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Abstract: Empowered by the advanced cognitive computing, industrial Internet-of-Things, and 

data analytics techniques, today’s smart manufacturing systems are ever-increasingly equipped 

with cognitive capabilities, towards an emerging Self-X cognitive manufacturing network with 

higher level of automation. Nevertheless, to our best knowledge, the readiness of ‘Self-X’ levels 

(e.g., self-configuration, self-optimization, and self-adjust/adaptive/healing) is still in the infant 

stage. To pave its way, this work stepwise introduces an industrial knowledge graph (IKG)-based 

multi-agent reinforcement learning (MARL) method for achieving the Self-X cognitive 

manufacturing network. Firstly, an IKG should be formulated based on the extracted empirical 

knowledge and recognized patterns in the manufacturing process, by exploiting the massive 

human-generated and machine-sensed multimodal data. Then, a proposed graph neural network-

based embedding algorithm can be performed based on a comprehensive understanding of the 

established IKG, to achieve semantic-based self-configurable solution searching and task 

decomposition. Moreover, a MARL-enabled decentralized system is presented to self-optimize the 

manufacturing process, and to further complement the IKG towards Self-X cognitive 

manufacturing network. An illustrative example of multi-robot reaching task is conducted lastly 

to validate the feasibility of the proposed approach. As an explorative study, limitations and future 

perspectives are also highlighted to attract more open discussions and in-depth research for ever 

smarter manufacturing. 

Keywords: Industrial knowledge graph; graph embedding; cognitive manufacturing; graph neural 

network; reinforcement learning 

1. Introduction

During the past two centuries, manufacturing paradigms have rapidly shifted from craft production, 

mass production, mass customization to today’s mass personalization model, so as to proactively 

adapt to the high variety and low volume manufacturing in mass efficiency [1,2]. To achieve it, 

smart manufacturing systems play a critical role, which enable the execution of on-demand 

manufacturing processes smoothly and intelligently [3]. Nevertheless, there still lacks a semantic-

based organization of massive heterogeneous manufacturing resources, which blocks a free flow 

of ever-evolving knowledge among machining modules, information systems, and stakeholders, 

and hence inhibits the effective knowledge exploitation in the manufacturing scenarios [4]. 
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Meanwhile, with increased flexibility and scalability of manufacturing resources leveraged in the 

personalized production process, their efficient management becomes ever critical to achieve a 

higher level of automation, prescribed by Self-X capabilities (e.g., self-configure, self-optimize, 

and self-adjust/adaptive/healing) in the 5C architecture model [5]. 

To address those issues, an emerging paradigm of cognitive manufacturing [6] has been 

brought up, which embraces human-level information processing of cognitive computing, the 

industrial Internet-of-Things (IIoT), and advanced data analytics to drive and optimize the 

manufacturing processes towards mass personalization [7]. Cognitive computing [8], as a 

revolutionary AI concept, not only can perform human-level perceptions, but also emulate the 

human brain’s reasoning process, which is progressively flourishing the existing manufacturing 

systems with more cognitive intelligence. It is by nature all about exploiting data and knowledge 

from diverse multimodal resources (e.g., sensory data, social sensors) [10] to generate 

manufacturing values out of “rational” or “perceptual” methods [11]. Meanwhile, via the 

prevailing implementation of IIoT [12,13], manufacturing resources become ubiquitously 

connected and interoperable, and the massive human-generated and machine-sensed 5V big data 

can be effectively exploited with advanced data analytics and deep learning techniques [14,15]. 

Therefore, in this context, there lies great potential to enable the cognitive communication and 

management of flexible and scalable manufacturing tasks with Self-X capabilities, which however, 

is still in its infant stage and has been seldom discussed to-date. 

To pave its way, this work proposes an industrial knowledge graph (IKG)-based multi-agent 

reinforcement learning (MARL) approach to realizing the so-called Self-X cognitive 

manufacturing network, which is defined as “a type of cognitive manufacturing system, of which 

all the manufacturing ‘things’ are organized and managed in a network (graph)-based manner, 

with high-level Self-X capabilities, including self-configuration, self-optimization and self-

adjust/adaptive/healing”. To achieve the Self-X capabilities of the defined cognitive 

manufacturing network, the rest of this paper is organized as follows. Section 2 reviews the 

roadmap towards Self-X cognitive manufacturing network, and the related fundamental works to 

achieve it. Section 3 describes the proposed method for approaching the Self-X cognitive 

manufacturing network in a self-configurable and self-optimized manner. Firstly, an IKG is 

formulated based on the extracted empirical knowledge and recognized patterns in the 

manufacturing process by leveraging the massive human-generated and machine-sensed 

multimodal data, which serves as the foundation of the cognitive manufacturing network. Then, a 

proposed graph neural network-based embedding algorithm is performed based on a 

comprehensive understanding of the IKG, to achieve semantic-based self-configurable solution 

searching and task decomposition. Furthermore, the MARL-enabled decentralized multi-agent 

system is introduced to self-optimize the manufacturing process, and further to complement the 

IKG towards the Self-X cognitive manufacturing network lastly. An illustrative example of a 

multi-robot reaching task is further given in Section 4, to validate the feasibility of the proposed 

approach, with its implementation scope and limitations discussed as well. At last, main 

contributions and future perspectives of this research are highlighted in Section 5 to attract more 

in-depth research in this promising field. 

2. Literature review 

This section discusses the main roadmap of typical manufacturing paradigms with its enabling 

manufacturing systems, and reviews related works of IKG, graph embedding, and deep 



reinforcement learning (DRL) adopted in the manufacturing domain, all of which serve as the 

fundamental basis for realizing the Self-X capabilities of cognitive manufacturing systems. 

