105 U6: Chen I43: Alleviate vibrations in fast printing (212 words) [2, 3, 3, 1, 1, 1, 1, 3] 1147 Create 

… … … … … … 

In modelling user preference, users’ sequential browsing records are considered. Specifically, for a user 

Ui, a vector BRHS(Ui) represents his/her total Stimes browsing history, namely: 

( ) ( ) ( ) ( ){ }1st 1st 1st 2nd 2nd 2nd th th th, , , , , ,..., , ,S i S S SBRH U I C T I C T I C T= ∆ ∆ ∆      (Eq. 3) 

Since the user’s preference changes over time, his/her latest L-times browsing history BRHL(Ui) will be 

leveraged to calculate his/her recent preference Pref(Ui, Ij) on the knowledge item Ij, namely: 

( ) ( ) ( ) ( ){ }

( ) ( )

( )( )
( ) [ ]

th

1th 1th 1th 2th 2th 2th th th th

th

, , , , , ,..., , ,

/
, , 1,

1
j

jS I j

L i S L S L S L S L S L S L S S S

jS I
i j jI I

j

BRH U I C T I C T I C T

T I
Pref U I S I S L S

S S I

− + − + − + − + − + − +

=

= ∆ ∆ ∆

∆
= ∈ − +

− +
∑

 (Eq. 4) 

where S(Ij) is the sequential number of his/her browsing on Ij in the history (i.e. ( )thj
jS I

I I= ), and |Ij| is the word 

count of Ij. L decides the range of the user’s recent preference, which will be fine-tuned subsequently.  

In this paper, the whole browsing history is utilized to evaluate the relevance among the knowledge items 

(Section 3.3.2), while the recent browsing history is leveraged to fill/prefill the preference matrix (Section 3.4.1) 

and recommend items with diversification (Section 3.4.2). As for the rest Creating and Revising records, they 

are adopted to evaluate the user’s profession towards a specific engineering domain (Section 3.3.3).  

3.3. Context-aware diversity-oriented data analytics 

3.3.1 Represent knowledge items and compute their similarity  

As shown in Eq. 1, the key consideration in diversification is to compute the similarity between two items. 

In this paper, the similarity between two knowledge items will be computed based on their words and phrases. 

Referring to Li et al. [41, 45], an NLP-based processing is detailed as follows: 

Step 1 (Sentence segmentation): For a knowledge item I, split its content into sentences with 

punctuations; 

Step 2 (Part-of-Speech tagging): For a sentence s in I, tag the part-of-speech and stem each word, and 

remain notional words labelled as NN (normal noun, singular), VB (verb, base form), ADJ (adjective), and 

ADV(adverb); 
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Step 3 (Syntactic parsing): Organize the tagged words of s with their syntactic relations, and remain 

relations labelled as nsubj (nominal subject), dobj (direct object), amod (adjectival modifier), and advmod 

(adverbial modifier). 

Step 4 (Phrase compiling): Compile a phrase p in s, if p matches with the syntactic patterns of NN-

(amod)-NN, NN-(nsubj)-VB, VB-(dobj)-NN, ADJ-(amod)-NN, or ADV-(advmod)-VB; 

Step 5 (Concept mapping): Referring to the domain-specific ontology established in Section 3.2.1, if p 

matches with a term in the ontology, then map p with this term and regard it as a compound word; Also map 

other single words; 

Step 6 (Keyword Extraction): Proceed to the next sentence with Step 2-5 until all the sentences have 

been processed; Extract all the notional/compound words in an item; 

Step 7 (Item representation): A knowledge item is represented with containing keywords and their term 

frequency – inversed document frequency (TF-IDF): 

( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nI w f w f w f= ,
( )

( )
| |log

1+| |
i

i
i

ww I

Count w
f

Count w
∈

= ×
∑

I
I

    (Eq. 5) 

where |I| is the count of knowledge items stored in the knowledge base, and |Iwi| is the count of items that contain 

wi; 

Step 8 (Item similarity computing): For two knowledge items, ( ) ( ) ( ){ }1 1

1 1 1 1 1 1
1 1 1 2 2, , , ,..., ,n nI w f w f w f=  and 

( ) ( ) ( ){ }2 2

2 2 2 2 2 2
2 1 1 2 2, , , ,..., ,n nI w f w f w f= , their similarity is computed with Eq. 6. 
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ItemSim I I
f f WordSim w w

n

∈∈

∈∈

 + 
 =
 
 
 

∑

∑
    (Eq. 6) 

where word similarity in Eq. 6 is calculated with the weight of relation defined in the ontology (see Table 3), 

the JCn similarity in WordNet, or the normalized pointwise mutual information [45, 48]. 
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     (Eq. 7) 

Case I. If two words can be both mapped to the ontology; 

Case II. Not fit for Case I, but two words can be both found in WordNet; 

Case III. Not fit for Case I and II. p(w1) is the proportion of knowledge items containing w1 among all 

the items (namely I), and p(w1, w2) is the proportion of items that simultaneously contain w1 and w2.  
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3.3.2 Establish knowledge relevance network and divide problem-solving context-based topics 

A commonly-used data analytics manner for diversity-oriented recommendation is item-clustering [3], 

which partitions several item communities from a content similarity-based item network. However, high 

similarity only reflects the belonging of the engineering domains, but it doesn’t indicate a strong relevance in 

solution design.  

