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Exploiting Knowledge Graphs in Industrial Products and Services: 1 

A Survey of Key Aspects, Challenges, and Future Perspectives 2 

Abstract: The rapid development of information and communication technologies has enabled a value 3 
co-creation paradigm for developing industrial products and services, where massive heterogeneous 4 
data and multidisciplinary knowledge are generated and leveraged. In this context, Knowledge Graph 5 
(KG) emerges as a promising tool to elicit, fuse, process, and utilize numerous entities and relationships 6 
embedded in products and services, as well as their stakeholders. Nevertheless, to the best of the authors’ 7 
knowledge, there is scarcely any comprehensive and thorough discussion about making full use of KG’s 8 
potentials to solve pain points of product development and service innovation in the industry. Aiming 9 
to fill this gap, this paper conducted a systematic survey of KG exploitations in industrial products and 10 
services and the customizations towards higher adaptability to practices. The authors selected 119 11 
representative papers (up to 10/03/2021) together with other 27 supplementary works to summarize the 12 
technical and practical efforts and discuss the current challenges of exploiting KG in industrial products 13 
and services. Meantime, this work also highlights enhancing KG’s availability and boosting its 14 
productivity in industrial products and services development as the core future perspectives to explore. 15 
It is hoped that this work can provide a basis for the explorations and implementations of KG-supported 16 
industrial product and services development, and attract more open discussions to the exploitation of 17 
KG-enabled industrial information systems. 18 

Keywords: knowledge graph; product development; service innovation; knowledge management; 19 
product-service systems; review 20 

1. Introduction 21 

Since IBM Watson has won the Jeopardy in 2011, Knowledge Graph (KG) has gained 22 
incremental research interest due to its capability of storing knowledge, structured or unstructured, 23 
elicited from heterogeneous domains, and further querying them to realize question answering. 24 
Formally, Knowledge Graph is a graphical knowledge base that consists of a set of interconnected 25 
typed entities and their attributes and has an ontology as its schema defining the vocabulary used in it 26 
[1]. This idea is not completely new and can be date back to Semantic Network and Linked Data [2], 27 
which express knowledge with interconnected nodes and edges and enable cross-level relationships 28 
among them. However, with less time and manpower consumed in the evolutionary construction, and 29 
higher flexibility of knowledge utilization empowered by the arbitrary linkage among entities [3], now 30 
KG  has shown its promising prospects in many sectors, and it has been widely recognized as the core 31 
element of the next-generation industrial information systems [4].   32 

Demonstrating stronger capabilities of propelling productivities in multiple industries, KG 33 
attracts widespread research interests in recent years. Tentatively applied in designing, manufacturing, 34 
maintenance, and other tasks, KG empowers industrial products and services, and their development 35 
process, mainly in two aspects. Firstly, by providing a semantic-based and in-depth knowledge 36 
management manner, KG can save time and manpower costs while improving accuracy and efficiency 37 
in domain knowledge retrieval for the tasks of requirement analysis, solution design, and operation and 38 
maintenance management [1, 5]. More important, KG is capable to further deduct and predict new 39 
relationships and attributes based on the stored multidisciplinary domain knowledge, so as to generate 40 
originative concepts and ideas that strongly support the involved stakeholders of products and services 41 
to complete these creative tasks [6, 7].  42 
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However, studies on KG-enabled industrial products and services development have not been 43 
systematically performed yet. Most researchers still regard KG as a medium for providing information 44 
in some web-based services and only focus on the performance of KG itself to develop faster, more 45 
robust, more accurate algorithms [8-10]. Concerns and contributions on customizing, enhancing, and 46 
integrating KG for industrial products and product-based services are far beyond adequate. Besides, 47 
some industry pain points in product and service development, which can be effectively mitigated or 48 
even productively tackled by KG’s advantages, have not been fully discussed, such as risk prediction 49 
and information distillation [11-13]. Thus, a gap is deemed to exist between KG exploitation and 50 
demands of industrial products and services. 51 

Aiming to fill the gap, this paper has conducted a review of 119 recent peer-reviewed 52 
publications that apply KG to industrial products and services and enhance current KG techniques to fit 53 
them into practical exploitations, and further outlined the main challenges and prospective research 54 
directions in the field. The rest of this paper is organized as follows. Section 2 states the systematic 55 
literature review process and gives a statistical result. Based on the selected literature, a holistic relook 56 
of KG utilization in industrial products and services is elaborated in Section 3. Moreover, the main 57 
challenges are highlighted in Section 4. Correspondingly, perspectives of future studies are suggested 58 
in Section 5. The scientific contributions of this review are summarized at last. 59 

2. Systematic literature review 60 

The systematic literature selection process and the statistical review result are depicted in this 61 
Section. The first-round basic search was conducted on the Web of Science Core Collection, which 62 
covers a wide range of all major peer-reviewed academic articles. 63 

2.1 Search and filtrate 64 

The literature selection process is depicted in Fig.1. The search sentence is written as “Topic = 65 
(knowledge graph) AND Topic = (application OR industrial OR products OR services); Time Span: 66 
2017 – 2021; Language: English”. 972 items were found through this first-round searching (accessed 67 
on 10/03/2021). Then a second-round search was conducted by excluding the articles that are not within 68 
the industrial fields (e.g. mathematics) and merely selecting the academic journals and conferences, 69 
remaining 492 items. At the last, authors went through the contents and references, and filtrated items 70 
containing the keywords “knowledge” or “graph” but not truly discussing Knowledge Graph 71 
exploitations in industries (e.g. knowledge collaboration, graph neural networks). Besides, four items 72 
are added according to the suggestions of domain experts during the review process. Finally, 119 items 73 
are selected as the foundation for this survey. 74 

