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Abstract: Multi-commodity rebalancing plays a critical role before and during the attack of large-scale 

disasters. In practice, some relief centers can be out of reach from the ground for vehicles due to the road 

disruption. Accordingly, alternative transportation systems are essential to maximize fairness and 

minimize the total transportation time, simultaneously. However, little study has reported on this issue for 

humanitarian logistics. To address it, a bi-objective stochastic optimization model is proposed to 

rebalance and transport commodities with the multi-modal transportation system. This work first 

linearizes the model and then applies an adaptive augmented ℰ-constraint method to obtain a number of 

Pareto-optimal solutions. Furthermore, a case study of an emergency event is carried out, of which the 

computational results indicate its decision making effectiveness. Lastly, sensitivity analysis on critical 

parameters is conducted and the trade-off between the objectives is also analyzed to provide valuable 

managerial insights. 

Keywords: Multi-modal transportation; Stochastic programming; Commodity rebalancing; 

Transportation planning; Humanitarian logistics. 

1． Introduction

Large-scale disasters, natural or man-made were occurring more frequently (Ronke 2018), resulting in a 

great impact on human beings, such as Coronavirus Disease-19 (COVID-19) and 2019 Plague of Locusts 

from Kenya. Upon these disasters, rapid and effective disaster responses should be conducted to rescue 

victims and relieving human suffering (Gao et al. 2017; Wang et al. 2017; Gao et al. 2019; Hu et al. 2019; 

Gao 2020; Pi et al. 2020). Before the occurrence of large-scale disasters, many relief centers have been 

pre-determined and various commodities are prepared based on the best estimation at peacetime. Because 

of the unpredictable disasters, the initial commodity preparedness strategy may be not working in a 

practical situation, such as the unbalanced medical staff and supplies in response to COVID-19. The 
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mismatch between supply and demand results in surpluses and shortages at relief centers (Gao and Lee 

2018). To save resources, Gao (2020) defined the multi-commodity rebalancing problem among relief 

centers.  

Generally, vehicles are used to transport commodities among relief centers. However, some relief 

centers are out of reach from the ground due to road disruption and traffic congestion. Besides, the 

extremely far distance costs too much time of vehicles, which is unacceptable for refugees. Accordingly, 

some other transportation systems (e.g. helicopters) need to be applied to transport commodities. In this 

sense, a multi-modal transportation system should be considered. Note that different modes of 

transportation have different travel distances between the same two facilities.  

Also, various uncertainties need to be considered to describe the disastrous situation. It is difficult to 

know how many commodities should be kept and needed, which makes the supply and demand uncertain. 

Besides, the road condition is uncertain as the road information cannot be collected accurately because of 

some unavoidable reasons (e.g. debris removal or second disasters) (Rath et al. 2016). In addition, the 

practical consideration of road disruption is inevitable after some large-scale disasters, such as an 

earthquake (Cao et al. 2020). To the best of our knowledge, this multi-commodity rebalancing and 

transportation (MCRT) problem with uncertain elements and road disruption has never been studied in the 

previous studies. To address the main concerns of this study, the following questions need to be 

considered: 

(1) How to characterize the fairness in the MCRT problem and transport commodities over the multi-

modal transportation system? 

(2) How to formulate the model for the MCRT problem with uncertain elements and road disruption?  

 (3) What are the influences of multi-modal transportation planning on transportation performance 

compared with single-modal transportation planning? 

(4) What are the managerial insights and implications for decision-makers to handle the MCRT 

problem? 

To address the aforementioned questions and research gap, this study focuses on the MCRT problem 

under uncertainty and road disruption over the multi-modal transportation network with combined 

distances. The rest of this paper is organized as follows. Section 2 reviews and discusses the previous 

studies on the main concerns of this study, where the research gap is identified. Section 3 describes the 

MCRT problem with pre-defined assumptions. To address it, the MCRT problem is further formulated as 

a proposed bi-objective stochastic mixed-integer nonlinear programming (BOSMINP) model and the 
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corresponding linearization method is developed in Section 4. Section 5 provides the adaptive augmented 

ℰ-constraint method and the strategy for handling large-sized problems. Furthermore, a case study is 

provided with the computational results obtained to validate its effectiveness in Section 6. At last, Section 

7 concludes this research by providing valuable managerial insights and highlighting future directions. 

2． Literature review 

This section reviews the literature by discussing several studies on managing the uncertainties, objectives, 

multi-modal transportation, mathematical programming, and other considerations in humanitarian 

logistics.  

2.1 Uncertainties in humanitarian logistics 

Due to the dynamic environment after a large-scale disaster, the collected information is usually uncertain 

(Kostoulas et al. 2008; Haghi et al. 2017; Gao and Jin 2020; Balcik and Yanıkoğlu 2020). Various 

uncertain elements need to be considered to improve the reliability of studies in humanitarian logistics. 

For instance, Rawls and Turnquist (2010) focused on an emergency response pre-positioning strategy for 

hurricanes or other disaster threats with uncertain demand and transportation network availability. 

Rottkemper et al. (2012) developed an optimization model under uncertain demand. Cavdur et al. (2016) 

proposed a two-stage stochastic programming model for the facility allocation problem under demand 

uncertainty. Song et al. (2018) proposed an optimization model to optimize supply chain operations for 

rescue kits in disaster reliefs under demand uncertainty. 

Besides, the supply is also a non-negligible uncertain factor in humanitarian logistics. Only a limited 

number of works covered the uncertain supply. Tofighi et al. (2016) designed a two-echelon humanitarian 

logistics network under the consideration of inherent uncertain supply, demand, and road availability. 

Haghi et al. (2017) developed a multi-objective programming model that considered uncertain demand, 

supply, and cost parameters. Gao and Lee (2018) formulated a multi-commodity redistribution problem 

with uncertain supply, demand, and road availability. Balcik et al. (2019) proposed a stochastic 

optimization model to design a collaborative prepositioning network with demand and supply 

uncertainties to strengthen disaster preparedness. Gao (2020) also considered uncertain supply and road 

availability in rebalancing commodities in disaster response.  

2.2 Multiple objectives in humanitarian logistics 

Another main feature of disasters is the inherent multiple objectives that need to be achieved 

simultaneously. Beyond all question, the objective of humanitarian logistics is different from that of 
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business logistics, which aims to maximize the profit or minimize the cost (Li et al. 2018; Yu et al. 2020), 

whereas humanitarian logistics aims to maximize fairness or minimize the time of response (Huang et al. 

2015; Yu et al. 2018; Li et al. 2019; Gao 2020). For instance, Mohammadi et al. (2016) proposed a multi-

objective stochastic optimization model to maximize the total expected demand coverage, minimize the 

total expected cost, and minimize the difference in satisfaction rates between facilities. However, a 

suitable model should address human suffering or fairness in humanitarian logistics (Holguín-Veras et al. 

2013; Haddow et al. 2017; Rodríguez-Espíndola et al. 2018; Cao et al. 2018). In addition, timeliness, a 

common objective, is also an important goal in humanitarian logistics so that the commodities can be 

transported as quickly as possible to satisfy the urgent need of refugees. 

Since the uneven disaster severities lead to a growing imbalance between the supply and demand 

(Emanuel et al. 2020), rebalancing and transporting commodities among these relief centers are required 

right after a disaster with the goals of maximizing fairness and minimizing timeliness. Regarding the 

fairness measurements, several methods have been proposed in humanitarian logistics. The penalty cost 

of unmet demand was widely used in previous studies (Lin et al. 2011; Rawls and Turnquist 2010; 

Moreno et al. 2016; Bai 2016). However, the penalty cost of unmet demand does not guarantee fairness 

since the commodities cannot be evenly distributed. Besides, the unmet proportion of required resources 

was also used by Wang and Sun (2018) without considering the priorities. With the priorities of demand 

points, the weighted proportion of unmet demand was used to measure fairness by Rivera-Royero et al. 

(2016), seemingly a more reasonable way to measure fairness. As a consequence, the minimization of the 

weighted proportion of unmet demand is used to measure fairness in this study.  

2.3 Multi-modal transportation in humanitarian logistics 

In the last decade, multi-modal transportation planning has received insufficient attention because multi-

modal transportation planning is a recently emerging research field and so far has not been explored in 

detail. Multi-modal transportation planning is generally applied in hub-location related problems. 

Particularly, both Ishfaq and Sox (2011) and Alumur et al. (2012) considered hub-location problems. 

Meraklı and Yaman (2016) proposed a mathematical model to solve a robust p-hub median problem 

under demand uncertainty. Yuan and Yu (2018) developed an optimization model to design a multi-

modal transportation network.  

This study is different from the above studies because the commodity-flow and transit-related 

decisions are the main concerns of this study rather than the hub location and network design in multi-

modal transportation planning. In the practice of disaster response, it usually involves more than one 
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means of transportation, such as road and air. To the best of our knowledge, multi-modal transportation 

planning has never been studied in the MCRT problem.  

2.4 Stochastic programming approach 

At the same time, various mathematical programming approaches (Ni et al. 2018; Rodríguez-Espíndola et 

al. 2018; Cao et al. 2018; Park et al. 2018; Arnette and Zobel 2019; Gao 2019; Zarbakhshnia et al. 2020; 

Erbeyoğlu and Bilge 2020; Lu et al. 2020; Gillani et al. 2020; Gao and Cao 2020; Jung et al. 2020) have 

been applied to handle various humanitarian logistics issues so far. To be specific, a single- or multi-

objective mixed-integer programming model is usually used to formulate the humanitarian logistics 

problems without considering uncertainty (Camacho-Vallejo et al. 2015; Gutjahr and Dzubur 2016; Loree 

and Aros-Vera 2018; Bababeik et al. 2018; Baharmand et al. 2019). With the uncertainty in the 

humanitarian logistics problems, the single- or multi-objective stochastic mixed-integer programming 

model is generally applied (Rath et al. 2016; Paul and Zhang 2019; Gao 2020; Gao and Cao 2020). In this 

sense, it is easily convinced that the stochastic programming approach can be used to solve the 

humanitarian logistics problem with uncertainty. Given different uncertain elements, different stochastic 

programming approaches should be developed. As a consequence, this study proposes a specific 

BOSMINP model incorporating a multi-modal transportation context and several uncertain elements, 

which makes the proposed mathematical programming model different from the previous ones.  

2.5 Summary 

In addition to the above discussion, a clear and comprehensive literature review is provided in Table 1. 

Because this research focuses on the operations and computational research in humanitarian logistics, 

some international journals that have the highest relevant contributions are searched, such as, Production 

and Operations Management, European Journal of Operations Research, Transportation Research Part E: 

Logistics and Transportation Review, Computers & Industrial Engineering, International Journal of 

Production Economics, Transportation Research Part B: Methodological, and Socio-Economic Planning 

Sciences.  

As shown in Table 1, some literature gaps can be addressed as follows. Firstly, many recent studies 

have been focused on pre-positioning network design and inventory strategy. However, only a few studies 

have been conducted to address the commodity rebalancing process in humanitarian logistics. Secondly, 

multi-modal transportation planning has never been studied in humanitarian logistics. Thirdly, the 

previous studies scarcely paid attention to the important criterion of fairness in humanitarian logistics. 

Also, as noted by Gao and Lee (2018), transporting mixed commodities is a great way to improve vehicle 

https://onlinelibrary.wiley.com/journal/19375956
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utilization, which has also received insufficient attention in the past. Therefore, this work focus on the 

MCRT problem to rebalance and transport commodities over a multi-modal transportation network with 

combined distances under uncertain supply, demand, and road availability, which has never been studied 

before. Besides, a BOSMINP model is proposed to formulate the above problem, which contains two 

objectives: (i) maximization of the fairness by minimizing the expected total weighted proportion of 

unmet demand and (ii) minimization of the expected total transportation time. To solve the problem, a 

linearization method is developed and an adaptive augmented ℰ-constraint method is applied to analyze 

the conflicting objectives. This study also develops a specific strategy to handle large-sized problems. 

Finally, a real case study is implemented to validate the proposed model and method. And the key 

managerial insights and implications are also summarized for decision-makers. 

Table 1 Summary of the literature pertaining to the humanitarian logistics operations 

Article Main problem Uncertainty 
Multi-modal 

transportation 

Mixed 

delivery 
Fairness Objective Model Approach 

Mete and Zabinsky 

(2010) 
Medical supplies distribution Demand No No No Single MIP Exact 

Bozorgi-Amiri et al. 