2.1 The roadmap towards Self-X cognitive manufacturing network 

The manufacturing paradigm has evolved much during the past two centuries along with its 

representative manufacturing systems, in regard to three evaluation criteria, namely product 

variety (i.e., x-axis), volume (i.e., y-axis) per model and automation level derived from 5C 

architecture model [5] (i.e., z-axis), as shown in Figure 1. It started with ‘Craft Production’ in the 

first industrial revolution, which delivered a ‘design for customer’ manner based on the individual 

hand maker’s intelligence in high cost and low efficiency. This is followed by ‘Mass Production’ 

and “Lean Manufacturing” in the second industrial revolution with dedicated manufacturing lines. 

By offering a very limited variety of products at high efficiency with low waste, the ‘design of 

customer’ manner was conducted. Then, with the prosperity of Internet and Mobile Internet in the 

third industrial revolution, ‘Mass Customisation’ and ‘Global Manufacturing Network’ paradigms 

became dominant, of which ‘design with customer’ can be achieved at an affordable cost, through 

agile/flexible/reconfigurable manufacturing system together with online configurations [16] [17]. 

More recently in the 2010s, the voice of ‘design by customer’ in the ‘Mass Personalization’ [1][18] 

or ‘Mass Individualization’ [2] paradigm becomes one of the ultimate goals of Industry 4.0, 

enabled by the advanced manufacturing technologies (e.g., additive manufacturing and industrial 

robots), IIoT, big data analytics and cognitive computing, in a cyber-physical integrated manner. 

 

Figure 1. Roadmap towards Self-X cognitive manufacturing network 

Accordingly, the digital capabilities (i.e., networking, analytics, intelligence) enabled by 

advanced information and communication technology [19] can empower modern manufacturing 

systems one step forward in a cognitive manner [20] (i.e., the dashed line). Motivated by the self-

organizing networking concept [21], a cognitive mass personalization paradigm is foreseeable 

based on the so-called Self-X cognitive manufacturing network. The ‘Self-X’ features, also known 
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as self-organizing features [22,23] are envisioned mainly in three aspects: (1) Self-configuration 

indicates the automation in re-/configuring manufacturing resources (manufacturing “things”) to 

perform on-demand manufacturing via “plug-and-play” the standard hardware and/or software 

interfaces [24]; (2) Self-optimization aims to achieve an optimal manufacturing performance 

through reorganizing several nodes of manufacturing resources and their networking [25]; and 

eventually (3) Self-adjust/adaptive/healing is responsible for actively monitoring manufacturing 

processes to identify any variations and autonomously dealing with potential disruptions without 

human interventions [26,27].  

2.2 Industrial knowledge graph and graph embedding 

Industrial knowledge graph (IKG) mainly specializes in the manufacturing and production 

areas, and it organizes the knowledge of manufacturing from multi-source heterogeneous data in 

the graph manner systematically and semantically [28]. Based on the well-structured knowledge 

graph, numerous industrial tasks improve their performance. In the product design area, the 

designers desire the requirements to be integrated and specific. To achieve this goal, the concept 

graph enables the knowledge graph to fuse the similar entities [29] and considers the contextual 

information for requirement elicitation [30]. Besides, a multi-level and multi-factor process 

knowledge graph to illustrate the CAD models and numerical control processes in a standard way 

to control the data mapping and understand the implicit semantics [31]. Furthermore, industrial 

scenarios involve numerous domain experts’ experience, of which the formalized IKGs enable the 

integrated multi-expert knowledge management for collaborative decision making [32]. Apart 

from problem-solving, more attention has been paid on the causality of problems occurred. The 

most straightforward manner is to transform the working process into a knowledge graph [33] or 

disassembling the components as nodes in the knowledge graph [34]. Similarly, an event graph is 

generated to simulate the manufacturing process, and represent the event logic by setting events 

as entities in a graph form [35]. 

Meanwhile, to enable the efficient knowledge querying for solution recommendation, graph 

embedding has been widely adopted across sectors (e.g., healthcare, social media, etc.), owing to 

its capability of preserving their attributes and graphical structure correctly in vector space [36]. It 

transforms nodes and edges in IKG into lower-dimension vectors whilst maximally preserving the 

information of the graphical structure, which presents strong abilities to processing complex 

semantic meanings and enables a series of efficient manners for the representation, query, and 

reasoning on the stored industrial knowledge [36]. Among various graph embedding techniques, 

graph neural network (GNN) is a prevailing methodology utilized to reflect the impact of 

interactions of graph-based structural data [37]. In industrial applications, GNNs have been 

utilized in improving the scheduling ability of manufacturing systems by reinforcement learning 

and graph convolutional networks [38]. Besides, it determines the edges in the graph by 

dependencies of sense data [39] or the Pearson Correlation Coefficient among their features [40] 

and leverages GNNs model in the well-established graph for performing their corresponding tasks. 

Furthermore, GNNs have been implemented to the tasks that contain graph knowledge, such as 

treating the skeleton of humans as graph in action recognition in industrial packing processes in 

computer vision tasks [41] and setting the geometric structures as the graph for the acoustic-based 

fault diagnosis [42].  

It can be found that previous studies have gradually recognized the expandability and 

explainability of IKG and attempted to transplant it into several manufacturing scenarios to 

represent and organize massive heterogeneous knowledge resources. However, there still lies a 



long way to reach the high feasibility and efficacy, as the manufacturing scenario usually requires 

more solid logic in problem-solving but offers smaller labelled datasets for constructing 

knowledge graphs and graph neural networks. Moreover, practitioners usually regard IKG as an 

effective medium for querying and retrieving essential manufacturing knowledge, such as 

empirical rules and historical cases, but they stop before further utilizing them [43]. In fact, in the 

manufacturing scenario, the stored heterogeneous manufacturing “things” (e.g., cognitive 

machines, manufacturing services, materials, stakeholders) and all their complex in-between 

connections, should be thoroughly cognized with a semantic basis. Therefore, the fetched 

knowledge can directly drive, optimize, and evolve the highly automated manufacturing processes 

in a real ‘Self-X’ manner.  

