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A Data-driven Reversible Framework for Achieving Sustainable Smart Product-1 

Service Systems 2 

Abstract: Higher sustainability with extended product lifecycle is a tireless pursuit in companies’ product 3 

design/development endeavours. In this regard, two prevailing concepts, namely the smart circular system and smart 4 

product-service system (Smart PSS), have been introduced, respectively. However, most existing studies only focus 5 

on the sustainability of physical materials and components, without considering the cyber-physical resources as a 6 

whole, let alone an integrated strategy towards the so-called Sustainable Smart PSS. To fill the gap, this paper 7 

discusses the key features in Sustainable Smart PSS development from a broadened scope of cyber-physical 8 

resources management. A data-driven reversible framework is hereby proposed to sustainably exploit high-value 9 

and context-dependent information/knowledge in the development of Sustainable Smart PSS. A four-step context-10 

aware process in the framework, including requirement elicitation, solution recommendation, solution evaluation, 11 

and knowledge evolvement, is further introduced to support the decision-making and optimization along the 12 

extended or circular lifecycle. An illustrative example is depicted in the sustainable development of a smart 3D 13 

printer, which validates the feasibility and advantages of the proposed framework. As an explorative study, it is 14 

hoped that this work provides useful insights for Smart PSS development with sustainability concerns in a cyber-15 

physical environment. 16 

Keywords: smart product-service system; sustainability; knowledge management; reversible design; context-17 

awareness  18 

Nomenclature 19 

Smart PSS Smart Product-Service System CE Circular Economy 

ICT Information and Communication Technology IoT Internet-of-Things 

CPS Cyber-Physical System DT Digital Twin 

AR/VR Augmented Reality/Virtual Reality KG Knowledge Graph 

ML/DL Machine Learning/Deep Learning PLM Product Lifecycle Management 

4V Data High Volume, Variety, Veracity, and Velocity Data SCP Smart, Connected Product 

4R Re-design, Remanufacturing, Reuse, and Recycle RUL Remaining Useful Life 

DIKW Data-Information-Knowledge-Wisdom C-K Model Concept-Knowledge Model 

1 Introduction 20 

Sustainable development is the main theme of today’s production systems, and has gained increasing attention 21 

among academia, practitioners, and policymakers (Gianmarco Bressanelli, 2018). Responding to a call for “doing 22 

more with less material” (Westkämper et al., 2000) in CE, one prevailing concept for promoting sustainability, i.e. 23 

circular system, was introduced by transforming the linear system of production (produce, sale, and dispose after 24 
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use) to a circular one with reversible strategies (e.g. re-design, remanufacturing, reuse and recycle). Hence, it can 25 

effectively reduce un-renewable resource consumptions and mitigating environmental impact (Murray et al., 2017). 26 

Another concept, termed product-service system (PSS), proposed a paradigm that tightly couples products and add-27 

on services to fulfil customized requirements. Extending the lifespan with product reconfiguration and service 28 

innovation, PSS also promotes sustainability by “doing more” (Tukker, 2015; Tukker and Tischner, 2006).  29 

Owing to the recent rapid development of advanced ICT infrastructure, digitalization technology and AI 30 

techniques, these two concepts individually evolve to be smarter, as the so-called Smart Circular System and Smart 31 

PSS, respectively. For the former, the increasing usage of IoT allows a higher level of traceability of materials and 32 

products in the circulation (Whitmore et al., 2014), and the leveraging of big data analytics techniques provides 33 

ever sufficient product lifecycle information (e.g. degradation status, remaining useful life) for decision-making 34 

(Bressanelli et al., 2018; Li et al., 2015; Zhang et al., 2017). For Smart PSS, the novel techniques provide capabilities 35 

to collect and transmit sensed-data and user-generated data among various SCPs and multi-stakeholders (Zheng et 36 

al., 2018a; Zheng et al., 2018b; Zheng et al., 2020), and also enable a rapid (even real-time) reconfiguration solution 37 

of hardware and software with requirement-orientation and context-awareness (Wang et al., 2019b; Zheng et al., 38 

2019a). 39 

Note that Smart Circular System provides competitive advantages for Smart PSS with cost reductions and new 40 

revenue potentials in commercialization (Michelini et al., 2017), and Smart PSS revealed great built-in-flexibility 41 

and self-adaptability to implement the lifecycle management of Smart Circular System (Zheng et al., 2018b). A 42 

meeting-point of the two prevailing concepts, so-called Sustainable Smart PSS (or Smart Circular PSS), is about to 43 

emerge. By collecting and analysing the meaningful product-sensed and user-generated data, Sustainable Smart 44 

PSS can better perform its sustainable use/reuse, maintenance, reconfigure, and recycle processes throughout the 45 

whole lifecycle. This provides a promising manner to enable sustainable development in the production system. 46 

However, to the authors’ knowledge, only a few qualitative studies have proposed the potential of Sustainable 47 

Smart PSS (Alcayaga et al., 2019; Li and Found, 2017), while little research has further discussed its development 48 

process or realized it. More importantly, most existing studies still restrain themselves in a conventional perspective 49 

of product lifecycle management, which only considers the sustainability of tangible materials and components 50 

along the 4R process (Zheng et al., 2019b). Since the value-creation of products/services relies on massive operation 51 

datasets and effective data analytics manners, the discussion of sustainability is required to be extended to the cyber 52 

space and consider the cyber-physical resources as a whole. Rather than the well-known reversible strategies for 53 

material circularity, a novel perspective of sustainable information/knowledge management needs to be emphasized 54 

via the digital servitization business model (Kuhlenkötter et al., 2017). It will maximize the value of exploiting and 55 

reallocating cyber-physical resources in the development of Sustainable Smart PSS. 56 

 Aiming to fill the abovementioned gaps, this paper will first discuss the key features of Sustainable Smart PSS 57 

in a cyber-physical environment, and then propose a data-driven reversible development framework, and finally 58 
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validate the proposed framework with an illustrative example. The remainder of this paper is organized as follows. 59 

Section 2 briefly introduces the key terms and approaches for sustainability strategies and Smart PSS development. 60 

Section 3 discusses the key features in Sustainable Smart PSS development. The overall framework for its 61 

development process is presented in Section 4, with each module illustrated in detail. Section 5 provides an 62 

illustrative example of a smart 3D printer development to further validate the proposed framework towards smart 63 

sustainability. At last, the conclusion and future work are highlighted in Section 6.  64 

2 Terms and approaches for sustainability and Smart PSS development 65 

2.1 Reversible strategies for achieving higher sustainability 66 

In order to balance economic development with environment and resource protection, the report of UN 67 

Environment Programme (UNEP) in 2006 initially outlined sustainability in the production system as “restorative 68 

or regenerative by intention and design”, and generically proposed the criterion of low consumption of energy, low 69 

emission of pollutants, and high efficiency (Murray et al., 2017). It was then derived and clarified for product 70 

development and product lifecycle management (PLM) into three aspects, namely, environmental sustainability 71 

(less material/fuel consumption, carbon emission, air/water pollution), economical sustainability (allowing an 72 

upgrade of components, reducing transportations)  and social sustainability (shared value, customer loyalty, human 73 

well-beings improvement) (Li and Found, 2017; Liu et al., 2020a). 74 

Originated from PLM, typical reversible strategies for achieving higher sustainability in product development 75 

includes Re-design, Remanufacturing, Reuse, and Recycle (4R), which reform the linear system of product lifecycle 76 

stages (design, manufacturing, distribution, usage, and disposal) to a circular system (Alcayaga et al., 2019; Zheng 77 

et al., 2019b). As shown in Figure 1, Re-design bridges customer experience in the usage stage and the end-product 78 

with an inverse-design principle and ‘configure-to-order’ manner (Jiao and Helander, 2006). Rather than start from 79 

scratch, it selects the appropriate components/modules from the existing product family to rapidly offer an upgraded 80 

design solution, thus providing higher flexibility and fewer un-renewable resource consumptions (Miranda et al., 81 

2017). Remanufacturing is a series of manufacturing steps on a used product, to return or restore it to at least 82 

equivalent or better performance than that of the newly manufactured product (Diallo et al., 2016). Several 83 

techniques are leveraged under this generic definition, like remaining useful life (RUL) assessment (Hu et al., 2015), 84 

predictive maintenance (Kerin and Pham, 2019), refurbishing or reassembly (Niu and Xie, 2020). Reuse is regarded 85 

as a non-destructive process that allows additional lifecycle cycles of the whole or partial of product in an alternative 86 

scenario, without changing their original state. It is widely adopted in the industrial sectors of construction, 87 

packaging, and textiles (Cooper and Gutowski, 2017; Damirchi Loo and Mahdavinejad, 2018). Recycle aims at 88 

extracting raw materials or useful components from end-of-life products, and typically consists of three main phases: 89 

collection, sorting and recycling processing (Thoroe et al., 2011). Since the recycled materials and components are 90 
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usually leveraged in the strategies of Re-design, Remanufacturing, and Reuse and start another loop of the product 91 

lifecycle, Recycle is often considered as an ultimate closing-step in the circular system. 92 

 93 

Figure 1. 4R strategies in product lifecycle stages 94 

With the advanced ICT infrastructures (e.g. IoT, smart sensors, cloud computing), digitalization technologies 95 

(e.g. CPS, DT, AR/VR) and AI techniques (e.g. machine/deep learning, 4V Data mining and large-scale KG), the 96 

reversible strategies have become smarter. Typical studies are listed in Table 1. Generally, the smartness of the 97 

strategies is usually achieved by IoT-enabled product lifecycle data collection, Big data-supported decision making, 98 

and CPS-based simulation and operation, and it hence outperforms its predecessor in increasing resource efficiency, 99 

extending lifespan and closing the circulation (Alcayaga et al., 2019; Bressanelli et al., 2018). However, due to an 100 

inheritance from PLM, only tangible materials and components are considered in the majority of reversible 101 

strategies. Data itself, as well as the high-value information/knowledge mined from it, is often dismissed in the 102 

sustainability considerations due to intangibility and context-dependency, which sometimes contributes to the high 103 

cost and unexpected failures in adopting these smart strategies (Kerin and Pham, 2019).  104 

Table 1 Typical smart strategies for achieving higher sustainability via reverse engineering 105 

Strategies Representative Studies Specifications / Applications Smart Techniques 

Smart Re-design (Savarino et al., 2018) Adaptable product with context-aware modules IoT, Smart sensors 

 (Bressanelli et al., 2018) Remote product upgrade to postpone replacement Big data mining 

Smart 

Remanufacturing 

(Chang et al., 2017) Virtual disassembly platform for remanufacturing (and recycle) AR/VR, CPS 

(Zhang et al., 2017) Lifecycle-data-driven decision-making for remanufacturing Big data mining, ML 

(Alcayaga et al., 2019) IoT-enabled remanufacturing planning and real-time monitoring IoT, Smart sensors 

Smart Reuse (Zhang et al., 2017) Lifecycle-data-driven decision-making for reuse Big data mining, ML 

(Iacovidou et al., 2018) Reusable materials/components evaluating, tracking and tracing IoT, CPS 

(Bressanelli et al., 2018) Usage data supported decision-making for reuse IoT, Big data mining 

Smart Recycle (Zhang et al., 2017) Lifecycle-data-driven decision-making for recycle Big data mining, ML 

(Luscuere and Mulhall, 2018) IoT-enabled mechanism to collect, process and report lifecycle data IoT, Big data mining 
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2.2 Smart PSS and its development 106 

It is widely accepted that Smart PSS fundamentally composed of Smart, connected product (SCP) and its 107 

generated digital services (Kuhlenkötter et al., 2017; Valencia et al., 2015; Zheng et al., 2018a). Compared to 108 

conventional PSS, the smartness is reflected in two aspects, namely, online smartness and offline smartness. Online 109 

smartness is implemented by intelligent algorithms and customized analytic tools, which leverage a huge amount 110 

of multi-source, heterogonous data generated from the communications of SCPs to deliver valuable insights for 111 

design, manufacturing, distribution, usage and disposal (Rymaszewska et al., 2017; Zheng et al., 2018b). On the 112 

other hand, Offline smartness is that Smart PSS can perceive a specific user scenario with context-awareness, and 113 

then adjust itself with built-in-flexibility hardware and self-learning software (Zheng et al., 2019a; Zheng et al., 114 

2020). Based on these two aspects of smartness, Smart PSS is capable of following the sustainable business model 115 

with an ever-evolving manner (Sousa-Zomer and Cauchick Miguel, 2018). Specifically, novel digital services can 116 

be innovated to continuously meet customers’ requirements, while the physical components can be adaptively 117 

reconfigured with changeable modules or open architectures to extend their lifespan.  118 

To develop an evolving Smart PSS and continuously deliver value in its lifetime, several manners are proposed 119 

and tentatively implemented. Systematically, the development processes fall into two categories: (1) data-driven 120 

platform-based approach and (2) multi-stakeholder value-cocreation approach. The first approach follows a 121 

hierarchical flow of data-information-knowledge-wisdom (DIKW). It firstly collects massive user-generated data 122 

and product-sensed data through SCPs, and then analyses them in a service platform, and finally provides 123 

requirement-oriented solutions for product upgrade and service innovation (Wang et al., 2019a, b; Zheng et al., 124 

2019a). The second approach investigates Smart PSS development from a value-driven perspective and depicts a 125 

co-evolvement process with the engagement of multiple stakeholders (end-user/designer/manufacturer/service 126 

provider). Four phases, namely, requirement co-generation, function co-design, process co-implementation, and 127 

performance co-monitor, composes the co-development process of Smart PSS (Liu et al., 2020b; Liu et al., 2019c).  128 

Although several studies attempt to develop an evolving Smart PSS, there is still a rather long way to go before 129 

a true Sustainable Smart PSS that coordinates the principles of CE can be realized. Two factors need to be further 130 

considered in development. Firstly, the objectives of Sustainable Smart PSS development should be promoted to 131 

‘develop for circularity’, instead of ‘develop for fail’ (Tietze and Hansen, 2013). Extending the product-service 132 

portfolio may lengthen the lifetime, but it does not lead to the reduction of resource consumption. A reversible 133 

development method, which places emphasis on the organization of materials/information flows and reuses them 134 

as possible, is the fundamental solution to increase resource efficiency in CE (Michelini et al., 2017). Secondly, 135 

implementing Sustainable Smart PSS development requires moving the business model towards service and 136 

retaining long-lasting customer relationships (Alcayaga et al., 2019). In this ever-evolving value proposition process, 137 

stakeholder requirements vary frequently due to the changing contexts/scenarios, which directly affect the 138 
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performance of the product-service bundles (Wang et al., 2019a). Therefore, improving customer experience with 139 

context-awareness will be an indispensable consideration in Sustainable Smart PSS development. 140 

2.3 Knowledge gaps addressed by this paper 141 

As reviewed in section 2.1 and 2.2, most existing studies have been dispersed in two separate directions, 142 

namely, enabling reversible strategies with smartness via the advanced ICT and AI techniques, and improving the 143 

sustainability of Smart PSS by ever-evolving product development and service innovation. As the first gap, few 144 

studies have attempted to merge the two directions together via an integrated concept of Sustainable Smart PSS, 145 

not to mention a comprehensive summarization of the key features and systematic methodical support for its 146 

development process.  147 

Moreover, inherited from product lifecycle management, many previous studies mainly concentrated on the 148 

sustainability of tangible components and resources in the product lifecycle, and thus emphasized more on the 149 

aspects of environmental sustainability and economical sustainability in sustainability evaluation and optimization 150 