(2013) 
Humanitarian relief logistics 

Demand, supply, 

and cost 
No No No Multiple MINP Exact 

Döyen et al. (2012) Humanitarian relief logistics Demand and cost No No No Single MILP Heuristic 

Davis et al. (2013) Commodity distribution 
Demand, supply, 

and network 
No No No Single MILP Exact 

Rennemo et al. 

(2014) 
Commodity distribution 

Demand, network, 

and capacity 
No No Yes Multiple MIP Exact 

Camacho-Vallejo et 

al. (2015) 
Aid distribution None No No No Multiple MINP Exact 

Hong et al. (2015) 
Pre-disaster relief network 

design 

Demand and 

transportation 

capacity 

No No No Single MILP Exact 

Mohammadi et al. 

(2016) 

Commodity pre-position and 

distribution 

Demand, cost, and 

time 
No No No Multiple MILP Heuristic 

Bai (2016) 
Emergency supplies 

allocation 

Demand and path 

availability 
No No Yes Multiple MINP Exact 

Gutjahr and Dzubur 

(2016) 
Commodity distribution None No No No Multiple MINP Exact 

Tofighi et al. (2016) 
Humanitarian logistics 

network design 

Demand, supply, 

and network 
No No No Multiple MILP Exact 

Rivera-Royero et al. 

(2016) 
Relief supplies distribution None No No Yes Single MIP 

Exact and 

Heuristic 

Haghi et al. (2017) Relief logistics 
Demand, cost, and 

casualty number 
No No No Multiple MINP Heuristic 

Elci and Noyan 

(2018) 

Humanitarian relief network 

design 

Demand and 

network 
No No No Single MILP Exact 

Gao and Lee (2018) Commodity redistribution 
Demand, supply, 

and network 
No Yes No Multiple MINP Exact 

Safaei et al. (2018) 
Supply distribution relief 

network design 
Demand and supply No No No Multiple MINP Exact 

Bababeik et al. 

(2018) 

Location and allocation of 

relief trains 
None No No No Multiple ILP Exact 

Loree and Aros-Vera 

(2018) 

Facility location and 

inventory allocation 
None No No No Single MINP Heuristic 

Ni et al. (2018) 
Pre‐ positioning emergency 

inventory 

Demand, inventory, 

road link capacity 
No No No Single MIP Exact 

Mills et al. (2018) Distribution of patients State information No No No Single IP Heuristic 

Liu et al. (2019) Relief distribution Demand and supply No No No Single MILP Exact 

Baharmand et al. 

(2019) 

Distribution center location 

determination 
None No No No Multiple MILP Exact 

Balcik et al. (2019) 
Pre-positioning network 

design 
Demand and supply No No Yes Single MILP Exact 

Arnette and Zobel 

(2019) 
Relief asset pre-positioning None No No Yes Single MILP Exact 

Gao (2020) Commodity rebalancing 
Demand and 

network 
No Yes Yes Multiple MINP Exact 

Erbeyoğlu and Bilge Humanitarian network design Demand No No No Single MILP Exact 
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(2020) 

This study MCRT 
Demand, supply, 

and network 
Yes Yes Yes Multiple MINP Exact 

3． Problem statement 

This section describes the main problem with the following five subsections. 

3.1 Transportation network 

In addressing the MCRT problem, relief centers have been pre-determined to stock commodities. 

However, considering the road disruption and traffic chaos due to the disaster, some relief centers are out 

of reach for vehicles from the ground. In this sense, this research considers two means of transportation 

(i.e., vehicles and helicopters) to transport commodities. Two simple examples (i.e., I and II) are provided 

to illustrate the combined routes between two relief centers A and B (see Fig. 1). As shown in Fig. 1(a), 

two different routes are connecting A and B. These two routes have different travel distances for vehicles 

and helicopters, where a helicopter usually chooses the straight-line distance between relief centers. As 

shown in Fig. 1(b), the road connecting A and B is blocked. In this sense, the commodities can only be 

transported by helicopters between them.  

  

(a) Example I (b) Example II 

Fig. 1. Illustrative examples of the combined routes between two relief centers 

To illustrate the main concerns of the problem, a multi-modal transportation network with five relief 

centers (i.e., 1-5) is depicted in Fig. 2, where the relief centers are represented by circles. As shown in Fig. 

2, relief centers 3 and 5 are out of reach for vehicles due to some underlying factors, whereas the 

helicopters can transport commodities between any two relief centers. Then the task is to assign the 

vehicles and helicopters to transport commodities over the multi-modal transportation network. Noted 

that the travel distance of vehicles is the length of the road, whereas the travel distance of helicopters 

approximately equals Euclidean distance between the geographical locations.  
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Fig. 2. Multi-modal transportation network of five relief centers 

3.2 Uncertainties 

In this MCRT problem, the stock levels, supplies, and demand at relief centers should be considered. 

After comparing the stock levels and demand, the relief centers are generally divided into two groups, 

namely demand and supply points. Because a disaster creates a highly uncertain environment, the demand 

and supply are generally uncertain. With the uncertain demand and supply, the relief centers need to be 

divided into three relief-center categories, which is different from the previous cases. These three relief-

center categories also result in a great impact on modeling the mathematical programming model. As 

mentioned early, the road availability is also uncertain due to various factors. Some roads are slightly 

damaged or congested, whereas some roads are extremely damaged or blocked. As the road condition 

cannot be precisely predicted, this study considers the uncertain road condition, which is represented by 

road availability. Noted that the routes for helicopters are certain.  

3.3 Relief-center categories 

To illustrate the problem, commodity-type 𝑡 is considered and each of the relief centers is in charge of 

distributing commodities to the victims in a certain area. Suppose that a relief center has a stock level 𝑆𝑡 

and uncertain demand between min
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … }  and max
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } . After comparing 𝑆𝑡 

with uncertain demand, this relief center possibly belongs to one of the following three categories, namely 

(1) supply relief centers, (2) demand relief centers, and (3) potential supply or demand relief centers (see 

Fig. 3). It is required to divide these relief centers into three categories because they have different 

decision variables. Then more details about these three categories are given based on the stock level 𝑆𝑡 

and the demand {𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } overall scenarios.  
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(1) Supply relief-center category 

𝑆𝑡 ≥ max
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } (1) 

where the inequality in (1) indicates that this relief center is considered as a supply point. 

(2)  Demand relief-center category 

𝑆𝑡 ≤ min
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } (2) 

where the inequality in (2) indicates that this relief center is considered as a demand point. 

(3) Potential supply or demand relief-center category 

min
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } < 𝑆𝑡 < max
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } (3) 

The above inequality in (3) shows that the stock level is between the minimum and maximum possible 

demand. It is difficult to tell that this relief center is a supply point or a demand point because it has the 

potential to send or receive commodities. This kind of relief centers belongs to the potential supply or 

demand relief-center category and needs to be identified as a demand or supply relief center.  

To provide a visual illustration for the above three relief-center categories, three illustrative examples 

are provided in Fig. 3, where two scenarios are considered. As shown in Fig. 3, the stock level is denoted 

by 𝑆 and the possible quantities of demand in two scenarios are denoted by 𝐷1 and 𝐷2. For the supply 

relief center shown in Fig. 3(a), there are two possible quantities of surplus (i.e., practical supply) that are 

𝑆 − 𝐷1 and 𝑆 − 𝐷2. For the demand relief center shown in Fig. 3(b), there are two possible quantities of 

practical demand that are 𝐷1 − 𝑆 and 𝐷2 − 𝑆. For the supply or demand relief center shown in Fig. 3(c), 

the surplus is 𝑆 − 𝐷1 in the first scenario and the practical demand is 𝐷2 − 𝑆 in the second scenario. 

   
(a) Supply relief center (b) Demand relief center (c) Supply or demand relief center  

Fig. 3. Illustrative examples for the three relief-center categories 

As shown in Fig. 3, all the relief centers are divided into three categories after comparing the stock 

levels and the demands. Besides, the intersection of any two relief-center categories is zero. Thus, the 

actual supply (surplus) and actual demand (shortage) are identified for these three relief-center categories. 
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It is easily observed that the surplus happens in the first and third categories. Let 𝒫𝑡𝜉 be the surplus of 

commodity-type 𝑡 in scenario 𝜉, which is represented by  

𝒫𝑡𝜉 = {
𝑆𝑡 − 𝐷𝑡𝜉                  if 𝑆𝑡 ≥ max

𝜉
{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … }                                                   

max{𝑆𝑡 − 𝐷𝑡𝜉 , 0} if min
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } < 𝑆𝑡 < max
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … }
 (4) 

It is easily seen that the shortage happens in the second and third categories. Let 𝒬𝑡𝜉 be the shortage of 

commodity-type 𝑡 in scenario 𝜉, which is represented by  

𝒬𝑡𝜉 = {
𝐷𝑡𝜉 − 𝑆𝑡                  if 𝑆𝑡 ≤ min

𝜉
{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … }                                                    

max{𝐷𝑡𝜉 − 𝑆𝑡 , 0} if min
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … } < 𝑆𝑡 < max
𝜉

{𝐷𝑡1, 𝐷𝑡2, … , 𝐷𝑡𝜉 , … }
 (5) 

With the above considerations, a similar situation can be identified after the outbreak of COVID-19 

because the dissimilarly and unevenly distributed prevalence of infection are discrepant in different 

affected areas, which leads to a growing imbalance between the supply and demand. In this sense, the 

medical staff and supplies also need to be rebalanced among different areas in response to COVID-19. In 

addition, the demand for medical staff is also uncertain since the number of infected patients is quite 

difficult to be predicted. As a consequence, the main concerns of this study are also suitable for 

rebalancing the medical staff and supplies in response to COVID-19.  

3.4 Goals 

This research considers two goals; the first goal aims to achieve maximum fairness in rebalancing 

commodities and the second goal is to transport commodities as quickly as possible. Particularly, the 

minimization of the weighted proportion of unmet demand is used to measure fairness. The second goal is 

measured by the transportation time of vehicles and helicopters. 

3.5 Presumptions 

Three assumptions are postulated for the BOSMINP model. 

(1) The locations and number of relief centers are given. Each relief center is a separate unit. Since 

the multi-commodity rebalancing process happens after the commodities are stocked or 

distributed at the relief centers, the locations and number of relief centers are known. At the 

same time,  each of the relief centers is in charge of distributing the commodities to victims in an 

independent area, which indicates that the demand for commodities in this area is also 

independent. A similar action can be found in Gao (2020). 

(2) The distances between relief centers are known, which is a common assumption and widely used 

in previous studies (Li et al. 2011; Chen and Yu 2016).  



 

11 

 

(3) Both vehicles and helicopters can transport mixed commodities together. In practice, the 

vehicles and helicopters are usually used to carry mixed commodities because the victims in the 

disaster area need a variety of commodities. 

4． Mathematical model 

4.1 Notations 

Sets 

𝒮: Set of relief centers with surpluses, indexed by 𝑠. 𝒯: Set of commodity types, indexed by 𝑡. 

𝒟: Set of relief centers with shortages, indexed by 𝑑. 𝛯: Set of scenarios in supply and demand, indexed by 𝜉. 

ℛ: 
Set of supply or demand relief centers, indexed 

by 𝑟, 𝑙 & 𝑟 ≠ 𝑙. 
𝛷: Set of scenarios in road availability, indexed by 𝜁. 

Stock level and priority Parameters 

𝑆𝑡𝑠: Stock level at relief-center 𝑠 ∈ 𝒮 for 𝑡 ∈ 𝒯. 𝑃𝑡𝑠: Priority of relief-center 𝑠 ∈ 𝒮 for 𝑡 ∈ 𝒯. 

𝑆𝑡𝑑: Stock level at relief-center 𝑑 ∈ 𝒟 for 𝑡 ∈ 𝒯 𝑃𝑡𝑑: Priority of relief-center 𝑑 ∈ 𝒟 for 𝑡 ∈ 𝒯. 

𝑆𝑡𝑟: Stock level at relief-center 𝑟 ∈ ℛ for 𝑡 ∈ 𝒯. 𝑃𝑡𝑟: Priority of relief-center 𝑟 ∈ ℛ for 𝑡 ∈ 𝒯. 

Distance parameters 

𝑇𝑠𝑑: Distance for vehicles between 𝑠 ∈ 𝒮 and 𝑑 ∈ 𝒟. 𝐸𝑠𝑑: Distance for helicopters between 𝑠 ∈ 𝒮 and 𝑑 ∈ 𝒟. 