2.3 Deep reinforcement learning in manufacturing 

With the rapid development of deep learning, DRL has achieved many remarkable successes 

in applications such as unmanned vehicles, robot learning control, and human-machine gaming 

[44]. Not until recently, a few researchers began to adopt its capabilities in the manufacturing field, 

among which mainly lie in the following two aspects. 

Assembly process. Industrial robots are an important platform for exploiting DRL algorithms. 

The old-fashion human-involved programming method for assembly tasks lacks precision, 

adaptability, and flexibility towards the changeable productions. To address these challenges, 

Inoue et al. [45] depicted how to robustly perform peg-in-hole assembly tasks among tightly 

spaced holes by training industrial robots with recurrent neural network based DRL. Meanwhile, 

Schoettler et al. [46] combined DRL with a meta-learning approach to implement practical 

manufacturing spliced activities flexibly and adaptively. Except for dealing with assembling rigid 

objects, Luo et al.’s work [47] demonstrated that DRL can also be applied to mixed deformable 

and rigid objects with the support of sensing devices. 

Manufacturing process scheduling and resource allocation. The generalization of DRL 

algorithms empowers the manufacturing systems by performing these tasks more quickly and 

precisely. In the cloud manufacturing system, Liang et al. [48] adopted Deep Q-Network with the 

standard of service quality to learn optimal service composition solutions in logistics.  For the 

entity-based task scheduling scheme, Leng et al. [49] provided a decision-making solution, which 

is generated by Q-Learning, to reduce carbon consumption and improve material utilization during 

the whole manufacturing process. In addition to task scheduling, Huang et al. [50] used Double-

DQN together with the system production loss, to design a preventive maintenance strategy for 

serial production lines as well.  

However, with the ever-increasing manufacturing complexity and flexibility, applications of 

those single-agent DRL with centralized settings have encountered serious challenges on 

managing its scalability and flexibility with time efficiency. In this context, multi-agent 

reinforcement learning (MARL) can be a promising solution. For example, Gabel [51] interpreted 

the classic job-shop scheduling problems as distributed sequential decision-making problems by 

adopting the MARL method. Also, Roesch et al. [52] leveraged MARL to control the complex 

smart grid system of resources, battery storage, electricity self-supply, and short-term market 

trading. Nevertheless, despite limited contributions, the MARL has been seldom explored in the 

manufacturing process, let alone in a cognitive manner. 



3. Methodology 

Motivated by those aspects, this research introduces an IKG-based MARL approach for automatic 

manufacturing task fulfilment with self-configuration and self-optimization capabilities, towards 

the proposed Self-X cognitive manufacturing network. The flow chart of the proposed approach is 

shown in Figure 2, denoting the two main parts (i.e., IKG-based self-configurable manufacturing 

network, and MARL-enabled self-optimized manufacturing process) with its core procedures, to 

realize the self-configuration and self-optimization of multi-agent-based manufacturing task 

fulfilment, which are elaborated below. 

3.1 IKG-based self-configurable manufacturing network 

To establish the cognitive manufacturing network, an IKG is firstly established based on the 

extracted empirical knowledge and recognized patterns in the manufacturing process by leveraging 

the massive human-generated and machine-sensed multimodal data. Then, a graph neural network-

based embedding algorithm is proposed based on the established IKG, to achieve task 

decomposition and configuration searching in a stepwise manner. 

3.1.1 IKG establishment 

IKG aims to describe the synergistic mechanism among different tasks, and further to 

decompose the manufacturing tasks and provides configuration space by considering their 

corresponding physical objects, functions, and constraints. Therefore, it should include, but not 

limited to the following type of nodes and edges, as listed in Table 1.  

Table 1. The node and edge in a typical IKG 

Node Description Edge Description 

Task 

The specific tasks and 

sub-tasks in the 

manufacturing 

Has_Property 

The edge between 

components or objects 

entities and their task 

Object entity 
The operable objects in 

the specific task 
Attribute 

The features or 

attributes belonging to 

the objects 

Environment 

factor 

Tasks’ required 

environment, like 

temperature, location 

Requirement The task capabilities 

Object 

template 

The characteristics and 

attributes of the tasks’ 

objects, like size, shape 

Environment 
The templates of the 

objects 

Task function 
Usage of each task, like 

assembly, disassembly 
Has_function 

The capabilities of 

different tasks 
Task space 

The restriction of the 

specific tasks 

 



 

Figure 2. The overall flowchart of the proposed IKG-based MARL approach. 
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Figure 3 depicts a generic flowchart for IKG construction. In manufacturing scenarios, the 

knowledge resource usually includes heterogeneous data sources, including IoT sensors, image, 

human-generated text, and domain-specific/open datasets. These resources are multimodal with 

different forms, and hence require separate processing and comprehensive fusion.  

To tackle this problem, the knowledge extraction process combines with the manufacturing 

domain knowledge and terms as the keyword corpus. Based on the external knowledge, named 

entity recognition [53], relation extraction [54], and attribute extraction [55] are conducted 

effectively and targeted. Besides, the multisensory data is extracted to the knowledge in the same 

space through the manufacturing-based mapping framework. Additionally, the image data also 

requires customized processes, like transfer learning [56] and few-shot learning [57], due to the 

limited dataset. With the pre-defined nodes and edges in Table 1, the ontology/schema can be 

established. Meanwhile, the tabular knowledge should be integrated and compressed to improve 

the quality of knowledge. Apart from the grammatical refinement, entity disambiguation 

distinguishes the entities which have the same name but different meaning, differentiating them to 

their referent entities in a knowledge base [58]. On the contrary, entity resolution applies to the 

entities having different names but the same meaning, and they should be mapped to the 

corresponding correct entity [59]. 