(Liu et al., 2020a). Actually, with growing concerns on digital servitization to further improve social sustainability, 151 

increasing amounts of personalized data/information/knowledge leveraged and generated in Smart PSS 152 

development. However, due to the innate characteristic of context-dependency in these heterogeneous datasets 153 

collected from historical Smart PSS design, usage and disposal (Zheng et al., 2019b), there is still a lack of 154 

comprehensive sustainable/circularity strategies to ‘reuse’ or ‘recycle’ these intangible but equally-important 155 

resources in the cyber space, serving as the second gap.  156 

To fill these two gaps in this paper, key features in Sustainable Smart PSS are firstly synthesized and analyzed 157 

(Section 3), and a data-driven reversible framework for Sustainable Smart PSS development is then established 158 

based on the context-awareness (Section 4). 159 

3 Key features in Sustainable Smart PSS development 160 

After reviewing the related literature on sustainable/circularity strategies and Smart PSS in section 2.1 and 2.2, 161 

and identifying the knowledge gaps in section 2.3, this section discusses the fundamental of Sustainable Smart PSS 162 

and then accordingly propose the key features in its development process. 163 

3.1 The fundamental of Sustainable Smart PSS 164 

Inspired by Alcayaga et al. (2019), the concept of Sustainable Smart PSS can be regarded as the trinary 165 

intersection of sustainable strategy, smart technology, and PSS, as illustrated in Figure 2. It can be further elaborated 166 

in three perspectives: 167 
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 From the perspective of sustainable strategy, Sustainable Smart PSS achieves extended product lifespan by 168 

better reallocating tangible and intangible resources in a cost-efficient manner (economical sustainability) 169 

with less environmental impact (environmental sustainability), and it moves forward to maintaining long-170 

lasting customer relationships with ever-evolving manners (social sustainability).  171 

 From the perspective of smart technology, Sustainable Smart PSS is enabled with ubiquitous connectivity 172 

to collect and transmit lifecycle big data via IoT infrastructure. Supported by massive internal information 173 

retrieved from these product-sensed and user-generated data, and explained with transdisciplinary external 174 

domain-specific and common knowledge, Sustainable Smart PSS is capable to self-learn the surrounding 175 

environment and self-configure itself under various contexts for better performance (autonomous). 176 

 From the perspective of PSS, Sustainable Smart PSS still follows the business paradigm of value co-177 

creation, while further enhances the openness of its hardware and software via open-architecture and open-178 

source, and improves the involvement of its massive users via service-based incentive mechanism, thus 179 

achieving user-oriented open-innovation and continuously deliver value in its extended or circular lifecycle. 180 

 181 

Figure 2. Sustainable Smart PSS: the trinary intersection of sustainable strategy, smart technology, and PSS 182 

3.2 Key features in the development process 183 

A systematic development process is determinant to the final success of implementing Sustainable Smart PSS, 184 

of which the key features can be summarized into four aspects, namely, data-driven circularity as its essence, cyber-185 



 8 / 30 

 

physical resource reallocation as its methodology, autonomous configuration with context-awareness as its 186 

manifestation, and user-oriented long-lasting evolving as its motivation. 187 

Data-driven circularity follows the hierarchical flow of DIKW, where massive product-sensed and user-188 

generated data in all lifecycle stages are incrementally acquired via IoT-enabled sensing devices (e.g. smart sensors, 189 

smart meters) and social sensors (e.g. web crawler, event-listener) (Zheng et al., 2019a). With universal models (e.g. 190 

regression, classification, clustering) and/or domain-specific models (e.g. ontology, UML diagram), the status 191 

information of the Sustainable Smart PSS itself (e.g. reusability, reconfigurability) and the dependent 192 

enablers/ecosystems (e.g. third-party service availability, logistics capability) is dynamically mined, integrated and 193 

traced (Alcayaga et al., 2019). This further contributes to extracting more precise lifecycle management rules and 194 

empirical knowledge, thus supporting the circularity decision-makings in the development process (e.g. 195 

remanufacturing process optimization, service capability upgrade) with a more solid basis but shorten latency (Liu 196 

et al., 2019b; Zhang et al., 2017). 197 

Cyber-physical resource reallocation aims to achieve the goal of sustainability in both physical and cyber 198 

spaces in the development process. In the physical space, tangible resources of materials and components in 199 

Sustainable Smart PSS are reallocated in the circular production systems via 4R strategies, as referred in the 200 

previous studies (Alcayaga et al., 2019; Zheng et al., 2019b). More critically, in the cyber space, the intangible 201 

resources of collected dataset, annotated information, and mined knowledge are also reallocated in the process of 202 

product upgrade and service innovation via an information/knowledge management mechanism, where the previous 203 

concepts and propositions are reused or re-organized to offer a novel but cost-effective solution (i.e. knowledge 204 

transfer (Li et al., 2019)). 205 

Autonomous configuration with context-awareness reflects the highest level of smartness and connectedness 206 

in the 5C level architecture (Lee et al., 2015). Relying on the PSS-related knowledge as well as other common 207 

knowledge, the contexts in the development process are perceived and the informed circularity decisions are self-208 

made. According to these decisions, it is capable to self-configure the product/service components under different 209 

physical/social/user/operational contexts in real-time for better performance and higher sustainability. 210 

User-oriented long-lasting evolving is critical to fulfilling the ever-changing user’s requirements in the 211 

development process to continuously meet their satisfaction and maintain a long-lasting relationship (Liu et al., 212 

2020b). With a higher degree of innovation flexibility enabled by open-architecture hardware and open-source 213 

software, massive users can originate the development process in its extended or circular lifecycle. Therefore, the 214 

achieved functionality and the delivered value may far beyond the originally designed propose (Zheng et al., 2018b), 215 

and reverse processes that start from the usage/disposal stages and end at the design/manufacturing/distribution 216 

stages (e.g. 4R) will be the mainstream in the long-lasting development process. 217 
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4 Data-driven reversible framework for Sustainable Smart PSS development 218 

4.1 Overall framework 219 

Based on the features summarized in section 3.2, this paper proposes a conceptual framework for Sustainable 220 

Smart PSS development, as shown in Figure 3. Considering the cyber-physical resources as a whole, two closed-221 

loops separately describe the reversible development process in physical space and cyber space.  222 

 223 

Figure 3. Data-driven reversible framework for Sustainable Smart PSS development 224 

4.1.1 The outer loop: smart reversible strategies for product/service lifecycle management 225 

Referring to previous studies regarding the reversible strategies (i.e. 4R) and Smart PSS lifecycle management 226 

(Alcayaga et al., 2019; Zheng et al., 2019b), the outer loop in the framework comprises five lifecycle-data-driven 227 

sustainability strategies, i.e., smart re-design/reconfiguration (e.g. automated engineering change management), 228 

smart remanufacturing (e.g. predictive maintenance), smart reallocation/redistribution (e.g. smart logistics and 229 

packaging), smart reuse/rebuilt (e.g. smart rental/second-hand system), and smart recycling/disposal (e.g. smart 230 

sorting and disassembly). Applying these strategies, the reallocation of the physical resource can be achieved in the 231 

development process. 232 
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Note that each smart sustainability strategy in the outer loop possesses individual characteristics regarding the 233 

frequency in the lifecycle stage and the type of lifecycle data analytics, as briefly summarized in Table 2. To handle 234 

these multi-source, heterogeneous datasets generated, collected, stored, and leveraged in conducting these strategies 235 

with higher cost-efficiency and running fluency, a generic process is further prescribed, namely, the inner closed-236 

loop designed for the reallocation of the cyber resources. 237 

Table 2. Smart sustainability strategies for Sustainable Smart PSS 238 

Strategies Specifications and 

functionalities 

Frequency in the 

lifecycle stages  

Type of lifecycle data analytics References 

Smart re-design/ 

reconfiguration 

 

Engineering change 

management; Product-

service reconfiguration 

Constantly in both 

design stage and usage 

stage 

Online and all the time; Requires data 

about product/service design parameters, 

product/service operational status 

(Zheng et al., 

2019a) 

Smart 

remanufacturing 

 

Predictive and proactive 

maintenance; Production 

process plan and control 

Regularly in both 

manufacturing stage 

and usage stage 

Online and many times; Requires data 

about maintenance history, 

product/service operational status, 

disassembly and reassembly 

(Maleki et 

al., 2018) 

 

Smart reallocation/ 

redistribution 

 

Smart logistics; Smart 

packaging  

Rarely in the logistic 

stage 

On request and few times; Requires data 

about location of product, and availability 

of service 

(Vazquez-

Martinez et 

al., 2018) 

Smart reuse/ 

rebuilt 

 

Smart rental; Smart 

second-hand system; 

Real-time performance 

assessment 

Regularly in the usage 

stage 

On request and many times; Requires 

product/service operational status, 

location of product, and availability of 

service 

(Alcayaga et 

al., 2019) 

 

Smart recycling/ 

disposal 

 

 

Smart sorting; Smart 

disassembly 

Rarely in the disposal 

stage, design stage and 

manufacturing stage 

On request and one time; Requires data 

about product/service operational status, 

dismantling process, and material 

parameters 

(Alcayaga et 

al., 2019) 

4.1.2 The inner loop: four-step context-aware process 239 

Aiming to achieve the reallocation of the high context-dependent cyber resource in the development of 240 

Sustainable Smart PSS, a four-step context-aware process is proposed as the inner closed-loop in the conceptual 241 

framework. The core of the inner loop is context-awareness, which perceives the scenarios from product-sensed 242 

data and user-generated data collected in different lifecycle stages and encodes them with multiple context features. 243 

Then, inspired by an iterative four-step management method leveraged for continuous improvement, PDCA (plan-244 

do-check-adjust) cycle, the inner loop is composed of four steps, namely, requirement elicitation, solution 245 

recommendation, solution evaluation, and knowledge evolvement. Based on these four context-aware steps, data-246 

driven solutions for the development of Sustainable Smart PSS are generated. Details of the core and four steps in 247 

the inner loop will be further described in Section 4.2. 248 
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4.1.3 The interrelationship between the inner loop and the outer loop 249 

Regarding the interaction between the inner loop and the outer loop, the four-step context-aware process in the 250 

inner loop can be universally leveraged to support each smart sustainability strategy in the outer loop, as listed in 251 

the interaction matrix of Table 3.  252 

Table 3. Interaction matrix between the four-step context-aware process and five smart sustainability strategies 253 

Interactions Requirement Elicitation Solution Recommendation Solution Evaluation Knowledge Evolvement 

Smart re-design/ 

reconfiguration 

(Zheng et al., 2019a) 

Functional requirement 

capture 

Engineering change 

management 

Feasibility analysis Design concepts and 

principles 

Smart remanufacturing 

(Maleki et al., 2018) 

 

Re-production planning 

and maintenance planning 

Work-in-progress and 

maintenance schedules 

Re-production/ 

maintenance capacity 

assessment 

Knowledge of re-

processing/maintenance 

techniques 

Smart reallocation/ 

redistribution 

(Vazquez-Martinez et al., 

2018) 

Logistic demand and 

supply forecasting 

Warehouse and 

transportation management 

Time/cost analysis Information about supply 

chain 

Smart reuse/rebuilt 

(Alcayaga et al., 2019) 

 

Potential requirement 

extraction 

Rental/second-hand market 

orders 

Performance 

assessment 

Usage records and 

Kansei knowledge 

Smart recycling/disposal 

(Alcayaga et al., 2019) 

Recycling demand 

estimation 

Sorting features and 

disassembly sequences 

Recycling capability 

and environmental 

impact assessment 

Information on structure, 

dismantling, and 

materials 

Taking smart re-design (Zheng et al., 2019a) as an example, the user’s latent requirements for the current 254 

product/service functionalities under a specific context are elicited from the recent usage data as the start-up. 255 

Considering the historical engineering change records (e.g. update log), reconfiguration solutions on the design 256 

parameters and/or modularity correlations are recommended. After evaluating the feasibility of the solutions under 257 

the target context, product/service modules are reconfigured with all the corresponding design concepts and 258 

principles updated in the knowledge base.  259 

Seen from Tables 2 and 3, one can find that the inner loop will drive and advise the outer loop in the whole 260 

lifecycle stages, by offering multiple data-driven and context-aware solutions. Specifically, relying on the use/reuse 261 

of valuable but context-dependent cyber resources, it recommends a decision-making solution of what and how 262 

product/service components need to be reconfigured, remanufactured, reallocated, reused, or recycled under a 263 

specific scenario. With this informatics-based guidance, the material/components circularity processes in the 264 

sustainable strategies of the outer loop can be conducted more smoothly and cost-efficiently. 265 

Since this paper aims to highlight the sustainability in the cyber space, rather than its well-known connotations 266 

in the physical space, detailed sustainable processes of material circularity in each lattice in Table 3 will not be 267 
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further specialized. Only a general flow of the four-step context-aware process in the inner loop will be elaborated 268 

in the following subsections. 269 

4.2 The process of the inner loop 270 

Concentrating on the flow of the four-step context-aware process in the inner loop, this subsection elaborates 271 

on the data analytics manners and information/knowledge management processes. As shown in Figure 4, data 272 

analytics manners for mapping the requirement sets and solution sets are proposed based on the product-sensed and 273 

user-generated data, and an evolvement mechanism with four management strategies is also established to update 274 

the supportive information and knowledge in Sustainable Smart PSS development. 275 

 276 

Figure 4. The flowchart of the four-step context-aware process in the inner closed-loop 277 

4.2.1 Core of the inner loop: Context-awareness 278 

As the core of the loop, context-awareness aims to model the multifarious scenarios in massive user-generated 279 

data and product-sensed data. Considering the sorts and contents that can be cost-effectively perceived via IoT-280 

enabled sensing devices and social sensors, context features in Sustainable Smart PSS development are firstly 281 

categorized into four domain-independent classes (Liu et al., 2019a): (1) Physical context (information about the 282 

surrounding environment), (2) Social context (information about the nearby products and services), (3) User context 283 

(information about the users and user-PSS interactions), and (4) Operational context (information about the 284 
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operational status of PSS). Table 4 lists some examples of context features in each class for the development of 285 

Sustainable Smart PSS, and more features can be added if necessary and available. Based on these context features, 286 

a specific scenario in the dataset can be encoded with key-value modeling. Specifically, for each context feature ci 287 

in k-elements set  i k
C c , a corresponding value vi is determined, and then forms a k-dimensional vector for the 288 

scenario, namely,  1 2, ,..., k

ksn v v v  , as illustrated in Figure 5. Note that the datasets generated and collected in 289 

the development process are heterogeneous, Table 5 also lists out the frequently used data analysis manners for 290 

typical data sources and types in context value determination. 291 

Table 4. Perceived context features in the development of Sustainable Smart PSS  292 

Context classes Example context features 

Physical Context Date; Time; Location; Direction; Temperature; Humidity; Odor; Air/Water quality; Weather…… 

Social Context Peer products; Third-party service provider; Available recycler; Resource supply; Second-hand market 

orders…… 

User Context User demographics; User mood/health; User knowledge/profession; User preference/habit; Usage type ……  

Operational Context Power/energy; Software version; Maintenance history; Portability/Wearability; Computing power…… 

 293 

Figure 5. Encoding the scenarios based on context features 294 

Table 5. Data analysis manners in context value determination 295 

Data sources   User-generated data  Product-sensed data 

& types Structural text Natural language Numerical value Numerical value 

Frequently used 

data analysis 

manners 

Table headers & elements Keyword extraction Use domain knowledge Pattern recognition 

Formal concept analysis Named-entity recognition Use common knowledge Use domain knowledge 