𝑇𝑠𝑟: Distance for vehicles between 𝑠 ∈ 𝒮 and 𝑟 ∈ ℛ. 𝐸𝑠𝑟: Distance for helicopters between 𝑠 ∈ 𝒮 and 𝑟 ∈ ℛ. 

𝑇𝑟𝑑: Distance for vehicles between 𝑟 ∈ ℛ and 𝑑 ∈ 𝒟. 𝐸𝑟𝑑: Distance for helicopters between 𝑟 ∈ ℛ and 𝑑 ∈ 𝒟. 

𝑇𝑟𝑙: Distance for vehicles between 𝑟 ∈ ℛ and 𝑙 ∈ ℛ. 𝐸𝑟𝑙: Distance for helicopters between 𝑟 ∈ ℛ and 𝑙 ∈ ℛ. 

Vehicle, helicopter, and commodity parameters 

𝐴𝑉, 𝐴𝐻: Numbers of vehicles and helicopters, respectively.   

𝑊𝑡 , 𝑉𝑡 ∶ Weight and volume of 𝑡 ∈ 𝒯, respectively.   

𝐶𝑊, 𝐶𝑉: Weight and volume capacities of vehicles, respectively.   

𝐻𝑊, 𝐻𝑉: Weight and volume capacities of helicopters, respectively.   

𝑇𝑉, 𝑇𝐻: Travel speeds of vehicles and helicopters, respectively.   

𝐿𝑉, 𝐿𝐻: Loading/unloading times of vehicles and helicopters, respectively.   

Demand parameters 

𝐷𝑡𝑠
𝜉

: Demand for 𝑡 ∈ 𝒯 at 𝑠 ∈ 𝒮 in 𝜉 ∈ 𝛯. 𝐷𝑡𝑟
𝜉

: Demand for 𝑡 ∈ 𝒯 at 𝑟 ∈ ℛ in 𝜉 ∈ 𝛯. 

𝐷𝑡𝑑
𝜉

: Demand for 𝑡 ∈ 𝒯 at 𝑑 ∈ 𝒟 in 𝜉 ∈ 𝛯.   

Road availability parameters 

𝑎𝑠𝑑
𝜁

: Availability between 𝑠 ∈ 𝒮 and 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 𝑎𝑟𝑑
𝜁

: Availability between 𝑟 ∈ ℛ and 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 

𝑎𝑠𝑟
𝜁

: Availability between 𝑠 ∈ 𝒮 and 𝑟 ∈ ℛ in 𝜁 ∈ 𝛷. 𝑎𝑟𝑙
𝜁

: Availability between 𝑟 ∈ ℛ and 𝑙 ∈ ℛ in 𝜁 ∈ 𝛷. 

Probabilities 

𝑃𝑟𝜉 : Probability in 𝜉 ∈ 𝛯. 𝑃𝑟𝜁: Probability in 𝜁 ∈ 𝛷. 
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Decision variables 

𝑜𝑡𝑠: Outgoing shipment at 𝑠 ∈ 𝒮 for 𝑡 ∈ 𝒯. 𝑛𝑠𝑑
𝜁

: Number of vehicles from 𝑠 ∈ 𝒮 to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 

𝑖𝑡𝑑: Incoming shipment at 𝑑 ∈ 𝒟 for 𝑡 ∈ 𝒯. 𝑛𝑠𝑟
𝜁

: Number of vehicles from 𝑠 ∈ 𝒮 to 𝑟 ∈ ℛ in 𝜁 ∈ 𝛷. 

𝑝𝑡𝑟: Outgoing shipment at 𝑟 ∈ ℛ for 𝑡 ∈ 𝒯. 𝑛𝑟𝑑
𝜁

: Number of vehicles from 𝑟 ∈ ℛ to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 

𝑞𝑡𝑟: Incoming shipment at 𝑟 ∈ ℛ for 𝑡 ∈ 𝒯. 𝑛𝑟𝑙
𝜁

: Number of vehicles from 𝑟 ∈ ℛ to 𝑙 ∈ ℛ in 𝜁 ∈ 𝛷. 

𝑓𝑠𝑑
𝑡𝜁

: Flow of 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. ℎ𝑠𝑑
𝜁

: Number of helicopters from 𝑠 ∈ 𝒮 to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 

𝑓𝑠𝑟
𝑡𝜁

: Flow of 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑟 ∈ ℛ in 𝜁 ∈ 𝛷. ℎ𝑠𝑟
𝜁

: Number of helicopters from 𝑠 ∈ 𝒮 to 𝑟 ∈ ℛ in 𝜁 ∈ 𝛷. 

𝑓𝑟𝑑
𝑡𝜁

: Flow of 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. ℎ𝑟𝑑
𝜁

: Number of helicopters from 𝑟 ∈ ℛ to 𝑑 ∈ 𝒟 in 𝜁 ∈ 𝛷. 

𝑓𝑟𝑙
𝑡𝜁

: Flow of 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑙 ∈ ℛ in 𝜁 ∈ 𝛷. ℎ𝑟𝑙
𝜁

: Number of helicopters from 𝑟 ∈ ℛ to 𝑙 ∈ ℛ in 𝜁 ∈ 𝛷. 

4.2 Objective functions 

This study considers two objectives; maximization of fairness and minimization of transportation time, 

which are introduced below. 

4.2.1 Maximization of fairness  

The maximization of fairness is formulated as the minimization of the weighted proportion of unmet 

demand. With the uncertain demand and supply, the weighted proportion of unmet demands at three 

relief-center categories are provided below. 

• Weighted proportion of unmet demand at 𝒔 

Given the priority 𝑃𝑡𝑠 , stock level 𝑆𝑡𝑠, and demand 𝐷𝑡𝑠
𝜉

 in scenario 𝜉 at 𝑠, the weighted proportion of 

unmet demand 𝑺(𝑜𝑡𝑠, 𝜉) for commodity-type 𝑡 is defined as 

𝑺(𝑜𝑡𝑠, 𝜉) = 𝑃𝑡𝑠

max{𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠), 0}

𝐷𝑡𝑠
𝜉

  (6) 

• Weighted proportion of unmet demand at 𝒅 

Given the priority 𝑃𝑡𝑑, stock level 𝑆𝑡𝑑, and demand 𝐷𝑡𝑑
𝜉

 in scenario 𝜉 at 𝑑, the weighted proportion of 

unmet demand 𝑫(𝑖𝑡𝑑 , 𝜉) for commodity-type 𝑡 is defined as 

𝑫(𝑖𝑡𝑑 , 𝜉) = 𝑃𝑡𝑑

max{𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑), 0}

𝐷𝑡𝑑
𝜉

  (7) 

• Weighted proportion of unmet demand at 𝒓  
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Given the priority 𝑃𝑡𝑟 , stock level 𝑆𝑡𝑟 , and demand 𝐷𝑡𝑟
𝜉

 in scenario 𝜉 at 𝑟, the weighted proportion of 

unmet demand 𝑹(𝑝𝑡𝑟, 𝑞𝑡𝑟, 𝜉) for commodity-type 𝑡 is defined as 

𝑹(𝑝𝑡𝑟 , 𝑞𝑡𝑟 , 𝜉) = 𝑃𝑡𝑟

max{𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟), 0}

𝐷𝑡𝑟
𝜉

  (8) 

Then the expected weighted proportion of unmet demand at three relief-center categories are denoted 

by 𝔼[𝑺(𝑜𝑡𝑠, 𝜉)], 𝔼[𝑫(𝑖𝑡𝑑, 𝜉)], and 𝔼[𝑹(𝑝𝑡𝑟, 𝑞𝑡𝑟, 𝜉)], respectively. They are given by 

𝔼[𝑺(𝑜𝑡𝑠, 𝜉)] = 𝑃𝑡𝑠 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠), 0}

𝐷𝑡𝑠
𝜉

𝜉∈𝛯

 (9) 

𝔼[𝑫(𝑖𝑡𝑑 , 𝜉)] = 𝑃𝑡𝑑 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑), 0}

𝐷𝑡𝑑
𝜉

𝜉∈𝛯

 (10) 

𝔼[𝑹(𝑝𝑡𝑟 , 𝑞𝑡𝑟 , 𝜉)] = 𝑃𝑡𝑟 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟), 0}

𝐷𝑡𝑟
𝜉

𝜉∈𝛯

 (11) 

Therefore, the first objective function 𝛹1 is given by 

𝛹1 = ∑ ∑ 𝔼[𝑺(𝑜𝑡𝑠, 𝜉)]

𝑠∈𝒮𝑡∈𝒯

+ ∑ ∑ 𝔼[𝑫(𝑖𝑡𝑑, 𝜉)]

𝑑∈𝒟𝑡∈𝒯

+ ∑ ∑ 𝔼[𝑹(𝑝𝑡𝑟 , 𝑞𝑡𝑟 , 𝜉)]

𝑟∈ℛ𝑡∈𝒯

 (12) 

4.2.2 Transportation time 

The second objective aims to minimize the total transportation time. Firstly, the transportation time for 

vehicles is considered. Specifically, the transportation time 𝑉𝑇 (𝑛𝑠𝑑
𝜁

) on the route between 𝑠 and 𝑑 in 

scenario 𝜁 is formulated as 

𝑉𝑇(𝑛𝑠𝑑

𝜁 ) = (𝐿𝑉 +
𝑇𝑠𝑑

𝑇𝑉 ∙ 𝑎𝑠𝑑

𝜁 ) 𝑛𝑠𝑑

𝜁
 (13) 

The expected transportation time 𝔼 [𝑉𝑇 (𝑛𝑠𝑑
𝜁

)] on the route connecting 𝑠 and 𝑑 over all scenarios is 

given by 

𝔼[𝑉𝑇(𝑛𝑠𝑑
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝑉 +
𝑇𝑠𝑑

𝑇𝑉 ∙ 𝑎𝑠𝑑
𝜁

) 𝑛𝑠𝑑
𝜁

𝜁∈𝛷

 (14) 

Similarly, the expected transportation times 𝔼 [𝑉𝑇 (𝑛𝑠𝑟
𝜁

)] , 𝔼 [𝑉𝑇 (𝑛𝑟𝑑
𝜁

)] , and 𝔼 [𝑉𝑇 (𝑛𝑟𝑙
𝜁

)] on the 

routes 𝑠 to 𝑟, 𝑟 to 𝑑, and 𝑟 to 𝑙 are formulated as 

𝔼[𝑉𝑇(𝑛𝑠𝑟
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝑉 +
𝑇𝑠𝑟

𝑇𝑉 ∙ 𝑎𝑠𝑟
𝜁

) 𝑛𝑠𝑟
𝜁

𝜁∈𝛷

 (15) 
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𝔼[𝑉𝑇(𝑛𝑟𝑑
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝑉 +
𝑇𝑟𝑑

𝑇𝑉 ∙ 𝑎𝑟𝑑
𝜁

) 𝑛𝑟𝑑
𝜁

𝜁∈𝛷

 (16) 

𝔼[𝑉𝑇(𝑛𝑟𝑙
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝑉 +
𝑇𝑟𝑙

𝑇𝑉 ∙ 𝑎𝑟𝑙
𝜁

) 𝑛𝑟𝑙
𝜁

𝜁∈𝛷

 (17) 

Then the transportation time for helicopters can be formulated. Similar to the above method, the 

expected transportation times 𝔼 [𝐻𝑇 (ℎ𝑠𝑑
𝜁

)], 𝔼 [𝐻𝑇 (ℎ𝑠𝑟
𝜁

)], 𝔼 [𝐻𝑇 (ℎ𝑟𝑑
𝜁

)], and 𝔼 [𝐻𝑇 (ℎ𝑟𝑙
𝜁

)] on the routes, 

𝑠 to 𝑑 , 𝑠 to 𝑟, 𝑟 to 𝑑, and 𝑟 to 𝑙 are formulated as  

𝔼[𝐻𝑇(ℎ𝑠𝑑
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝐻 +
𝐸𝑠𝑑

𝑇𝐻
) ℎ𝑠𝑑

𝜁

𝜁∈𝛷

 (18) 

𝔼[𝐻𝑇(ℎ𝑠𝑟
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝐻 +
𝐸𝑠𝑟

𝑇𝐻
) ℎ𝑠𝑟

𝜁

𝜁∈𝛷

 (19) 

𝔼[𝐻𝑇(ℎ𝑟𝑑
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝐻 +
𝐸𝑟𝑑

𝑇𝐻
) ℎ𝑟𝑑

𝜁

𝜁∈𝛷

  (20) 

𝔼[𝐻𝑇(ℎ𝑟𝑙
𝜁

)] = ∑ 𝑃𝑟𝜁 (𝐿𝐻 +
𝐸𝑟𝑙

𝑇𝐻
) ℎ𝑟𝑙

𝜁

𝜁∈𝛷

 (21) 

Then the second objective function 𝛹2 is given by  

𝛹2 = ∑ ∑{𝔼[𝑉𝑇(𝑛𝑠𝑑
𝜁

)] + 𝔼[𝐻𝑇(ℎ𝑠𝑑
𝜁

)]}

𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑{𝔼[𝑉𝑇(𝑛𝑠𝑟
𝜁

)] + 𝔼[𝐻𝑇(ℎ𝑠𝑟
𝜁

)]}

𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑{𝔼[𝑉𝑇(𝑛𝑟𝑑
𝜁

)] + 𝔼[𝐻𝑇(ℎ𝑟𝑑
𝜁

)]}

𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑{𝔼[𝑉𝑇(𝑛𝑟𝑙
𝜁

)] + 𝔼[𝐻𝑇(ℎ𝑟𝑙
𝜁

)]}

𝑙∈ℛ𝑟∈ℛ

 
(22) 

4.3 Mathematical formulation 

The MCRT problem is formulated as the following BOSMINP model. 