 

Figure 3. The proposed IKG construction process 

Based on the refined knowledge, a GCN model is trained to transfer the knowledge into the 

same vector space. It enables an efficient storage structure and largely reduce the computational 

complexity in the subsequent reasoning process, which is a fundamental process for IKG 

establishment, denoted as [60]: 

𝐻𝑙+1 = 𝜎 (�̃�−
1
2�̃��̃�−

1
2𝐻𝑙𝑊𝑙) (1) 

, where �̃� is the degree matrix, �̃� is the adjacent matrix, 𝐻𝑙 is the node embedding matrix in layer 

l, 𝑊𝑙 is the trainable weight matrix in layer l. Besides, semantic reasoning establishes new edges 

in the knowledge graph. Additionally, merging knowledge updates the knowledge timely. As the 



manufacturing scenarios concern more about the knowledge quality rather than the quantity, IKG 

requires a quality check, which guarantees the uniqueness, consistency, validity, and free-of-

conflict of the stored knowledge. 

3.1.2 GCN-based task decomposition and configuration searching 

According to the IKG established above, the potential configuration space for different tasks 

can be searched. Task decomposition divides the overall manufacturing task into sub-tasks to 

discover any existing solutions to fulfil it. The core procedures of task decomposition are depicted 

in Figure 2, including rule-based methods, semantic-based methods, and embedding similarity-

based methods for performing different searching tasks stepwise. If no sub-task set is found, it will 

go directly to Section 3.2. Otherwise, further configuration searching should be performed. 

Configuration searching aims to find a suitable initial configuration space, including actions, 

rewards and observations for undertaking the manufacturing process. If there is one or more 

existing configurations performed before, conflict detection and configuration fusion will be 

performed, before the execution of the optimal solution. Otherwise, the manufacturing task will 

go directly to Section 3.2 as well.  

However, it is often difficult to obtain the undisputed and unique configuration through 

querying the knowledge graph in reality. Therefore, a tailored graph-based algorithm is provided 

to calculate the best configuration among numerous configuration candidates and coordinate the 

ambiguous configuration space in different sub-tasks, as shown in Algorithm 1. 

Algorithm 1. Pseudo code of task decomposition and configuration searching 

Input: IKG, Manufacturing task 

Output: Sub-tasks set (STS), Configuration set (CfgS) 

Methods: Task decomposition and configuration searching  

1 Load initial IKG, Manufacturing task (MT) 

2 //Divide the MT into different sub-component as component set (CompS)  

3 CompS = Divide_component(MT) 

4 Initialize STS 

5 For comp ∈ CompS do 

6     // Task_search_rule: find the sub-task by rule-based method in IKG 

7     Task = Task_search_rule(comp) 

8     If Task != Null then 

9         STS.add(Task) 

10         Continue 

11     Else 

12         // Task_search_semantic: find the sub-task by semantic-based method  

13         Task = Task_search_semantic(comp) 

14     End if 



15     If Task != Null then 

16         STS.add(Task) 

17         Continue 

18     Else 

19         // Find_maxprob_task: find the most similar task and the corresponding probability 

20         Task, Task_prob = Find_maxprob_task(comp, Task_embedding set) 

21         If Task_prob larger than threshold 𝜙 then 

22             STS.add(Task) 

23         End if 

24     End if 

25 End for 

26 Initialize CfgS 

27 For sub-task ∈ STS do 

28     // Find_configuration: search the configuration in the IKG 

29     cfg = Find_configuration(sub-task) 

30     // Conflict: search the configuration in the IKG 

31     If Conflict(cfg, CfgS) != Null then 

32         Conflicted_cfg = Conflict(cfg, CfgS) 

33         Fused_cfg = Fusion(cfg, Conflicted_cfg) 

34         If Fused_cfg != Null then 

35             CfgS.add(Fused_cfg) 

36         End if 

37     Else 

38         CfgS.add(cfg) 

39     End if 

40 End for 

41 Return STS, CfgS 

According to Algorithm 1, the core terms are further explained as follows: 

Divide_component is a function that divides the complex manufacturing tasks into 

corresponding components set by its ontology, schema, and systematic structure.  

Task_search_rule is a fundamental function of task searching. Rule-based searching is a 

traditional approach to query the node by setting the condition, including the structural condition 



and feature condition. Such as treating the Object entity node as the component, and then searching 

the corresponding tasks based on the Has_property edge.  

Task_search_semantic is a method that calculates the similarity of the candidate component 

with other task node by semantic understanding based on the graph embedding obtained from 𝐻 

matrix (1). The semantic similarity equation is as follow: 

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 (‖ℎ⃗⃗ + 𝑒 − 𝑡‖
2

) (2) 

, where ℎ⃗⃗ is the vector of object entity node, 𝑒 is the vector of has_property edge,  𝑡 is the vector 

of the possible task node. 

