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Abstract: 

Digital twin is a virtual model that represents physical entities in a digital manner. By 

leveraging means of data to simulate the behavior of physical entities in the real environment, 

the functions of physical entities can be optimized and expanded, through virtual and real 

interaction feedback, data fusion, decision making, and optimization. Despite numerous 

researches on digital twin concept and its applications, scarcely any discusses about the 

computation efficiency of the twin established. In order to shorten the latency of mapping and 

reduce the high computation workload in the cloud, this paper develops a cyber-physical 

machine tool based on edge computing techniques, to realize remote sensing, real-time 

monitoring and scalable high-performance digital twin application. Furthermore, a novel 

edge computing algorithm is proposed to detect the abnormality of the edge data from two 

aspects: the unary outliers of the edge data itself and the multivariate parameter correlation 

among edge devices. The effectiveness of the application platform of the cyber-physical 

machine tool developed is verified by the prototype system and edge algorithm experiment. 
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1.Introduction 

To date, IoT, big data, and artificial intelligence play a significant role in Cyber-Physical 

Systems (CPS) [1-2]. One of their purposes is to bring the next generation of information and 

communication technology to achieve mapping between physical space and virtual space [3-

4]. Cyber-Physical Production Systems (CPPS) are representation of CPS in a production 

environment. As a key component of CPPS, the next generation machine tool has been 

proposed named Cyber-Physical Machine Tools (CPMT) with Industry 4.0 which in-depth 

integration of machine tool, edge computing, networking and digital twin (DT) [1]. A CPMT 

will have its digital space of machine tool, as the digital twin with networking capabilities 

and computational, it allows  the establishment of a real-time feedback loop, which can affect 

the calculation process and vice versa [5]. CPMT will have a machine tool digital space as a 

digital twin with computing and networking capabilities, allowing real-time feedback loops to 

be established where machining process and calculation results can feedback control via 

digital twin. 

DT is a core technique for CPS with various definitions [6-12], and the most widely 

accepted one was originally given by Glaessegen and Stargel in 2012: “digital twin means an 

integrated multiphysics, multiscale, probabilistic simulation of a complex product, which 

functions to mirror the life of its corresponding twin” [13]. CPS emphasizes the real-time, 

dynamic information feedback and circulation process between the physical world and the 

digital world. Digital twin as a key technology different from CAD and IoT, the former 

focuses on the interaction of digital world, and the latter focuses on the perception of physical 

world. However, DT acts on the entire life cycle of manufacturing with the two-way 

interaction between physical world and digital world, which establishes virtual models for 

physical entities, and simulates the behavior of physical entities in the real environment [14]. 

Physical entities can be more “intelligent” to optimize their real-time behavior through virtual 

models. Meanwhile, the characteristics of the virtual model can be more "real" to show 

physical entity. 

Digital twin and edge computing are key technologies to build a CPMT. Existing studies 

scarcely discuss the computation efficiency of the twin established for the machine tool. In 

addition, how to short the latency of mapping and reduce the high computation workload in 

the cloud, has not yet been analyzed. Therefore, in this paper, a cyber-physical machine tool 

(CPMT) based on edge computing and digital twin techniques has been developed, to realize 



remote sensing, real-time monitoring and scalable high-performance digital twin application, 

and the importance of this gap also has been analyzed and evaluated. However, the data 

generated by edge devices is affected by network bandwidth and cloud. Edge computing is 

used to transform the edge data into a mirror of the virtual machine tool with MTConnect and 

reduce cloud modeling pressure. Furthermore, a novel edge computing algorithm is proposed 

to detect the abnormality of the edge data from two aspects: the unary outliers of the edge 

data itself and the multivariate parameter correlation among edge devices. 

According to the mentioned issues above, the main contributions of this paper are as 

follows:  

 Proposed a three-tier architecture of Cyber-Physical Machine Tool based on edge 

computing. 

 Explored edge computing technique to improve the accuracy and capabilities of 

virtual machine tools. 

 A novel edge computing algorithm is proposed to shorten the latency of mapping and 

reduce the high computation workload in the cloud. 

 A prototype system is developed to realize virtual processing and simulation, and the 

effectiveness of the application platform of CPMT developed is verified by the 

prototype system and edge algorithm experiment. 