 75 
Fig. 1. The systematic literature selection process 76 
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2.2 General analysis of the selected papers 77 

A general analysis is conducted based on the 119 selected papers, including the year of 78 
publications, journals or conferences of the publication, original countries of the leading institutes to 79 
show the mainstream of relative researches in recent five years. The result is shown in Fig. 2.  80 

 81 
Fig. 2. The analysis result of the selected publications 82 

It can be seen from Fig. 2(a) that there is an increasing trend of KG studies in industries during 83 
the past five years. This can be regarded as a signal indicating the bloom of KG exploitations in the 84 
2020s, considering the remarkable elevating requirements of novel smart technologies ignited by the 85 
labor constraints due to COVID-19. Meanwhile, among all the selected publications, most are from 86 
China, USA, and European countries, as shown in Fig. 2(b). The result is in line with the scale and 87 
vitality of the internet servitization enterprises and digital economy in those respective countries. 88 
Moreover, from Fig. 2(c), one can find that Semantic Web, Knowledge-Based Systems, and Expert 89 
Systems with Applications are the major publishers in this area (only Journals/Conferences that have 90 
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published more than 2 articles are shown). The published journal/conference papers are mainly 91 
dispersed in various computer science domains, which reveals an active synthesis of multiple 92 
information technologies in KG construction and exploitation. However, the lack of major publishers 93 
in other traditional engineering disciplines, such as mechanical engineering, civil engineering, and 94 
energy & environmental engineering, reveals a shortage of KG exploitations in diverse industrial 95 
products and services. 96 

3. Exploit KG in industrial products and services 97 

Based on the systematic literature review process, this section provides an analysis of exploiting 98 
KG in industrial products and services from two key perspectives:  99 

1. What efforts have been conducted on customizing and enhancing KG to fit in industrial 100 
products and services? 101 

2. What industry pain points in products and services development have been mitigated by KG?  102 

3.1. Efforts on customizing and enhancing KG 103 

 Considering huge gaps between knowledge exploitation manners in different industries, the 104 
general KG has been customized and enhanced in its exploitation, so as to fit in various scenarios of 105 
industrial products and services. To this end, this section conducts a review of the efforts that have been 106 
made. According to different concerns in KG exploitation, the reviewed efforts are divided into three 107 
periods, as shown in Fig. 3.  108 

 109 
Fig. 3. Three periods concerning KG exploitation 110 

The Construction period aims to build a high-quality KG from massive data generated and 111 
leveraged in industrial products and services, in which the major efforts involve adopting proper tools 112 
to elicit and process multidisciplinary knowledge from multi-source in industries. The Deduction period 113 
generates recommendations and results for the design and operation process based on the existing KG, 114 
where the efforts concentrating on executing multi-hop semantic searching and knowledge reasoning. 115 
The Using period interacts with stakeholders to accept queries and export knowledge outcomes, and its 116 
efforts emphasize adapting the heterogeneous interactions from stakeholders of industrial products and 117 
services. It is worth noting that the subsequent periods sometimes co-exist with the previous ones, 118 
though they start later and rely on the previous outcomes. 119 
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3.1.1 Construction period 120 

Knowledge of industrial products and services are majorly embedded in diverse forms of user-121 
generated contents and sensing records. Therefore, the construction period integrates multiple text 122 
mining and machine learning tools to process the raw data, and hence formalize the triples of <head, 123 
relation, tail> for the KG. As shown in Table 1, Natural Language Processing (NLP) techniques and 124 
toolkits are frequently adopted to automatically extract entities from semi-structured or unstructured 125 
knowledge resources [14-17]. Some advanced deep learning techniques, like Convolutional Neural 126 
Networks (CNN) and Bi-directional Long Short Term Memory (BiLSTM), are also used to execute 127 
accurate relationship extraction and knowledge fusion from multidisciplinary knowledge [18-20].  128 

Table 1 Tools for formalizing knowledge in industrial products and services 129 
Task Key techniques and toolkits Ref. 
Word segmentation and 
Part-of-speech (POS) tagging 

HanLP standard tokenizer; 
Language Technology Platform; 
BERT model 

Zhu et al., [21] 
Zhou et al., [22] 

Co-reference resolution; 
Syntactic analysis 

Deep neural networks; 
Text chunking; 
Stanford NLP tool  

Cudre-Mauroux et al., [23] 
Nizzoli et al., [24] 
Kertkeidkachorn et al., [25] 
Liu et al., [16] 
Shan et al., [26] 

Elements classification Neural network; 
Bidirectional LSTM (BiLSTM) ; 
Supervised predictor  

Chen et al., [20] 
Wu et al., [18] 

Identify inference factors Deep tensor; 
Attention network  

Fuji et al., [27] 
Song et al., [28] 

Identify, extract entities and 
relations 

Stanford core NLP toolkits;  
Deep learning; 
Iterated Dilated Convolutional Neural 
Networks (ID-CNN); 
Seed entity set expansion  

Li et al., [8] 
Dou et al., [29] 
Chen et al., [17] 
Abad-Navarro et al., [30] 
Vogt et al., [10] 

Semantic context learning Word2Vec; NLTK; 
Convolutional Neural Network; 
Bidirectional LSTM (BiLSTM)  

Sarica et al., [31] 
Huang et al., [32] 
Long et al., [19] 
Ristoski et al., [33] 

Semantically clustering words Deep learning; 
Latent Dirichlet Allocation (LDA)  

Wang et al., [14] 
Wang et al., [34] 
Guo et al., [15] 

Besides the heterogeneous user-generated contents and sensing records, some open-access 130 
knowledge repositories can be utilized to enhance the constructed KG for industrial products and 131 
services. As shown in Table 2, online encyclopedias and domain repositories can be served as some 132 
supplementing knowledge resources, which provide instructive and validated solutions for industrial 133 
products and services.  134 
  135 
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Table 2 Utilized open-access knowledge repositories for enhancing KG 136 
Repository Description Character Ref. 
DBpedia 
[35] 

A crowd-sourced community effort to 
extract structured content from the 
information created in various Wikimedia 
projects. 