Find_maxprob_task is a function that searches the most similar task by calculating the cosine 

similarity among the candidate component embedding with the embedding obtained from graph 

embedding algorithm Eq. (1). After the calculation, selecting the task node with the highest 

probability as the output. The cosine similarity, which serves as semantic distance, is as follow: 

SEM_D(𝑡1⃗⃗⃗ ⃗, 𝑡2⃗⃗⃗⃗ ) =
𝑡1⃗⃗⃗ ⃗ ∙ 𝑡2⃗⃗⃗⃗

‖𝑡1⃗⃗⃗ ⃗‖‖𝑡2⃗⃗⃗⃗ ‖
=

∑ 𝑡1𝑖⃗⃗⃗⃗⃗ × 𝑡2𝑖⃗⃗ ⃗⃗⃗𝑛
𝑖=1

√∑ (𝑡1𝑖⃗⃗⃗⃗⃗)2𝑛
𝑖=1 × √∑ (𝑡2𝑖⃗⃗ ⃗⃗⃗)2𝑛

𝑖=1

(3)
 

, where 𝑡1𝑖⃗⃗ ⃗⃗ ⃗ and 𝑡2𝑖⃗⃗ ⃗⃗ ⃗ represents the component vector of vector 𝑡1 and 𝑡2 respectively. However, if 

the highest similarity is still smaller than the threshold 𝜆, the obtained task will not add into the 

sub-tasks set. 

Conflict is a function to find whether the candidate configuration conflicts with the 

configurations the proposed algorithm had found before. Based on the semantic understanding and 

the knowledge graph structure, the function determines whether it is a conflict or not by: 

𝜑 = 𝑆𝑇𝑅_𝐷(𝑐𝑓𝑔, 𝑐𝑓𝑔𝑠) − 𝑆𝐸𝑀_𝐷(𝑐𝑓𝑔, 𝑐𝑓𝑔𝑠) (4) 

, where STR_D calculates the structural distance based on the structure and their weight in the 

IKG by Dijkstra [61]. If the 𝜑 is larger than the specific threshold 𝜌, it represents conflict exist, 

and otherwise not. 

Fusion is a function that fuses the conflicting configuration. This function calculates the 

significance of different tasks, deciding the significant ranking of different corresponding 

configurations [62]. The node importance equation as follows: 

Pr(𝑡𝑖) = (1 − 𝑑) + 𝑑 ∗ ∑
Pr(𝑡𝑗)

𝐶(𝑡𝑗)

𝑚

𝑖=1
(5) 

, where Pr(𝑡𝑗)  represents the importance of node A, 𝐶(𝑡𝑗) is the edge number that node 𝑡𝑖 has, d 

presents the damping coefficient. This equation stops until it is convergent. Meanwhile, the 

community detection algorithm divides the graph into subgraphs [63], the integrated configuration 

fusion is combined with the importance ranking of configuration and the obtained subgraphs. The 

community detection algorithm is denoted as: 

Δ𝑄 = [
∑ +𝑘𝑖,𝑖𝑛𝑖𝑛

2𝑚
− (

∑ +𝑘𝑖𝑡𝑜𝑡

2𝑚
)

2

] − [
∑  𝑖𝑛

2𝑚
− (

∑  𝑡𝑜𝑡

2𝑚
)

2

− (
𝑘𝑖

2𝑚
)

2

] (6) 



, where in the community, ∑  𝑖𝑛 is the summing of edges’ weight, ∑  𝑡𝑜𝑡 is the summing of edges’ 

weight of the nodes, 𝑘𝑖 is the edge’s weight of node i, 𝑘𝑖,𝑖𝑛 is the summing of edges’ weight of the 

node i to the node, and m is the summing of edges’ weight in the network, respectively. 

Find_configuration is a function to search the configuration of the specific sub-task on the IKG, 

based on the semantic pathway established by the nodes of Object entity and edges of Environment 

and Requirement. 

Following this manner, the self-configurable manufacturing network can be established in a 

semantic-based manner to allocate on-demand manufacturing resources for performing the task. 

3.2 MARL-enabled self-optimized manufacturing process 

In a multi-agent manufacturing system, physical manufacturing resources like robots, CNC 

machine tools, 3D-printers are represented as individual agents, and should be controlled in a 

decentralized manner. Hence, how to perform the collaboratively manufacturing tasks optimally 

remains a challenge. To overcome it, in this work, MARL is adopted to self-optimize the 

manufacturing process in a decentralized manner.  

3.2.1 Preliminary 

Compared to Markov Decision Processes (MDPs) of a single-agent reinforcement learning 

(SARL), MDPs are extended to the Partially Observable Markov Games (POMG) regarding the 

interaction among decentralized agents in MARL [64], of which the preliminaries are as follows: 

A multi-agent POMG consisting of 𝑁 agents, is defined as a 4-tuple ({𝑆𝑖}𝑖𝜖𝑁, {𝑂𝑖}𝑖𝜖𝑁, {𝐴𝑖}𝑖𝜖𝑁, 

{𝑅𝑖}𝑖𝜖𝑁): 

● {𝑆𝑖}𝑖𝜖𝑁 : 𝑆  is a set of states describing the state of the environment and the current 

configuration of agents. 

● {𝑂𝑖}𝑖𝜖𝑁: 𝑂 is a set of observation spaces, and each agent gains their local observation from 

the global states 𝑆. 

● {𝐴𝑖}𝑖𝜖𝑁: 𝐴 is a set of action spaces describing the potential individual action space of each 

agent. 

● {𝑅𝑖}𝑖𝜖𝑁: 𝑅 is a set of immediate rewards gained by each agent after interacting with the 

environment. 

In practice, the action of agent 𝑖 is sampled from a stochastic policy 𝜋𝜃i parameterized by 𝜃i 

in the current state. The policy of each agent 𝜋𝜃i: 𝑂𝑖×𝐴𝑖 chooses the action from corresponding 

agents’ action space with the local observation of the agent. Meanwhile, all the agents execute 

their actions in the same state, and the next state is produced by the transition function 𝛵: 

𝑆𝑡 ×𝐴1 ×···× 𝐴𝑁 → 𝑆𝑡+1 . The agents could gain their next partial observation 𝑂i  : 𝑆  → 𝑂i . In 

addition to state, the immediate reward for each agent can also be gained from the reward function 

𝑅i : 𝑆𝑡×𝐴1×···× 𝐴𝑁×𝑆𝑡+1 →ℝ. In general, all the agents aim to maximize their cumulative rewards: 

𝑅i = ∑ 𝛾𝑡𝑟𝑖
𝑡𝑡=𝐻

𝑡=0 , where 𝛾 is the discount factor and 𝐻 is the time horizon of the task. 