In fact, the users of KMS will probably browse a series of items during the problem-solving process, and 

hence their sequential browsing history can be leveraged to model the relevance of items. Specifically, if two 

knowledge items, I1 and I2, are browsed by a user in a row under two similar or same problem-solving contexts 

(not limited to the recent history), a weighted relevance is accumulated. The total relevance is then computed 

by traversing the whole user set U. 
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  (Eq. 8) 

A knowledge relevance network, KRN = <V, E>, can be accordingly established, where the vertices are 

all the browsed knowledge items, and weighted edges indicate their relevance.  

To divide the knowledge relevance network into several topics, the Louvain algorithm is adopted in this 

paper [51]. It is a robust graph-based community-partitioning approach seeking the highest modularity partition, 

where the modularity (Q) is defined as follows. One can refer to [50-51] for the detailed processes for optimizing 

Q and evaluating robustness in partitioning.  
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    (Eq. 9) 

With partitioning results, knowledge items are divided into t problem-solving context-based topics, 

namely, TP = {TP1, TP2, …, TPt}. Items clustered to the same topic have strong content, context, and browsing 

behavior relations simultaneously, which reflects a more comprehensive relevance in engineering design. 

3.3.3. Evaluate user profession to a specific problem-solving topic 

In order to avoid recommending an already-known knowledge item to a domain-expert, user profession 

to a specific problem-solving topic, as a specified User Context, is further evaluated with their behavior records 

of creating or revising related items. Specifically, the user profession is evaluated by a profession distribution 

on the keywords, namely, ( ) ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nPf U w pf w pf w pf= .  

Similar to Eq. 3, a user’s SP-times creating history and SQ-times revising history are firstly retrieved and 

represented as follows: 

( ) ( ) ( ) ( ){ }1st 1st 1st 2nd 2nd 2nd th th th, , , , , ,..., , ,
P P P

CR CR CR CR CR CR CR CR CR
S S SCRH U I C T I C T I C T= ∆ ∆ ∆    (Eq. 10) 
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Q Q Q

RE RE RE RE RE RE RE RE RE
S S SREH U I C T I C T I C T= ∆ ∆ ∆    (Eq. 11) 

The quality of created and revised items is also concerned in measuring the user profession. It is evaluated 

by the relative durations (∆T/|I|) in other users’ browsing records, as computed in Eq. 12. 
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    (Eq. 12) 

U(Ij) in Eq. 12 is the set of users who have browsed Ij. Note that one item can be repetitively browsed by 

one user, so only the longest relative duration is selected. 

Based on the creating and revising history and quality of items, the corresponding weight for each word 

wi in profession evaluation is computed as follows: 

( )
( )

( )
( )

i C i R
C R

C R
w I w Ii C i R i
I CRH U I REH U

pf q I f q I fα ∈ ∈
∈ ∈

= +∑ ∑        (Eq. 13) 

α in Eq. 13 is a coefficient considering the originality in creating items, which is set to 3 in the calculation. 

The representation of Pf(U) is in the same form of knowledge items (i.e., Eq. 5), thus enabling the 

calculation using ItemSim (i.e. Eq. 6). Specifically, the user profession to a specific problem-solving topic is 

evaluated with Eq. 14, where |TPk| is the count of knowledge items clustered to topic TPk. 
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Based on Eq. 14, the similarity between two users’ professions can be calculated with the cosine similarity: 
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  (Eq. 15) 

3.4. Recommend knowledge for engineering solution design 

3.4.1 Prefill preference matrix with the topic and profession information 

Since the number of knowledge items is much larger than users in engineering solution design, a user-

based collaborative filtering algorithm (UCF) is leveraged in this paper. Based on a user-item preference matrix 

shown in Eq. 16, UCF firstly finds K-nearest neighbors for the current user, and then predicts the preference of 

an unfilled knowledge item. However, since one user’s preference may only focus on one or a few problem-

solving topics, he/she will only browse limited numbers of knowledge items. This situation results in the high 

sparsity of Pref(U,I), namely, plenty of slots cannot be computed with Eq. 4 and nor filled. Therefore, before 

conducting UCF, Pref(U,I) should be pre-filled as much as possible.  
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With topic division and user profession information achieved in Sections 3.3.2 and 3.3.3, two prefilling 

cases are considered. Firstly, if a knowledge item Ij hasn’t been browsed by a user, but the items in the same 

problem-solving topic TPi have been browsed recently, then the user may need this item with the same degree, 

and hence the user’s preference on Ij will be prefilled with the average preference on the browsed items in TPi: 
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Secondly, for the rest items, if a user achieves the highest profession among all the users in a specific 

problem-solving topic TPj, it’s possible that he/she will no longer need the related knowledge items in this topic, 

and hence the preference on the items in TPj will be prefilled with the minimum preference in the recent 

browsing history: 