The next section in this paper presents related works. Section 2 discusses the challenges 

DT. In addition, Concept of CPMT is introduced in Section 3. Section 4 demonstrates the 

edge computing detection algorithm for CPMT. In Section 5, a prototype development of 

CPMT is designed, Physical space and cyber space are presented by a machine tool, 

MTConnect agent and adapter.  In Section 6, a case study of CPMT is presented and its 

efficiency is evaluated by multiple application scenarios. Section 7 concludes the research 

and future works.  

2. Related work 

To give an outline of the background and further discover the research gaps, this section 

introduces all-around review of the related researches on challenges of DT including DT in 

shop floor and edge computing detection algorithm for CPMT. 



2.1 DT in shop floor 

NASA has applied DT to the health maintenance and support of aerospace aircraft which 

achieved good results [15-16]. Schroeder explores automation techniques with DT and proves 

to be very useful in data exchange between different systems [17]. Tao Fei proposed the 

concept of DT shop-floor (DTS) [18], the DTS architecture, system composition, operation 

mechanism and key technologies were given in detail [19]. Aitor Moreno proposed a method 

to build a DT for punching machine which was used to develop an interactive programming 

application of CNC machining [20]. In order to make a typical manufacturing equipment 

more intelligent, a study about DT is conducted for CNC machine tool and a mapping method 

between machine tool and digital space was proposed [12]. Deng et al. designed a health 

monitoring system for a CPMT and two methods proposed were used to data cleansing and 

energy-saving [5]. Many leading Industrial Enterprises such as PTC, Siemens, GE, and 

ANSYS have also developed various applications with the guidance of DT concept [21]. 

In a word, DT is mostly used for fault diagnosis, predictive maintenance and performance 

analysis. Existing research of DT is always used for the design, operation and maintenance of 

complex systems (e.g. Aero-engine maintenance, Automotive production, Wind turbines, etc.) 

and is rarely devoted to exploring the application of DT in unit-level equipment, such as CNC 

machines.  

2.2 Edge computing  

Edge computing techniques aim to increase the computation efficiency of the twin 

established and reduce the pressure on cloud. The edge devices collect data with a certain 

frequency and sends the data to the corresponding data receiving end [22]. The data receiving 

end will receive one or more sets of observation sequences that have a strict sequence in time. 

These time series data accurately record the real-time changes of a specific parameter and 

reflect the trend and law of the parameter within a certain time range. However, in the actual 

data collection scenario, the edge devices always have some abnormalities in the process of 

data acquisition and transmission. The literature [23] conducted a related research on data 

anomaly detection for the actual edge data set, which is very difficult to get high quality data 

through edge devices. 

Nowadays, edge computing detection algorithm mainly includes 6 types: statistical-based 

detection method [24], distance-based detection method [25], density-based detection method 



[26], neural network-based method [27], support vector machine-based method [28] and 

cluster analysis method [29]. Time series data has some special properties, anomaly detection 

algorithm need to consider its characteristics. Most of the methods are based on pattern 

recognition and clustering for anomaly detection in the field of time series data [30]. Vlachos 

et al. [31] proposed a nonparametric method for accurate periodic detection and introduced a 

new algorithm of periodic distance for time series. Cattivelli et al. [32] proposed a distributed 

detection algorithm to detect a known deterministic signal under Gaussian noise based on 

diffusion strategies. However, in many applications of interest, the measurements taken by 

spatially distributed nodes are statistically dependent. Other researchers have considered 

dependent observations using Gaussian Markov Random Fields [33], [34] to design a 

Neyman-Pearson detector in a centralized scenario. However, the design of distributed 

detection algorithms with dependent measurements in a decentralized scenario deserves more 

investigation. Fujimaki et al. [35] proposed a novel anomaly detection system which mainly 

used the correlation vector regression and data auto-regression for anomaly detection. Cai et 

al. [36] proposed a new time series data anomaly detection algorithm by constructing 

distributed recursive computing strategy and k-nearest neighbor fast selection strategy.  

However, those methods mainly aim at detecting abnormality monitoring work for a 

single edge source data. In the IoT, there are often numerous “known” correlations between 

different edge source data which may reveal a certain rule of data trend, and can help us 

effectively identify the corresponding data anomalies, to improve the accuracy of the twin 

established. 

To address the above issues, physical machining process of machine tool needs to map 

virtual space in real time with DT. In order to improve accuracy of mapping, a three-tier 

architecture of an edge computing-based CPMT is proposed in section 3. 

3. Cloud-edge computing-based CPMT 

3.1 Overall architecture of CPMT  

 



 

Figure 1. Architecture of an edge computing-based CPMT. 