Schema-based annotation Syntax analysis Fuzzy rules Fuzzy rules 

Predefined template Sentiment analysis Rough sets Rough sets 

…… …… …… …… 

4.2.2 Plan step in the inner loop: Requirement elicitation 296 

As the plan step in the loop, requirement elicitation aims to detect and model requirements of end-user in a 297 

distributed IoT-enabled environment (e.g. a cloud-based on-demand sharing platform). Under this context, implicit 298 
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user requirements are extracted in a data-driven manner, and then serve as the guidance for the following product-299 

service solution innovation. 300 

Datasets used for requirement elicitation mainly come from two resources, user-contributed feedbacks from 301 

mobile/ social networking (e.g. ratings, comments, Q&A threads) and signal data collected by embedded sensor 302 

devices (e.g. position, acceleration, angular velocity, temperature). To consider the context-dependency in these 303 

datasets, a formulation template is proposed for Sustainable Smart PSS development, namely, “given a certain 304 

scenario, what product structures and/or service modules should be changed/updated/reused/recycled” (Wang et 305 

al., 2019a, b). A piece of requirement is hence denoted as a tuple    , ,req p s sn , where p P and s S  are 306 

decomposed components in the system (i.e. ,PSS P S P S    ), and sn SN  is encoded by the k-dimensional 307 

vector in context-awareness. In this data-driven situation, requirement elicitation is transformed into exploring the 308 

co-occurrence relationship among product, service and scenario information, and a graph-based approach is suitable 309 

for solving this issue when tackling massive data. Specifically, a requirement graph, ,RG V E , is built, where 310 

the vertex set V P S SN    and the edge set E refers to the co-occurrence relations mined from the dataset (e.g. 311 

two entities appear simultaneously in a piece of comment). Moreover, RG can be incrementally expanded with new 312 

product, service and scenario information, if more data are generated and collected in the development of 313 

Sustainable Smart PSS. 314 

Based on the representation of RG, the elicitation of novel user requirements in the development process 315 

follows the model of linkage prediction. When a particular scenario is perceived, top K p-sn/s-sn edges which have 316 

the highest appearance probabilities predicted by graph-embedding algorithms (e.g. SkipGram, DeepWalk) can be 317 

selected to form an explicit user requirement. It is then leveraged as the user-oriented guidance for the subsequent 318 

PSS provision upgrade.  319 

4.2.3 Do step in the inner loop: Solution recommendation 320 

Since requirement elicitation is conducted from the user’s perspective, instead of a designer/manufacturer/ 321 

supplier/operator/recycler’s perspective, it is regardless of some practical constraints in the development process. 322 

Therefore, solution recommendation, as the do step in the loop, is conducted to offer a more feasible solution from 323 

massive historical records accumulated in Sustainable Smart PSS development. 324 

Similar to the data-driven situation, the historical records can be regarded as an empirical knowledge base 325 

storing the cases about “IF a scenario occurs, THEN change/update/reuse/recycle the selected product/service 326 

components”. Here, the scenario concerns the constraints in the sustainable processes, which are encoded by the 327 

context features shown in Table 4 and Figure 5. A typical format of a historical record can hence be partitioned into 328 

two parts, namely, ,rec sn d , where sn also indicates a specific scenario with a k-dimensional vector, and 329 

   ,d p s  is the historical decision of selecting product and service components. Obviously, if a particular 330 
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scenario re-occurs in the elicited user requirement, stored empirical knowledge can be directly reused to rapidly 331 

offer a practical solution by changing/updating/reusing/recycling the previously mentioned components in the 332 

corresponding cases. However, when a novel scenario with an unknown combination of context feature values is 333 

perceived, the previous solutions need to be automatically revised before recommendation, and hence a machine 334 

learning manner can be adopted (e.g. Random Forest, Naïve Bayes, SVM). Specifically, a prediction model is 335 

trained with a large volume of historical records, which is partitioned into a matrix of context feature values 336 

(scenario set) and a corresponding matrix of the selected product/service components (decision set). After the 337 

training process, the occurrence probability of each product/service component in the recommended solution is 338 

separately predicted for the scenario in the test set, thus evaluating the performance of machine learning manner 339 

with the classification error. Besides, in order to determine the possibility threshold for selecting the product/service 340 

component in the recommended solution, a teaching cost for the classification of boundary region is also considered 341 

in a cost-sensitive training (Zheng et al., 2019a). 342 

For a complex PSS possessing increasing numbers of product/service components and exponentially growing 343 

combinations of decisions, the precision of prediction may be deteriorated if only a relatively small training dataset 344 

is available. To handle this, clustering methods can be leveraged to effectively reduce the dimensions in the learning 345 

process. A co-occurrence matrix can be generated with the historical records, where each lattice in the matrix depicts 346 

the co-occurrence frequency of two components in the total records. Communities in PSS can be detected and 347 

partitioned with the calculation of modularity via community-partitioning algorithms (Blondel et al., 2008). The 348 

decision set in the historical records can be updated to the component-cluster level, before conducting the 349 

abovementioned machine-learning-based prediction, thus further improve the practicableness of this data-driven 350 

solution recommendation step in the loop. 351 

4.2.4 Check step in the inner loop: Solution evaluation 352 

To retain the competitiveness in the fierce market, only cost-effective solutions will be adopted in the 353 

development of Sustainable Smart PSS, rather than blindly pursuing better performance, longer lifespan or higher 354 

user satisfaction. Therefore, as the check step in the loop, solution evaluation aims to balance the cost and benefits 355 

by measuring and optimizing the cost-efficiency of the proposed solutions. 356 

Based on the previous studies (Liu et al., 2020a; Shen et al., 2017), 5 criteria are firstly proposed for solution 357 

evaluation, considering value-proposition capability via product/service innovation, the long-lasting customer 358 

relationship, and the cost in the development process, namely, (1) maximize the quality of PSS (Q); (2) maximize 359 

the user satisfaction (US); (3) maximize the lifespan of PSS (LS); (3) maximize value co-creation potential (VC); 360 

and (5) minimize the cost for evolvement (C). They can be measured with Eq. 1-5. 361 

 
2

11
PSB

Q k performance goal           (Eq. 1) 362 
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Q in Eq.1 is calculated as a remaining quality after subtracting Taguchi’s quality loss (Taguchi, 1995), and the 367 

loss is accumulated with the normalized deviations for the goals caused by each product-service bundle (PSB). US 368 

in Eq. 2 indicates the average improvement of user satisfaction on each product-service bundle in the recommended 369 

solution, which can be quantified by conducting sentiment analysis and time-series analysis on the user-generated 370 

online ratings and/or sentiment-rich feedbacks. LS in Eq. 3 measures the extendibility of lifespan when a specific 371 

solution is implemented, which is estimated with the lifecycle data. VC in Eq. 4 represents a series of capabilities 372 

of product-service bundles (like smartness, connectedness and openness) that can be provided to the users in value-373 

co-creation, which can be scored with predefined rules and models (e.g. 5C model (Lee et al., 2015)). As for C in 374 

Eq. 5, it includes the cost of physical resources CP, service-related processing CS, involved human resources CH, 375 

and intellectual resources CI, which can be collected from the multi-stakeholders. α1- α5 in Eqs. 1-5 are five constant 376 

normalization coefficients that align the order of magnitude of Q, US, LS, VC, and C. 377 

After the evaluation on each criterion, the cost-efficiency of the proposed solution can be calculated by Eq. 6, 378 

where w1-w4 are four dynamic and personalized weights that can be valued and adjusted by the user preference in 379 

the extended or circular lifecycle. Obviously, for a group of recommended solutions, the feasible ones with higher 380 

CE will be further implemented for a particular scenario in the development of Sustainable Smart PSS. 381 

1 2 3 4w Q w US w LS w VC
CE

C

      
         (Eq. 6) 382 

4.2.5 Adjust step in the inner loop: Knowledge evolvement 383 

When a novel product-service solution is verified and implemented, the product/service components have been 384 

partially or wholly changed/updated/reused/recycled. Correspondingly, the related knowledge accumulated in the 385 

whole lifecycle stages, like design principles, manufacturing methodology, logistic constraints, usage manners, and 386 

dismantling information, also needs evolvement. Hence, as the adjust step in the loop, knowledge evolvement aims 387 

to manage these modifications and close the loop in the cyber space. It guarantees the consistency in the knowledge 388 

base of the Sustainable Smart PSS during the long-lasting development process. 389 

Inspired by the four patterns recognized in the long-term knowledge evolvement (Li et al., 2018; Li et al., 2017) 390 

and the four operators proposed in Concept-Knowledge theory (Hatchuel and Weil, 2009), four heuristic strategies 391 
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are proposed to trigger the knowledge evolvement, and an information/knowledge management mechanism is hence 392 

established with these strategies to periodically modify the nodes and relations in the knowledge base (e.g. ontology, 393 

knowledge graph).  394 

 Expansion Strategy with C→K operator: Proliferate the novel ideations.  395 

C→K operator indicates a process of linking and re-organizing the concepts to form a novel knowledge. Based 396 

on this operator, an expansion strategy can be proposed to establish a ‘knowledge family’ based on the implemented 397 

innovative solutions. Namely, by linking the concepts leveraged in these solutions via default inference, a group of 398 

proliferated propositions can be generated, if no logical conflict to other existing knowledge is observed. 399 

 Contraction Strategy with K→C operator: Update the obsolete solution.  400 

As a symmetrical process for C→K operator, K→C operator introduces new properties and imported the 401 

specialized concepts from the existing knowledge, which guarantees the logical consistency in the evolvement. In 402 

this situation, obsolete solutions that leverage original concepts need to be accordingly updated, and the chances 403 

for adopting these solutions in the subsequent development process is hence reduced with a contraction strategy. 404 

 Differentiation Strategy with C→C operator: Derive the initial concept.  405 

C→C operator also discovers novel attributes to propose a new concept, but it aims to differentiate the 406 

definition and scope of for an existing generic concept in the new scenarios. Inheriting this idea, the differentiation 407 

strategy will seek for a derived concept in PSS-related entities with the considerations of unusual context features, 408 

thus providing the alternative options for self-adaptation in different scenarios. 409 

 Fusion Strategy with K→K operator: Transfer the previous experience.  410 

K→K operator establishes the logical relationship between newly generated knowledge and the existing one 411 

with all classic types of reasoning (classification, deduction, abduction, inference). Based on the logical chain 412 

established in this fusion process, reusing of previous experience generated in other scenarios is enabled, thus 413 

generating a wholly or partially transferred solution under the new scenarios. 414 

5 An illustrative example 415 

5.1 Background and pre-processing 416 

In order to demonstrate the performance of the proposed framework, an illustrative example of a 3D printer is 417 

presented in this section. 3D printer is widely recognized as an eco-friendly product with high sustainability in the 418 

physical space, which is able to rapidly reconfigure and remanufacture itself with reusable/recyclable materials and 419 

components. Coupling with a digital twin in the cyber space, 3D printer can be bundled with multiple customized 420 

services, like remote printing monitoring, maintenance scheduling, and inventory management. In this regard, 3D 421 

printer possesses a Cyber level of smartness and connectedness in the 5C architecture (Lee et al., 2015), i.e., 422 
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possessing the capabilities of gathering, storing, transmitting, and analyzing massive data to provide preliminary 423 

insights for production.  424 

Although these features indicate great potentials for the 3D printer as a Sustainable Smart PSS, due to the poor 425 

exploitation of high context-dependent information/knowledge mined during its lifecycle, current 3D printer 426 

doesn’t contribute much to improving sustainability in cyber space. Hence, an illustrative example of the application 427 

of the proposed data-driven reversible framework is presented for this situation, and this example was conducted 428 

on a cyber-physical smart 3D printer prototype, as shown in Figure 6.  429 

Due to the complexity of realizing every aspect along its whole lifecycle, this example only showcased the 430 

implementation of the inner loop on the reconfiguration, which is an outer loop’s sustainable strategy constantly-431 

used in the design and usage stage. The structure of the 3D printer was also accordingly simplified to 20 product 432 

components and 6 service components, as listed in Table 6. To enable context-awareness with high feasibility and 433 

reliability, 7 context features were selected in this example according to the recommendation from the experts in 434 

3D printing, as listed in Table 7. These experts were also invited to evaluate the reasonability of the reconfiguration 435 

solutions, and hence validate the proposed framework. 436 

 437 

Figure 6. Cyber-physical smart 3D printer prototype 438 

439 
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Table 6. Product components and service components of the smart 3D printer 440 

Product Components   

p1: Nozzle p8: Extruder Gear p15: Thermistor  

p2: LCD Screen p9: Z-Axis Lead Screw p16: Heat Break 

p3: X Tension Belt p10: X Stepper Motor p17: Heat Sink 

p4: Y Tension Belt p11: Y Stepper Motor p18: Nozzle Fan 

p5: PEI Surface Print Bed p12: Z Stepper Motor p19: Part Fan 

p6: Rambo Board p13: Extruder Stepper Motor p20: Filament  

p7: Bearing p14: Heat Bed Cable  

Service Components   

s1: Parameter Configuring s3: Quality Checking s5: Inventory Management 

s2: Printing Tracking s4: Maintenance Scheduling s6: Payment Selection 

Table 7. Context features considered in this example 441 

Context Feature Context Class Context Values 

c1: Nozzle Temperature Physical Context -1: < 170 ℃ 0: 170-220 ℃ 1: > 220 ℃  

c2: Extrusion Speed Physical Context -1: < 40 mm/s 0: 40-60 mm/s 1: > 60 mm/s  

c3: Layer Height Physical Context -1: < 0.14 mm 0: 0.14-0.38 mm 1: > 0.38 mm  

c4: Clogging Operational Context / 0: No Issue 1: Nozzle Clogged  

c5: String Operational Context / 0: No Issue 1: Filament Stringing  

c6: Second-hand status Social Context / 0: Brand New 1: Second-handed  

c7: User type (Experience) User Context 0: N.A. 1: Novel (< 30h) 2: Ordinary (30 – 100h) 3: Expert (> 100h) 

5.2 Implementation of the four steps on reconfiguring Smart 3D printer 442 

Based on our previous research outcomes (Zheng et al., 2019a; Wang et al., 2019a, b; Li et al., 2020), this 443 

section illustrates the PDCA process of the four-step inner loop on a reconfiguration example on the Smart 3D 444 

printer, and aims to validate the feasibility of the process and the reasonability of the results.  445 

5.2.1 Plan step: Elicit user requirements for the 3D printer  446 

To implement the first step of requirement elicitation, 85 recent threads (Jun 2019 – Aug 2019) of user 447 

discussions were downloaded from 3Dhubs.com, a famous online platform for 3D printing services and technical 448 

communication. With one-hot encoding, the content in each thread was mapped to the corresponding value of each 449 

context feature in Table 7 and forms an encoded scenario. The product and service mentioned in each thread were 450 

also annotated with the components listed in Table 6, thus generating the tuple of    , ,req p s sn . Based on the 451 

tuples, edges of p-s, p-p, s-s, p-sn and s-sn were defined, and a requirement graph was hence established. As shown 452 

in Figure 7, it visualized the interrelationship among all possible scenarios (red nodes) and the product/service 453 

components (orange and blue nodes).  454 
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 455 

Figure 7. Requirement graph for the 3D printer product-service system 456 

To extract meaningful requirements with context-awareness, top-3 frequently encountered scenarios were 457 

selected, and 5 product/service components predicted with the highest appearance probabilities by SkipGram 458 

algorithm (Wang et al., 2019b) were fetched to present the user requirements, as reported in Table 8. For example, 459 

requirement R1 was elicited under an encoded scenario [-1, -1, 0, 1, 0, 0, 2]. According to the context features listed 460 

in Table 7, it indicated a perceived scenario of ‘Low temperature for certain filament’ (i.e., Nozzle Temperature < 461 

170 ℃, Extrusion Speed < 40 mm/s, Layer Height 0.14-0.38 mm, Nozzle Clogged, No filament stringing issue, 462 

Brand new printer and Ordinary user). Meanwhile, according to the collected user discussions, the product 463 

components of Filament, Nozzle Fan, and Thermistor, and the service components of Parameter Configuring and 464 

Maintenance Scheduling, were mostly mentioned. Hence, a piece of user requirement of improving these 465 

components under the perceived scenario was elicited.  466 
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Table 8. Top 3 user requirements elicited from requirement graph 467 

Requirements Encoded sn Description of sn Predicted p and s Probability 

R1 [-1, -1, 0, 1, 0, 0, 2] Low temperature for certain filament p20: Filament 

p18: Nozzle Fan 

s1: Parameter Configuring 

p15: Thermistor 

s4: Maintenance Scheduling 

0.950 

0.925 

0.847 

0.810 

0.775 

R2 [0, 0, 1, 0, 1, 0, 1] Shifting layers with poor support s1: Parameter Configuring 

p5: PEI Surface Print Bed 

p20: Filament 

p4: Y Tension Belt 

p3: X Tension Belt 

0.967 

0.873 

0.804 

0.722 

0.722 

R3 [0, -1, 0, 0, 0, 1, 2] Extrusion failure after repair s4: Maintenance Scheduling 

p20: Filament 

p1: Nozzle 

s3: Quality Checking 

p8: Extruder Gear 

0.942 

0.918 

0.903 

0.774 

0.715 

5.2.2 Do step: Recommend solution using 3D printer maintenance records 468 

Aiming to solve the elicited requirements, 1802 maintenance records (repair/replace/upgrade logs) of 3D 469 

printers of the same model were collected and pre-processed for the second step of solution recommendation. As 470 

shown in Table 9, the scenario set encoded a real maintenance scenario with the context features in Table 7, and the 471 

decision set list the actual selection of product/service components under this scenario. 472 

Table 9. A small portion of pre-processed historical records 473 

Record 

No. 