( ) ( ) ( ){ } ( )*
2 , min , , , arg max ,

L ii j i j j i U jI BRH UPref U I Pref U I I TP U Pro TP∈= ∀ ∈ = U    (Eq. 18) 

Beyond these two prefilling cases, the remaining slots in Eq. 16 are still left unfilled, which will be 

predicted by the collaborative filtering algorithm. 

3.4.2 User-based collaborative filtering with context-based diversification strategies 

Users’ background information usually impacts their actual knowledge needs and preferences on 

knowledge items [22]. In this paper, user professions on different problem-solving topics are concerned in 

finding K-nearest-neighbors in UCF. The similarity between two user’s preference is hence calculated with a 

profession-weighted Pearson correlation coefficient (PCC): 
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  (Eq. 19) 

where I(U1) represents the set of items that have filled/prefilled preference by the user U1 in Eq. 16. 

( )( )1 1,Pref U UI  indicates U1’s average preference among all the items in I(U1). ProSim(U1,U2) is computed 

with Eq. 15, which amplifies the preference similarity using the profession similarity and hence achieves a 
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higher precision in finding K-nearest neighbors. When the set of neighbors UN are determined, the preference 

of the unfilled slots can be predicted: 
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The last step in the knowledge recommendation is to select and rank the knowledge items, in order to 

achieve accuracy and diversity simultaneously. This paper copes with a post-filtering strategy. For a specific 

user, recently un-browsed knowledge items with the Top N+ND preference are firstly selected as an optional set, 

which guarantees the accuracy. Then, a context-based diversification strategy is conducted to consider his/her 

facing problems. Specifically, for an item Ij in the optional set, all users’ recent L-times browsing histories are 

traversed to fetch all the browsing records on this item (i.e., BRHL(U, Ij)), so as to determine its usability under 

the current context C0: 
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  (Eq. 21) 

Re-ranking the optional set with the usability, and then deleting the last ND items in repetitive problem-

solving topics, a Top-N recommendation list is finally generated. It will provide both accurate and diverse 

knowledge items, thus supporting engineering solution design in a smarter way. 

4. Case study 

In this section, we first describe the background of Smart 3D printer platform and the dataset collected in 

a real solution design task. Then, the performance of CDKR is evaluated and compared with several state-of-

the-art recommendation approaches. At last, we further discuss the efficacy of CDKR in providing accurate and 

diverse knowledge items, as well as the limitations in data preparation and pre-processing.  

4.1 Background and datasets 

Nowadays, 3D printer platforms can be bundled with multiple customized services, for example, remote 

printing configuring/monitoring and maintenance scheduling. Therefore, it’s able to co-create value for multiple 

stakeholders, including designers, manufacturers, customers, maintenance staff, and online service providers. 

However, due to the lack of essential engineering knowledge about 3D printers and printing processes, it often 

contributes to unexpected failures and high costs in new product/service innovation.  

To mitigate this, a mobile app-based KMS was developed to manage the knowledge items accumulated 

in 3D printer platform solution design. As shown in Figure 4, this KMS was able to collect the sensing data 

from the 3D printer platform and perceive the corresponding problem-solving contexts. Meanwhile, user 

behavior records were also collected and stored in KMS. As an important module in KMS, the proposed CDKR 

approach was responsible for recommending the highly related knowledge items. It would continuously fulfill 
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users’ knowledge needs, until a suitable solution for reconfiguring the 3D printer platform was finally come up 

(e.g. upgrade parameter setting for an e-service module). 

To compare the performance of CDKR with several state-of-the-art recommendation approaches, this 

section conducted an experiment in a solution design task of printing troubleshooting in remote printing 

configuring/monitoring. Aiming to innovate a timely service of printing tracking, total 11 stakeholders 

(including designers, maintenance staff, and customers) were involved. Before this solution design task, 2638 

historical behavior records (including 2448 browsing records, 46 creating records, and 144 revising records) on 

87 knowledge document items of Guides to Printing Quality Assurance were collected, which served as the 

training dataset. Some sample records are shown in Table 5. Besides, during the completion of this task, another 

272 browsing records were self-directedly generated by these stakeholders (i.e. without receiving any 

recommendations from CDKR), and these records were used as the testing dataset. The proposed approach was 

coded with Python 3.7 and ran on a PC with 16GB RAM and Core i7 CPU. 