Evolves as Wikipedia 
changes; multilingual 

Peroni et al., [11] 
Palumbo et al., [36] 
Nizzoli et al., [24] 
Kertkeidkachorn et al., [25] 

WordNet® 
[37] 

A large lexical database of English 
developed by Princeton University. 

More than 200 languages; 
extension of a dictionary and 
thesaurus 

Li et al., [8] 
Wu et al., [18] 

YAGO 
[38] 

A large knowledge base with general 
knowledge about people, cities, countries, 
movies, and organizations. 

Extracted from Wikipedia, 
WordNet, GeoNames; linked 
to the DBpedia ontology and 
the SUMO ontology 

Ignacio et al., [39] 
Wenige et al., [40] 
Wu et al., [18] 

BabelNet 
[41] 

A multilingual encyclopedic dictionary and 
a semantic network with about 16 million 
entries. 

Linking Wikipedia to 
WordNet 

Dalle et al., [3] 
Wang et al., [34] 
Wu et al., [18] 

Freebase 
[42] 

A large collaborative knowledge base 
developed by Metaweb, consisting of data 
composed mainly by its community 
members.  

Both commercial and non-
commercial use; composed 
mainly by its community 
members 

Bakhshi et al., [43] 
Huang et al., [32] 

ChEBI 
[44] 

A freely available dictionary of molecular 
entities focused on ‘small’ chemical 
compounds. 

Specialize in Bio-chemical 
engineering 

Kushida et al., [45] 
Hastings et al., [44] 

Among the reviewed researches, Neo4J [46] gained remarkable favor in the reviewed studies 137 
as a tool to store the KGs [8, 26, 30]. Additionally, the document-oriented database Mongo could also 138 
be an option in some studies [10]. 139 

3.1.2 Deduction period 140 

Different from the ordinary usage of KG that simply delivers some existing knowledge items, 141 
knowledge demands in industrial products and services require higher synthesis and creation. 142 
Meanwhile, to fit for the concurrent and iterative teamwork by multiple aspects of stakeholders, 143 
knowledge deduction in KG should be enhanced to be transdisciplinary, context-aware, and flexible.  144 

Table 3 provides some enlightening efforts that aim to fulfill the above requirements. 145 
Knowledge deduction could be further categorized into attribute deduction and relationship deduction 146 
[19, 27, 47, 48], corresponding to the node modification and edge creation in the graphs. More 147 
specifically, considering diversified problem-solving contexts, attributes and relations are vectorized 148 
according to the semantical and topological features, hence the deduction processes are transformed 149 
into matrix manipulations [8, 49-51]. For example, based on a KG built with the product data and the 150 
usage contexts, the dynamic relationship between end-users and products can be modeled via the linear 151 
transformation to the latent space that shares the same dimensionality, and hence it can be inferred with 152 
a solid logic through entity soft matching on the KG [51].  153 
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Table 3 Enhanced knowledge deduction for industrial products and services 154 
Deduction Ref Key techniques and toolkits Task 
Attribute Long et al., [19] BiLSTM prediction Predict the target’s price movement direction 

and its trend 
Relationship Wang et al., [47] Attention-based Deep 

Reinforcement Learning(ADRL); 
Markov decision 

Learning multi-hop relational paths; 

Fuji et al., [27] Deep Tensor combined with 
Knowledge Graph 

Identify inference factors by Deep Tensor; 
Connect the factors in KG to form a basis 

Nizzoli et al., 
[24] 

Spelling-based expansion; 
Latent semantic expansion; 
Topological expansion 

Retrieve the largest set of geographic entities 
related to the starting one 

Zhao et al., [52] Embedding model using tensor 
decomposition based on SimplE 

Generates axioms through rule learning and 
injects them into the embedding representation 
of a knowledge graph to enhance reasoning 

Attribute & 
Relationship 
  

Wang et al., [49] Attention-based LSTM; 
Multi-Head Dot Product Attention 

Interact and update the memories embedded in 
the memory system for reasoning purposes 

Abraham et al., 
[50] 

OWL Axiom-based Classifier; 
Forward Chaining Reasoner; 
Hybrid Reasoner  

Identify type of problem; 
adds qualitative and quantitative knowledge; 
Solve problem qualitatively and quantitatively 

Li et al., [8] Four Knowledge Graph-Aided 
Concept–Knowledge Operators: 
C-K, C-C, K-C, C-C 

C-K& C-C: Propose relevant entities; 
K-C& K-K: Map, evaluate and update 
generated relationship and concept 

Ai et al., [51] Dynamic Relation Embedding 
Model  

Create a dynamic knowledge graph based on 
both the multi-relational product data and the 
context of the search session 