Encoded Scenario Set Decision Set 

(repaired/replaced/upgraded product and service components) c1 c2 c3 c4 c5 c6 c7 

1 0 0 0 0 1 0 2 p1, p8, p14, p15, s1, s4 

2 0 0 -1 0 0 1 1 p7, p9, p12, p19, s2, s4 

3 -1 0 -1 1 1 0 1 p5, p7, p8, p9, p12, p13, s2, s3, s4 

4 1 0 0 1 0 1 2 p5, p14, p18, p19 

5 0 1 0 1 0 0 2 p5, p14, s1, s4 

… … … … … … … … … 

By conducting co-occurrence frequency analysis and Louvain community-partitioning algorithm (Zheng et al., 474 

2019a), the product and service components in the 3D printer were divided into 5 clusters, as shown in Table 10. 475 

Then, a random-forest model was trained with 10-fold cross-validation on the existing dataset, and it was then 476 

leveraged to recommend solutions for the elicited user requirements, as shown in Table 11. For example, to solve 477 

R1 (Low temperature for certain filament), solution So1 recommended to replace the product components of 478 
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Thermistor and Filament, and/or repair the product components of Heat break and Heat sink, and/or upgrade the 479 

service components of Parameter Configuring, Inventory Management, and Payment Selection. 480 

Table 10. Cluster division of the product and service components in the 3D printer 481 

Cluster No. Contained product and service components Descriptions 

cl1 p1, p5, p7, p8, p13, p14, p18, p19, s4  Extruding modules 

cl2 p2, p6, s2  Printing tracking modules 

cl3 p3, p4, p9, p10, p11, p12, s3  Movement modules 

cl4 p15, p16, p17, s1  Heating modules 

cl5 p20, s5, s6  Consumable management modules 

Table 11. Recommended solutions for the elicited user requirements 482 

Req. Encoded sn Probability of selection Decision Repaired/replaced/upgraded p and s in 

the recommended solution [c1, c2, c3, c4, c5, c6, c7] [P(cl1), P(cl2), P(cl3), P(cl4), P(cl5)] [cl1, cl2, cl3, cl4, cl5] 

R1 [-1, -1, 0, 1, 0, 0, 2] [0.036, 0.112, 0.014, 0.765, 0.634] [0, 0, 0, 1, 1] So1: p15, p16, p17, p20, s1, s5, s6 

R2 [0, 0, 1, 0, 1, 0, 1] [0.171, 0.131, 0.724, 0.782, 0.240] [0, 0, 1, 1, 0] So2: p3, p4, p9, p10, p11, p12, p15, p16, 

p17, s1, s3 

R3 [0, -1, 0, 0, 0, 1, 2] [0.918, 0.003, 0.280, 0.196, 0.315] [1, 0, 0, 0, 0] So3: p1, p5, p7, p8, p13, p14, p18, p19, s4 

5.2.3 Check step: Evaluate the cost-efficiency of the solutions 483 

To evaluate the cost-efficiency of the recommended solutions, the third step of solution evaluation was 484 

conducted. Experimental data of each evolved prototype was collected to measure the 5 evaluation indicators via 485 

Eqs. 1-5. To maintain the confidentiality of company information, only the normalized evaluation results were 486 

reported, while the raw data of the component’s price, specification, lifespan, and user rating was hidden. As for 487 

the weights w1-w4 in Eq. 6, they were identified through an online 5-point Likert Scale-based questionnaire on a 488 

panel of 7 novel users (i.e. in Table 7, c7 = 1) and 11 ordinary users (c7 = 2), which were [0.571, 0.714, 0.893, 489 

0.821] and [0.886, 0.841, 0.727, 0.591] respectively.  490 

With the evaluated cost-efficiency of the solutions reported in Table 12, So1 and So3 were rather acceptable 491 

for the ordinary users, which replaced the thermistor and the filament to solve the low temperature for certain 492 

filament (R1), and repaired nozzle motors and upgraded the maintenance scheduling service to solve the extrusion 493 

failure after repair (R3). These two solutions were also approved by the experts in 3D printing. However, even 494 

though rather good performance in improving the quality (Q) and user satisfaction (US), a low CE was achieved by 495 

So2 due to the rather high cost (C). Therefore, this reconfiguration solution needed to be further optimized according 496 

to the experts’ suggestions, before its implementation to the novel users. For example, reconsider the necessity of 497 

each component that was recommended for repairing, replacing, and/or upgrading. 498 
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Table 12. Solution evaluation on the recommended solutions 499 

Solution No. Evaluation indicators Indicators’ weights CE 

Q US LS VC C [w1, w2, w3, w4] 

So1 0.922 0.758 0.750 0.633 2.79 [0.886, 0.841, 0.727, 0.591] 0.851 

So2 0.978 0.958 0.364 0.545 3.78 [0.571, 0.714, 0.893, 0.821] 0.533 

So3 0.824 0.962 0.529 0.511 2.35 [0.886, 0.841, 0.727, 0.591] 0.947 

5.2.4 Adjust step: Evolve the 3D printing knowledge 500 

After solution evaluation, the last step was to evolve the knowledge with four heuristic strategies. For example, 501 

in implementing So1, filament (p20) was required to be replaced to solve R1, and hence the related knowledge, feed 502 

filament (p20) to the nozzle (p1), needed to be accordingly revised. Under this situation, C→C operator could be 503 

conducted on the concept of filament. A sub-concept, polycaprolactone filament (p20_1), was hence derived with 504 

the appropriate attribute of melting temperature 58 ℃. Using this derived concept, C→K operator could propose a 505 

novel knowledge, feed polycaprolactone filament (p20_1) to the nozzle (p1) when the nozzle temperature is less 506 

than 170℃ (i.e. c1 = -1) and the user type is ordinary user (c7 = 2). As no logical conflict to other 3D printing 507 

knowledge was observed, this novel knowledge could update the original one in the subsequent knowledge reuse 508 

(i.e., K→C operator). Besides, it could establish logical relations with other knowledge via K→K operator and 509 

hence generate a complex logical chain, like a piece of compound knowledge, updating parameter configuring 510 

service (s1) for the ordinary user (c7 = 2) to change the nozzle temperature to less than 170℃ (c1= -1), when 511 

feeding polycaprolactone filament (p20_1) to the nozzle (p1).  512 

Reflected on the knowledge base supporting the Smart 3D printer, these evolvements resulted in a novel sub-513 

node of polycaprolactone filament linked to the existing node of filament in the domain ontology, and a novel 514 

formatted record of   1,0,0,0,0,0,2 ,rec sn d p1, p20_1,s1    added to the historical dataset. When another 515 

four-step loop started again in the subsequent development process, the data-driven flows in the first three steps 516 

would be correspondingly affected by the evolved knowledge. 517 

5.3 Discussion 518 

5.3.1 A brief comparison to the usual process 519 

From the above description with the illustrative example, one can find that the proposed framework for 520 

Sustainable Smart PSS development still follows several basic ideations that are widely adopted in the usual 521 

reversible processes (e.g. 4R) for improving sustainability, namely, (1) extending the lifespan of the whole PSS by 522 

reconfiguring limited numbers of components (environmental sustainability); (2) exploiting the potential values 523 

under multiple scenarios by involving massive users into a co-development process (social sustainability); and (3) 524 

enhancing the effectiveness of solutions, by considering the cost-benefit criteria rather than only pursuing higher 525 
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values in solution evaluation (economical sustainability). However, beyond these ideations, there existing several 526 

novelties enabled by considering the key features of Sustainable Smart PSS in the proposed framework.  527 

Firstly, beyond the traditional sustainability concerns for product design/development, which mainly focus on 528 

the reallocation of tangible resources in the physical space (Alcayaga et al., 2019), the proposed framework 529 

broadens the scope of sustainability to the cyber space and stresses the value of reusing intangible resources. In the 530 

showcase, the four-step inner loop provided an information/knowledge management manner to use and reuse the 531 

real-time and historical user-generated comments and operation logs, and predicted the requirements in Table 8 and 532 

recommended the solutions for evolving product/service components in Table 11. With these data-driven solutions, 533 

the conduction of the reconfiguration strategy could be timely supported. Therefore, instead of investigating 534 

sustainable solutions for an implicit requirement, continuously receiving valuable informed-decisions could prevent 535 

the high cost and unexpected failures in the business of pursuing sustainability (Kerin and Pham, 2019). 536 

Secondly, different from the previous reversible strategies, which separately concentrate on one or a few 537 

specific lifecycle stages, the data-driven flow in the proposed framework is operating on multiple stages, even the 538 

whole lifecycle. Reflected in the showcase, even though it targeted at the reconfiguration that mainly conducted in 539 

the design and usage stage, whether to repair/replace/upgrade a product/service component depended on the logs 540 

and feedbacks collected in multiple stages of design, manufacturing, usage, or even end-of-life, and these hybrid 541 

records did impact the decision-making processes and results, for example, determining CE in the cost-benefit 542 

evaluation (Table 12). From a systematic perspective, the unified processes for representing and mapping 543 

requirements and solutions in the proposed framework are capable to connect the ‘isolated islands of data’ 544 

generated by separately implementing the smart sustainability strategies. Therefore, the proposed framework is 545 

more flexible to be applied and implemented in a user-oriented development process, and provides more 546 

comprehensive business intelligence for the development of Sustainable Smart PSS. 547 

Thirdly, the processing of context-awareness runs through the whole data-driven loop in the proposed 548 

framework. Compared to the usual process, it will differentiate the generated solutions in the development process. 549 

Actually, due to the diverse groups of users and operating conditions, it is more rational and realistic that the same 550 

solution for sustainability will possess different effectiveness under various scenarios. Therefore, with the 551 

involvement of context-awareness in the framework, the provided solutions for product-service evolvement are 552 

better aligned with the user’s personalized needs. Besides, it also facilitates the Sustainable Smart PSS to self-553 

recognize the opportunities and necessities for self-evolving (i.e., when perceiving an unusual scenario), which 554 

levels up the autonomy and timeliness in the development process. 555 

5.3.2 Limitations of the proposed framework 556 

Despite the above-mentioned advantages, there are still two limitations of the proposed framework. Firstly, the 557 

‘cold start’ issue is observed in the data-driven framework, where each step can operate well only if enough user-558 



 25 / 30 

 

generated and product-sensed data are collected and annotated. For example, to guarantee the performance of the 559 

machine learning algorithm in solution recommendation, enough repair/replace/upgrade logs (~1000 records, 560 

inferred from this example) should be fetched to train and cross-validate the model. However, this criterion of data 561 

quality and quantity might be hard for a newly-designed PSS to reach. To mitigate this issue, a crowd-sourcing 562 

technique with a monetary or service-based incentive mechanism is recommended, to improve the involvement of 563 

stakeholders. Also, reinforcement learning and transfer learning manners can be integrated into the current 564 

framework, so as to train the decision-making model with rather few data. 565 

Secondly, although the proposed framework demonstrates potentials in Sustainable Smart PSS development, 566 

it still has more research to be conducted on the specialized implementations of the four-step inner loop on the five 567 

sustainable/circularity strategies in the outer loop. Taking the solutions recommended in Table 11 as an instance, 568 

more technical details for repairing/replacing/upgrading should be attached, and the corresponding impacts to the 569 

surrounding cyber-physical environment should be further analyzed. Also, more implications to the 570 

remanufacturing/recycling scenarios should be offered. To solve these issues, a series of external or open-source 571 

knowledge base storing abundant transdisciplinary domain knowledge and common knowledge can be leveraged 572 

to provide a more solid and informative guide for the smart sustainable/circularity practice (Li et al., 2020). 573 

6 Conclusion and future work 574 

Aiming to lengthen the product lifespan and fulfill customers’ uprising requirements with fewer un-renewable 575 

resource consumptions and environmental impacts, Smart Circular System and Smart PSS can provide useful 576 

insights integrally. A meeting-point of these two concepts, Sustainable Smart PSS, is about to emerge and flourish. 577 

It shows the promise of a smarter circular system manner and reveals a better performance in its sustainable 578 

processes throughout the whole lifecycle. As few studies reported in this novel area, this paper proposes a data-579 

driven reversible framework for Sustainable Smart PSS development, based on the comprehensive summarization 580 

and discussion on its key features.  581 

The main contributions of this paper can be concluded into three points: 582 

(1) Broadened the scope of sustainability to the management of cyber-physical resources. In pursuit of 583 

sustainable cyber-physical resources holistically, a clear distinction between the conventional perspective in product 584 

lifecycle management and the proposed one was hence depicted as the additional consideration of exploiting and 585 

maximizing the value of reallocating information/knowledge resources. 586 

(2) Summarized the key features in developing Sustainable Smart PSS. Based on the trinary intersection of 587 

sustainable strategy, smart technology and PSS, the concept of Sustainable Smart PSS was further elaborated with 588 

four compound features in its development process concluded. 589 
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(3) Proposed a data-driven reversible framework to evolve the Sustainable Smart PSS. With the flow of user-590 

generated data and product-sensed data keep running in the framework, this paper showed the capabilities of 591 

leveraging these datasets to continuously deliver value in the extended or circular lifecycle. 592 

As an explorative study, this paper highlighted the systematic development framework for Sustainable Smart 593 

PSS, while many detailed processes and algorithms for its development and implementation are oversimplified. 594 

Therefore, it is recommended that future work can investigate into the following aspects: (1) introduce few-shot 595 

machine learning methods and incentive mechanisms, to solve the ‘cold start’ issue for a newly-developed 596 

Sustainable Smart PSS; (2) update the adopted data analytics and context-awareness manner with advanced natural 597 

language processing and computer vision techniques, and hence leverage more sorts and types of data generated in 598 

the development process, and (3) to better support sustainable strategies in the outer loop under multiple scenarios, 599 

import transdisciplinary domain knowledge and common knowledge into the knowledge base, thus enabling a more 600 

solid logical inference and achieving higher autonomy in the development of Sustainable Smart PSS. 601 
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A Data-driven Reversible Framework for Achieving Sustainable Smart Product-1 