 
Figure 4. A mobile app-based KMS for the Smart 3D printer platform 

4.2 Evaluation metrics 

For each non-repetitive pair of problem-solving context and user (U,C) in the testing dataset, an N-item 

recommendation list RL(U,C) was generated. To evaluate the performance of accuracy and diversity, as well as 

the time complexity, four widely-used evaluation metrics were selected. 

• F-Score 

F-score was adopted to evaluate the accuracy of the recommended results. For each context, compared 

the recommended list RL(U,C) with the actually-browsed non-repetitive items in the testing dataset (i.e., 

BRHtest(U,C)) to compute F-score with the precision and recall.   
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• NDCG (Normalized discounted cumulative gain) 

As another metric to further evaluate the accuracy, NDCG score was computed with the rankings in the 

N-item recommendation list. 
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• Personalized diversity 

Personalized diversity (see Eq. 1) was adopted to evaluate the diversity of the recommended results. In 

this case, the similarity between two knowledge items was computed by ItemSim(Ii, Ij) in Eq. 6. 
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• Online response time for the one-time recommendation 

Since different baseline algorithms relied on different training methods and various machine learning 

framework, the time consumed for offline model construction was not comparable. Therefore, this paper only 

measured the online response time T for generating one RL(U,C) under one problem-solving context. 

4.3 Implementation and fine-tuning of the proposed approach 

As introduced in Section 3.2.1, a pre-defined ontology containing 267 concepts in the 3D printer domain 

was leveraged in this paper. The relationship among these concepts was quantified with Table 3. Then, to 

complete NLP-based processing on the contents of knowledge items (Section 3.3.1), NLTK, a prestigious NLP 

tool, was adopted to extract the keywords for each knowledge item. For calculation simplicity, 30 words with 

the highest TF-IDF values were remained for representing each item and computing the item similarity between 

a pair of items.  

Dividing problem-solving topics for the knowledge items was based on the perceiving of context 

information. In this case, 9 context features were considered and valued, as shown in Figure 3. Based on all the 

browsing history in the training dataset, the adopted Louvain algorithm converged with a result of 14 partitioned 

communities. Table 6 shows some problem-solving topics. Based on these topics, the most professional user on 

each topic was determined using their creating and revising history. 
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Table 6. Extracted problem-solving topics and the user with the highest profession  
Topic Containing Knowledge Items Representative Keywords Possible 

troubleshooting issues 

Most 

professional User 

TP1 I1, I2, I8, I18, I34, I35, I46, 

I60, I76  

Filament, Bed, Nozzle, First 

layer, Bed temperature, … 

Print Sticking U10 

TP2 I3, I4, I7, I21, I25, I37, I47, 

I54, I64, I84, I87 

Extrusion, Blockage, Filament, 

Feed rate, Material, … 

Inconsistent Extrusion U6 

TP3 I5, I31, I41, I42, I56, I61, I86 Temperature, Fan, Fan speed, 

Hot end, Thermistor, … 

Overheating U6 

… … … … … 

An important parameter of CDKR was L in Eq. 4, which indicated the range of the user’s recent preference. 

This section will fine-tune it to achieve the best recommendation performance. Specifically, for each length of 

L, Top 9 items were firstly recommended by 5 nearest neighbors, and 4 items were then filtered out by the 

diversification strategy (i.e., K = 5, N = 5, and ND = 4, referring to [31]). The average scores of F-Score, NDCG, 

Div, and T on total 22 non-repetitive pairs of (U, C) were shown in Figure 5. When L increased to 30, F-Score 

and NDCG kept increasing, while Div kept decreasing. Three metrics became stable when L was larger than 30. 

Besides, the response time for the one-time recommendation became slightly larger when L increased. This 

paper preferred a rather small L and hence set it to 30, so as to reduce the calculations in model constructing.  

 
Figure 5. Performance of the proposed approach under different L 

To showcase the validity of the recommendation results, a troubleshooting case was reported as an 

example. This case happened on user U6, who had the highest profession on the topics of Inconsistent Extrusion 

(TP2), Overheating (TP3), and Supporting Structures (TP7). His problem-solving context information was 

encoded as [3,3,1,1,1,2,1,2,3], which indicated that this expert customer encountered a stringing issue when he 
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conducted a precise printing with the overheated nozzle and bed. Table 7 reported the recommended list for this 

case. His actual browsing list, with the ratio between browsing duration and word counts, was also reported.  