3.2.2 MARL approach 

To achieve the self-optimization capability, an ideal strategy generated by the MARL 

approach should have the following properties to accomplish the tasks [65]:  



● Cooperation, which enables each agent to not only accomplish its own tasks but also not 

to prevent others from accomplishing their tasks. 

● Flexibility, which can be efficiently adapted to dynamic layout (i.e., different numbers or 

positions of agents) of manufacturing scenarios. 

To achieve it, in this work, an integration of Independent Learning (IL) [66] and Soft Actor-

Critic (SAC) [67] is chosen, which is depicted in Algorithm 2. Essentially, IL is to apply SARL 

method to each agent in the multi-agent manufacturing environment. Specifically, from lines 9–

12, the code represents centralized training and decentralized execution learning mechanism of IL, 

which is shown in Figure 3. In other words, not only the model structure and parameters of 

integrated SARL are the same and shared, but also the data from each agent is collected to update 

the model together [68], which increases the extensibility and generalization of the IL. 

 

Figure 4. The centralized training and decentralized execution mechanism. 

 Furthermore, lines 14 to 19 of Algorithm 2 depicts the MARL learning phase with SARL. 

The SAC RL algorithm has been widely adopted in a variety of benchmarks and real robot control 

tasks [69], which not only can optimize policy to obtain higher cumulative reward but also 

maximize the entropy of the policy to lead the policy as diverge as possible. The SAC policy 

function together with the consideration of entropy, is defined as follows:  

               

𝜋MaxEnt
∗ = arg max

𝜋
∑ 𝐸(𝑠𝑡,𝑎𝑡)∼𝜌𝜋

[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻(𝜋( ⋅∣∣ 𝑠𝑡 ))]𝑡 (7) 

, where the H refers to the entropy 𝐻(𝑃) = 𝐸
𝑥～𝑝

[− log 𝑃 (𝑥)], and 𝛼 is the term to control the 

importance of entropy. 𝛼 has a significant impact on performance for different tasks. Therefore, 

the authors construct setting 𝛼  as a constrained optimization problem, while maximizing the 

expected cumulative reward and maintaining the policy entropy is greater than a threshold ℋ0. 

𝑚𝑎𝑥
𝜋0,…,𝜋𝑇

𝐸 [∑ 𝑟(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=0

] s.t. ∀𝑡, ℋ(𝜋𝑡) ≥ ℋ0 (8) 

    According to Eq. (8), the loss function of optimizing 𝛼 is as follows: 



 
𝐽(𝛼) = 𝐸𝑎𝑡∼𝜋𝑡

[−𝛼 𝑙𝑜𝑔 𝜋𝑡 ( 𝑎𝑡 ∣∣ 𝜋𝑡 ) − 𝛼ℋ0] (9) 

The SAC implementation mainly consists of two functions, i.e., critic (value) function 

𝑄𝜃(s, a) and actor (policy) function 𝜋𝜙(a|s). The value function is used for estimating the action 

value of manufacturing agent in a state. The policy network outputs an action distribution used for 

sampling deterministic action when it receives state representation inputs. Both functions are 

approximated by a multi-layer neural network individually. The value function and the loss 

(objective) function used for optimizing value functions are defined as follows: 

𝑄 soft 
𝜋 (𝑠,  𝑎) = 𝐸

𝑠𝑡,𝑎𝑡∼ 𝜌𝜋 
[ ∑ 𝛾𝑡∞

𝑡=0 𝑟(𝑠𝑡 ,  𝑎𝑡) + 𝛼 ∑ 𝛾𝑡∞
𝑡=1 𝐻(𝜋( ⋅   ∣∣  𝑠𝑡 ))  ∣∣  𝑠0 = 𝑠,  𝑎0 = 𝑎 ] (10) 

𝐽𝑄(𝜃) = 𝐸
(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)∼𝒟,

𝑎𝑡−1∼𝜋𝜙
 
[
1

2
(𝑄𝜃(𝑠𝑡 , 𝑎𝑡) − (𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 (𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log (𝜋𝜙( 𝑎𝑡+1 ∣∣ 𝑠𝑡+1 )))))

2

] (11) 

Furthermore, the representation of policy 𝜋 has been discussed in Eq. (7). The loss function 

of policy, measured by Kullback–Leibler divergence and used for updating actor network, is stated 

in Eq. (11). In the KL-divergence term, since the 𝒵  is not affected by the parameter 𝜙 when 

deriving the parameters of the policy, it is ignored when requiring gradients. 

𝐽𝜋(𝜙) = 𝐷KL (𝜋𝜙( ⋅∣∣ 𝑠𝑡 )| exp (
1

𝛼
𝑄𝜃(𝑠𝑡 ,⋅) − log 𝒵 (𝑠𝑡))) (12) 

With the above two loss functions (Eq. (11) and Eq. (12)), the manufacturing agent could 

collect data via interaction with environment, and optimize these loss functions to tune the 

parameters by multi-layer neural network in advance. In addition to these, there still exists tricks 

to improve performance borrowed from SAC, such as double Q-network and target network [70].  