3.1.3 Using period 155 

The usage period refers to the interaction with users, including accessing methods and input & 156 
output formats. The major concern of this period is to provide flexible interaction capability to ensure 157 
a user-friendly experience to multi-aspect stakeholders of industrial products and services.  158 

Some tentative efforts in this aspect have been conducted. For example, in a showcase of a KG-159 
enabled nursing bed, the mobile app accepting queries and exporting usable knowledge can be served 160 
as an easy-to-use channel for patients, nursing staff, and maintenance engineers [8]. Other sorts of 161 
human-machine interfaces, like chatbots [53], visualized graphs [29], and system interfaces[12], also 162 
prove their usability in several industrial cases. However, these interaction modes are still similar to the 163 
conventional knowledge-based systems, and demonstrate insufficient novelties in adapting the value 164 
co-creation paradigm in the current industrial products and services [54]. Frankly speaking, there is still 165 
a rather long way to go before a satisfying methodology for KG usage is achieved. 166 

3.1.4 Summary 167 

 To sum up, most of the current customization and enhancement on KG contribute to 168 
constructing a KG using multiple sources and forms of industry records, and proposing semantic-based 169 
and topological-based algorithms to conduct knowledge deduction in multiple problem-solving 170 
contexts. However, few efforts are paid to improve user interactions, and demonstrate inadequate 171 
adaptiveness to the state-of-the-art paradigms of industrial products and services. Besides, as the 172 
iteration of industrial products and services becomes more frequent and user-oriented, the continuous 173 
enrichment to KG itself should be emphasized to guarantee its availability. 174 

3.2. KG-mitigated industry pain points in products and services development 175 

 KGs are customized and enhanced to fit in industrial products and services, and it conversely 176 
mitigates the pain points in their development process. A pain point in the industry is a persistent or 177 
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recurring problem that frequently inconveniences stakeholders and slacks their satisfaction. Identified 178 
from the reviewed literature, five representative industry pain points are discovered along with the 179 
lifecycle stages of products and services, as shown in Fig. 4. The existence of these pain points in 180 
disparate industries is also briefly introduced in Table 4, which will be elaborated in the following 181 
subsections. 182 

 183 
Fig. 4. Industry pain points in products and services development 184 

Table 4 Industry pain points that KG could mitigate 185 
Pain points Objective Ref. Industries 
Multidisciplinary 
knowledge 
extraction and 
fusion 

Automatically extract information from 
heterogeneous resources and various 
formats, then fuse them into proper 
analytical models. 

Zhu et al., [55] 
Wu et al., [56] 
Sun et al., [57] 
Zhu et al., [21] 
Yuan et al., [58] 
Liu et al., [59] 
Eibeck et al., [60] 
Farazi et al., [61] 
Zhou et al., [62]  

Bio-medical 
engineering; 
Software engineering; 
Cybersecurity 
Chemical industry  

Comprehensive 
solution 
searching 

Fast and faithful question answering 
with relevant information provided as 
reference. 

Morton et al., [63] 
Rasmussen et al., [64] 
Zhou et al., [22] 
Xie et al., [65] 
Zhou et al., [66]  

Bio-medical 
engineering; 
Construction;  
Energy and power 

Explainable 
knowledge 
recommendation 

Proactively provide reasonable 
recommendations with intelligent 
options. 

Lin et al., [67] 
Fernandez-Tobias et al., [39] 
Bhatt et al., [68] 
Munoz et al., [69] 

Software engineering;  
Bio-medical 
engineering 
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Risk detection 
and prediction 

Predict potential risks based on the 
collected information like workers’ 
location and/or machines’ status and 
generate preventative methods 

Liu et al., [70] 
Jia et al., [71] 
Shi et al., [12] 
Zhao et al., [6] 
Liu et al., [72]  

Manufacturing; 
Energy and power; 
Aerospace; 
Cybersecurity; 
Railway operation 

Information 
distillation 

Utilize the solid knowledge base to 
provide creative and user-friendly 
support to help stakeholders achieve 
their tasks easier. 

Dou et al., [29] 
Abad-Navarro et al., [30] 
Peroni et al., [11] 
Ławrynowicz et al., [7] 
Wu et al., [73] 
Wu et al., [74] 

Agriculture 
engineering; 
Fast fashion; 
Software engineering; 
Product development 

3.2.1 Multidisciplinary knowledge extraction and fusion 186 

 The first pain point in industrial product and service development is extracting and fusing 187 
multidisciplinary knowledge to accomplish a synthetic target. It is most evident in the design and usage 188 
(maintenance) stages of the lifecycle since massive engineering knowledge and human factors coexist 189 
that it is hard to organically integrate them into conducive deliverables. For instance, designing bio-190 
medical products needs multidisciplinary knowledge in high quality and quantity [58]. The terminology 191 
and taxonomy in different domains are rather isolated, which requests experienced professionals and a 192 
great time to link-up and verify. KG provides a novel knowledge representation method by connected 193 
nodes and edges that coreference and disambiguation could be better solved by vertical calculating of 194 
the relationships and referring to the relevant attributions. Automatic methods of knowledge extraction 195 
and fusion that only need little supervision have been explored in several studies that benefit the 196 
designing and usage stages in the lifecycle [21, 58, 59]. Though great progress has been made to 197 
processing textual information [59, 75, 76], more effort could be made to processing visual information 198 
such as videos and pictures.  199 