Table 7. Recommended list and actual browsing list for an exemplary case 
Recommended List generated by CDKR Actual browsing list (Sorted by the browsing sequence) 

I40: Clean the outside of the nozzle I82: Burnt stuff dropping on the print (0.48s/word) 

I45: Repair the leaking hot end I45: Repair the leaking hot end (3.69s/word) 

I76: Tips for printing with PETG filament I40: Clean the outside of the nozzle (3.22s/word) 

I62: Popping noise coming from the extruder I25: Increase retraction distance and speed (0.79s/word) 

I16: Printing slower, printing better I26: Increase travel speed to fix oozing (0.62s/word) 

I82: Burnt stuff dropping on the print (Deleted in diversification) I45: Repair the leaking hot end (0.43s/word, re-occurred) 

I60: Excessive adhesion of PETG filament (Deleted in diversification)  I24: Arrange prints closer (0.56s/word) 

I9: Dimensional accuracy of models (Deleted in diversification) I16: Printing slower, printing better (0.56s/word) 

I32: Clicking motors (Deleted in diversification) I76: Tips for printing with PETG filament (2.13s/word) 

Performance in this case:  I40: Clean the outside of the nozzle (0.81s/word, re-occurred) 

F-score: 0.615; NDCG: 0.637; Div: 0.660; T: 0.834s I16: Printing slower, printing better (0.20s/word, re-occurred) 

Commonly recommended troubleshooting knowledge items for Overheating was replacing the thermistor 

and adjusting the temperature setting to conduct a cooler printing. However, as an expert customer, he meant to 

conduct precise printing with very slow printing speeds, where the heat dissipation conditions were good enough. 

The common items were hence not suitable for his context (actually, he didn’t browse any item in the topic of 

Overheating as well). Instead, knowledge items about components maintenance (I40 and I45) and filament 

selection (I76) aroused U6’s interest (longer browsing duration per wordcount), which might be more useful. 

Reflected in the proposed recommendation approach, his profession on TP3 (Overheating) and the values of 

the first four context features were fully concerned. Knowledge items in TP3 were largely filtered out in the 

final recommendation list, while items belonged to other topics were remained and re-ranked to the top places, 

thus achieving high accuracy and diversity. Meanwhile, through a follow-up interview, U6 also agreed that the 

recommended knowledge items would precisely and comprehensively solve his facing troubles. 

4.4 Comparisons and discussions 

4.4.1 Performance comparison of CDKR over baseline algorithms 

Based on the user-based collaborative filtering approaches, the proposed approach introduces two sources 

of information into the recommendation process, namely, user problem-solving context and user profession. 

Besides, to achieve a higher diversity in the results, a context-based diversification strategy is also proposed. 

To validate the advantages, a comparison was conducted on the following algorithms: 

• Basic user-based collaborative filtering approach (UCF); 

• Bayesian personalized ranking (BPR), which treats users’ and their nearest neighbors’ feedback as relative 

preferences rather than absolutely like or not [25]; 
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• A diversity-balanced collaborative filtering approach (Div-CF) [4]; 

• The proposed approach with a diversity-maximizing strategy (CDKR-MaxDiv, post-filter the results with 

the Total Diversity Effect Ranking model proposed in [31]); 

• The proposed approach without context information (CDKR w/o Cxt, set CxtSim in Eq.2 to 1);  

• The proposed approach without user profession information (CDKR w/o Pro, set pfi in Eq. 13 to 0);  

• The proposed approach (CDKR). 

All the algorithms considered 5 nearest neighbors (i.e. K = 5) in the recommendation and finally retrieved 

Top-5 items as the recommendation list. In BPR, stochastic gradient descent (SGD) manner was leveraged to 

optimize the model with a preferred regularization parameter of 0.01 and a learning rate of 0.1 [25]. In Div-CF, 

the trust matrix between users was formed using PCC in Eq.19, and the balancing parameter was set to 0.4 as 

recommended in [4]. The performance improvement of CDKR over other baseline algorithms was measured 

using all 22 contexts, as reported in Figure 6 and Table 8. The pairwise T-test was also performed on the results 

of CDKR and each baseline algorithm. To illustrate the difference in the performance of algorithms more clearly, 

recommendation lists generated for the example in Table 7 were also compared in Table 9. 

 
Figure 6. Performance comparison of CDKR over baseline algorithms   
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Table 8. Statistics of the performance comparison 
 F-Score NDCG Div T (s) 

 Mean SD Mean SD Mean SD Mean SD 

UCF 0.181 *** 0.073 0.161 *** 0.066 0.433 *** 0.140 0.164 *** 0.034 

BPR 0.242 *** 0.092 0.192 *** 0.095 0.386 *** 0.159 0.162 *** 0.042 

Div-CF 0.245 *** 0.106 0.201 *** 0.099 0.673 0.151 0.321 *** 0.031 

CDKR-MaxDiv 0.424  0.091 0.416 ** 0.108 0.719 0.188 0.855 0.081 

CDKR w/o Cxt 0.225 *** 0.083 0.168 *** 0.069 0.476 ** 0.178 0.867 0.050 

CDKR w/o Pro 0.351 *** 0.089 0.362 *** 0.102 0.635 0.165 0.859 0.047 

CDKR 0.467 0.071 0.509 0.103 0.641 0.129 0.871 0.077 

Note: Numbers in bold indicate the best performance; SD: standard deviation; * indicates the significance in T-test, where * p-value < 
0.05, ** p-value < 0.01 and *** p-value < 0.001 