Algorithm 2. Pseudo code of the proposed MARL approach 

1 Initialize parameters of policy network 𝜙 

2 Initialize manufacturing agent target network parameters 𝜃1, 𝜃2 

3 Initialize an experience replay buffer D ⟵ ∅ 

4 Initialize learning rates 𝜆𝑄, 𝜆𝜋, 𝜆 

5 Initialize weighting factor 𝜏 for exponential moving average 

6 For episode = 1 to 𝑁 do 

7     Observe initial state 𝑠 

8     For each environment step from h = 1 to 𝐻 do 

9         For each manufacturing agent 𝑖, it observes an initial observation 𝑜𝑖,ℎ and samples  

an action 𝑎𝑖,ℎ according to current policy. Then agent 𝑖 gains the reward  

𝑟𝑖,ℎ and next observation 𝑜𝑖,ℎ+1.   

10     Store the transition (𝑜𝑖,ℎ, 𝑎𝑖,ℎ, 𝑟𝑖,ℎ, 𝑜𝑖,ℎ+1) in replay buffer D.     



11     𝑜𝑖,ℎ ⟵  𝑜𝑖,ℎ+1 

12     End for 

13     For each gradient step do 

14         Update Q-value network 𝜃𝑗   ← 𝜃 𝑗 − 𝜆𝑄 ∇𝜃𝑗
̂  𝐽𝑄(𝜃𝑗) for  𝑗  ∈ {1,2} 

15         Update policy network weights 𝜙 ← 𝜙 − 𝜆𝜋 ∇�̂� 𝐽𝜋(𝜙) 

16         Adjust temperature 𝛼 ← 𝛼 − 𝜆∇�̂�  𝐽(𝛼) 

17         Update target network 𝜃𝑖
̅̅ ̅  ← 𝜏𝜃𝑖 + (1 − 𝜏) 𝜃�̅�  for  𝑖  ∈ {1,2} 

18     End for 

19 End for 

20 Return 𝜙, 𝜃1, 𝜃2 

3.3 Complement of cognitive manufacturing network 

An optimal policy obtained from the MARL contains information about environmental factors, 

task spaces, etc., which are different from the existing cases in the IKG-based configuration set. 

Hence, knowledge complement should be further conducted to store the newly generated 

configurations as its nodes and edges. Meanwhile, optimized solutions should be updated in the 

existing IKG dynamically. Based on the performance in MARL of the IKG-based configuration, 

the entity resolution and alignment technologies enable to fuse the similar configurations to the 

most suitable one with their corresponding condition. The fusion is based on the concatenated 

vector of the node embedding and its first order nodes’ embedding as the representative vector. 

𝑉𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑖‖𝐶𝑆𝑖) (13) 

, where 𝑐𝑖 is the embedding of node i, 𝐶𝑆𝑖 is the average of first-order nodes’ embedding, 𝑉𝑖 is the 

integrated vector to represent node i. Comparing the semantic distance obtained from (3) with the 

standard threshold to determine whether to fuse these two nodes or not. If it needs to be fused, the 

configuration with better performance in multi-agent RL will be reserved. 

4. An illustrative example 

To depict the feasibility of the proposed method to stepwise achieve the Self-X cognitive 

manufacturing network, an illustrative example of simulated multi-robot reaching task is carried 

out. The multi-agent manufacturing system setting is simplified to the unified multiple UR5 robots 

as the agents, accomplishing the same underlying task, i.e., reaching their respective target poses 

adaptively without any collision. It is worth noting that this task can be generalized to perform 

various advanced-level manipulation tasks (e.g., painting, welding, assembly) as well. According 

to the aforementioned core procedures, it mainly includes four steps, as shown in Figure 5. 

Step 1: IKG for cognitive manufacturing network establishment. In this example, the holistic 

IKG of multi-robot manufacturing resources is firstly established in the Neo4j environment as 

described in Table I and depicted in Figure 5, including the empirical knowledge (e.g., successful 

cases), constraints (e.g., model conflict) and technical specifications (e.g., working radius), as the 

prerequisite, to enable the multi-robot task decomposition and configuration searching.  

Step 2: Prior rules offered by IKG querying. Based on the IKG, the querying process based 



on Algorithm 1 can be conducted. In the multi-robot reaching task, according to the multiple UR5 

robots’ schema and architecture, the Divide_component function decomposes it into different kinds 

of sub-components as a component set, including shoulder, wrist, elbow, gripper, etc. With the 

obtained component set, searching their corresponding tasks of each component as subtasks set. 

In the sub-tasks set, the wrist has its rotation task, elbow has its supporting task, etc. Part of these 

tasks can be achieved through precise querying or fuzzy querying in the IKG (Task_search_rule), 

while other potential and undirected tasks can be obtained by semantic searching with the graph 

embedding (Task_search_semantic). Nevertheless, in some extreme cases, previous methods fail 

to find their task, then Find_maxprob_task can be leveraged to find the most similar task as the 

potential task. For instance, the multiple UR5 robots encounter a new object to pick, which requires 

the IKG to seek similar tasks in other relevant nodes with historical records. Based on the sub-

tasks set, their corresponding configuration of each task can be achieved through querying 

(Find_configuration) in IKG as a configuration set. However, those obtained configurations set 

may have inner redundancy or restrictions. For example, the gripper has two tasks to place the 

object in similar coordinates, or two different grippers have the same pick and place task in the 

same place and same time. To avoid any conflict and to generate an integrated and systematic 

configuration set, the configuration set should be disambiguation (Conflict) and alignment 

(Fusion). With these configuration stilling processes, the obtained feasible configuration of “4 

UR5 robots to perform their corresponding target pose without collision in a compact workspace” 

is retrieved, and formatted as the input of MARL, as follows:  

• Reward: The reward function consists of three components, i.e., group reward, individual 

reward, and penalty term.  

Group Reward. The manufacturing system is rewarded only when all manufacturing agents 

achieve their corresponding goals.  

Individual Reward. Each manufacturing agent receives a reward when it individually reaches 

the goal.  