Service Systems 2 

Abstract: Higher sustainability with extended product lifecycle is a tireless pursuit in companies’ product 3 

design/development endeavours. In this regard, two prevailing concepts, namely the smart circular system and smart 4 

product-service system (Smart PSS), have been introduced, respectively. However, most existing studies only focus 5 

on the sustainability of physical materials and components, without considering the cyber-physical resources as a 6 

whole, let alone an integrated strategy towards the so-called Sustainable Smart PSS. To fill the gap, this paper 7 

discusses the key features in Sustainable Smart PSS development from a broadened scope of cyber-physical 8 

resources management. A data-driven reversible framework is hereby proposed to sustainably exploit high-value 9 

and context-dependent information/knowledge in the development of Sustainable Smart PSS. A four-step context-10 

aware process in the framework, including requirement elicitation, solution recommendation, solution evaluation, 11 

and knowledge evolvement, is further introduced to support the decision-making and optimization along the 12 

extended or circular lifecycle. An illustrative example is depicted in the sustainable development of a smart 3D 13 

printer, which validates the feasibility and advantages of the proposed framework. As an explorative study, it is 14 

hoped that this work provides useful insights for Smart PSS development with sustainability concerns in a cyber-15 

physical environment. 16 

Keywords: smart product-service system; sustainability; knowledge management; reversible design; context-17 

awareness  18 

Nomenclature 19 

Smart PSS Smart Product-Service System CE Circular Economy 

ICT Information and Communication Technology IoT Internet-of-Things 

CPS Cyber-Physical System DT Digital Twin 

AR/VR Augmented Reality/Virtual Reality KG Knowledge Graph 

ML/DL Machine Learning/Deep Learning PLM Product Lifecycle Management 

4V Data High Volume, Variety, Veracity, and Velocity Data SCP Smart, Connected Product 

4R Re-design, Remanufacturing, Reuse, and Recycle RUL Remaining Useful Life 

DIKW Data-Information-Knowledge-Wisdom C-K Model Concept-Knowledge Model 

1 Introduction 20 

Sustainable development is the main theme of today’s production systems, and has gained increasing attention 21 

among academia, practitioners, and policymakers (Gianmarco Bressanelli, 2018). Responding to a call for “doing 22 

more with less material” (Westkämper et al., 2000) in CE, one prevailing concept for promoting sustainability, i.e. 23 

circular system, was introduced by transforming the linear system of production (produce, sale, and dispose after 24 
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use) to a circular one with reversible strategies (e.g. re-design, remanufacturing, reuse and recycle). Hence, it can 25 

effectively reduce un-renewable resource consumptions and mitigating environmental impact (Murray et al., 2017). 26 

Another concept, termed product-service system (PSS), proposed a paradigm that tightly couples products and add-27 

on services to fulfil customized requirements. Extending the lifespan with product reconfiguration and service 28 

innovation, PSS also promotes sustainability by “doing more” (Tukker, 2015; Tukker and Tischner, 2006).  29 

Owing to the recent rapid development of advanced ICT infrastructure, digitalization technology and AI 30 

techniques, these two concepts individually evolve to be smarter, as the so-called Smart Circular System and Smart 31 

PSS, respectively. For the former, the increasing usage of IoT allows a higher level of traceability of materials and 32 

products in the circulation (Whitmore et al., 2014), and the leveraging of big data analytics techniques provides 33 

ever sufficient product lifecycle information (e.g. degradation status, remaining useful life) for decision-making 34 

(Bressanelli et al., 2018; Li et al., 2015; Zhang et al., 2017). For Smart PSS, the novel techniques provide capabilities 35 

to collect and transmit sensed-data and user-generated data among various SCPs and multi-stakeholders (Zheng et 36 

al., 2018a; Zheng et al., 2018b; Zheng et al., 2020), and also enable a rapid (even real-time) reconfiguration solution 37 

of hardware and software with requirement-orientation and context-awareness (Wang et al., 2019b; Zheng et al., 38 

2019a). 39 

Note that Smart Circular System provides competitive advantages for Smart PSS with cost reductions and new 40 

revenue potentials in commercialization (Michelini et al., 2017), and Smart PSS revealed great built-in-flexibility 41 

and self-adaptability to implement the lifecycle management of Smart Circular System (Zheng et al., 2018b). A 42 

meeting-point of the two prevailing concepts, so-called Sustainable Smart PSS (or Smart Circular PSS), is about to 43 

emerge. By collecting and analysing the meaningful product-sensed and user-generated data, Sustainable Smart 44 

PSS can better perform its sustainable use/reuse, maintenance, reconfigure, and recycle processes throughout the 45 

whole lifecycle. This provides a promising manner to enable sustainable development in the production system. 46 

However, to the authors’ knowledge, only a few qualitative studies have proposed the potential of Sustainable 47 

Smart PSS (Alcayaga et al., 2019; Li and Found, 2017), while little research has further discussed its development 48 

process or realized it. More importantly, most existing studies still restrain themselves in a conventional perspective 49 

of product lifecycle management, which only considers the sustainability of tangible materials and components 50 

along the 4R process (Zheng et al., 2019b). Since the value-creation of products/services relies on massive operation 51 

datasets and effective data analytics manners, the discussion of sustainability is required to be extended to the cyber 52 

space and consider the cyber-physical resources as a whole. Rather than the well-known reversible strategies for 53 

material circularity, a novel perspective of sustainable information/knowledge management needs to be emphasized 54 

via the digital servitization business model (Kuhlenkötter et al., 2017). It will maximize the value of exploiting and 55 

reallocating cyber-physical resources in the development of Sustainable Smart PSS. 56 

 Aiming to fill the abovementioned gaps, this paper will first discuss the key features of Sustainable Smart PSS 57 

in a cyber-physical environment, and then propose a data-driven reversible development framework, and finally 58 
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validate the proposed framework with an illustrative example. The remainder of this paper is organized as follows. 59 

Section 2 briefly introduces the key terms and approaches for sustainability strategies and Smart PSS development. 60 

Section 3 discusses the key features in Sustainable Smart PSS development. The overall framework for its 61 

development process is presented in Section 4, with each module illustrated in detail. Section 5 provides an 62 

illustrative example of a smart 3D printer development to further validate the proposed framework towards smart 63 

sustainability. At last, the conclusion and future work are highlighted in Section 6.  64 

2 Terms and approaches for sustainability and Smart PSS development 65 

2.1 Reversible strategies for achieving higher sustainability 66 

In order to balance economic development with environment and resource protection, the report of UN 67 

Environment Programme (UNEP) in 2006 initially outlined sustainability in the production system as “restorative 68 

or regenerative by intention and design”, and generically proposed the criterion of low consumption of energy, low 69 

emission of pollutants, and high efficiency (Murray et al., 2017). It was then derived and clarified for product 70 

development and product lifecycle management (PLM) into three aspects, namely, environmental sustainability 71 

(less material/fuel consumption, carbon emission, air/water pollution), economical sustainability (allowing an 72 

upgrade of components, reducing transportations)  and social sustainability (shared value, customer loyalty, human 73 

well-beings improvement) (Li and Found, 2017; Liu et al., 2020a). 74 

Originated from PLM, typical reversible strategies for achieving higher sustainability in product development 75 

includes Re-design, Remanufacturing, Reuse, and Recycle (4R), which reform the linear system of product lifecycle 76 

stages (design, manufacturing, distribution, usage, and disposal) to a circular system (Alcayaga et al., 2019; Zheng 77 

et al., 2019b). As shown in Figure 1, Re-design bridges customer experience in the usage stage and the end-product 78 

with an inverse-design principle and ‘configure-to-order’ manner (Jiao and Helander, 2006). Rather than start from 79 

scratch, it selects the appropriate components/modules from the existing product family to rapidly offer an upgraded 80 

design solution, thus providing higher flexibility and fewer un-renewable resource consumptions (Miranda et al., 81 

2017). Remanufacturing is a series of manufacturing steps on a used product, to return or restore it to at least 82 

equivalent or better performance than that of the newly manufactured product (Diallo et al., 2016). Several 83 

techniques are leveraged under this generic definition, like remaining useful life (RUL) assessment (Hu et al., 2015), 84 

predictive maintenance (Kerin and Pham, 2019), refurbishing or reassembly (Niu and Xie, 2020). Reuse is regarded 85 

as a non-destructive process that allows additional lifecycle cycles of the whole or partial of product in an alternative 86 

scenario, without changing their original state. It is widely adopted in the industrial sectors of construction, 87 

packaging, and textiles (Cooper and Gutowski, 2017; Damirchi Loo and Mahdavinejad, 2018). Recycle aims at 88 

extracting raw materials or useful components from end-of-life products, and typically consists of three main phases: 89 

collection, sorting and recycling processing (Thoroe et al., 2011). Since the recycled materials and components are 90 
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usually leveraged in the strategies of Re-design, Remanufacturing, and Reuse and start another loop of the product 91 

lifecycle, Recycle is often considered as an ultimate closing-step in the circular system. 92 

 93 

Figure 1. 4R strategies in product lifecycle stages 94 

With the advanced ICT infrastructures (e.g. IoT, smart sensors, cloud computing), digitalization technologies 95 

(e.g. CPS, DT, AR/VR) and AI techniques (e.g. machine/deep learning, 4V Data mining and large-scale KG), the 96 

reversible strategies have become smarter. Typical studies are listed in Table 1. Generally, the smartness of the 97 

strategies is usually achieved by IoT-enabled product lifecycle data collection, Big data-supported decision making, 98 

and CPS-based simulation and operation, and it hence outperforms its predecessor in increasing resource efficiency, 99 

extending lifespan and closing the circulation (Alcayaga et al., 2019; Bressanelli et al., 2018). However, due to an 100 

inheritance from PLM, only tangible materials and components are considered in the majority of reversible 101 

strategies. Data itself, as well as the high-value information/knowledge mined from it, is often dismissed in the 102 

sustainability considerations due to intangibility and context-dependency, which sometimes contributes to the high 103 

cost and unexpected failures in adopting these smart strategies (Kerin and Pham, 2019).  104 

Table 1 Typical smart strategies for achieving higher sustainability via reverse engineering 105 

Strategies Representative Studies Specifications / Applications Smart Techniques 

Smart Re-design (Savarino et al., 2018) Adaptable product with context-aware modules IoT, Smart sensors 

 (Bressanelli et al., 2018) Remote product upgrade to postpone replacement Big data mining 

Smart 

Remanufacturing 

(Chang et al., 2017) Virtual disassembly platform for remanufacturing (and recycle) AR/VR, CPS 

(Zhang et al., 2017) Lifecycle-data-driven decision-making for remanufacturing Big data mining, ML 

(Alcayaga et al., 2019) IoT-enabled remanufacturing planning and real-time monitoring IoT, Smart sensors 

Smart Reuse (Zhang et al., 2017) Lifecycle-data-driven decision-making for reuse Big data mining, ML 

(Iacovidou et al., 2018) Reusable materials/components evaluating, tracking and tracing IoT, CPS 

(Bressanelli et al., 2018) Usage data supported decision-making for reuse IoT, Big data mining 

Smart Recycle (Zhang et al., 2017) Lifecycle-data-driven decision-making for recycle Big data mining, ML 

(Luscuere and Mulhall, 2018) IoT-enabled mechanism to collect, process and report lifecycle data IoT, Big data mining 
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2.2 Smart PSS and its development 106 

It is widely accepted that Smart PSS fundamentally composed of Smart, connected product (SCP) and its 107 

generated digital services (Kuhlenkötter et al., 2017; Valencia et al., 2015; Zheng et al., 2018a). Compared to 108 

conventional PSS, the smartness is reflected in two aspects, namely, online smartness and offline smartness. Online 109 

smartness is implemented by intelligent algorithms and customized analytic tools, which leverage a huge amount 110 

of multi-source, heterogonous data generated from the communications of SCPs to deliver valuable insights for 111 

design, manufacturing, distribution, usage and disposal (Rymaszewska et al., 2017; Zheng et al., 2018b). On the 112 

other hand, Offline smartness is that Smart PSS can perceive a specific user scenario with context-awareness, and 113 

then adjust itself with built-in-flexibility hardware and self-learning software (Zheng et al., 2019a; Zheng et al., 114 

2020). Based on these two aspects of smartness, Smart PSS is capable of following the sustainable business model 115 

with an ever-evolving manner (Sousa-Zomer and Cauchick Miguel, 2018). Specifically, novel digital services can 116 

be innovated to continuously meet customers’ requirements, while the physical components can be adaptively 117 

reconfigured with changeable modules or open architectures to extend their lifespan.  118 

To develop an evolving Smart PSS and continuously deliver value in its lifetime, several manners are proposed 119 

and tentatively implemented. Systematically, the development processes fall into two categories: (1) data-driven 120 

platform-based approach and (2) multi-stakeholder value-cocreation approach. The first approach follows a 121 

hierarchical flow of data-information-knowledge-wisdom (DIKW). It firstly collects massive user-generated data 122 

and product-sensed data through SCPs, and then analyses them in a service platform, and finally provides 123 

requirement-oriented solutions for product upgrade and service innovation (Wang et al., 2019a, b; Zheng et al., 124 

2019a). The second approach investigates Smart PSS development from a value-driven perspective and depicts a 125 

co-evolvement process with the engagement of multiple stakeholders (end-user/designer/manufacturer/service 126 

provider). Four phases, namely, requirement co-generation, function co-design, process co-implementation, and 127 

performance co-monitor, composes the co-development process of Smart PSS (Liu et al., 2020b; Liu et al., 2019c).  128 

Although several studies attempt to develop an evolving Smart PSS, there is still a rather long way to go before 129 

a true Sustainable Smart PSS that coordinates the principles of CE can be realized. Two factors need to be further 130 

considered in development. Firstly, the objectives of Sustainable Smart PSS development should be promoted to 131 

‘develop for circularity’, instead of ‘develop for fail’ (Tietze and Hansen, 2013). Extending the product-service 132 

portfolio may lengthen the lifetime, but it does not lead to the reduction of resource consumption. A reversible 133 

development method, which places emphasis on the organization of materials/information flows and reuses them 134 

as possible, is the fundamental solution to increase resource efficiency in CE (Michelini et al., 2017). Secondly, 135 

implementing Sustainable Smart PSS development requires moving the business model towards service and 136 

retaining long-lasting customer relationships (Alcayaga et al., 2019). In this ever-evolving value proposition process, 137 

stakeholder requirements vary frequently due to the changing contexts/scenarios, which directly affect the 138 
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performance of the product-service bundles (Wang et al., 2019a). Therefore, improving customer experience with 139 

context-awareness will be an indispensable consideration in Sustainable Smart PSS development. 140 

2.3 Knowledge gaps addressed by this paper 141 

As reviewed in section 2.1 and 2.2, most existing studies have been dispersed in two separate directions, 142 

namely, enabling reversible strategies with smartness via the advanced ICT and AI techniques, and improving the 143 

sustainability of Smart PSS by ever-evolving product development and service innovation. As the first gap, few 144 

studies have attempted to merge the two directions together via an integrated concept of Sustainable Smart PSS, 145 

not to mention a comprehensive summarization of the key features and systematic methodical support for its 146 

development process.  147 

Moreover, inherited from product lifecycle management, many previous studies mainly concentrated on the 148 

sustainability of tangible components and resources in the product lifecycle, and thus emphasized more on the 149 

aspects of environmental sustainability and economical sustainability in sustainability evaluation and optimization 150 