Min   Ψ1 = ∑ ∑ 𝑃𝑡𝑠 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠), 0}

𝐷𝑡𝑠
𝜉

𝜉∈𝛯𝑠∈𝒮𝑡∈𝒯

+ ∑ ∑ 𝑃𝑡𝑑 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑), 0}

𝐷𝑡𝑑
𝜉

𝜉∈𝛯𝑑∈𝒟𝑡∈𝒯

+ ∑ ∑ 𝑃𝑡𝑟 ∑ 𝑃𝑟𝜉

max{𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟), 0}

𝐷𝑡𝑟
𝜉

𝜉∈𝛯𝑟∈ℛ𝑡∈𝒯

 

(23) 
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Min  𝛹2 = ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑠𝑑

𝑇𝑉𝑎𝑠𝑑
𝜁

) 𝑛𝑠𝑑
𝜁

+ (𝐿𝐻 +
𝐸𝑠𝑑

𝑇𝐻
) ℎ𝑠𝑑

𝜁
]

𝜁∈𝛷𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑠𝑟

𝑇𝑉𝑎𝑠𝑟
𝜁

) 𝑛𝑠𝑟
𝜁

+ (𝐿𝐻 +
𝐸𝑠𝑟

𝑇𝐻
) ℎ𝑠𝑟

𝜁
]

𝜁∈𝛷𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑟𝑑

𝑇𝑉𝑎𝑟𝑑
𝜁

) 𝑛𝑟𝑑
𝜁

+ (𝐿𝐻 +
𝐸𝑟𝑑

𝑇𝐻
) ℎ𝑟𝑑

𝜁
]

𝜁∈𝛷𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑟𝑙

𝑇𝑉𝑎𝑟𝑙
𝜁

) 𝑛𝑟𝑙
𝜁

+ (𝐿𝐻 +
𝐸𝑟𝑙

𝑇𝐻
) ℎ𝑟𝑙

𝜁
]

𝜁∈𝛷𝑙∈ℛ𝑟∈ℛ

 

(24) 

s.t.  

∑ 𝑖𝑡𝑑

𝑑∈𝒟

+ ∑ 𝑞𝑡𝑟

𝑟∈ℛ

= ∑ 𝑜𝑡𝑠

𝑠∈𝒮

+ ∑ 𝑝𝑡𝑟

𝑟∈ℛ

         ∀ 𝑡 ∈ 𝒯. (25) 

min{𝐷𝑡𝑠
1 , 𝐷𝑡𝑠

2 , … , 𝐷𝑡𝑠
𝜉

, … } ≤ 𝑆𝑡𝑠 − 𝑜𝑡𝑠 ≤ max{𝐷𝑡𝑠
1 , 𝐷𝑡𝑠

2 , … , 𝐷𝑡𝑠
𝜉

, … }         ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮. (26) 

min{𝐷𝑡𝑟
1 , 𝐷𝑡𝑟

2 , … , 𝐷𝑡𝑟
𝜉

, … } ≤ 𝑆𝑡𝑑 + 𝑖𝑡𝑑 ≤ max{𝐷𝑡𝑟
1 , 𝐷𝑡𝑟

2 , … , 𝐷𝑡𝑟
𝜉

, … }         ∀ 𝑡 ∈ 𝒯, 𝑑 ∈ 𝒟. (27) 

min{𝐷𝑡𝑟
1 , 𝐷𝑡𝑟

2 , … , 𝐷𝑡𝑟
𝜉

, … } ≤ 𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟 ≤ max{𝐷𝑡𝑟
1 , 𝐷𝑡𝑟

2 , … , 𝐷𝑡𝑟
𝜉

, … }         ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ. (28) 

𝑝𝑡𝑟 ∙ 𝑞𝑡𝑟 = 0         ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ. (29) 

𝑜𝑡𝑠, 𝑖𝑡𝑑, 𝑝𝑡𝑟 , and 𝑞𝑡𝑟 are nonnegative variables         ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟. (30) 

∑ 𝑓𝑠𝑑
𝑡𝜁

𝑑∈𝒟

+ ∑ 𝑓𝑠𝑟
𝑡𝜁

𝑟∈ℛ

≤ 𝑜𝑡𝑠          ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝜁 ∈ 𝛷. (31) 

∑ 𝑓𝑠𝑑
𝑡𝜁

𝑠∈𝒮

+ ∑ 𝑓𝑟𝑑
𝑡𝜁

𝑟∈ℛ

≥ 𝑖𝑡𝑑          ∀ 𝑡 ∈ 𝒯, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (32) 

∑ 𝑓𝑟𝑑
𝑡𝜁

𝑑∈𝒟

+ ∑ 𝑓𝑟𝑙
𝑡𝜁

𝑙∈ℛ

≤ 𝑝𝑡𝑟        ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (33) 

∑ 𝑓𝑠𝑟
𝑡𝜁

𝑠∈𝒮

+ ∑ 𝑓𝑙𝑟
𝑡𝜁

𝑙∈ℛ

≥ 𝑞𝑡𝑟        ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (34) 

∑ (∑ 𝑓𝑠𝑑
𝑡𝜁

𝑑∈𝒟

+ ∑ 𝑓𝑠𝑟
𝑡𝜁

𝑟∈ℛ

)

 𝑠∈𝒮

+ ∑ (∑ 𝑓𝑟𝑑
𝑡𝜁

𝑑∈𝒟

+ ∑ 𝑓𝑟𝑙
𝑡𝜁

𝑙∈ℛ

)

𝑟∈ℛ

= ∑ (∑ 𝑓𝑠𝑑
𝑡𝜁

𝑠∈𝒮

+ ∑ 𝑓𝑟𝑑
𝑡𝜁

𝑟∈ℛ

)

𝑑∈𝒟

+ ∑ (∑ 𝑓𝑠𝑟
𝑡𝜁

𝑠∈𝒮

+ ∑ 𝑓𝑙𝑟
𝑡𝜁

𝑙∈ℛ

)

𝑟∈ℛ

         ∀ 𝑡 ∈ 𝒯, 𝜁 ∈ 𝛷. 

(35) 

∑ 𝑓𝑠𝑑
𝑡𝜁

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑠𝑑
𝜁

∙ 𝐶𝑊 + ℎ𝑠𝑑
𝜁

∙ 𝐻𝑊         ∀ 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (36) 

∑ 𝑓𝑠𝑑
𝑡𝜁

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑠𝑑
𝜁

∙ 𝐶𝑉 + ℎ𝑠𝑑
𝜁

∙ 𝐻𝑉        ∀ 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (37) 

∑ 𝑓𝑠𝑟
𝑡𝜁

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑠𝑟
𝜁

∙ 𝐶𝑊 + ℎ𝑠𝑟
𝜁

∙ 𝐻𝑊          ∀ 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (38) 

∑ 𝑓𝑠𝑟
𝑡𝜁

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑠𝑟
𝜁

∙ 𝐶𝑉 + ℎ𝑠𝑟
𝜁

∙ 𝐻𝑉         ∀ 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (39) 
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∑ 𝑓𝑟𝑑
𝑡𝜁

∙

𝑡∈𝒯

𝑊𝑡 ≤ 𝑛𝑟𝑑
𝜁

∙ 𝐶𝑊 + ℎ𝑟𝑑
𝜁

∙ 𝐻𝑊         ∀ 𝑟 ∈ ℛ, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (40) 

∑ 𝑓𝑟𝑑
𝑡𝜁

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑟𝑑
𝜁

∙ 𝐶𝑉 + ℎ𝑟𝑑
𝜁

∙ 𝐻𝑉        ∀ 𝑟 ∈ ℛ, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (41) 

∑ 𝑓𝑟𝑙
𝑡𝜁

∙

𝑡∈𝒯

𝑊𝑡 ≤ 𝑛𝑟𝑙
𝜁

∙ 𝐶𝑊 + ℎ𝑟𝑙
𝜁

∙ 𝐻𝑊         ∀ 𝑟 ∈ ℛ, 𝑙 ∈ ℛ, 𝜁 ∈ 𝛷. (42) 

∑ 𝑓𝑟𝑙
𝑡𝜁

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑟𝑙
𝜁

∙ 𝐶𝑉 + ℎ𝑟𝑙
𝜁

∙ 𝐻𝑉        ∀ 𝑟 ∈ ℛ, 𝑙 ∈ ℛ, 𝜁 ∈ 𝛷. (43) 

∑ ∑ 𝑛𝑠𝑑
𝜁

𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑ 𝑛𝑠𝑟
𝜁

𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ 𝑛𝑟𝑑
𝜁

𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ 𝑛𝑟𝑙
𝜁

𝑙∈ℛ𝑟∈ℛ

≤ 𝐴𝑉        ∀ 𝜁 ∈ 𝛷. (44) 

∑ ∑ ℎ𝑠𝑑
𝜁

𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑ ℎ𝑠𝑟
𝜁

𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ ℎ𝑟𝑑
𝜁

𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ ℎ𝑟𝑙
𝜁

𝑙∈ℛ𝑟∈ℛ

≤ 𝐴𝐻        ∀ 𝜁 ∈ 𝛷. (45) 

𝑓𝑠𝑑
𝑡𝜁

, 𝑓𝑠𝑟
𝑡𝜁

, 𝑓𝑟𝑑
𝑡𝜁

, and 𝑓𝑟𝑙
𝑡𝜁

 are nonnegative variables. (46) 

𝑛𝑠𝑑
𝜁

, 𝑛𝑠𝑟
𝜁

, 𝑛𝑟𝑑
𝜁

, 𝑛𝑟𝑙
𝜁

, ℎ𝑠𝑑
𝜁

, ℎ𝑠𝑟
𝜁

, ℎ𝑟𝑑
𝜁

, and ℎ𝑟𝑙
𝜁

 are non-negative integer variables. (47) 

The first objective function (23) is to maximize fairness and the second objective function (24) is the 

minimization of the total transportation time. Constraint (25) restricts the balance between incoming and 

outgoing shipments. Constraints (26)-(28) guarantee that the results are within the feasible regions. 

Constraint (29) guarantees that 𝑟 chooses to send or receive commodities. Constraint (30) defines the 

decision variables. Constraints (31) and (33) restrict the quantities of sent commodities. Constraints (32) 

and (34) ensure the quantities of received commodities. Constraint (35) ensures the transportation balance 

between incoming and outgoing flows. Constraints (36)-(43) guarantee that the vehicles and helicopters 

can transport mixed commodities from 𝑠 to 𝑑, from 𝑠 to 𝑟, from 𝑟 to 𝑑, and from 𝑟 to 𝑙 , respectively. 

Constraints (44) and (45) restrict the numbers of vehicles and helicopters, respectively. Constraints (46) 

and (47) denote the decision variables.  