Penalty Term. As the manufacturing system has collisions, it gains a penalty. 

• Observation: Individual position of each UR robot within 85 cm radius. 

• Action Space: 1) Degrees of Freedom (6 rotating joints); 2) Payload (5 kg); 3) Repeatability 

(±0.1 mm / ±0.0039 in); 4) Weight with cable (18.4 kg / 40.6 lbs); 5) Reach (850 mm); 6) Motion 

Range: ±360°; 7) Maximum speed: ± 180°/Sec 

Step 3: Solution optimization via MARL. With above settings as input, the MARL can be 

applied based on Algorithm 2 to search the optimal solution for the reaching task. In this case, the 

manufacturing environment is carried out by PyBullet [68] and the simulations are performed on 

a laptop with 2.3 GHz 8-core i9-9980H CPU, 32 GB RAM. The motion trajectory of the four UR5 

robots in Step 3 is depicted in Figure 5, which is screen captured by combining multiple sampled 

frames during the robot's movement. 

Step 4: Task and solution packaging. After acquiring the optimal solution via MARL, the 

characteristics of the task and the feasible solution, including documentation of tasks, model 

structure, parameters and weights, and manufacturing resources, are packaged and further 

manually backpropagated to IKG, which improves the completeness and diversity of IKG.   

Discussion. Following the above-mentioned steps, a self-configurable and self-optimizing 

multi-robot manufacturing network based on different tasks can be realized, which can 



dynamically adapt its solution space to generate new solutions to accomplish new tasks. It is worth 

noting that, although the collision-free completion of the reaching task by robots is a basic motion 

planning task, application of this task can be widely applied to perform a variety of other advanced, 

complex manufacturing tasks. For example, in the disassembly task of an ageing energy vehicle 

battery, multiple robots are employed to collaborate to disassemble the entire battery component 

and different robots take the duty of disassembling and operating different parts of the battery. In 

this series of tasks, the types of batteries are sundry, the robot disassembly system may employ 

different numbers of robots to complete the disassembly task. Therefore, the scalability of the 

MARL acquired in the above robot reaching experiment to meet such requirements. Secondly, the 

machine vision system can provide each robot the pose and position information of the target part. 

However, when multiple robots complete their tasks in parallel, the high integration of automotive 

batteries makes the operating environment crowded. Hence, the flexible collision-free motion 

planning policy derived from MARL can effectively solve this problem. Finally, since different 

external indexes may make the target indicators of different disassembly tasks different (time, cost, 

and so on), the IKG approach can automatically adjust the proportion and composition of the 

shaped reward of MARL to better meet the expectations. 

 

Figure 5. Core steps of the illustrative example 

5. Conclusion 

Enabled by the prevailing implementation of human-level information processing of cognitive 

computing, IIoT and big data analytics, today’s manufacturing systems are rapidly shifting towards 

a Self-X cognitive manufacturing network for achieving cognitive mass personalization. 

Nevertheless, it still lies a long way to readily achieve its Self-X capabilities. To address the issue, 

as an explorative study, this research proposes a systematic IKG-based MARL-enabled approach 

to support the self-configuration and self-optimization of multi-agent-based manufacturing 

Step 3: Solution Optimization Via MARL

• Action Space: Allocated robots’ action space
• Observation:  Base positions within 85cm radius 
• Reward:

• Team Reward: All robots finish their 
corresponding tasks but together

• Individual Reward:  Each robot  finsih their 
tasks individually

• Penalty: Robots have collision. 

Step 2: Prior Rules Offered by IKG querying
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systems in a network-based manner. An illustrative example of multi-robot collaboration is also 

provided to validate the feasibility of the proposed approach. The main scientific contributions of 

this work can be summarized into two aspects, namely: 

(1) IKG and graph-embedding techniques for self-configurable cognitive manufacturing 

network establishment. The re-/configuration of manufacturing “things” can be performed by the 

well-defined knowledge extraction from multimodal data, IKG establishment, task decomposition 

and configuration searching procedures in a semantic-based manner. Meanwhile, with the 

interoperability of standardized M2M communication protocol (e.g., OPC UA) in a IIoT 

environment, on-demand manufacturing resources can be allocated efficiently. 

(2) MARL-enabled self-optimized decentralized manufacturing process. The MARL is formed 

as the integration of IL and SAC, where decentralized manufacturing tasks can be fulfilled by self-

optimizing the manufacturing process, and further to complement the IKG towards Self-X 

cognitive manufacturing network eventually. 

Despite these achievements, there still lies some limitations in this research. For instance, the 

automated establishment and dynamic evolvement of the IKG (e.g., knowledge complement) 

remains a challenge. Meanwhile, in this research, the mass personalization issue is mainly 

concerned by the self-organizing capabilities of available manufacturing resources on-site, while 

distributed manufacturing scenarios are not involved. Moreover, the self-healing/adaptive 

capabilities to actively identify any variations and autonomously dealing with potential disruptions 

without human interventions, are still far to achieve with the current level of manufacturing/robot 

learning intelligence. Therefore, it is envisioned that future works of Self-X cognitive 

manufacturing network can be done in the following aspects: 1) Ubiquitous semantical 

connections, with an IKG-based organization on massive heterogeneous entities, all stakeholders 

and all manufacturing resources can be interlinked and interacted in the manufacturing network 

with semantic-rich and logic-solid relations even in the geographically distributed manufacturing 

environment for mass personalization; (2) Human-machine co-evolvement, as semantic gap 

bridged by IKG, human operators can break their thinking-sets with creative insights discovered 

by the cognitive machines; and (3) Scalable MARL for decentralized multi-agent manufacturing 

systems. Compared with the centralized training and decentralized execution mechanism, robust 

strategies should be brought up to retrain the policy with varying scale of multiple agents. 
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