(Liu et al., 2020a). Actually, with growing concerns on digital servitization to further improve social sustainability, 151 

increasing amounts of personalized data/information/knowledge leveraged and generated in Smart PSS 152 

development. However, due to the innate characteristic of context-dependency in these heterogeneous datasets 153 

collected from historical Smart PSS design, usage and disposal (Zheng et al., 2019b), there is still a lack of 154 

comprehensive sustainable/circularity strategies to ‘reuse’ or ‘recycle’ these intangible but equally-important 155 

resources in the cyber space, serving as the second gap.  156 

To fill these two gaps in this paper, key features in Sustainable Smart PSS are firstly synthesized and analyzed 157 

(Section 3), and a data-driven reversible framework for Sustainable Smart PSS development is then established 158 

based on the context-awareness (Section 4). 159 

3 Key features in Sustainable Smart PSS development 160 

After reviewing the related literature on sustainable/circularity strategies and Smart PSS in section 2.1 and 2.2, 161 

and identifying the knowledge gaps in section 2.3, this section discusses the fundamental of Sustainable Smart PSS 162 

and then accordingly propose the key features in its development process. 163 

3.1 The fundamental of Sustainable Smart PSS 164 

Inspired by Alcayaga et al. (2019), the concept of Sustainable Smart PSS can be regarded as the trinary 165 

intersection of sustainable strategy, smart technology, and PSS, as illustrated in Figure 2. It can be further elaborated 166 

in three perspectives: 167 
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 From the perspective of sustainable strategy, Sustainable Smart PSS achieves extended product lifespan by 168 

better reallocating tangible and intangible resources in a cost-efficient manner (economical sustainability) 169 

with less environmental impact (environmental sustainability), and it moves forward to maintaining long-170 

lasting customer relationships with ever-evolving manners (social sustainability).  171 

 From the perspective of smart technology, Sustainable Smart PSS is enabled with ubiquitous connectivity 172 

to collect and transmit lifecycle big data via IoT infrastructure. Supported by massive internal information 173 

retrieved from these product-sensed and user-generated data, and explained with transdisciplinary external 174 

domain-specific and common knowledge, Sustainable Smart PSS is capable to self-learn the surrounding 175 

environment and self-configure itself under various contexts for better performance (autonomous). 176 

 From the perspective of PSS, Sustainable Smart PSS still follows the business paradigm of value co-177 

creation, while further enhances the openness of its hardware and software via open-architecture and open-178 

source, and improves the involvement of its massive users via service-based incentive mechanism, thus 179 

achieving user-oriented open-innovation and continuously deliver value in its extended or circular lifecycle. 180 

 181 

Figure 2. Sustainable Smart PSS: the trinary intersection of sustainable strategy, smart technology, and PSS 182 

3.2 Key features in the development process 183 

A systematic development process is determinant to the final success of implementing Sustainable Smart PSS, 184 

of which the key features can be summarized into four aspects, namely, data-driven circularity as its essence, cyber-185 
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physical resource reallocation as its methodology, autonomous configuration with context-awareness as its 186 

manifestation, and user-oriented long-lasting evolving as its motivation. 187 

Data-driven circularity follows the hierarchical flow of DIKW, where massive product-sensed and user-188 

generated data in all lifecycle stages are incrementally acquired via IoT-enabled sensing devices (e.g. smart sensors, 189 

smart meters) and social sensors (e.g. web crawler, event-listener) (Zheng et al., 2019a). With universal models (e.g. 190 

regression, classification, clustering) and/or domain-specific models (e.g. ontology, UML diagram), the status 191 

information of the Sustainable Smart PSS itself (e.g. reusability, reconfigurability) and the dependent 192 

enablers/ecosystems (e.g. third-party service availability, logistics capability) is dynamically mined, integrated and 193 

traced (Alcayaga et al., 2019). This further contributes to extracting more precise lifecycle management rules and 194 

empirical knowledge, thus supporting the circularity decision-makings in the development process (e.g. 195 

remanufacturing process optimization, service capability upgrade) with a more solid basis but shorten latency (Liu 196 

et al., 2019b; Zhang et al., 2017). 197 

Cyber-physical resource reallocation aims to achieve the goal of sustainability in both physical and cyber 198 

spaces in the development process. In the physical space, tangible resources of materials and components in 199 

Sustainable Smart PSS are reallocated in the circular production systems via 4R strategies, as referred in the 200 

previous studies (Alcayaga et al., 2019; Zheng et al., 2019b). More critically, in the cyber space, the intangible 201 

resources of collected dataset, annotated information, and mined knowledge are also reallocated in the process of 202 

product upgrade and service innovation via an information/knowledge management mechanism, where the previous 203 

concepts and propositions are reused or re-organized to offer a novel but cost-effective solution (i.e. knowledge 204 

transfer (Li et al., 2019)). 205 

Autonomous configuration with context-awareness reflects the highest level of smartness and connectedness 206 

in the 5C level architecture (Lee et al., 2015). Relying on the PSS-related knowledge as well as other common 207 

knowledge, the contexts in the development process are perceived and the informed circularity decisions are self-208 

made. According to these decisions, it is capable to self-configure the product/service components under different 209 

physical/social/user/operational contexts in real-time for better performance and higher sustainability. 210 

User-oriented long-lasting evolving is critical to fulfilling the ever-changing user’s requirements in the 211 

development process to continuously meet their satisfaction and maintain a long-lasting relationship (Liu et al., 212 

2020b). With a higher degree of innovation flexibility enabled by open-architecture hardware and open-source 213 

software, massive users can originate the development process in its extended or circular lifecycle. Therefore, the 214 

achieved functionality and the delivered value may far beyond the originally designed propose (Zheng et al., 2018b), 215 

and reverse processes that start from the usage/disposal stages and end at the design/manufacturing/distribution 216 

stages (e.g. 4R) will be the mainstream in the long-lasting development process. 217 
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4 Data-driven reversible framework for Sustainable Smart PSS development 218 

4.1 Overall framework 219 

Based on the features summarized in section 3.2, this paper proposes a conceptual framework for Sustainable 220 

Smart PSS development, as shown in Figure 3. Considering the cyber-physical resources as a whole, two closed-221 

loops separately describe the reversible development process in physical space and cyber space.  222 

 223 

Figure 3. Data-driven reversible framework for Sustainable Smart PSS development 224 

4.1.1 The outer loop: smart reversible strategies for product/service lifecycle management 225 

Referring to previous studies regarding the reversible strategies (i.e. 4R) and Smart PSS lifecycle management 226 

(Alcayaga et al., 2019; Zheng et al., 2019b), the outer loop in the framework comprises five lifecycle-data-driven 227 

sustainability strategies, i.e., smart re-design/reconfiguration (e.g. automated engineering change management), 228 

smart remanufacturing (e.g. predictive maintenance), smart reallocation/redistribution (e.g. smart logistics and 229 

packaging), smart reuse/rebuilt (e.g. smart rental/second-hand system), and smart recycling/disposal (e.g. smart 230 

sorting and disassembly). Applying these strategies, the reallocation of the physical resource can be achieved in the 231 

development process. 232 
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Note that each smart sustainability strategy in the outer loop possesses individual characteristics regarding the 233 

frequency in the lifecycle stage and the type of lifecycle data analytics, as briefly summarized in Table 2. To handle 234 

these multi-source, heterogeneous datasets generated, collected, stored, and leveraged in conducting these strategies 235 

with higher cost-efficiency and running fluency, a generic process is further prescribed, namely, the inner closed-236 

loop designed for the reallocation of the cyber resources. 237 

Table 2. Smart sustainability strategies for Sustainable Smart PSS 238 

Strategies Specifications and 

functionalities 

Frequency in the 

lifecycle stages  

Type of lifecycle data analytics References 

Smart re-design/ 

reconfiguration 

 

Engineering change 

management; Product-

service reconfiguration 

Constantly in both 

design stage and usage 

stage 

Online and all the time; Requires data 

about product/service design parameters, 

product/service operational status 

(Zheng et al., 

2019a) 

Smart 

remanufacturing 

 

Predictive and proactive 

maintenance; Production 

process plan and control 

Regularly in both 

manufacturing stage 

and usage stage 

Online and many times; Requires data 

about maintenance history, 

product/service operational status, 

disassembly and reassembly 

(Maleki et 

al., 2018) 

 

Smart reallocation/ 

redistribution 

 

Smart logistics; Smart 

packaging  

Rarely in the logistic 

stage 

On request and few times; Requires data 

about location of product, and availability 

of service 

(Vazquez-

Martinez et 

al., 2018) 

Smart reuse/ 

rebuilt 

 

Smart rental; Smart 

second-hand system; 

Real-time performance 

assessment 

Regularly in the usage 

stage 

On request and many times; Requires 

product/service operational status, 

location of product, and availability of 

service 

(Alcayaga et 

al., 2019) 

 

Smart recycling/ 

disposal 

 

 

Smart sorting; Smart 

disassembly 

Rarely in the disposal 

stage, design stage and 

manufacturing stage 

On request and one time; Requires data 

about product/service operational status, 

dismantling process, and material 

parameters 

(Alcayaga et 

al., 2019) 

4.1.2 The inner loop: four-step context-aware process 239 

Aiming to achieve the reallocation of the high context-dependent cyber resource in the development of 240 

Sustainable Smart PSS, a four-step context-aware process is proposed as the inner closed-loop in the conceptual 241 

framework. The core of the inner loop is context-awareness, which perceives the scenarios from product-sensed 242 

data and user-generated data collected in different lifecycle stages and encodes them with multiple context features. 243 

Then, inspired by an iterative four-step management method leveraged for continuous improvement, PDCA (plan-244 

do-check-adjust) cycle, the inner loop is composed of four steps, namely, requirement elicitation, solution 245 

recommendation, solution evaluation, and knowledge evolvement. Based on these four context-aware steps, data-246 

driven solutions for the development of Sustainable Smart PSS are generated. Details of the core and four steps in 247 

the inner loop will be further described in Section 4.2. 248 
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4.1.3 The interrelationship between the inner loop and the outer loop 249 

Regarding the interaction between the inner loop and the outer loop, the four-step context-aware process in the 250 

inner loop can be universally leveraged to support each smart sustainability strategy in the outer loop, as listed in 251 

the interaction matrix of Table 3.  252 

Table 3. Interaction matrix between the four-step context-aware process and five smart sustainability strategies 253 

Interactions Requirement Elicitation Solution Recommendation Solution Evaluation Knowledge Evolvement 

Smart re-design/ 

reconfiguration 

(Zheng et al., 2019a) 

Functional requirement 

capture 

Engineering change 

management 

Feasibility analysis Design concepts and 

principles 

Smart remanufacturing 

(Maleki et al., 2018) 

 

Re-production planning 

and maintenance planning 

Work-in-progress and 

maintenance schedules 

Re-production/ 

maintenance capacity 

assessment 

Knowledge of re-

processing/maintenance 

techniques 

Smart reallocation/ 

redistribution 

(Vazquez-Martinez et al., 

2018) 

Logistic demand and 

supply forecasting 

Warehouse and 

transportation management 

Time/cost analysis Information about supply 

chain 

Smart reuse/rebuilt 

(Alcayaga et al., 2019) 

 

Potential requirement 

extraction 

Rental/second-hand market 

orders 

Performance 

assessment 

Usage records and 

Kansei knowledge 

Smart recycling/disposal 

(Alcayaga et al., 2019) 

Recycling demand 

estimation 

Sorting features and 

disassembly sequences 

Recycling capability 

and environmental 

impact assessment 

Information on structure, 

dismantling, and 

materials 

Taking smart re-design (Zheng et al., 2019a) as an example, the user’s latent requirements for the current 254 

product/service functionalities under a specific context are elicited from the recent usage data as the start-up. 255 

Considering the historical engineering change records (e.g. update log), reconfiguration solutions on the design 256 

parameters and/or modularity correlations are recommended. After evaluating the feasibility of the solutions under 257 

the target context, product/service modules are reconfigured with all the corresponding design concepts and 258 

principles updated in the knowledge base.  259 

Seen from Tables 2 and 3, one can find that the inner loop will drive and advise the outer loop in the whole 260 

lifecycle stages, by offering multiple data-driven and context-aware solutions. Specifically, relying on the use/reuse 261 

of valuable but context-dependent cyber resources, it recommends a decision-making solution of what and how 262 

product/service components need to be reconfigured, remanufactured, reallocated, reused, or recycled under a 263 

specific scenario. With this informatics-based guidance, the material/components circularity processes in the 264 

sustainable strategies of the outer loop can be conducted more smoothly and cost-efficiently. 265 

Since this paper aims to highlight the sustainability in the cyber space, rather than its well-known connotations 266 

in the physical space, detailed sustainable processes of material circularity in each lattice in Table 3 will not be 267 
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further specialized. Only a general flow of the four-step context-aware process in the inner loop will be elaborated 268 

in the following subsections. 269 

4.2 The process of the inner loop 270 

Concentrating on the flow of the four-step context-aware process in the inner loop, this subsection elaborates 271 

on the data analytics manners and information/knowledge management processes. As shown in Figure 4, data 272 

analytics manners for mapping the requirement sets and solution sets are proposed based on the product-sensed and 273 

user-generated data, and an evolvement mechanism with four management strategies is also established to update 274 

the supportive information and knowledge in Sustainable Smart PSS development. 275 

 276 

Figure 4. The flowchart of the four-step context-aware process in the inner closed-loop 277 

4.2.1 Core of the inner loop: Context-awareness 278 

As the core of the loop, context-awareness aims to model the multifarious scenarios in massive user-generated 279 

data and product-sensed data. Considering the sorts and contents that can be cost-effectively perceived via IoT-280 

enabled sensing devices and social sensors, context features in Sustainable Smart PSS development are firstly 281 

categorized into four domain-independent classes (Liu et al., 2019a): (1) Physical context (information about the 282 

surrounding environment), (2) Social context (information about the nearby products and services), (3) User context 283 

(information about the users and user-PSS interactions), and (4) Operational context (information about the 284 
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operational status of PSS). Table 4 lists some examples of context features in each class for the development of 285 

Sustainable Smart PSS, and more features can be added if necessary and available. Based on these context features, 286 

a specific scenario in the dataset can be encoded with key-value modeling. Specifically, for each context feature ci 287 

in k-elements set  i k
C c , a corresponding value vi is determined, and then forms a k-dimensional vector for the 288 

scenario, namely,  1 2, ,..., k

ksn v v v  , as illustrated in Figure 5. Note that the datasets generated and collected in 289 

the development process are heterogeneous, Table 5 also lists out the frequently used data analysis manners for 290 

typical data sources and types in context value determination. 291 

Table 4. Perceived context features in the development of Sustainable Smart PSS  292 

Context classes Example context features 

Physical Context Date; Time; Location; Direction; Temperature; Humidity; Odor; Air/Water quality; Weather…… 

Social Context Peer products; Third-party service provider; Available recycler; Resource supply; Second-hand market 

orders…… 

User Context User demographics; User mood/health; User knowledge/profession; User preference/habit; Usage type ……  

Operational Context Power/energy; Software version; Maintenance history; Portability/Wearability; Computing power…… 

 293 

Figure 5. Encoding the scenarios based on context features 294 

Table 5. Data analysis manners in context value determination 295 

Data sources   User-generated data  Product-sensed data 

& types Structural text Natural language Numerical value Numerical value 

Frequently used 

data analysis 

manners 

Table headers & elements Keyword extraction Use domain knowledge Pattern recognition 

Formal concept analysis Named-entity recognition Use common knowledge Use domain knowledge 