4.4 Linearization method 

The proposed BOSMINP model is nonlinear due to the objective function (23) and Constraint (29). It is 

necessary to develop a linearization method for the BOSMINP model. Particularly, the proposed model 

can be linearized by introducing several auxiliary parameters and variables (i.e., a big positive value 𝑀 

and five binary variables) into the model, which are given by  

𝒿𝑡𝑠
𝜉

= {1   if 𝐷𝑡𝑠
𝜉

> 𝑆𝑡𝑠 − 𝑜𝑡𝑠 

0   otherwise              
       ∀ 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (48) 

𝓀𝑡𝑑
𝜉

= {1   if 𝐷𝑡𝑑
𝜉

> 𝑆𝑡𝑑 + 𝑖𝑡𝑑 

0   otherwise               
       ∀ 𝑑 ∈ 𝒟, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (49) 
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ℓ𝑡𝑟
𝜉

= {1   if 𝐷𝑡𝑟
𝜉

> 𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟 

0   otherwise                          
       ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (50) 

𝓅𝑡𝑟 = {
1   if 𝑝𝑡𝑟 >  0 
0   otherwise 

         ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯. (51) 

𝓆𝑡𝑟 = {
1   if 𝑞𝑡𝑟 >  0  
0   otherwise  

       ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯. (52) 

Then the proposed BOSMINP model is reformulated as the following bi-objective optimization model 

𝓐. 

𝓐:  

Min   𝛹1𝐿 = ∑ ∑ 𝑃𝑡𝑠 ∑ 𝑃𝑟𝜉

[𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠)]𝒿𝑡𝑠
𝜉

𝐷𝑡𝑠
𝜉

𝜉∈𝛯𝑠∈𝒮𝑡∈𝒯

+ ∑ ∑ 𝑃𝑡𝑑 ∑ 𝑃𝑟𝜉

[𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑)]𝓀𝑡𝑑
𝜉

𝐷𝑡𝑑
𝜉

𝜉∈𝛯𝑑∈𝒟𝑡∈𝒯

+ ∑ ∑ 𝑃𝑡𝑟 ∑ 𝑃𝑟𝜉

[𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟)]ℓ𝑡𝑟
𝜉

𝐷𝑡𝑟
𝜉

𝜉∈𝛯𝑟∈ℛ𝑡∈𝒯

 

(53) 

Min  𝛹2  

s.t.  

Constraints (25)-(28), (31)-(47).  

𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠) ≥ (𝒿𝑡𝑠
𝜉

− 1) ∙ 𝑀        ∀ 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (54) 

𝐷𝑡𝑠
𝜉

− (𝑆𝑡𝑠 − 𝑜𝑡𝑠) ≤ 𝒿𝑡𝑠
𝜉

∙ 𝑀        ∀ 𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (55) 

𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑) ≥ (𝓀𝑡𝑑
𝜉

− 1) ∙ 𝑀        ∀ 𝑑 ∈ 𝒟, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (56) 

𝐷𝑡𝑑
𝜉

− (𝑆𝑡𝑑 + 𝑖𝑡𝑑) ≤ 𝓀𝑡𝑑
𝜉

∙ 𝑀        ∀ 𝑑 ∈ 𝒟, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (57) 

𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟) ≥ (ℓ𝑡𝑟
𝜉

− 1) ∙ 𝑀        ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (58) 

𝐷𝑡𝑟
𝜉

− (𝑆𝑡𝑟 − 𝑝𝑡𝑟 + 𝑞𝑡𝑟) ≤ ℓ𝑡𝑟
𝜉

𝑀        ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯, 𝜉 ∈ 𝛯. (59) 

𝓅𝑡𝑟 + 𝓆𝑡𝑟 ≤ 1         ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯. (60) 

𝑝𝑡𝑟 ≤ 𝓅𝑡𝑟 ∙ 𝑀         ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯. (61) 

𝑞𝑡𝑟 ≤ 𝓆𝑡𝑟 ∙ 𝑀         ∀ 𝑟 ∈ ℛ, 𝑡 ∈ 𝒯. (62) 

The reformulated objective function as the Eq. (53) is the same as the objective function in (23). 

Constraints (54) and (55) guarantee the non-negative of the unmet demand at 𝑠. Constraints (56) and (57) 

guarantee the non-negative of the unmet demand at 𝑑. Constraints (58) and (59) guarantee the non-

negative of the unmet demand at 𝑟. Constraints (60)-(62) restrict the non-negative outgoing or incoming 

shipment at 𝑟. The proofs for the above constraints are provided in the Supplementary Materials.  

5． Solution strategy 
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Since the BOSMINP model contains two conflicting objectives, generating a set of efficient Pareto 

solutions is the primary goal (Dai and Charkhgard 2017) to understand the trade-off between them. 

Therefore, an adaptive augmented ℰ-constraint method is developed. When the size of the problem is 

getting larger, it becomes more difficult to obtain efficient solutions. To overcome the above difficulty, 

the model can be reformulated to obtain an upper bound for the second objective function before the 

optimal solution is determined. In what follows, these methods are introduced in detail. 

5.1 Augmented 𝓔-constraint method 

Many methods have been developed to handle the bi-objective problems. These widely used techniques in 

practice contain ℰ -constraint, weighted sum, weighted metric, and lexicographic goal programming 

approaches. In this study, the ℰ-constraint method proposed by Haimes et al. (Haimes 1971) is adopted 

due to various advantages. For more details about the advantages of the Epsilon-constraint method, 

readers are referred to Mavrotas (2009) and Mohamadi and Yaghoubi (2017). The main idea is that an 

objective function is optimized while other objective functions are converted into constraints. Specifically, 

this study calculates the optimal 𝛹1𝐿 and the optimal multi-commodity rebalancing strategy 𝑜𝑡𝑠
∗, 𝑖𝑡𝑑

∗, 

𝑝𝑡𝑟
∗ , and 𝑞𝑡𝑟

∗  with eliminating 𝛹2 . Then the first objective function value ℰ1  can be augmented by 

decreasing or increasing the total shipment between relief centers. Here, this study chooses to decrease 

the total shipment so that a set of Pareto-optimal solutions can be obtained. Thus, the model 𝓐 can be 

formulated as the following model 𝓑. 

𝓑:  

Min  Ψ2 (63) 

s.t. 

𝛹1𝐿 ≤ ℰ1 (64) 

Constraints (25)-(28), (31)-(47), and (54)-(62).  

5.2 Solution strategy for large-sized problems 

When the problem size is getting larger, it is difficult to obtain the optimal solution within a limited time 

due to the complicated transportation of mixed commodities. In this sense, the BOSMINP model can be 

reformulated to obtain an upper-bound for Ψ2, where the helicopters and vehicles are restricted to carry 

only one single-commodity type. In this sense, this study minimizes the upper-bound total transportation 

time, denoted by Ψ2
u, where the following eight temporary variables are needed. 

𝑢𝑠𝑑
𝑡𝜁

: Assigned vehicles delivering 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑑 ∈ 𝒟 in 𝜁 

𝑢𝑠𝑟
𝑡𝜁

: Assigned vehicles delivering 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑟 ∈ ℛ in 𝜁 
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𝑢𝑟𝑑
𝑡𝜁

: Assigned vehicles delivering 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑑 ∈ 𝒟 in 𝜁 

𝑢𝑟𝑙
𝑡𝜁

: Assigned vehicles delivering 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑙 ∈ ℛ in 𝜁 

𝑣𝑠𝑑
𝑡𝜁

: Assigned helicopters delivering 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑑 ∈ 𝒟 in 𝜁 

𝑣𝑠𝑟
𝑡𝜁

: Assigned helicopters delivering 𝑡 ∈ 𝒯 from 𝑠 ∈ 𝒮 to 𝑟 ∈ ℛ in 𝜁 

𝑣𝑟𝑑
𝑡𝜁

: Assigned helicopters delivering 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑑 ∈ 𝒟 in 𝜁 

𝑣𝑟𝑙
𝑡𝜁

: Assigned helicopters delivering 𝑡 ∈ 𝒯 from 𝑟 ∈ ℛ to 𝑙 ∈ ℛ in 𝜁 

Then the model 𝓑 can be reformulated as the following model 𝓗.  

𝓗:  

Min  Ψ2
u = ∑ {∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +

𝑇𝑠𝑑

𝑇𝑉 ∙ 𝑎𝑠𝑑
𝜁

) 𝑢𝑠𝑑
𝑡𝜁

+ (𝐿𝐻 +
𝐸𝑠𝑑

𝑇𝐻
) 𝑣𝑠𝑑

𝑡𝜁
]

𝜁∈𝛷𝑑∈𝒟𝑠∈𝒮

 

𝑡∈𝒯

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑠𝑟

𝑇𝑉 ∙ 𝑎𝑠𝑟
𝜁

) 𝑢𝑠𝑟
𝑡𝜁

+ (𝐿𝐻 +
𝐸𝑠𝑟

𝑇𝐻
) 𝑣𝑠𝑟

𝑡𝜁
]

𝜁∈𝛷𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑟𝑑

𝑇𝑉 ∙ 𝑎𝑟𝑑
𝜁

) 𝑢𝑟𝑑
𝑡𝜁

+ (𝐿𝐻 +
𝐸𝑟𝑑

𝑇𝐻
) 𝑣𝑟𝑑

𝑡𝜁
]

𝜁∈𝛷𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ ∑ 𝑃𝑟𝜁 [(𝐿𝑉 +
𝑇𝑟𝑙

𝑇𝑉 ∙ 𝑎𝑟𝑙
𝜁

) 𝑢𝑟𝑙
𝑡𝜁

+ (𝐿𝐻 +
𝐸𝑟𝑙

𝑇𝐻
) 𝑣𝑟𝑙

𝑡𝜁
]

𝜁∈𝛷𝑙∈ℛ𝑟∈ℛ

} 

(65) 

s.t. 

𝛹1𝐿 ≤ ℰ1 (66) 

Constraints (25)-(28), (30), (46), and (54)-(62).  

𝑊𝑡 ∙ 𝑓𝑠𝑑
𝑡𝜁

≤ 𝐶𝑊 ∙ 𝑢𝑠𝑑
𝑡𝜁

+ 𝐻𝑊 ∙ 𝑣𝑠𝑑
𝑡𝜁

         ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (67) 

𝑉𝑡 ∙ 𝑓𝑠𝑑
𝑡𝜁

≤ 𝐶𝑉 ∙ 𝑢𝑠𝑑
𝑡𝜁

+ 𝐻𝑉 ∙ 𝑣𝑠𝑑
𝑡𝜁

         ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (68) 

𝑊𝑡 ∙ 𝑓𝑠𝑟
𝑡𝜁

≤ 𝐶𝑊 ∙ 𝑢𝑠𝑟
𝑡𝜁

+ 𝐻𝑊 ∙ 𝑣𝑠𝑟
𝑡𝜁

          ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (69) 

𝑉𝑡 ∙ 𝑓𝑠𝑟
𝑡𝜁

≤ 𝐶𝑉 ∙ 𝑢𝑠𝑟
𝑡𝜁

+ 𝐻𝑉 ∙ 𝑣𝑠𝑟
𝑡𝜁

         ∀ 𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (70) 

𝑊𝑡 ∙ 𝑓𝑟𝑑
𝑡𝜁

≤ 𝐶𝑊 ∙ 𝑢𝑟𝑑
𝑡𝜁

+ 𝐻𝑊 ∙ 𝑣𝑟𝑑
𝑡𝜁

         ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (71) 

𝑉𝑡 ∙ 𝑓𝑟𝑑
𝑡𝜁

≤ 𝐶𝑉 ∙ 𝑢𝑟𝑑
𝑡𝜁

+ 𝐻𝑉 ∙ 𝑣𝑟𝑑
𝑡𝜁

        ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (72) 

𝑊𝑡 ∙ 𝑓𝑟𝑙
𝑡𝜁

≤ 𝐶𝑊 ∙ 𝑢𝑟𝑙
𝑡𝜁

+ 𝐻𝑊 ∙ 𝑣𝑟𝑙
𝑡𝜁

         ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝑙 ∈ ℛ, 𝜁 ∈ 𝛷. (73) 

𝑉𝑡 ∙ 𝑓𝑟𝑙
𝑡𝜁

≤ 𝐶𝑉 ∙ 𝑢𝑟𝑙
𝑡𝜁

+ 𝐻𝑉 ∙ 𝑣𝑟𝑙
𝑡𝜁

        ∀ 𝑡 ∈ 𝒯, 𝑟 ∈ ℛ, 𝑙 ∈ ℛ, 𝜁 ∈ 𝛷. (74) 

∑ (∑ ∑ 𝑢𝑠𝑑
𝑡𝜁

𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑ 𝑢𝑠𝑟
𝑡𝜁

𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ 𝑢𝑟𝑑
𝑡𝜁

𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ 𝑢𝑟𝑙
𝑡𝜁

𝑙∈ℛ𝑟∈ℛ

)

𝑡∈𝒯

≤ 𝐴𝑉        ∀ 𝜁 ∈ 𝛷. (75) 

∑ (∑ ∑ 𝑣𝑠𝑑
𝑡𝜁

𝑑∈𝒟𝑠∈𝒮

+ ∑ ∑ 𝑣𝑠𝑟
𝑡𝜁

𝑟∈ℛ𝑠∈𝒮

+ ∑ ∑ 𝑣𝑟𝑑
𝑡𝜁

𝑑∈𝒟𝑟∈ℛ

+ ∑ ∑ 𝑣𝑟𝑙
𝑡𝜁

𝑙∈ℛ𝑟∈ℛ

)

𝑡∈𝒯

≤ 𝐴𝐻        ∀ 𝜁 ∈ 𝛷. (76) 

𝑢𝑠𝑑
𝑡𝜁

, 𝑢𝑠𝑟
𝑡𝜁

, 𝑢𝑟𝑑
𝑡𝜁

, 𝑢𝑟𝑙
𝑡𝜁

, 𝑣𝑠𝑑
𝑡𝜁

, 𝑣𝑠𝑟
𝑡𝜁

, 𝑣𝑟𝑑
𝑡𝜁

, and 𝑣𝑟𝑙
𝑡𝜁

 are non-negative integer variables. (77) 
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where the objective function in (65) is the upper-bound total transportation time. Constraints (67)-(74) 

restrict that the vehicles and helicopters can transport each single commodity type from 𝑠 to 𝑑, from 𝑠 to 𝑟, 

from 𝑟 to 𝑑, and from 𝑟 to 𝑙, respectively. Constraints (75) and (76) restrict the total numbers of vehicles 

and helicopters, respectively. Constraint (77) defines the decision variables. 