3.2.2 Comprehensive solution searching 200 

Comprehensive solution searching is a crucial demand in design, manufacture, and usage stages 201 
due to the high standard of precision in the industry practices. Stakeholders need comprehensive and 202 
descriptive solutions to their encountering problems, rather than just mapping the keywords and give a 203 
monotonous answer. In the design stage, designers may query the knowledge base very often to inspire 204 
and verify their ideas. In the manufacturing and usage stages, manufacturers and end-users need a fast 205 
and accurate question-answering approach to solve their issues independently. Thus accuracy, speed, 206 
and comprehensiveness are all highly required in industrial activities. KG takes advantage of the 207 
knowledge reasoning and customizable query patterns based on multi-hop semantic search to achieve 208 
better question answering results. Technically, KG enhanced by NLP and deep learning techniques 209 
better considers the semantic meanings and topological relations simultaneously, hence it achieves 210 
conspicuous success in understanding the industrial problems and retrieving corresponding solutions. 211 
For example, Morton et al. [63] presented Reasoning Over Biomedical Objects linked in Knowledge 212 
Oriented Pathways (ROBOKOP) as an abstraction layer and user interface to query KGs easier, and to 213 
store and rank the results. Platforms like J-Park Simulator are designed based on KG to carry out process 214 
simulation and optimize the process in the energy industry [66]. Efforts are also made to enable both 215 
online and offline running to ensure the searching demand is fulfilled [22]. 216 

3.2.3 Explainable knowledge recommendation 217 

Knowledge recommendation could achieve better automation in industrial products and 218 
services, augmenting the efficiencies in almost all the lifecycle stages and related development tasks. 219 
Further, the explainable recommendation is crucial to stakeholders since products and services are built 220 
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upon reasonable logic chains. They may not be willing to adopt the machine recommended result 221 
directly without convincing and sufficient reasons. For example, product managers may feel hard to 222 
make decisions on selecting the most proper logistics routes and disposal options, without a solid 223 
knowledge-based explanation. Based on question answering with comprehensive answers, making 224 
explainable recommendations is a further achievement by KG. A typical case is conducted by 225 
integrating a software KG with the intelligent development environment, utilizing the evolving KG’s 226 
data parsing and semantic search capability to assist intelligent recommendation in software engineering 227 
[67]. In other studies, explainable knowledge recommendation is utilized in architecture and 228 
construction [64], biochemical engineering [69], and software engineering [68]. To achieve better 229 
explainable knowledge recommendation, Knowledge Graph Embedding (KGE) and path-based KG-230 
aware are emphasized in insightful studies [5, 36, 77-79]. 231 

3.2.4 Risk detection and prediction  232 

Risks are concealed in every step in the manufacturing process, as well as many key steps in 233 
logistics and usage stages. The coverage of human inspection limited the risk detection and prediction 234 
in enormous manufacturing plants and long logistics period that automatically risk prediction and 235 
detection are heavily needed by the industries. Safety risks could be affected by various factors in the 236 
lifecycle of products and services, including people's role, behavior, organization, machine status, 237 
apparatus and equipment [80]. Building a robust knowledge base and then utilize the capability of 238 
knowledge reasoning, question answering, and knowledge recommendation, it is possible to achieve 239 
prediction proposals and proactive risk detections in both the physical and cyber environments [6, 12, 240 
71]. For instance, Liu et al. [70] proposed a paradigm to apply the KG into smart factories to support 241 
safety management in the manufacturing process. The research proposes the KG to be adopted not only 242 
to take actions based on the diagnosis of issues, but also to predict potential risks based on the collected 243 
information like workers’ location and/or machines’ status and generate preventative methods.  244 

3.2.5 Information distillation 245 

In the lifecycle of products and services, there is a huge gap between massive heterogeneous 246 
knowledge resources in the information systems and the system users’ limited cognitive ability [81, 82]. 247 
In the practice, holistic but not specific information is often useless or even confusing for one single 248 
user. It hence requires the information system to distill proper information at the proper time to the users 249 
who are executing specific activities. As shown in Fig. 4, information distillation affects all the stages 250 
in the lifecycle of products and services, as well as all involved stakeholders. Benefiting from the 251 
capabilities of novel knowledge representation and knowledge deduction, KG could mitigate this pain 252 
point. For example, a KG-based system for hybrid information management is well-operated in Imperial 253 
Fashion, one of the most important fast-fashion companies in Italy [11]. It showcased the KG-based 254 
system could achieve good performance to deliver the proper information even in a multilanguage 255 
environment, with employees holding less technical background. Li et al., [8] developed a mobile app 256 
based on KG to distill targeted articles concerning the different patients’ situations. Some KG-enabled 257 
information systems are also implemented to smartly deliver creative ideas to support users in 258 
generating novel designs [7, 73]. These KG-based functions provided friendly user interaction and 259 
achieved great user experiences in both products and services by distilling useful information to users 260 
with limited cognitive capabilities. 261 

 262 

3.2.6 Summary 263 

To sum up, by utilizing their flexible knowledge representation and in-depth deduction methods, 264 
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the enhanced KGs are proved to benefit multiple industry pain points in lifecycle stages and also reveal 265 
the promising prospect in more kinds of industrial products and services [6, 8, 12, 83]. However, to 266 
generalize the exploitation of KG to more industrial scenarios, the barrier between multiple KGs or KG-267 
enabled information systems largely impedes the reusability and transferability of previously developed 268 
techniques. The assorted portfolio and ecosystem [3, 11, 19, 59] hence emerge as a novel challenge. In 269 
fact, seen from the reviewed studies, KG is still a prevailing technique in industries, rather than a mature 270 
productivity tool for stakeholders of industrial products and services.  271 