Schema-based annotation Syntax analysis Fuzzy rules Fuzzy rules 

Predefined template Sentiment analysis Rough sets Rough sets 

…… …… …… …… 

4.2.2 Plan step in the inner loop: Requirement elicitation 296 

As the plan step in the loop, requirement elicitation aims to detect and model requirements of end-user in a 297 

distributed IoT-enabled environment (e.g. a cloud-based on-demand sharing platform). Under this context, implicit 298 
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user requirements are extracted in a data-driven manner, and then serve as the guidance for the following product-299 

service solution innovation. 300 

Datasets used for requirement elicitation mainly come from two resources, user-contributed feedbacks from 301 

mobile/ social networking (e.g. ratings, comments, Q&A threads) and signal data collected by embedded sensor 302 

devices (e.g. position, acceleration, angular velocity, temperature). To consider the context-dependency in these 303 

datasets, a formulation template is proposed for Sustainable Smart PSS development, namely, “given a certain 304 

scenario, what product structures and/or service modules should be changed/updated/reused/recycled” (Wang et 305 

al., 2019a, b). A piece of requirement is hence denoted as a tuple    , ,req p s sn , where p P and s S  are 306 

decomposed components in the system (i.e. ,PSS P S P S    ), and sn SN  is encoded by the k-dimensional 307 

vector in context-awareness. In this data-driven situation, requirement elicitation is transformed into exploring the 308 

co-occurrence relationship among product, service and scenario information, and a graph-based approach is suitable 309 

for solving this issue when tackling massive data. Specifically, a requirement graph, ,RG V E , is built, where 310 

the vertex set V P S SN    and the edge set E refers to the co-occurrence relations mined from the dataset (e.g. 311 

two entities appear simultaneously in a piece of comment). Moreover, RG can be incrementally expanded with new 312 

product, service and scenario information, if more data are generated and collected in the development of 313 

Sustainable Smart PSS. 314 

Based on the representation of RG, the elicitation of novel user requirements in the development process 315 

follows the model of linkage prediction. When a particular scenario is perceived, top K p-sn/s-sn edges which have 316 

the highest appearance probabilities predicted by graph-embedding algorithms (e.g. SkipGram, DeepWalk) can be 317 

selected to form an explicit user requirement. It is then leveraged as the user-oriented guidance for the subsequent 318 

PSS provision upgrade.  319 

4.2.3 Do step in the inner loop: Solution recommendation 320 

Since requirement elicitation is conducted from the user’s perspective, instead of a designer/manufacturer/ 321 

supplier/operator/recycler’s perspective, it is regardless of some practical constraints in the development process. 322 

Therefore, solution recommendation, as the do step in the loop, is conducted to offer a more feasible solution from 323 

massive historical records accumulated in Sustainable Smart PSS development. 324 

Similar to the data-driven situation, the historical records can be regarded as an empirical knowledge base 325 

storing the cases about “IF a scenario occurs, THEN change/update/reuse/recycle the selected product/service 326 

components”. Here, the scenario concerns the constraints in the sustainable processes, which are encoded by the 327 

context features shown in Table 4 and Figure 5. A typical format of a historical record can hence be partitioned into 328 

two parts, namely, ,rec sn d , where sn also indicates a specific scenario with a k-dimensional vector, and 329 

   ,d p s  is the historical decision of selecting product and service components. Obviously, if a particular 330 
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scenario re-occurs in the elicited user requirement, stored empirical knowledge can be directly reused to rapidly 331 

offer a practical solution by changing/updating/reusing/recycling the previously mentioned components in the 332 

corresponding cases. However, when a novel scenario with an unknown combination of context feature values is 333 

perceived, the previous solutions need to be automatically revised before recommendation, and hence a machine 334 

learning manner can be adopted (e.g. Random Forest, Naïve Bayes, SVM). Specifically, a prediction model is 335 

trained with a large volume of historical records, which is partitioned into a matrix of context feature values 336 

(scenario set) and a corresponding matrix of the selected product/service components (decision set). After the 337 

training process, the occurrence probability of each product/service component in the recommended solution is 338 

separately predicted for the scenario in the test set, thus evaluating the performance of machine learning manner 339 

with the classification error. Besides, in order to determine the possibility threshold for selecting the product/service 340 

component in the recommended solution, a teaching cost for the classification of boundary region is also considered 341 

in a cost-sensitive training (Zheng et al., 2019a). 342 

For a complex PSS possessing increasing numbers of product/service components and exponentially growing 343 

combinations of decisions, the precision of prediction may be deteriorated if only a relatively small training dataset 344 

is available. To handle this, clustering methods can be leveraged to effectively reduce the dimensions in the learning 345 

process. A co-occurrence matrix can be generated with the historical records, where each lattice in the matrix depicts 346 

the co-occurrence frequency of two components in the total records. Communities in PSS can be detected and 347 

partitioned with the calculation of modularity via community-partitioning algorithms (Blondel et al., 2008). The 348 

decision set in the historical records can be updated to the component-cluster level, before conducting the 349 

abovementioned machine-learning-based prediction, thus further improve the practicableness of this data-driven 350 

solution recommendation step in the loop. 351 

4.2.4 Check step in the inner loop: Solution evaluation 352 

To retain the competitiveness in the fierce market, only cost-effective solutions will be adopted in the 353 

development of Sustainable Smart PSS, rather than blindly pursuing better performance, longer lifespan or higher 354 

user satisfaction. Therefore, as the check step in the loop, solution evaluation aims to balance the cost and benefits 355 

by measuring and optimizing the cost-efficiency of the proposed solutions. 356 

Based on the previous studies (Liu et al., 2020a; Shen et al., 2017), 5 criteria are firstly proposed for solution 357 

evaluation, considering value-proposition capability via product/service innovation, the long-lasting customer 358 

relationship, and the cost in the development process, namely, (1) maximize the quality of PSS (Q); (2) maximize 359 

the user satisfaction (US); (3) maximize the lifespan of PSS (LS); (3) maximize value co-creation potential (VC); 360 

and (5) minimize the cost for evolvement (C). They can be measured with Eq. 1-5. 361 

 
2

11
PSB

Q k performance goal           (Eq. 1) 362 
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 5 P S H IPSB
C C C C C             (Eq. 5) 366 

Q in Eq.1 is calculated as a remaining quality after subtracting Taguchi’s quality loss (Taguchi, 1995), and the 367 

loss is accumulated with the normalized deviations for the goals caused by each product-service bundle (PSB). US 368 

in Eq. 2 indicates the average improvement of user satisfaction on each product-service bundle in the recommended 369 

solution, which can be quantified by conducting sentiment analysis and time-series analysis on the user-generated 370 

online ratings and/or sentiment-rich feedbacks. LS in Eq. 3 measures the extendibility of lifespan when a specific 371 

solution is implemented, which is estimated with the lifecycle data. VC in Eq. 4 represents a series of capabilities 372 

of product-service bundles (like smartness, connectedness and openness) that can be provided to the users in value-373 

co-creation, which can be scored with predefined rules and models (e.g. 5C model (Lee et al., 2015)). As for C in 374 

Eq. 5, it includes the cost of physical resources CP, service-related processing CS, involved human resources CH, 375 

and intellectual resources CI, which can be collected from the multi-stakeholders. α1- α5 in Eqs. 1-5 are five constant 376 

normalization coefficients that align the order of magnitude of Q, US, LS, VC, and C. 377 

After the evaluation on each criterion, the cost-efficiency of the proposed solution can be calculated by Eq. 6, 378 

where w1-w4 are four dynamic and personalized weights that can be valued and adjusted by the user preference in 379 

the extended or circular lifecycle. Obviously, for a group of recommended solutions, the feasible ones with higher 380 

CE will be further implemented for a particular scenario in the development of Sustainable Smart PSS. 381 

1 2 3 4w Q w US w LS w VC
CE

C

      
         (Eq. 6) 382 

4.2.5 Adjust step in the inner loop: Knowledge evolvement 383 

When a novel product-service solution is verified and implemented, the product/service components have been 384 

partially or wholly changed/updated/reused/recycled. Correspondingly, the related knowledge accumulated in the 385 

whole lifecycle stages, like design principles, manufacturing methodology, logistic constraints, usage manners, and 386 

dismantling information, also needs evolvement. Hence, as the adjust step in the loop, knowledge evolvement aims 387 

to manage these modifications and close the loop in the cyber space. It guarantees the consistency in the knowledge 388 

base of the Sustainable Smart PSS during the long-lasting development process. 389 

Inspired by the four patterns recognized in the long-term knowledge evolvement (Li et al., 2018; Li et al., 2017) 390 

and the four operators proposed in Concept-Knowledge theory (Hatchuel and Weil, 2009), four heuristic strategies 391 
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are proposed to trigger the knowledge evolvement, and an information/knowledge management mechanism is hence 392 

established with these strategies to periodically modify the nodes and relations in the knowledge base (e.g. ontology, 393 

knowledge graph).  394 

 Expansion Strategy with C→K operator: Proliferate the novel ideations.  395 

C→K operator indicates a process of linking and re-organizing the concepts to form a novel knowledge. Based 396 

on this operator, an expansion strategy can be proposed to establish a ‘knowledge family’ based on the implemented 397 

innovative solutions. Namely, by linking the concepts leveraged in these solutions via default inference, a group of 398 

proliferated propositions can be generated, if no logical conflict to other existing knowledge is observed. 399 

 Contraction Strategy with K→C operator: Update the obsolete solution.  400 

As a symmetrical process for C→K operator, K→C operator introduces new properties and imported the 401 

specialized concepts from the existing knowledge, which guarantees the logical consistency in the evolvement. In 402 

this situation, obsolete solutions that leverage original concepts need to be accordingly updated, and the chances 403 

for adopting these solutions in the subsequent development process is hence reduced with a contraction strategy. 404 

 Differentiation Strategy with C→C operator: Derive the initial concept.  405 

C→C operator also discovers novel attributes to propose a new concept, but it aims to differentiate the 406 

definition and scope of for an existing generic concept in the new scenarios. Inheriting this idea, the differentiation 407 

strategy will seek for a derived concept in PSS-related entities with the considerations of unusual context features, 408 

thus providing the alternative options for self-adaptation in different scenarios. 409 

 Fusion Strategy with K→K operator: Transfer the previous experience.  410 

K→K operator establishes the logical relationship between newly generated knowledge and the existing one 411 

with all classic types of reasoning (classification, deduction, abduction, inference). Based on the logical chain 412 

established in this fusion process, reusing of previous experience generated in other scenarios is enabled, thus 413 

generating a wholly or partially transferred solution under the new scenarios. 414 

5 An illustrative example 415 

5.1 Background and pre-processing 416 

In order to demonstrate the performance of the proposed framework, an illustrative example of a 3D printer is 417 

presented in this section. 3D printer is widely recognized as an eco-friendly product with high sustainability in the 418 

physical space, which is able to rapidly reconfigure and remanufacture itself with reusable/recyclable materials and 419 

components. Coupling with a digital twin in the cyber space, 3D printer can be bundled with multiple customized 420 

services, like remote printing monitoring, maintenance scheduling, and inventory management. In this regard, 3D 421 

printer possesses a Cyber level of smartness and connectedness in the 5C architecture (Lee et al., 2015), i.e., 422 
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possessing the capabilities of gathering, storing, transmitting, and analyzing massive data to provide preliminary 423 

insights for production.  424 

Although these features indicate great potentials for the 3D printer as a Sustainable Smart PSS, due to the poor 425 

exploitation of high context-dependent information/knowledge mined during its lifecycle, current 3D printer 426 

doesn’t contribute much to improving sustainability in cyber space. Hence, an illustrative example of the application 427 

of the proposed data-driven reversible framework is presented for this situation, and this example was conducted 428 

on a cyber-physical smart 3D printer prototype, as shown in Figure 6.  429 

Due to the complexity of realizing every aspect along its whole lifecycle, this example only showcased the 430 

implementation of the inner loop on the reconfiguration, which is an outer loop’s sustainable strategy constantly-431 

used in the design and usage stage. The structure of the 3D printer was also accordingly simplified to 20 product 432 

components and 6 service components, as listed in Table 6. To enable context-awareness with high feasibility and 433 

reliability, 7 context features were selected in this example according to the recommendation from the experts in 434 

3D printing, as listed in Table 7. These experts were also invited to evaluate the reasonability of the reconfiguration 435 

solutions, and hence validate the proposed framework. 436 

 437 

Figure 6. Cyber-physical smart 3D printer prototype 438 

439 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 19 / 30 

 

Table 6. Product components and service components of the smart 3D printer 440 

Product Components   

p1: Nozzle p8: Extruder Gear p15: Thermistor  

p2: LCD Screen p9: Z-Axis Lead Screw p16: Heat Break 

p3: X Tension Belt p10: X Stepper Motor p17: Heat Sink 

p4: Y Tension Belt p11: Y Stepper Motor p18: Nozzle Fan 

p5: PEI Surface Print Bed p12: Z Stepper Motor p19: Part Fan 

p6: Rambo Board p13: Extruder Stepper Motor p20: Filament  

p7: Bearing p14: Heat Bed Cable  

Service Components   

s1: Parameter Configuring s3: Quality Checking s5: Inventory Management 

s2: Printing Tracking s4: Maintenance Scheduling s6: Payment Selection 

Table 7. Context features considered in this example 441 

Context Feature Context Class Context Values 

c1: Nozzle Temperature Physical Context -1: < 170 ℃ 0: 170-220 ℃ 1: > 220 ℃  

c2: Extrusion Speed Physical Context -1: < 40 mm/s 0: 40-60 mm/s 1: > 60 mm/s  

c3: Layer Height Physical Context -1: < 0.14 mm 0: 0.14-0.38 mm 1: > 0.38 mm  

c4: Clogging Operational Context / 0: No Issue 1: Nozzle Clogged  

c5: String Operational Context / 0: No Issue 1: Filament Stringing  

c6: Second-hand status Social Context / 0: Brand New 1: Second-handed  

c7: User type (Experience) User Context 0: N.A. 1: Novel (< 30h) 2: Ordinary (30 – 100h) 3: Expert (> 100h) 

5.2 Implementation of the four steps on reconfiguring Smart 3D printer 442 

Based on our previous research outcomes (Zheng et al., 2019a; Wang et al., 2019a, b; Li et al., 2020), this 443 

section illustrates the PDCA process of the four-step inner loop on a reconfiguration example on the Smart 3D 444 

printer, and aims to validate the feasibility of the process and the reasonability of the results.  445 

5.2.1 Plan step: Elicit user requirements for the 3D printer  446 

To implement the first step of requirement elicitation, 85 recent threads (Jun 2019 – Aug 2019) of user 447 

discussions were downloaded from 3Dhubs.com, a famous online platform for 3D printing services and technical 448 

communication. With one-hot encoding, the content in each thread was mapped to the corresponding value of each 449 

context feature in Table 7 and forms an encoded scenario. The product and service mentioned in each thread were 450 

also annotated with the components listed in Table 6, thus generating the tuple of    , ,req p s sn . Based on the 451 

tuples, edges of p-s, p-p, s-s, p-sn and s-sn were defined, and a requirement graph was hence established. As shown 452 

in Figure 7, it visualized the interrelationship among all possible scenarios (red nodes) and the product/service 453 

components (orange and blue nodes).  454 
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 455 

Figure 7. Requirement graph for the 3D printer product-service system 456 

To extract meaningful requirements with context-awareness, top-3 frequently encountered scenarios were 457 

selected, and 5 product/service components predicted with the highest appearance probabilities by SkipGram 458 

algorithm (Wang et al., 2019b) were fetched to present the user requirements, as reported in Table 8. For example, 459 

requirement R1 was elicited under an encoded scenario [-1, -1, 0, 1, 0, 0, 2]. According to the context features listed 460 

in Table 7, it indicated a perceived scenario of ‘Low temperature for certain filament’ (i.e., Nozzle Temperature < 461 

170 ℃, Extrusion Speed < 40 mm/s, Layer Height 0.14-0.38 mm, Nozzle Clogged, No filament stringing issue, 462 

Brand new printer and Ordinary user). Meanwhile, according to the collected user discussions, the product 463 

components of Filament, Nozzle Fan, and Thermistor, and the service components of Parameter Configuring and 464 

Maintenance Scheduling, were mostly mentioned. Hence, a piece of user requirement of improving these 465 

components under the perceived scenario was elicited.  466 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 21 / 30 

 

Table 8. Top 3 user requirements elicited from requirement graph 467 

Requirements Encoded sn Description of sn Predicted p and s Probability 

R1 [-1, -1, 0, 1, 0, 0, 2] Low temperature for certain filament p20: Filament 

p18: Nozzle Fan 

s1: Parameter Configuring 

p15: Thermistor 

s4: Maintenance Scheduling 

0.950 

0.925 

0.847 

0.810 

0.775 

R2 [0, 0, 1, 0, 1, 0, 1] Shifting layers with poor support s1: Parameter Configuring 

p5: PEI Surface Print Bed 

p20: Filament 

p4: Y Tension Belt 

p3: X Tension Belt 

0.967 

0.873 

0.804 

0.722 

0.722 

R3 [0, -1, 0, 0, 0, 1, 2] Extrusion failure after repair s4: Maintenance Scheduling 

p20: Filament 

p1: Nozzle 

s3: Quality Checking 

p8: Extruder Gear 

0.942 

0.918 

0.903 

0.774 

0.715 

5.2.2 Do step: Recommend solution using 3D printer maintenance records 468 

Aiming to solve the elicited requirements, 1802 maintenance records (repair/replace/upgrade logs) of 3D 469 

printers of the same model were collected and pre-processed for the second step of solution recommendation. As 470 

shown in Table 9, the scenario set encoded a real maintenance scenario with the context features in Table 7, and the 471 

decision set list the actual selection of product/service components under this scenario. 472 

Table 9. A small portion of pre-processed historical records 473 

Record 

No. 