After the optimal commodity flows (i.e., 𝑓𝑠𝑑
𝑡𝜁∗

, 𝑓𝑠𝑟
𝑡𝜁∗

, 𝑓𝑟𝑑
𝑡𝜁∗

, and 𝑓𝑟𝑙
𝑡𝜁∗

) are obtained in model 𝓗, where 

the vehicles and helicopters only carry a single commodity type under constraints (67)-(74), which may 

result in residual space in the vehicles and helicopters. To make full use of the capacities of the vehicles 

and helicopters, transporting mixed commodities is allowed based on optimal commodity flows obtained 

in model 𝓗. In this sense, the numbers of vehicles and helicopters can be further reduced and easily 

obtained in model 𝓕, which is formulated to obtain the final transit-related decisions. 

𝓕:  

Min  Ψ2  

s.t.  

Constraints (44), (45), and (47).  

∑ 𝑓𝑠𝑑
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑠𝑑
𝜁

∙ 𝐶𝑊 + ℎ𝑠𝑑
𝜁

∙ 𝐻𝑊, ∑ 𝑓𝑠𝑑
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑠𝑑
𝜁

∙ 𝐶𝑉 + ℎ𝑠𝑑
𝜁

∙ 𝐻𝑉         ∀ 𝑠 ∈ 𝒮, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (78) 

∑ 𝑓𝑠𝑟
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑠𝑑
𝜁

∙ 𝐶𝑊 + ℎ𝑠𝑑
𝜁

∙ 𝐻𝑊, ∑ 𝑓𝑠𝑟
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑠𝑟 ∙ 𝐶𝑉 + ℎ𝑠𝑟 ∙ 𝐻𝑉         ∀ 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝜁 ∈ 𝛷. (79) 

∑ 𝑓𝑟𝑑
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑟𝑑
𝜁

∙ 𝐶𝑊 + ℎ𝑟𝑑
𝜁

∙ 𝐻𝑊, ∑ 𝑓𝑟𝑑
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑟𝑑
𝜁

∙ 𝐶𝑉 + ℎ𝑟𝑑
𝜁

∙ 𝐻𝑉         ∀ 𝑟 ∈ ℛ, 𝑑 ∈ 𝒟, 𝜁 ∈ 𝛷. (80) 

∑ 𝑓𝑟𝑙
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑊𝑡 ≤ 𝑛𝑟𝑙
𝜁

∙ 𝐶𝑊 + ℎ𝑟𝑙
𝜁

∙ 𝐻𝑊, ∑ 𝑓𝑟𝑙
𝑡𝜁∗

𝑡∈𝒯

∙ 𝑉𝑡 ≤ 𝑛𝑟𝑙
𝜁

∙ 𝐶𝑉 + ℎ𝑟𝑙
𝜁

∙ 𝐻𝑉        ∀ 𝑟 ∈ ℛ, 𝑙 ∈ ℛ, 𝜁 ∈ 𝛷. (81) 

where constraints (78)-(81) restrict that the vehicles and helicopters can transport mixed commodities 

based on the commodity flows obtained in model 𝓗 from 𝑠 to 𝑑, from 𝑠 to 𝑟, from 𝑟 to 𝑑, and from 𝑟 to 𝑙, 

respectively.  

6． Case study 

This study mainly focuses on two processes, namely (i) multi-commodity rebalancing and (ii) 

transportation planning. The main concerns on the multi-commodity rebalancing process are quite 

suitable for rebalancing the medical staff and supplies in COVID-19. However, the main concerns about 

multi-modal transportation planning with road disruption are the unique features of this study. To validate 

the effectiveness of the proposed model and approach, a case study of the Yushu Earthquake with road 

disruption is carried out and the results are reported in this section. The proposed models are implemented 

in the IBM ILOG CPLEX Optimization Studio (Version: 12.6) with a maximum required computational 
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time (i.e., 300s) so that the globally optimal solution can be obtained in this case study. All the 

experiments are performed on a computer with an Intel(R) Core(TM) i7-7700 CPU@3.6 GHz and 8 GB 

memory under Windows 10 Pro system. 

6.1. Numerical instance 

In this section, a case study of the Yushu Earthquake that measured 7.1 on the surface wave 

magnitude and occurred in 2010 in Qinghai Province, China is investigated to evaluate the proposed 

BOSMINP, 𝓐, 𝓑, 𝓗, 𝓕 models. The affected area with seismic intensity due to the earthquake is shown 

in Fig. 4, which is obtained from Ni et al. (2018). For more details about the input parameters, please see 

the Supplementary Materials. 

6.2 Pareto-optimal solutions 

In this section, the main results for the MCRT problem are presented. This study first provides the 

optimal outgoing and incoming shipments at these 13 relief centers with eliminating 𝛹2 (see Fig. 5). With 

the optimal quantities of outgoing and incoming shipments at relief centers 11-13, the potential demand or 

supply relief centers can be identified. Specifically, relief-center 11 is considered as a supply point due to 

the outgoing shipment [see Fig. 5 (a)], whereas relief centers 12 and 13 are considered as demand points 

when the commodity type of grain is considered. As shown in Fig. 5 (b), relief-center 11 is considered as 

a demand point, whereas relief centers 12 and 13 are considered as supply points when the commodity 

type of water is considered. Similarly, relief centers 11-13 are also identified for the commodity types of 

ration food and medicine [see Fig. 5 (c) and (d)]. It should be noted that relief centers 11-13 are supply 

and demand points, simultaneously. 
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Fig. 4. Seismic intensity map of the affected area 

 

  
(a) Rebalancing strategy for grain (b) Rebalancing strategy for water 

  
(c) Rebalancing strategy for ration food (d) Rebalancing strategy for medicine 

Fig. 5. Rebalancing strategy for four commodity types 

 

Based on the realization of the rebalancing strategy, the commodity-flow and transit-related decisions 

can be determined. The commodity flows are presented in Table 2 and the transit-related decisions are 

reported in Table 3 for the first scenario. As shown in Table 2, based on the outgoing and incoming 

shipments, it is obvious that relief centers 11-13 are supply and demand points, simultaneously. Because 

the roads to the earthquake center (i.e., relief-center 9) are disrupted, only helicopters are used to transport 
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the commodities (see Table 3). Besides, the helicopters choose the long distance and the vehicles select 

the short distance to deliver commodities.  

Table 2 Results of commodity flows between any two relief centers 

𝒮 and ℛ Commodity type 
𝒟 ℛ 

𝑑=9 𝑑=10 𝑟=11 𝑟=12 𝑟=13 

𝑠=1 

Grain 0  190 0 0 0 

Water 0 204 37 0 0 

Ration food 0 160 85 0 0 

Medicine 0 89 100 0 0 

𝑠=2 

Grain 175.5 0 0 14.5 0 

Water 70.7 10.3 0 0 0 

Ration food 12 0 0 117 0 

Medicine 139 0 0 0 0 

𝑠=3 

Grain 79.5 182.5 0 0 0 

Water 0 143 0 0 0 

Ration food 102 114 0 0 0 

Medicine 121 119 0 0 0 

𝑠=4 

Grain 143 0 0 0 0 

Water 197.3 0 0 0 3.7 

Ration food 195 0 0 0 0 

Medicine 197 0 0 0 0 

𝑠=5 

Grain 169.5 1.5 0 0 0 

Water 139.6 17.4 0 0 0 

Ration food 135 0 0 0 0 

Medicine 104 0 0 0 0 

𝑠=6 

Grain 0 57 0 0 50 

Water 0 92.7 0 0 3.3 

Ration food 0 107 0 0 0 

Medicine 0 188 0 0 3 

𝑠=7 

Grain 186.5 0 0 2.5 0 

Water 201 0 0 0 0 

Ration food 97 0 0 0 0 

Medicine 196 0 0 0 0 

𝑠=8 

Grain 92 0 0 0 0 

Water 261 0 0 0 0 

Ration food 295 0 0 0 0 

Medicine 203 0 0 0 0 

𝑟=11 

Grain 0 31 0 0 0 

Water 0 0 0 0 0 

Ration food 0 0 0 0 0 

Medicine 0 0 0 0 0 

𝑟=12 

Grain 0 0 0 0 0 

Water 1.4 1.6 0 0 0 

Ration food 0 0 0 0 0 

Medicine 21 0 0 0 0 

𝑟=13 

Grain 0 0 0 0 0 

Water 0 0 0 0 0 

Ration food 0 9 0 0 0 

Medicine 0 0 0 0 0 

 

Table 3 Assigned vehicles and helicopters between relief centers 

𝒮 and ℛ Transit type 
𝒟 ℛ 

𝑑=9 𝑑=10 𝑟=11 𝑟=12 𝑟=13 

𝑠=1 
Vehicle 0 1 13 0 0 

Helicopter 0 123 0 0 0 

𝑠=2 
Vehicle 0 0 0 8 0 

Helicopter 75 3 0 0 0 
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𝑠=3 
Vehicle 0 0 0 0 0 

Helicopter 32 103 0 0 0 

𝑠=4 
Vehicle 0 0 0 0 0 

Helicopter 114 0 0 0 2 

𝑠=5 
Vehicle 0 4 0 0 0 

Helicopter 99 0 0 0 0 

𝑠=6 
Vehicle 0 38 0 0 11 

Helicopter 0 0 0 0 0 

𝑠=7 
Vehicle 0 0 0 0 0 

Helicopter 122 0 0 1 0 

𝑠=8 
Vehicle 0 0 0 0 0 

Helicopter 124 0 0 0 0 

𝑟=11 
Vehicle 0 7 0 0 0 

Helicopter 0 0 0 0 0 

𝑟=12 
Vehicle 0 0 0 0 0 

Helicopter 1 1 0 0 0 

𝑟=13 
Vehicle 0 1 0 0 0 

Helicopter 0 0 0 0 0 

 

Having obtained the optimal outgoing and incoming shipments with eliminating 𝛹2, the optimal first 

objective-function value 𝛹1𝐿
∗  is considered as the lower-bound value. The total shipment for each 

commodity type is also obtained and considered as the maximal shipment, which is denoted as 𝑀𝑎𝑥𝑡
∗ and 

given by 

𝑀𝑎𝑥𝑡
∗ = ∑ 𝑜𝑡𝑠

∗

𝑠∈𝒮

+ ∑ 𝑝𝑡𝑟
∗

𝑟∈ℛ

= ∑ 𝑖𝑡𝑑
∗

𝑑∈𝒟

+ ∑ 𝑞𝑡𝑟
∗

𝑟∈ℛ

       ∀ 𝑡 ∈ 𝒯. (82) 

Then the first objective function is converted into a constraint in 𝓑 by decreasing the total shipment 

between relief centers until the minimum total shipment 𝑀𝑖𝑛𝑡
∗ is got, which is given by  

𝑀𝑖𝑛𝑡
∗ = max {∑ min

𝜉
{𝑆𝑡𝑠 − 𝐷𝑡𝑠

𝜉
}

𝑠∈𝒮

, ∑ min
𝜉

{𝐷𝑡𝑑
𝜉

− 𝑆𝑡𝑑}

𝑑∈𝒟

}        ∀ 𝑡 ∈ 𝒯 (83) 

Then this study selects ten considerable quantities of shipments from 𝑀𝑖𝑛𝑡
∗ to 𝑀𝑎𝑥𝑡

∗, which result in 

ten ℰ1 values. Given a ℰ1 value, the outgoing and incoming shipments at relief centers can be obtained. 