Table 9. Comparison of the recommended lists for the case reported in Table 7 
Approaches UCF BPR Div-CF CDKR 

Top-5 Items I36: Fail to print supports I16: Printing slower, 

printing better 

I67: Causes of droopy 

overhangs 

I40: Clean the outside 

of the nozzle 

I39: Print thinner layers to 

prevent wrapping 

I68: Print overhangs and 

bridges 

I16: Printing slower, 

printing better 

I45: Repair the leaking 

hot end 

I19: Layer shifting I2: Settings for printing the 

first layer 

I39: Print thinner layers 

to prevent wrapping 

I76: Tips for printing 

with PETG filament 

I16: Printing slower, 

printing better 

I13: Aviod molten & 

deformed printing  

I20: Surface quality 

above supports 

I62: Popping noise 

coming from the extruder 

I68: Print overhangs and 

bridges 

I19: Layer shifting I24: Arrange prints 

closer 

I16: Printing slower, 

printing better 

Performance 

in this case 

F-Score: 0.154 

NDCG: 0.109 

Div: 0.403 

T: 0. 207s 

F-Score: 0.154 

NDCG: 0.253 

Div: 0.399 

T: 0.175s 

F-Score:0.308 

NDCG: 0.257 

Div: 0.676 

T: 0.291s 

F-Score: 0.615 

NDCG: 0.637  

Div: 0.660 

T: 0.834s 

Approaches CDKR w/o Cxt CDKR w/o Pro CDKR-MaxDiv  

Top-5 Items I19: Layer shifting I7: Temperature and over 

extrusion 

I82: Burnt stuff 

dropping on the print  

 

 I16: Printing slower, 

printing better 

I40: Clean the outside of 

the nozzle 

I9: Dimensional 

accuracy of models 

 

 I6: Scratches on the top 

layers 

I16: Printing slower, 

printing better 

I32: Clicking motors  

 I68: Print overhangs and 

bridges 

I5: Part cooling fan setting I76: Tips for printing 

with PETG filament 

 

 I2: Settings for printing 

the first layer 

I76: Tips for printing 

with PETG filament 

I40: Clean the outside 

of the nozzle 

 

Performance 

in this case 

F-Score: 0.154 

NDCG: 0.160 

Div: 0.425 

T: 0.848s 

F-Score: 0.462 

NDCG: 0.384  

Div: 0.631 

T: 0.888s 

F-Score: 0.462 

NDCG: 0.460  

Div: 0.783 

T: 0.920s 
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• Accuracy improvement brought by considering problem-solving context information 

The problem-solving context information has long been regarded as the key element in both engineering 

solution design [1, 40, 50] and knowledge needs fulfillment [2]. The comparison in Figure 6 and statistics results 

in Table 8 also concords with this statement: CDKR significantly outperformed UCF, BPR, Div-CF, and CDKR 

w/o Cxt on accuracy metrics of F-Score and NDCG.  

Without considering the context information, the recommendation approaches would only consider the 

user’s past browsing records and tend to recommend some general knowledge items that have been browsed 

under a larger range of problem-solving contexts. As shown in Table 9, I16 (Printing slower, printing better), 

I19 (Layer shifting), and I68 (Print overhangs and bridges) were some frequently browsed knowledge items. 

Including these popular items without pertinence, F-score and NDCG scores of the recommendation list 

generated by non-context-aware algorithms were largely impaired. In contrast, considering the context 

similarity in item relevance evaluating (Eq. 8) and the diversification (Eq. 21), CDKR regarded some popular 

items as irrelevant and hence recommended more context-related ones instead.  

• Further accuracy improvement brought by considering user profession information  

Comparing the results of CDKR w/o Pro and CDKR, the user profession information is also proved to 

improve the accuracy one step further.  

As analyzed before, a user with specific expertise may not need knowledge items in corresponding 

domains anymore. In the proposed approach, on one hand, users’ profession was articulately modelled using 

his/her actual behavior records (i.e. creating and revising knowledge items); on the other hand, familiar items, 

as well as their similar items in the same problem-solving topic (like I5 and I7 to U6), were discovered based 

on the content analysis and filtered out in the prefilling process. Therefore, recommended items would 

concentrate more on topics that the user was unfamiliar, and better fill his/her possible knowledge gap in smart 

engineering solution design.  

• Accuracy-Diversity balance achieved by the context-based diversification strategy 

Comparing the results of CDKR-MaxDiv and CDKR, the context-based diversification strategy in CDKR 

also shown effectiveness in balancing accuracy and diversity. As reported in Table 8, even though the highest 

Div was achieved by CDKR-MaxDiv, the difference was not significant. However, the NDCG score of CDKR-

MaxDiv was significantly lower, which impaired its validity in the practice. 