In our previous research, CPMT has been studied in vertically and horizontally integrated 

machine tools [1], standardized information modeling with OPC UA and MTConnect [37], 

and augmented reality (AR) for improving the efficiency during the machining process [38]. 

However, the role of edge computing has not discussed in detail. This paper focused on the 

efficiency of digital twin modeling based on the preliminary work and complemented the 

lack of cloud-edge computing. Digital twin and edge computing are the key methodology to 

build a CPMT, which is a digital model in the digital world that reflects the authenticity of 

physical prototypes. The performance of the equipment is tested and evaluated prior to 

physical prototype manufacturing through comprehensive simulation of multiple fields and 

performance attenuation simulation of the equipment. Improving its design flaws can shorten 

its design improvement cycle. CPMT is integration of machine tool, CNC controller and 

hydraulic multi-domain system, which can map the entire life cycle of machine tool. This 

provides powerful analytical decision support for design simulation and predictive 

maintenance of machine tool. The main goal of the high-performance DT application for 

CPMT is to develop a DT application with MTConnect standard and edge computing, which 

is used to monitor the processing and operation status of CNC and visualize its flow data, and 

edge computing is used to transform the edge data into a mirror of the virtual machine tool to 

reduce cloud modeling pressure. Architecture of an edge computing-based CPMT is shown in 

Figure 1, which includes three layers: 

 Physical layer. Hardware includes CNC machine tools, sensors, computer and a 

microcontroller board. The agent interprets the data from the sensor and formats the data 

into an XML format that conforms to the MTConnect standard. After the edge devices 

deployed on various manufacturing units, it can be to build an intelligent machine tool 

that can sense and adapt to different production tasks. For example, when a processing 
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task is scheduled to a machine tool, which can select suitable cutting tools to work out a 

production schedule based on the required quality standards and specifications. 

 Cyber layer. A mirror of machine tool is built in this layer. Edge computing detection 

algorithms can work to improve the computation efficiency of the twin established. After 

the complex data model is calculated in the cloud, it is feedback to the physical layer 

through DT layer to achieve closed loop. DT layer also includes MTConnect data model 

[39], STEP data model [40] and XML data model [41]. With multi-source data gathered, 

data fusion is used to pick up feature information to watch out the status of a single 

machine tool. The information model is responsible for handling various heterogeneous 

data into a standardized format. In turn, the formatted scheme can be further used for 

advanced decision by Deep Neural Networks (DNN), Support Vector Machine (SVM) 

and k-nearest neighbors (KNN).  

 Application layer. The MTConnect client can be used to check for typical faults and 

friction of the machine, which takes data from the agent and uses the acquired twin data 

to draw graphics in real time, reflecting the machine's processing and state. The 

application is developed as an end-user interface for real-time visualization of various 

collected data and processing status from the manufacturing frontier (e.g., the shop 

floor). 

3.2 Modeling of CPMT 

In the manufacturing world, CNC machine tool as a typical manufacturing equipment, can 

be considered as one of shop floor production cells, of which milling and grinding operations 

are performed by embedding highly integrated fieldbuses, PLCs, sensors and actuators [42]. 

Most components currently provide some types of monitoring or diagnostic information 

interface, but different vendors use different communication interfaces and protocols to make 

it difficult to collect and unify information. The real-time requirements of industrial 

communication systems may also limit the amount of data transmission. A versatile and 

flexible transport format is required to tailor the different types of diagnostic data. As a new 

communication standard, MTConnect can eliminate the data format of multiple obstacles and 

realize the compatibility and transmission of product data of multiple manufacturers [42]. As 

a middleware standard with the ability to pass data, it can not only seamlessly connect with 

existing operating standards (rather than replace them), but also convert from existing data 

transfer formats to XML-based data formats. 



For smart devices, the collaboration between multiple devices (M2M) and the 

collaboration between the business management system and the production line (B2M) and 

the data between the business units (B2B) require model coordination. In this paper, the 

spindle of machine tool as a model instance, and the data format is modelled by MTconnect, 

which implements uniform definitions such as names, units, attributes, and scenarios. Figure 

2 shows the basic structure of the MTConnect information model using the machine spindle 

motor. CNC machine tools are described as a device D1, including spindle motor, shaft and 

controller components, among which the spindle motor is monitored, mainly including 

position, speed, temperature, acceleration and other information. Each category has its 

corresponding data items, including timestamps, serial numbers, monitored values etc. 

 

Figure 2. DT model ontology expression based on MTConnect standard. 