Here two relief centers are selected from each of the three relief-center categories (i.e., 7-12) and the 

quantities of outgoing and incoming shipments are presented in Figs. 6-8. Specifically, the increase in ℰ1 

value leads to decreasing the quantities of outgoing shipments at supply relief centers 7 and 8 (see Fig. 6). 

At the same time, it also results in decreasing the quantities of incoming shipments at demand relief 

centers 9 and 10 (see Fig. 7). As shown in Fig. 8, both the outgoing and incoming shipments are 

decreasing at relief centers 11 and 12 with an increasing ℰ1 value, which verifies that relief centers 11 and 

12 are supply and demand points simultaneously. 

javascript:;
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(a) Relief-center 7 (b) Relief-center 8 

Fig. 6. Outgoing shipments at relief centers 7 and 8 

  
(a) Relief-center 9 (b) Relief-center 10 

Fig. 7. Incoming shipments at relief centers 9 and 10 

  
(a) Relief-center 11 (b) Relief-center 12 

Fig. 8. Outgoing and incoming shipments at relief centers 11 and 12 

 

After obtaining the outgoing and incoming shipments given any ℰ1  value, the second objective 

function value can be obtained and the commodity-flow and transit-related decision variables are also 

determined when both 𝐴𝑉 and 𝐴𝐻 are 800. Then these Pareto-optimal solutions are presented in Table 4. 

Compared with vehicles, more helicopters are used to transport commodities to minimize the total 

transportation time. 

 Table 4 Optimal Pareto solutions given different ℰ1 values 

Pareto  

ID 

𝒯 
𝛹1(ℰ1) 

Total vehicles Total helicopters 
𝛹2 

𝑡1 𝑡2 𝑡3 𝑡4 𝜉1 𝜉2 𝜉1 𝜉2 

1 1,375  1,384 1,428 1,480 28.00 83 81 800 800 1,661.20 
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2 1,349 1,359 1,406 1,456 28.40 70 70 800 800 1,590.96 

3 1,323 1,334 1,384 1,432 29.14 58 58 800 800 1,498.44 

4 1,297 1,309 1,362 1,408 30.44 46 46 800 800 1,420.30 

5 1,271 1,284 1,340 1,384 32.16 34 34 800 800 1,315.27 

6 1,245 1,259 1,318 1,360 34.33 23 23 800 800 1,233.35 

7 1,219 1,234 1,296 1,336 36.95 12 12 800 800 1,167.20 

8 1,193 1,209 1,274 1,312 40.10 1 1 800 800 1,084.14 

9 1,167 1,184 1,252 1,288 44.01 0 0 784 784 1,058.88 

10 1,144  1,155 1,234 1,264 48.14 0 0 768 768 1,036.40 

 

Also, a two-dimensional diagram is provided in Fig. 9 to show the visualization of the trade-off 

between the objective functions, where ten observations are used to construct and identify the set of non-

dominated solutions. As depicted in Fig. 9, these two objective functions conflict with each other. 

Reducing the first objective function value leads to a worsening second objective function value. For the 

set of non-dominated solutions, none of them can be said to be better than others in the absence of any 

other information. Thus, additional preference information is needed for the decision-maker to identify 

the “most preferred” solution.  

 

Fig. 9. Trade-off between two objective functions 

6.3 Sensitivity analysis 

To verify the proposed model and method, sensitivity analysis is conducted to investigate the 

consequences of varying the critical parameters.  

6.3.1 Sensitivity to weights at three relief-center categories 
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To analyze how the different weights impact the identification of relief centers and outgoing and 

incoming shipments, three relief centers (i.e., 6, 9, and 12) from three relief-center categories are tested 

for the commodity of water. As the weight goes from 30 to 80 at relief-center 6, the rebalancing results 

are presented in Table 5. The quantity of total shipment is becoming smaller. Thus, they have to store 

more water rather than share water with other demand relief centers. The outgoing shipment of water at 

relief-center 6 shows a decreasing tendency. Also, the increasing weight of relief-center 6 affects the 

quantities of outgoing shipments at other relief centers. For instance, relief-center 3 has to share more 

water (i.e., from 143 to 144) to meet the demand from demand relief centers.  

Table 5 Rebalancing results of water given different weights to relief-center 6 

Relief 

center ID 

Shipment 

type 

Weight of relief-center 6 

30 40 50 60 70 80 

𝑠 = 1 Outgoing 241 241 241 241 241 241 

𝑠 = 2 Outgoing 81 81 81 81 81 81 

𝑠 = 3 Outgoing 143 143 143 144 144 144 

𝑠 = 4 Outgoing 201 201 201 201 201 201 

𝑠 = 5 Outgoing 157 157 157 157 157 157 

𝑠 = 6 Outgoing 96 96 96 91 91 91 

𝑠 = 7 Outgoing 201 201 201 201 201 201 

𝑠 = 8 Outgoing 261 261 261 261 261 261 

𝑑 = 9 Incoming 871 871 871 871 871 871 

𝑑 = 10 Incoming 469 469 469 469 469 469 

𝑟 = 11 
Outgoing 0 0 0 0 0 0 

Incoming 37 37 37 37 37 37 

𝑟 = 12 
Outgoing 3 3 3 3 3 3 

Incoming 0 0 0 0 0 0 

𝑟 = 13 
Outgoing 0 0 0 0 0 0 

Incoming 7 7 7 7 3 3 

Total shipment 1,384 1,384 1,380 1,380 1,380 1,380 

 

As the weight goes from 30 to 80 at relief-center 9, the rebalancing results are presented in Table 6. 

The quantity of total shipment is becoming larger. Thus, they need to receive more water from 1384 to 

1380 compared with that before. The incoming shipment of water at relief-center 9 shows an increasing 

tendency from 836 to 871. The growing weight also affects the quantity of outgoing shipment at other 

supply relief centers. As shown in Table 6, relief centers 3 and 5 have to share more water with the 

demand relief centers.  

Relief-center 12 from the third category is tested when its weight goes from 40 to 80 and the results 

are reported in Table 7. The increase in the weight of relief-center 12 encourages more shipment from 

1384 to 1396 between supply and demand relief centers. Initially, this relief center is considered as a 

supply point. Then the increase in the weight makes this relief center a demand point. On the contrary, 

relief-center 13 is considered as a demand point and then a supply point because its weight (priority) is 

not emphasized anymore compared with that at relief-center 12. 



 

28 

 

Table 6 Rebalancing results of water given different weights to relief-center 9 

Relief-

center ID 

Shipment 

type 

Weight of relief-center 9 

60 70 80 90 100 

𝑠 = 1 Outgoing 241 241 241 241 241 

𝑠 = 2 Outgoing 81 81 81 81 81 

𝑠 = 3 Outgoing 132 132 132 143 143 

𝑠 = 4 Outgoing 201 201 201 201 201 

𝑠 = 5 Outgoing 148 148 148 157 157 

𝑠 = 6 Outgoing 96 96 96 96 96 

𝑠 = 7 Outgoing 201 201 201 201 201 

𝑠 = 8 Outgoing 261 261 261 261 261 

𝑑 = 9 Incoming 836 836 836 871 871 

𝑑 = 10 Incoming 484 484 484 469 469 

𝑟 = 11 
Outgoing 0 0 0 0 0 

Incoming 37 37 37 37 37 

𝑟 = 12 
Outgoing 3 3 3 3 3 

Incoming 0 0 0 0 0 

𝑟 = 13 
Outgoing 0 0 0 0 0 

Incoming 7 7 7 7 3 

Total shipment 1,364 1,364 1,364 1,384 1,384 

 

Table 7 Rebalancing results of water given different weights to relief-center 12 

Relief-center ID 
Shipment 

type 

Weight of relief-center 12 

40 50 60 70 80 

𝑠 = 1 Outgoing 241 241 241 241 243 

𝑠 = 2 Outgoing 81 81 81 81 81 

𝑠 = 3 Outgoing 143 143 143 144 144 

𝑠 = 4 Outgoing 201 201 201 201 201 

𝑠 = 5 Outgoing 157 157 157 157 157 

𝑠 = 6 Outgoing 96 96 96 96 96 

𝑠 = 7 Outgoing 201 201 201 201 201 

𝑠 = 8 Outgoing 261 261 261 261 261 

𝑑 = 9 Incoming 871 871 871 871 871 

𝑑 = 10 Incoming 469 469 469 469 469 

𝑟 = 11 
Outgoing 0 0 0 0 0 

Incoming 37 37 37 37 37 

𝑟 = 12 
Outgoing 3 3 3 2 0 

Incoming 0 0 0 0 19 

𝑟 = 13 
Outgoing 0 0 0 0 12 

Incoming 7 7 7 7 0 

Total shipment 1,384 1,384 1,384 1,384 1,396 

6.3.2 Sensitivity to stock levels at three relief-center categories 

The stock levels at relief centers also have a great influence on the identification of relief centers and 

outgoing and incoming shipments. Three relief centers (i.e., 8, 10, and 12) from three different relief-

center categories are tested for grain, respectively. 

The outgoing and incoming shipments of grain at all relief centers and the total shipment of grain are 

shown in Fig. 10 with the stock level at relief-center 8 from 200 to 400. On the whole, the total shipment 

of grain is increasing as the stock level at relief-center 8 goes from 200 to 400 [see Fig. 10(d)]. In 

particular, given a higher stock level of grain at relief-center 8, this relief center can share more grain with 

other demand relief centers and other supply relief centers (i.e., 2, 3, and 5) do not need to share too much 
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grain anymore [see Fig. 10(a)]. As shown in Fig. 10(b), both relief centers 9 and 10 have higher incoming 

shipments of grain as the stock level goes from 200 and 400. Besides, the incoming shipment of grain at 

relief-center 12 begins to increase due to its high priority and low stock level [see Fig. 10(c)]. Also, it 

should be noted that relief-center 11 starts to receive grain and changes to a demand point when the stock 

level goes from 320 and 360.  

  
(a) Outgoing shipment (b) Incoming shipment 

  
(c) Outgoing and incoming shipments (d) Total shipment 

Fig. 10. Rebalancing results of grain under different stock levels at relief-center 8 

 

Then relief-center 10 belonging to the demand relief-center category is used to test the influences of 

different stock levels. Overall, the increasing stock level at relief-center 10 results in a decreasing total 

shipment of grain [see Fig. 11(d)]. Specifically, supply relief centers have no need to share too much 

grain anymore, which makes the outgoing shipments decrease at relief centers 2, 5, and 7 [see Fig. 11(a)]. 

As shown in Fig. 11(b), the incoming shipment of grain increases at relief-center 9, whereas the incoming 

shipment of grain decreases at relief-center 10 as the stock level goes from 200 to 400. Also, a higher 

stock level at relief-center 10 leads to increasing demand at relief centers 11-13. Interestingly, relief-

center 11 is initially identified as a supply point. However, as the stock level increases, relief-center 11 

changes to a demand point and begins to receive grain [see Fig. 11(c)]. 
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(a) Outgoing shipment (b) Incoming shipment 

  
(c) Outgoing and incoming shipments (d) Total shipment 

Fig. 11. Rebalancing results for grain under different stock levels at relief-center 10 

 

In the end, this study investigates the consequences of changes in the stock level at relief-center 12 

belonging to the third category. With the stock level from 200 to 400, the rebalancing results for grain are 

presented in Fig. 12. Firstly, the supply relief centers (i.e., 4, 7, and 8) do not need to share too much 

grain with the other two relief-center categories [see Fig. 12(a)]. Secondly, as shown in Fig. 12(b), the 

demand relief centers (i.e., 9 and 10) have more incoming shipments. For the third category of relief 

centers, initially, relief-center 11 is considered as a supply point, whereas relief centers 12 and 13 are 

considered as demand points. Noted that relief-center 12 changes to a supply point when its stock level 

goes from 320 to 360. Finally, since the stock level of grain grows from 200 to 320 at relief-center 12, the 

total shipment of grain decreases. However, as the stock level goes from 320 to 400, the total shipment of 

grain begins to increase, and relief-center 12 changes to a supply point and encourages more shipment of 

grain between supply and demand relief centers.  