Encoded Scenario Set Decision Set 

(repaired/replaced/upgraded product and service components) c1 c2 c3 c4 c5 c6 c7 

1 0 0 0 0 1 0 2 p1, p8, p14, p15, s1, s4 

2 0 0 -1 0 0 1 1 p7, p9, p12, p19, s2, s4 

3 -1 0 -1 1 1 0 1 p5, p7, p8, p9, p12, p13, s2, s3, s4 

4 1 0 0 1 0 1 2 p5, p14, p18, p19 

5 0 1 0 1 0 0 2 p5, p14, s1, s4 

… … … … … … … … … 

By conducting co-occurrence frequency analysis and Louvain community-partitioning algorithm (Zheng et al., 474 

2019a), the product and service components in the 3D printer were divided into 5 clusters, as shown in Table 10. 475 

Then, a random-forest model was trained with 10-fold cross-validation on the existing dataset, and it was then 476 

leveraged to recommend solutions for the elicited user requirements, as shown in Table 11. For example, to solve 477 

R1 (Low temperature for certain filament), solution So1 recommended to replace the product components of 478 
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Thermistor and Filament, and/or repair the product components of Heat break and Heat sink, and/or upgrade the 479 

service components of Parameter Configuring, Inventory Management, and Payment Selection. 480 

Table 10. Cluster division of the product and service components in the 3D printer 481 

Cluster No. Contained product and service components Descriptions 

cl1 p1, p5, p7, p8, p13, p14, p18, p19, s4  Extruding modules 

cl2 p2, p6, s2  Printing tracking modules 

cl3 p3, p4, p9, p10, p11, p12, s3  Movement modules 

cl4 p15, p16, p17, s1  Heating modules 

cl5 p20, s5, s6  Consumable management modules 

Table 11. Recommended solutions for the elicited user requirements 482 

Req. Encoded sn Probability of selection Decision Repaired/replaced/upgraded p and s in 

the recommended solution [c1, c2, c3, c4, c5, c6, c7] [P(cl1), P(cl2), P(cl3), P(cl4), P(cl5)] [cl1, cl2, cl3, cl4, cl5] 

R1 [-1, -1, 0, 1, 0, 0, 2] [0.036, 0.112, 0.014, 0.765, 0.634] [0, 0, 0, 1, 1] So1: p15, p16, p17, p20, s1, s5, s6 

R2 [0, 0, 1, 0, 1, 0, 1] [0.171, 0.131, 0.724, 0.782, 0.240] [0, 0, 1, 1, 0] So2: p3, p4, p9, p10, p11, p12, p15, p16, 

p17, s1, s3 

R3 [0, -1, 0, 0, 0, 1, 2] [0.918, 0.003, 0.280, 0.196, 0.315] [1, 0, 0, 0, 0] So3: p1, p5, p7, p8, p13, p14, p18, p19, s4 

5.2.3 Check step: Evaluate the cost-efficiency of the solutions 483 

To evaluate the cost-efficiency of the recommended solutions, the third step of solution evaluation was 484 

conducted. Experimental data of each evolved prototype was collected to measure the 5 evaluation indicators via 485 

Eqs. 1-5. To maintain the confidentiality of company information, only the normalized evaluation results were 486 

reported, while the raw data of the component’s price, specification, lifespan, and user rating was hidden. As for 487 

the weights w1-w4 in Eq. 6, they were identified through an online 5-point Likert Scale-based questionnaire on a 488 

panel of 7 novel users (i.e. in Table 7, c7 = 1) and 11 ordinary users (c7 = 2), which were [0.571, 0.714, 0.893, 489 

0.821] and [0.886, 0.841, 0.727, 0.591] respectively.  490 

With the evaluated cost-efficiency of the solutions reported in Table 12, So1 and So3 were rather acceptable 491 

for the ordinary users, which replaced the thermistor and the filament to solve the low temperature for certain 492 

filament (R1), and repaired nozzle motors and upgraded the maintenance scheduling service to solve the extrusion 493 

failure after repair (R3). These two solutions were also approved by the experts in 3D printing. However, even 494 

though rather good performance in improving the quality (Q) and user satisfaction (US), a low CE was achieved by 495 

So2 due to the rather high cost (C). Therefore, this reconfiguration solution needed to be further optimized according 496 

to the experts’ suggestions, before its implementation to the novel users. For example, reconsider the necessity of 497 

each component that was recommended for repairing, replacing, and/or upgrading. 498 
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Table 12. Solution evaluation on the recommended solutions 499 

Solution No. Evaluation indicators Indicators’ weights CE 

Q US LS VC C [w1, w2, w3, w4] 

So1 0.922 0.758 0.750 0.633 2.79 [0.886, 0.841, 0.727, 0.591] 0.851 

So2 0.978 0.958 0.364 0.545 3.78 [0.571, 0.714, 0.893, 0.821] 0.533 

So3 0.824 0.962 0.529 0.511 2.35 [0.886, 0.841, 0.727, 0.591] 0.947 

5.2.4 Adjust step: Evolve the 3D printing knowledge 500 

After solution evaluation, the last step was to evolve the knowledge with four heuristic strategies. For example, 501 

in implementing So1, filament (p20) was required to be replaced to solve R1, and hence the related knowledge, feed 502 

filament (p20) to the nozzle (p1), needed to be accordingly revised. Under this situation, C→C operator could be 503 

conducted on the concept of filament. A sub-concept, polycaprolactone filament (p20_1), was hence derived with 504 

the appropriate attribute of melting temperature 58 ℃. Using this derived concept, C→K operator could propose a 505 

novel knowledge, feed polycaprolactone filament (p20_1) to the nozzle (p1) when the nozzle temperature is less 506 

than 170℃ (i.e. c1 = -1) and the user type is ordinary user (c7 = 2). As no logical conflict to other 3D printing 507 

knowledge was observed, this novel knowledge could update the original one in the subsequent knowledge reuse 508 

(i.e., K→C operator). Besides, it could establish logical relations with other knowledge via K→K operator and 509 

hence generate a complex logical chain, like a piece of compound knowledge, updating parameter configuring 510 

service (s1) for the ordinary user (c7 = 2) to change the nozzle temperature to less than 170℃ (c1= -1), when 511 

feeding polycaprolactone filament (p20_1) to the nozzle (p1).  512 

Reflected on the knowledge base supporting the Smart 3D printer, these evolvements resulted in a novel sub-513 

node of polycaprolactone filament linked to the existing node of filament in the domain ontology, and a novel 514 

formatted record of   1,0,0,0,0,0,2 ,rec sn d p1, p20_1,s1    added to the historical dataset. When another 515 

four-step loop started again in the subsequent development process, the data-driven flows in the first three steps 516 

would be correspondingly affected by the evolved knowledge. 517 

5.3 Discussion 518 

5.3.1 A brief comparison to the usual process 519 

From the above description with the illustrative example, one can find that the proposed framework for 520 

Sustainable Smart PSS development still follows several basic ideations that are widely adopted in the usual 521 

reversible processes (e.g. 4R) for improving sustainability, namely, (1) extending the lifespan of the whole PSS by 522 

reconfiguring limited numbers of components (environmental sustainability); (2) exploiting the potential values 523 

under multiple scenarios by involving massive users into a co-development process (social sustainability); and (3) 524 

enhancing the effectiveness of solutions, by considering the cost-benefit criteria rather than only pursuing higher 525 
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values in solution evaluation (economical sustainability). However, beyond these ideations, there existing several 526 

novelties enabled by considering the key features of Sustainable Smart PSS in the proposed framework.  527 

Firstly, beyond the traditional sustainability concerns for product design/development, which mainly focus on 528 

the reallocation of tangible resources in the physical space (Alcayaga et al., 2019), the proposed framework 529 

broadens the scope of sustainability to the cyber space and stresses the value of reusing intangible resources. In the 530 

showcase, the four-step inner loop provided an information/knowledge management manner to use and reuse the 531 

real-time and historical user-generated comments and operation logs, and predicted the requirements in Table 8 and 532 

recommended the solutions for evolving product/service components in Table 11. With these data-driven solutions, 533 

the conduction of the reconfiguration strategy could be timely supported. Therefore, instead of investigating 534 

sustainable solutions for an implicit requirement, continuously receiving valuable informed-decisions could prevent 535 

the high cost and unexpected failures in the business of pursuing sustainability (Kerin and Pham, 2019). 536 

Secondly, different from the previous reversible strategies, which separately concentrate on one or a few 537 

specific lifecycle stages, the data-driven flow in the proposed framework is operating on multiple stages, even the 538 

whole lifecycle. Reflected in the showcase, even though it targeted at the reconfiguration that mainly conducted in 539 

the design and usage stage, whether to repair/replace/upgrade a product/service component depended on the logs 540 

and feedbacks collected in multiple stages of design, manufacturing, usage, or even end-of-life, and these hybrid 541 

records did impact the decision-making processes and results, for example, determining CE in the cost-benefit 542 

evaluation (Table 12). From a systematic perspective, the unified processes for representing and mapping 543 

requirements and solutions in the proposed framework are capable to connect the ‘isolated islands of data’ 544 

generated by separately implementing the smart sustainability strategies. Therefore, the proposed framework is 545 

more flexible to be applied and implemented in a user-oriented development process, and provides more 546 

comprehensive business intelligence for the development of Sustainable Smart PSS. 547 

Thirdly, the processing of context-awareness runs through the whole data-driven loop in the proposed 548 

framework. Compared to the usual process, it will differentiate the generated solutions in the development process. 549 

Actually, due to the diverse groups of users and operating conditions, it is more rational and realistic that the same 550 

solution for sustainability will possess different effectiveness under various scenarios. Therefore, with the 551 

involvement of context-awareness in the framework, the provided solutions for product-service evolvement are 552 

better aligned with the user’s personalized needs. Besides, it also facilitates the Sustainable Smart PSS to self-553 

recognize the opportunities and necessities for self-evolving (i.e., when perceiving an unusual scenario), which 554 

levels up the autonomy and timeliness in the development process. 555 

5.3.2 Limitations of the proposed framework 556 

Despite the above-mentioned advantages, there are still two limitations of the proposed framework. Firstly, the 557 

‘cold start’ issue is observed in the data-driven framework, where each step can operate well only if enough user-558 
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generated and product-sensed data are collected and annotated. For example, to guarantee the performance of the 559 

machine learning algorithm in solution recommendation, enough repair/replace/upgrade logs (~1000 records, 560 

inferred from this example) should be fetched to train and cross-validate the model. However, this criterion of data 561 

quality and quantity might be hard for a newly-designed PSS to reach. To mitigate this issue, a crowd-sourcing 562 

technique with a monetary or service-based incentive mechanism is recommended, to improve the involvement of 563 

stakeholders. Also, reinforcement learning and transfer learning manners can be integrated into the current 564 

framework, so as to train the decision-making model with rather few data. 565 

Secondly, although the proposed framework demonstrates potentials in Sustainable Smart PSS development, 566 

it still has more research to be conducted on the specialized implementations of the four-step inner loop on the five 567 

sustainable/circularity strategies in the outer loop. Taking the solutions recommended in Table 11 as an instance, 568 

more technical details for repairing/replacing/upgrading should be attached, and the corresponding impacts to the 569 

surrounding cyber-physical environment should be further analyzed. Also, more implications to the 570 

remanufacturing/recycling scenarios should be offered. To solve these issues, a series of external or open-source 571 

knowledge base storing abundant transdisciplinary domain knowledge and common knowledge can be leveraged 572 

to provide a more solid and informative guide for the smart sustainable/circularity practice (Li et al., 2020). 573 

6 Conclusion and future work 574 

Aiming to lengthen the product lifespan and fulfill customers’ uprising requirements with fewer un-renewable 575 

resource consumptions and environmental impacts, Smart Circular System and Smart PSS can provide useful 576 

insights integrally. A meeting-point of these two concepts, Sustainable Smart PSS, is about to emerge and flourish. 577 

It shows the promise of a smarter circular system manner and reveals a better performance in its sustainable 578 

processes throughout the whole lifecycle. As few studies reported in this novel area, this paper proposes a data-579 

driven reversible framework for Sustainable Smart PSS development, based on the comprehensive summarization 580 

and discussion on its key features.  581 

The main contributions of this paper can be concluded into three points: 582 

(1) Broadened the scope of sustainability to the management of cyber-physical resources. In pursuit of 583 

sustainable cyber-physical resources holistically, a clear distinction between the conventional perspective in product 584 

lifecycle management and the proposed one was hence depicted as the additional consideration of exploiting and 585 

maximizing the value of reallocating information/knowledge resources. 586 

(2) Summarized the key features in developing Sustainable Smart PSS. Based on the trinary intersection of 587 

sustainable strategy, smart technology and PSS, the concept of Sustainable Smart PSS was further elaborated with 588 

four compound features in its development process concluded. 589 
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(3) Proposed a data-driven reversible framework to evolve the Sustainable Smart PSS. With the flow of user-590 

generated data and product-sensed data keep running in the framework, this paper showed the capabilities of 591 

leveraging these datasets to continuously deliver value in the extended or circular lifecycle. 592 

As an explorative study, this paper highlighted the systematic development framework for Sustainable Smart 593 

PSS, while many detailed processes and algorithms for its development and implementation are oversimplified. 594 

Therefore, it is recommended that future work can investigate into the following aspects: (1) introduce few-shot 595 

machine learning methods and incentive mechanisms, to solve the ‘cold start’ issue for a newly-developed 596 

Sustainable Smart PSS; (2) update the adopted data analytics and context-awareness manner with advanced natural 597 

language processing and computer vision techniques, and hence leverage more sorts and types of data generated in 598 

the development process, and (3) to better support sustainable strategies in the outer loop under multiple scenarios, 599 

import transdisciplinary domain knowledge and common knowledge into the knowledge base, thus enabling a more 600 

solid logical inference and achieving higher autonomy in the development of Sustainable Smart PSS. 601 
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