In fact, for two lists separately generated by CDKR-MaxDiv and CDKR, they shared the same items before 

diversification. However, neglecting users’ real contexts in the diversification, some high context-relevance 

knowledge items (like I45 in Table 8) were randomly deleted in the re-ranking of CDKR-MaxDiv, while some 

low context-relevance ones (I9 and I32) occupied the top places. Reversely, through the context-based 

diversification proposed in CDKR, items’ usability under the facing problem-solving context was considered, 

and low-usable items in repetitive problem-solving topics were deleted. It guaranteed enough accuracy first, 

then pursued higher diversity to achieve better balance.  



 25 / 31 

 

4.4.2 Time complexity of CDKR  

Seen from Figure 6 and Table 8, CDKR consumed the longest time in the one-time recommendation, 

compared to baseline algorithms. Hence this section will further discuss the time complexity of CDKR and offer 

some mitigations to reduce the computing time.  

In the worst-case (i.e. every user has browsed and created/revised all items, and a recommendation is 

made using all users and all records), the time complexity for item similarity computation is O(|I|2), and 

O(|U|×|R|+|U|2) for profession-weighted user similarity. As for online computation, O(|U|×|I|) is required for 

preference pre-filling and CF, and O(|R|) for the context-based diversification. |U| is the number of users, |I| is 

the number of items, and |R| is the number of records (in this case, O(|R|) ≈ O(|U|×|I|)).  

In fact, due to the high sparsity in Pref(U,I), the actual time complexity for online computation is much 

lower. The ideal complexity for prefilling and CF will only be O(|U|), as I(U1) ∩ I(U2) in Eq. 19 just contains a 

limited portion of items. Meanwhile, since only recent L times records of each user will be traversed in 

diversification, O(|R|) of the context-based diversification can be regarded as L×O(|U|). Thereby, a smaller L 

(but still guarantees the performance) will be more appropriate to reduce the time of online computing. 

Besides, with a periodical and incremental update manner, the time complexity for offline model 

construction is also not as high as expected. For the matrix of item similarity, it is rather stable and can be 

directly reused, since the contents of knowledge items don’t change frequently. For the matrix of user similarity 

and topic division, they can be incrementally updated with an approximate complexity of O(|U|+|I|), when few 

new browsing records are collected. Therefore, for a well-established CDKR model, the time complexity for the 

incremental update is acceptable.  

4.4.3 Improvement to the engineering solution design process 

To further discuss the improvement of CDKR in assisting stakeholders in engineering solution design, we 

also qualitatively compared the solution design process with and without CDKR, and the usual process assisted 

by common recommendation approaches. 

After the experiment in 3D printer platform solution design, referring to concerns proposed in [2], a survey 

was conducted on 11 involved stakeholders. The Delphi method was leveraged to arrive at a consensus. As 

shown in Table 10, the panel of stakeholders agrees that the engineering solution design process will be hard to 

proceed without any assistance from the knowledge recommendation approach. As the most common 

recommendation approach nowadays, the content-based/keyword-based recommendation approach [13-15] will 

provide some highly context-relevant knowledge items. However, these items are usually not comprehensive 

and sometimes already known, thus performing poorly in covering users’ knowledge needs in the solution 

design process. Another common approach, CF [16-19], can rapidly supply knowledge items according to 

similar users’ behaviors, but it lacks a pertinence to the facing context. As a result, the generated design solution 

tends to be generic and sometimes it becomes infeasible due to special constraints in particular contexts. With 

rather high sensitivity to context details and high diversity in covering multi-facet knowledge needs, the 
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proposed CDKR approach is regarded to overcome the above shortcomings, thereby assisting stakeholders to 

generate satisfying and even innovative design solutions. 

Table 10. Qualitative comparison in the aspect of engineering solution design process 
 Without 

recommendation 

(Manual searching) 

With content-based/ 

keyword-based 

recommendation 

With ordinary CF like 

UCF 

With the proposed 

CDKR 

Direct usefulness 

of retrieved items 

 

Poor: Only a few are 

usable knowledge 

Medium: Some task 

relevant knowledge 

Medium: Some task 

relevant knowledge 

Good: Direct solution 

of an emerging 

problem 

Pertinence to the 

facing context 

 

Poor: Only a few are 

related to the context 

Good: Sensitive to 

details in the context 

Poor: Regardless of the 

facing context 

Good: Sensitive to 

details in the context 

Coverage of 

knowledge needs 

 

Medium: Some 

required knowledge is 

not easy to find 

Poor: Only focus on one 

or few already known 

disciplines 

Medium: Can be rather 

exhaustive, regarding 

similar users’ behaviors 

Good: Diversified 

topics that can fully 

cover the needs 

Prerequisites 

before querying 

 

Poor: Need to describe 

the problem clearly, 

which is hard 

Medium: Need historical 

behaviors in solving 

similar problems  

Good: No specific 

requirement for an 

individual user 

Good: No specific 

requirement for an 

individual user 

Time consumed in 

solving problem 

 