4. Challenges 272 

According to the review, remarkable achievements have been made to enhance KG to fit in 273 
products and services, and mitigate the industry pain points in their lifecycle stages. Nevertheless, KG 274 
still faces several challenges in its practical exploitations, and there are several vacancies in potential 275 
prospects that could be studied to fill the gap. To better concentrate on the aspects of industrial products 276 
and services and conduct more practical KG exploitations, three challenges of the interaction with 277 
stakeholders, continuous enrichment, and assorted portfolios and ecosystems are discussed. As shown 278 
in Fig. 5, these challenges consider the interactions between KG and KG-enable information systems 279 
with stakeholders, knowledge resources, and peer industrial systems, which are the main concerns in 280 
the managerial perspective [74, 84]. However, pure theoretical challenges that merely improve the 281 
performance of KG, like similarity ranking precision [43, 85-87], database & storage optimization [88-282 
91], noise curation [92-95], are not the key points here.  283 

 284 
Fig. 5. Three managerial challenges aiming to more practical KG exploitations  285 

4.1 Interaction with stakeholders 286 

According to the review in Sec 3.1, most efforts are paid to the optimization of the accuracy 287 
and efficiency of knowledge reasoning [96-98], but user interaction is not emphasized. In fact, design 288 
and optimization for user interactions are mostly considered to be a business and management activity, 289 
which is seldom concerned in researches of computer science disciplines. To fully exploit KG’s 290 
advantages in knowledge representation and knowledge deduction to better support stakeholders in 291 
products and services development, the KG-stakeholder interaction needs further enhancement. The 292 
challenge in this aspect lies in two-folds. One is a proactive, context-aware, and explainable knowledge 293 
service based on a KG storing the social networking, concerning when, how, and why to deliver proper 294 
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information to which stakeholders of products and services involved in the workflow [99-101]. The 295 
other one is an open-to-all and bi-directional knowledge interaction mechanism fitting for the value co-296 
creation paradigm of the product and service development, so that all the stakeholders can participate 297 
in the development process with more timely and accurate supports from KG.  298 

4.2 Continuous enrichment 299 

New knowledge is always being generated during the iterative development of industrial 300 
products and services, requiring the evolvement of knowledge extraction, knowledge fusion, and 301 
schema designing in KG construction [102-105]. To this end, continuous enrichment of KG faces 302 
challenges from two aspects as elaborated below: 303 

Frequency of update: Adaptive to different stakeholders, the stored knowledge, as well as the 304 
demand of knowledge, will update with different frequencies. For example, product designers need up-305 
to-date knowledge and concepts to ensure the products are creative and competitive. However, the 306 
operation management staff cares more about stableness and consistency and may not need such 307 
immediate knowledge or information [11]. Therefore, a stakeholder-centric balance between new 308 
knowledge update and existing knowledge resource usage should be achieved in the KG-enabled 309 
information systems [106-108]. Beyond merely focusing on the efficiency of new knowledge extraction, 310 
the robustness of knowledge representation, and the accuracy of knowledge reasoning, a frequency 311 
finetuning method considering industry workflows should be concerned in constructing KG and KG-312 
enabled information systems [9, 109, 110]. 313 

Maintenance and curation: In industrial scenarios, the quality of knowledge weighs more 314 
heavily than quantity. Development activities driven by inaccurate knowledge may cause even worse 315 
consequences than not having knowledge. In this case, knowledge discovered or deducted by KG needs 316 
to be delicately verified and curated. Currently, researchers are keeping working on improving the 317 
accuracy of knowledge reasoning by utilizing subgraphs and deep attention [111, 112], but the 318 
involvement of human labor is still unavoidable to reach a final judgment. Thus, there is another balance 319 
need to be achieved between maintaining the high accuracy of the system and keeping low loading of 320 
the experts to verify and correct the newly generated knowledge. Utilizing experts' effort on ontology 321 
evolution rather than miscellaneous entity verification could be a prospective direction [113-115]. Other 322 
novel knowledge curation mechanisms between KG-enabled information systems and domain experts 323 
or other potential contributors, such as crowdsourcing, also need to be well-considered.  324 

4.3 Assorted portfolios and ecosystems 325 

Enhanced by sorts of advanced NLP and Machine Learning techniques, KG is currently well-326 
performed in multidisciplinary knowledge extraction and fusion tasks [116-119]. In industrial 327 
enterprises, it also demonstrates strong capabilities to reform the existing management information 328 
systems (MISs) and operate as the core of the next-generation information system [4]. However, due to 329 
a lack of KG-involved assorted portfolios and ecosystems that seamlessly integrate with workflows in 330 
products and services development procedures, Information Silo that widely existed among enterprise 331 
MISs still re-occurs (i.e. unable to timely and freely communicate with other sorts of KG or KG-enabled 332 
information systems). As industrial products and services require higher stability and more smooth 333 
transitions to ensure the robustness of themselves, challenges of assorted portfolios and ecosystems, 334 
like unified portal and platform [10, 31], database fusion methods [44, 120-122], workflow migration 335 
[112], should be highlighted to mitigate this issue.  336 

4.4 Summary 337 

To sum up, although KG techniques are robust enough to set up a solid knowledge base and 338 
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timely offer necessary information, challenges still lie in further enhancing the practical usability and 339 
operability in multiple industrial scenarios, and delivering ideal supports and outcomes for product and 340 
service development. Further efforts are required to improve the interactions between KG and 341 
stakeholders, KG and knowledge resources, and KG and other industrial systems, thus achieving a 342 
closer collaboration in the scenario of industrial products and services. 343 