  
(a) Outgoing shipment (b) Incoming shipment 
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(c) Outgoing and incoming shipments (d) Total shipment 

Fig. 12 Rebalancing results for grain under different stock levels at relief-center 12 

6.3.3 Sensitivity to road disruption and availability 

As road disruption and road availability are important factors that delay humanitarian logistics and 

contribute to increasing delivery times, it is critical to investigate their impacts on the total transportation 

time. The sensitivity analysis is conducted based on a crossover trial for the above two factors, where 

each of the factors has two levels. Then there are 2×2 treatment combinations in total, which are 

Combinations (I)-(IV) and reported in Table 8. With the outgoing and incoming shipments at all relief 

centers, the commodity-flow and transit-related decisions from different treatment combinations are 

obtained and compared. Note that the Combinations (I) and (III) consider the road availability in the 

second scenario. And the results of Combination (I) have been presented in Subsection 6.2. Because of 

too many decision variables in terms of commodity-flow and transit-related decisions, this study only 

shows the total outgoing and incoming shipments among three relief-center categories for the first set of 

Pareto-optimal solutions in Table 9. And the total numbers of vehicles and helicopters are presented in 

Figs. 13 and 14, respectively.  

Table 8 Four treatment combinations in the crossover trial 

Combinations Road availability None road availability 

Road disruption Combination (I) Combination (II) 

None road disruption Combination (III) Combination (IV) 

As shown in Table 9, it is obvious that the total outgoing and incoming shipments among relief-center 

categories are influenced by road disruption and availability. To be more specific, for the commodity of 

water (i.e., 𝑡 = 2), the total shipment from the category 𝒮 to the category 𝒟 is 1340 in Combination (I), 

which is different from that (i.e., 1337) in Combinations (II)-(IV). Obviously, it proves that either road 

disruption or road availability can affect the commodity flows between relief centers.  

Table 9 Total outgoing and incoming shipments among relief-center categories 

Combination 

ID 

Relief-center 

Category 

𝒯 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

𝒟 ℛ 𝒟 ℛ 𝒟 ℛ 𝒟 ℛ 

I 𝒮 1,277 67 1,340 41 1,217 202 1,356 103 
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ℛ 31 0 0 3 9 0 21 0 

II 
𝒮 1,277 67 1,337 44 1,217 202 1,356 103 

ℛ 31 0 3 0 9 0 21 0 

III 
𝒮 1,277 67 1,337 44 1,217 202 1,356 103 

ℛ 31 0 3 0 9 0 21 0 

IV 
𝒮 1,277 67 1,337 44 1,217 202 1,356 103 

ℛ 31 0 3 0 9 0 21 0 

 

As shown in Fig. 13, with the Pareto ID from 1 to 10, fewer vehicles are used. Specifically, the 

minimum number of vehicles are used in Combination (I) with the consideration of road disruption and 

availability. However, in Combination (II) with the consideration of road disruption only, the number of 

vehicles is larger than that in Combination (I). The reason is that even though the speed of the vehicle is 

much slower than that of the helicopter, the shorter loading/unloading time and higher volume and weight 

capacities encourage the vehicle to provide relatively quick delivery when the distance is short. Besides, 

when road disruption is considered in Combination (III), the number of vehicles also increases. 

Furthermore, in Combination (IV) without considering the road disruption and availability, the number of 

vehicles is further increased as the vehicles take a shorter time to transport commodities compared with 

the helicopters. Nevertheless, as shown in Fig. 14, the number of helicopters presents an opposite trend 

compared with the number of vehicles in Combinations (I)-(IV).  

 

Fig. 13. Number of vehicles in four treatment combinations 
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Fig. 14. Number of helicopters in four treatment combinations 

Also, this study provides the trade-off between the two objective functions for four treatment 

combinations in Fig. 15. It is obvious that these two objective functions conflict with each other in each 

of the Combinations (I)-(IV). Besides, the ten observations for Combination (IV) are better than the 

corresponding observations in Combinations (I)-(III) because both objective function values in 

Combination (IV) are smaller than the corresponding values in Combinations (I)-(III). It also verifies that 

the vehicles can save transportation time on shorter routes of good conditions compared with the 

helicopters (see Figs. 13-15). Thus, the decision-makers need to assign these vehicles and helicopters 

reasonably to transport commodities among relief centers. 

 

Fig. 15. Trade-off between the two objective functions in four treatment combinations 

6.3.4 Sensitivity to different problem sizes 

The last parameter to undergo sensitivity analysis is the problem size. As presented in Subsection 6.2, the 

proposed model 𝓑 is solvable given the present problem with four commodity types. However, when too 

many relief centers or commodity types are involved, it is impossible to obtain the optimal solution for 

the second objective function within a reasonable computation time. Then the proposed models 𝓗 and 𝓕 

need to be used to determine some not bad solutions. In this sense, this study tests the solution 

performances for 12 different problem sizes reported in Table 10. To construct those different problems, 

this study applies the same method to generate the parameters at relief centers. The numbers of relief 
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centers from three different categories in the third instance are the same as the case study. Besides, the 

same maximum required computational time (i.e., 300s) in the case study is also considered as a baseline 

to test the problems of different sizes in this subsection. 

Table 10 Instances of different problem sizes 

Instance ID 𝒮 𝒟 ℛ 𝒯 

1 8 2 3 2 

2 8 2 3 3 

3 8 2 3 4 

4 13 4 6 2 

5 13 4 6 3 

6 13 4 6 4 

7 18 6 9 2 

8 18 6 9 3 

9 18 6 9 4 

10 23 8 12 2 

11 23 8 12 3 

12 23 8 12 4 

 

Based on the above 12 instances, this study implements the proposed three models, 𝓑, 𝓗, and 𝓕 in the 

CPLEX and presents the partial Pareto-optimal solutions with the Gaps in Table 11 within 300s. And this 

study also shows the comparison results of objective function values using models 𝓑, 𝓗, and 𝓕 in Fig. 16. 

As presented in Table 11, fewer vehicles and helicopters are obtained in models 𝓑 and 𝓕 compared with 

that in model 𝓗. As the helicopter has a higher speed, the helicopters dominant the transportation of 

commodities. Besides, it is obvious that the model 𝓑 has the smallest objective function value compared 

with that in models 𝓗, and 𝓕. However, the increasing problem size makes the model 𝓑 more difficult to 

solve. The Gap in model 𝓑 begins to incease and finally the model 𝓑 ends with “out of memory” (see 

Instance 12 in Table 11). Nevertheless, the combination of models 𝓑 and 𝓕 is still solvable when the 

problem size is getting larger, which verifies the efficiency of the proposed approach. As depicted in Fig. 

16, the objective function values obtained in models 𝓑 and 𝓕 are very close to each other, indicating that 

the solution through model 𝓕 can be obtain using shorter time without losing a big generosity.  

Table 11 Results of different-sized problems 

Instance 

ID 
𝐴𝑉/𝐴𝐻 

Model 𝓑 𝓗 𝓕 

𝛷 NV NH Gaps NV NH NV NH 

1 

800 

𝜁 = 1 0 792 
0 

0 795 0 794 

𝜁 = 2 0 792 0 795 0 795 

2 
𝜁 = 1 53 800 

0 
56 800 54 800 

𝜁 = 2 51 800 54 800 52 800 

3 
𝜁 = 1 83 800 

0 
98 800 86 800 

𝜁 = 2 81 800 94 800 85 800 

4 

1,300 

𝜁 = 1 137 1,300 
0.13% 

138 1,300 137 1,300 

𝜁 = 2 138 1,300 139 1,300 139 1,300 

5 
𝜁 = 1 244 1,300 

0.40% 
249 1,300 248 1,300 

𝜁 = 2 246 1,300 249 1,300 248 1,300 

6 𝜁 = 1 304 1,300 0.61% 332 1,300 310 1,300 
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𝜁 = 2 304 1,300 331 1,300 312 1,300 

7 

1,800 

𝜁 = 1 283 1,800 
0.29% 

283 1,800 283 1,300 

𝜁 = 2 284 1,800 286 1,800 286 1,300 

8 
𝜁 = 1 442 1,800 

0.78% 
446 1,800 445 1,300 

𝜁 = 2 442 1,800 450 1,800 447 1,300 

9 
𝜁 = 1 531 1,800 

1.46% 
562 1,800 539 1,800 

𝜁 = 2 531 1,800 563 1,800 537 1,800 

10 

2,300 

𝜁 = 1 334 2,300 
0.23% 

340 2,300 339 2,300 

𝜁 = 2 335 2,300 339 2,300 337 2,300 

11 
𝜁 = 1 534 2,300 

1.56% 
542 2,300 541 2,300 

𝜁 = 2 532 2,300 543 2,300 538 2,300 

12 
𝜁 = 1 

Out of memory 
687 2,300 655 2,300 

𝜁 = 2 688 2,300 654 2,300 

NV: Total number of vehicles; NH: Total number of helicopters. 

 

   
(a) Two commodity types (b) Three commodity types (c) Four commodity types 

Fig. 16. Objective function values in models 𝓑, 𝓗, and 𝓕 of different problem sizes 

7． Conclusions 

This study, as an explorative study, investigated the MCRT planning over a multi-modal transportation 

network with combined distances in disaster response. Then a BOSMINP model was proposed to 

formulate the problem and address various non-negligible issues including fairness, uncertainty, road 

damage and disruption, and different transportation means. In the proposed BOSMINP model, two 

objectives were considered, namely, maximization of fairness by minimizing the expected total weighted 

proportion of unmet demand, and minimization of the expected total transportation time. The strategic 

decisions of the model involve: (i) relief-center identification; (ii) incoming and outgoing shipments; (iii) 

commodity flows; (iv) number of required vehicles; and (v) number of required helicopters. Due to the 

nonlinearity of the proposed BOSMINP model, a linearization approach was further introduced. Then an 

adaptive ℰ-constraint method was applied to solve the proposed bi-objective model so that a set of non-

dominated solutions could be obtained. However, the linearized model is still difficult to solve as the 

problem size becomes larger. To overcome the above difficulty, the model was reformulated to obtain an 
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upper bound for the second objective function before the optimal solution is determined. In the end, a 

case study of the great Yushu Earthquake in China was implemented to validate the proposed model and 

approach. The trade-off between the conflicting objectives was obtained with sensitivity analysis of 

several key parameters, which illustrates the effectiveness of the decision-making in the MCRT planning 

in disaster response. Furthermore, some deep managerial implications were drawn from the case study, 

which provides the main needs and benefits of this study. Particularly, the main managerial insights for 

the researchers and managers are outlined as follows: 

(1) Rebalancing the commodities is quite imperative to maximize fairness. As presented in Fig. 5, the 

incoming and outgoing shipments are positive at relief centers, which indicates that the previous 

multi-commodity preparedness is unbalanced. In this sense, rebalancing the commodities is quite 

imperative. After the COVID-19, the medical staff and supplies also need to be rebalanced due to 

the dissimilarly and unevenly distributed prevalence of infection, which results in an imbalance of 

supply to demand. In such a case, the proposed model in this study is also suitable for rebalancing 

the medical staff and supplies in response to COVID-19. 

(2) Through the sensitivity analysis to road disruption and availability, it is found that recovering the 

disrupted roads is meaningful because there is a positive correlation between the number of 

vehicles and road conditions. Particularly, vehicles can reduce transportation time on shorter 

routes of good conditions. Although the helicopters dominate the transportation of commodities 

due to the extremely high speed, it is still meaningful to recover the disrupted roads so that more 

vehicles are used to transport commodities on some shorter routes and further reduce the total 

transportation time. 

(3) This study also reveals that either weight or stock level affects the decision variables that include 

the outgoing shipment, incoming shipment, and relief-center identification. In this sense, it is 

better to prepare or distribute more commodities in the relief centers with higher potential disaster 

severities (weights) so that the demand and supply can be well matched. 

Despite the above novelties and contributions, this work still has several limitations. It may not be able 

to find the optimal solution when the problem size is extremely large. Besides, this study only explores 

the issue of single-period MCRT planning over the multi-modal transportation network. Also, traffic 

congestion for vehicles is not considered in this study. Therefore, potential future research works can be 

done to: i) propose the corresponding metaheuristic method to solve the large-sized problems; ii) provide 

a cyclic rolling horizon-based updating framework to construct a reliable multi-period MCRT planning in 

disaster response; iii) include some other indexes in the analysis, such as traffic congestion for vehicles; 

and iv) focus on rebalancing the medical staff and supplies in response to COVID-19.  
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