Poor:  Keep searching 

and keep trying for a 

long time 

Medium: Need repetitive 

queries if retrieved items 

are not inclusive 

Good: Quick to find some 

necessary items 

Good: Quick to find 

some necessary items 

Satisfaction of the 

generated design 

solution 

Poor: Sometimes hard 

to generate a feasible 

design solution 

Medium: A precise but 

not comprehensive 

design solution 

Medium: Usually a 

generic design solution, 

sometimes infeasible 

Good: Solutions can be 

quite innovative 

sometimes 

4.4.4 Limitations in the proposed approach 

Besides the improvements, there are still two limitations in CDKR. Firstly, in pre-processing work, CDKR 

depends on respective techniques of context modelling and knowledge representations/content-analysis [2, 26, 

33, 35]. Especially for domain-specific ontology modelling (Section 3.2.1) and context encoding (Section 3.2.2) 

addressed in this paper, if there are no previous research outcomings in Smart 3D printer platform development 

served as the basis for the proposed approach, it will require a large quantity of expert knowledge and human 

intervention. This issue refrains the prospection of rapidly transplanting the proposed approach to other domain-

specific cases. Regard this, a cost-effective procedure better leveraging massive heterogeneous data and 

information resources in smart engineering solution design should be integrated as the basis of the proposed 

approach (e.g. domain-level knowledge fusion [52] and text-based feature and relation extraction [53]), thus 

enabling rapid domain-specific ontology modelling and precise context feature value determination. 

Secondly, although a profession-based prefilling process is leveraged to mitigate the sparsity of the 

preference matrix, inherited from the basic user-based collaborative filtering, the cold start issue of new user 

still exists in the proposed approach. For a new KMS user (i.e., a stakeholder in engineering solution design) 

who has few or none browsing/creating/revising records, his/her preference and profession cannot be modelled. 



 27 / 31 

 

To handle this, two mitigation plans might be useful. On one hand, from a perspective of information 

management, KMS can be further integrated with the human resources management system (HRMS), project 

management system (PMS), and customer relationship management system (CRMS), so as to collect 

stakeholders’ demographic information and historical participation information in engineering solution design. 

Similar to clustering knowledge items and prefilling preference with problem-solving topics, a new user can be 

clustered/classified to a particular user group, with his/her preference information and profession information 

prefilled by the known members in the same group. On the other hand, from a perspective of open innovation, 

an incentive mechanism (e.g. monetary incentives or KPIs) can be deployed to encourage KMS users to create 

new knowledge items, improve their quality, and share them with their partners in engineering solution design. 

As more behavior information collected, the models inside the proposed approach can be periodically evolved, 

so as to overcome the cold start issue. 

5. Conclusion and future work 

To support the knowledge-intensive process in engineering solution design, KMS is leveraged to 

proactively provide domain-specific engineering knowledge items to the stakeholders, where the knowledge 

recommendation approach serves as the basis for this core functionality. Aiming to meet the high standard of 

in-context accuracy and diversity simultaneously, this paper comprehensively considers item-diversity, context-

diversity, and user-diversity in the scenario of engineering solution design, and then proposes a context-aware 

diversity-oriented knowledge recommendation approach. The main contributions are summarized into three 

aspects below: 

1) Identified three diversity requirements for the knowledge recommendation approach used in 

engineering solution design. Based on the features in leveraging the accumulated engineering knowledge items 

and the analysis of the diversity and context-aware concerns in engineering solution design, three requirements, 

namely, item-diversity, context-diversity, and user-diversity, are identified as the key requirements in 

supporting engineering solution design.  

2) Introduced two effective information sources to support engineering knowledge recommendation. Two 

information sources, problem-solving context information and user profession information, are perceived and 

evaluated from the massive product-sensed data and stakeholder-generated data collected from engineering 

solution design. Compared to only considering the browsing records (or rating records) in the conventional 

collaborative filtering, these two information sources are proved to largely improve the in-context accuracy and 

diversity in the recommendation. 

3) Proposed a user profession-based prefilling process and a context-based diversification strategy. They 

fundamentally reduce the possibility of recommending an already known knowledge item to a stakeholder, and 

also balance the accuracy and diversity in the final results, thus improving the user experience in receiving the 

recommended list in smart engineering solution design. 
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Based on these contributions, future research directions lie in two aspects. On one hand, advanced context-

aware manners and knowledge representation manners can be integrated into the proposed manner. It will 

guarantee the quality and quantity of raw datasets collected from engineering solution design, and further 

improve the cost-efficiency of the proposed approach in pre-processing these multi-source, heterogeneous data. 

On the other hand, it recommends integrating with management information systems in the enterprises, and also 

deploy an incentive mechanism to trigger stakeholders’ participation in using/reusing knowledge resources. A 

further enhancement to the applicability and performance of the proposed approach is hence expected, fitting 

for more practical cases of smart engineering solution design. 
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