5. Future perspectives  344 

To cope with the raised challenges, this section proposes and highlights several promising 345 
future perspectives on better exploiting KG in industrial products and services, so as to motivate more 346 
open discussion and in-depth studies in the near future. 347 

5.1 Enhancing KG’s availability for industrial products and services 348 

To fulfill the challenge of continuous enrichment and enhance the availability of KG itself in 349 
industrial products and services, subsequent studies can work on three perspectives, i.e., improving self-350 
adaptability on knowledge update, uncovering tacit knowledge, and co-working with experts. 351 

5.1.1 Improving self-adaptability on knowledge update 352 

The frequencies of knowledge evolvement and the timeliness of knowledge demands are 353 
different in various knowledge exploitation scenarios. Belated knowledge update in the knowledge base 354 
may cause out-of-style design for a new product. However, the unnecessary high frequency of updates 355 
may cause an extra burden for the system, and may even cause unpredictable issues in some 356 
manufacturing industries with strict process restrictions. Thus self-adaptability, which directs the KG 357 
and KG-enabled information systems to react to the changes in ever-evolving environments with 358 
context-awareness, is highly recommended. Potential self-adaptability may base on 1) Setting threshold 359 
quantity for a new keyword existence; 2) Ranking of the information resource; 3) Frequency of query 360 
to the keyword; 4) Will the update of knowledge impact the current working process? 5) Current usage 361 
of system resources; 6) Reliability of the new knowledge [123].  362 

5.1.2 Uncovering tacit knowledge  363 

Massive tacit knowledge in the enterprises still remains undiscovered and inaccessible, since 364 
many stakeholders haven’t systematically recorded their valuable experience yet or even do not know 365 
how to conclude them into records [124, 125]. To solve this, KG could help to match knowledge 366 
expressions to their efficient behaviors to uncover the tacit knowledge embedded under their 367 
unconscious actions. Aiming at enhancing the KG complement capability, the studies on tacit 368 
knowledge discovery and knowledge reasoning could be conducted to support such works. Tackling 369 
tacit knowledge may also rely on the contribution of information distillation since some knowledge is 370 
unknown for specific stakeholders only because they are not familiar with the context beyond their 371 
professions. Current studies have achieved remarkable results in coreference processing and 372 
characteristic output that could contribute to enhancing the information distillation and better 373 
understanding the users’ behaviors [3, 126-131]. Further research could be conducted based on those 374 
works on cognizing users' professions and behavior modes, as well as correlating multi-users behaviors 375 
to achieve tacit knowledge uncovering. 376 

5.1.3 Co-working with domain experts  377 

The new knowledge captured from outsource or deducted by the KG and KG-enabled 378 
information systems may need to be verified by the domain experts before adopting it. But diverse 379 
knowledge may need different levels of experts’ interactions. For example, the transportation route 380 
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recommended from knowledge deduction may need little authentication, contrarily the mechanical 381 
engineering knowledge needs serious cross-check from senior engineers. Crowdsourcing via 382 
verification channels, monetary intensive knowledge correction, and regular verification are usual 383 
methods to achieve the correction and accuracy maintenance of the knowledge base. The authors would 384 
like to highlight the interactions with domain experts because their opinions have the most value. 385 
Current current systems such as protégé [132], metaphactory [133] have provided valuable platforms 386 
that allow experts to manipulate KGs, while the proposals regarding new knowledge and interaction 387 
methods still need to be developed, considering domain experts' IT skills of operating KGs. The 388 
explainable recommendation capability based on KG is recommended to be further developed to 389 
address the efficiency of proposing queries to the experts, so as to bridge the gap between the 390 
collaboration of human intelligence and artificial intelligence. Some rising methods such as graph-391 
embedding techniques are worthy to be considered [134-137]. 392 

5.2 Boosting KG’s productivity in products and services development 393 

To provide better user interactions to the stakeholders of industrial products and services and 394 
boost KG’s productivity in the development process, the exploitation of KG should be refined towards 395 
the goal of seamless KG-based portfolios and ecosystems. This section highlights three representative 396 
industrial scenarios that can be further explored in products and services development, i.e., demand 397 
forecasting and requirement analysis, smart engineering solution design, and automatic risk detection 398 
and issue handling. 399 

5.2.1 Demand forecasting and requirement analysis  400 

In industries, demand forecasting and requirement analysis are initial and crucial topics to 401 
product and service development, which need massive information input and a proper analysis model 402 
to make better predictions. Processing multi-source information and conducting logical knowledge 403 
reasoning are two major strengths of KG and KG-enabled information systems. Several attempts, such 404 
as [19, 59, 138, 139], have shown the capability of KG to collect massive information from online 405 
technical forums and portal websites to capture the latest trend of the market and other events that may 406 
impact the demands. The logical inference could be conducted through the knowledge deduction in KG 407 
to provide robust calculations [50, 59]. The explainable capability of knowledge reasoning and 408 
recommendation enabled by KG can be valuable for demand forecasting and requirement analysis, since 409 
the ordinary output results may only be a reference in the business environment while stakeholders care 410 
more about the insights and logic behind the results.  411 

5.2.2 Smart engineering solution design  412 

A typical solution design process includes 5 steps: 1) Problem recognition; 2) Cause analysis; 413 
3) Knowledge retrieval; 4) Solution creation; 5) Solution verification [140, 141]. KG and KG-enabled 414 
information systems could help the first 4 steps that leave human efforts mainly focus on the last 415 
verification step, which could save a lot of time and would be more efficient. 1&2) Take advantage of 416 
the novel knowledge representation method to better “understand” the problems more “humanly” and 417 
analyze the cause based on the knowledge in KG; 3) Retrieve knowledge in the KG by multi-hop 418 
searching; 4) Conduct knowledge deduction and clustering similar relationships to create derivative 419 
knowledge and assemble solutions. Solution design of products or services empowered by KG would 420 
benefit both time and labor-consuming, which improves efficiency [142-145]. Besides, KG also mines 421 
the surplus-value in the solution design phase by utilizing the unadopted ideas: When applying KG-422 
based solution design systems, not only the optimal solutions generated by the system would be saved 423 
and stored automatically, but even the initial ideas that didn’t compose complete solutions could be 424 
stored in the system. These solutions and ideas stored as knowledge in the KG could build a holistic 425 
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and robust knowledge base for the enterprise, keep enhancing the healthy lifecycle of the solution design 426 
of new products and services. 427 

5.2.3 Automatic risk detection and issue handling 428 

Detecting risks or safety threatens by humans is based on experience and logical inferences. 429 
The experience provides the knowledge on what is risk, inference based on domain and common 430 
knowledge leads to logical judgment on whether a thing is a risk. By utilizing KG-based technologies, 431 
the system could help in both ways of risk detections. Firstly, KG extraction and fusion methods could 432 
help to process the knowledge and build a robust knowledge base as an experience repository. More 433 
importantly, information collected by sensors could be utilized by the knowledge reasoning process in 434 
KG to identify if the current situation matches any specific rules in the knowledge base thus make a 435 
logical judgment on whether there is a risk. Some studies have provided valuable experience in building 436 
KG and KG-enabled information systems for risk detection by focusing on specific domain risks [6, 70, 437 
146]. It is worth noting that common knowledge of safety management will be contained during the 438 
construction of KG, rather than only the specific domain knowledge that covers the existing situations.  439 

Meanwhile, through a better understanding of the relationship among Function-Behavior-440 
Structure (FBS) with proper knowledge representation, the KG-based issue handling system could 441 
actuate the smart components to adjust themselves to solve problems [12]. When the information 442 
collected from ubiquitous sensing networks is identified to be risks or issues by knowledge reasoning, 443 
the system could take the next action to keep digging and deducting the cluster of knowledge to generate 444 
one or several issue-handling resolutions. Then the resolutions with the highest rankings could be 445 
executed automatically. Besides, authorizations could be set ahead accordingly to the hazard level, 446 
emergency, or the smart components to be actuated, to differentiate whether the actions should be taken 447 
by the system automatically or announce and suggest human workers judging and taking actions.  448 

6. Conclusions 449 

 Knowledge Graph, as an emerging tool to manage numerous entities and relationships, has been 450 
ever-evolvingly developed among academics. Nevertheless, the majority of KG-related researches in 451 
industries still regard KG techniques as a medium for providing industrial information, and they 452 
predominantly focus on the theoretical methodologies of improving the algorithm’s performance. There 453 
still lacks comprehensive and thorough discussions about making full use of KG’s potentials to solve 454 
pain points of product development and service innovation in the industry. To identify the limitations 455 
of current KG methods when applying to practical applications and propose some future research 456 
perspectives, this paper conducted a holistic relook at 119 academic articles that contribute to enhancing 457 
the availability and productivity of KG technologies in industry products and services.  458 

The main findings and contributions of this study can be summarized into three aspects below: 459 
Provided a holistic review of publications on KG exploitations in industrial products and 460 

services. Through a review of 119 recent papers, this study outlines three enhancements to fit in 461 
industrial products and services, which are dispersed in KG construction, deduction, and using periods. 462 
Five industry pain points in industrial products and services development that can be mitigated by KG 463 
are also discovered and summarized, i.e., multidisciplinary knowledge extraction and fusion, 464 
comprehensive solution searching, explainable knowledge recommendation, risk detection and 465 
prediction, and information distillation. 466 

Illustrated the current challenges of KG and KG-enabled information systems to be applied to 467 
industrial products and services. Towards a more operative and productive KG exploitation manner, 468 
the gaps between the actual system-using preference and the exploited capabilities of KG in the scenario 469 
of industrial products and services are identified. Three practical challenges of KG exploitation in 470 
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industrial products and services are further discussed in the managerial perspective, i.e., interaction with 471 
stakeholders, continuous enrichment, and assorted portfolios and ecosystems, aiming to improve the 472 
interactions between KG and KG-enabled information systems with stakeholders, knowledge resources, 473 
and peer industrial systems.  474 

Proposed the future perspectives of promoting KG’s availability and productivity for industrial 475 
products and services. To make the full exploitation of KG’s capability on managing and processing 476 
knowledge, it is recommended that KG practitioners can further enhance KG’s availability in industrial 477 
products and services with three possible directions, i.e., improving self-adaptability on knowledge 478 
update, uncovering tacit knowledge, and co-working with domain experts. For industrial product and 479 
service developers, three representative industrial scenarios are also highlighted to boost KG’s 480 
productivity in the development process, i.e., demand forecasting and requirement analysis, smart 481 
engineering solution design, and automatic risk detection and issue handling. 482 

The authors hope this research can be regarded as the basis for both academics and industries 483 
in their explorations and implementation of KG-supported industrial product and services development. 484 
Also, this work is hoped to attract more open discussions and provide useful insights for the practical 485 
exploitations of industrial KG and KG-enabled industrial information systems in the near future. 486 
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