3.3 Operation mechanism of CPMT 

Altintas et al. [43] proposed virtual process systems for part processing operations, 

explaining various scenarios of virtual machining, including cutting force, torque, drive, 

stability and vibration. Yao et al. [44] proposed a loosely coupled architecture machine tool 

control system operating in network environment named INC. Zheng et al. [45] proposed a 

novel IT-driven product development model, i.e. SCOAP, which meets the adaptable design 

principles for product expandability and lifecycle requirement. Nevertheless, the current 

problem is that there still lacks a system to achieve integration of different functions. 

To address it, Figure 3 reveals the operating mechanism of CPMT in the Cyber-Physical 

Production Systems and its role in the system. CPMT updates its own status in the cloud, 

then feedback to machine tool manufacturers, which improve machine design and provide 
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machining solutions/services, to provide access for third-party value-added services. 

Advanced human-machine interactions for intuitive and comprehensive understanding of 

machine tool status and machining processes. CPMT can proactive maintenance and prevent 

unexpected breakdown (autonomously send alerts/emails to maintenance team when potential 

failures detected). Feedback to production managers including periodically send statistical 

production reports, Enterprise Resource Planning (ERP), and Overall Equipment 

Effectiveness (OEE). It also feedback machining performance to product designers and 

process planners to optimize design and machining process. 

The virtual manufacturing business begins with the receipt of a personalized custom 

order by MES. MES receives the customized order from the customized system (e-commerce) 

to schedule the production and releases the daily production plan to CPMT. CPMT can 

autonomous emergency stop to prevent damage, and support process optimization: in-process 

adjustment of machining parameters (e.g. federates, spindle speed) through proprietary APIs.  

If CPMT has an effective historical manufacturing strategy for personalized products, it 

directly forwards the daily production plan to the manufacturing execution system for actual 

production; if CPMT does not store personalization, the effective historical manufacturing 

strategy of the customized product generates the simulation analysis operation, the simulation 

analysis model are sent to the simulation analysis system for production simulation analysis, 

and the production simulation analysis system performs the production process according to 

the simulation analysis model and the data of the customized product. The results of the 

simulation analysis are feedback to CPMT, which receives the simulation analysis results 

feedback by the simulation analysis system, and the simulation analysis data that needs to be 

timely feedback to the user is packaged into the result of the virtual manufacturing and 

feedback to ERP and MES, which will be used for actual manufacturing. The execution 

strategy and production plan are issued to the manufacturing execution system for actual 

product manufacturing. 

 



 

Figure 3. Operation mechanism of CPMT in CPPS. 
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4. Edge computing detection algorithm for CPMT  

CPMT uses the mapping model to collect related data and analyses the protocol. The data 

acquired by various data acquisition devices is directly transmitted to the cloud computing 

center for data storage, and the powerful cloud computing center is used to complete the 

corresponding abnormality detection and data cleaning work. This approach is also known as: 

a centralized big data processing model based on cloud computing. As the amount of data on 

edge devices increases, the data generated by edge devices is affected by network bandwidth 

and cloud. Therefore, the existing centralized big data processing model needs to be adjusted 

accordingly, and part of the computing tasks of the cloud computing model are migrated to 

the edge device, which reduces the computing load of the data center while slowing down the 

network bandwidth pressure. 

Edge computing detection algorithm for CPMT (ECDA_CPMT) proposed in this paper 

will detect the abnormality of the edge data from two aspects: the unary outliers of the edge 

data itself and the multivariate parameter correlation among the edge devices. Then the data 

fusion processing is performed on the two different detection results to complete the final 

multi-source edge data anomaly detection, as shown in Figure 4. 

 

Figure 4. Edge computing detection algorithm for CPMT. 
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outliers (ECDA-UO) for single edge data timing continuity detection. RelationSpout will 

receive the relational model among the different parameters of edge data sent by the user. 

Relation Spout will send the relational model to the fork of edge computing detection 

algorithm for multivariate parameter relationship (ECDA-MPR) for detection relationship of 

edge devices. If the relational model set is relatively large, it can also be considered to use the 

data partitioning module to divide and resend it to the corresponding ECDA-MPR. After 

ECDA-UO completes the timing correlation detection, multiple nodes of ECDA-UO will 

send corresponding edge data to the corresponding ECDA-MPR, and Data relationship check 

was performed at ECDA-MPR. Meanwhile, ECDA-UO will also send the results of the 

timing continuity check to Fusion. After waiting for the corresponding relation result in 

ECDA-MPR to be detected, ECDA-MPR will also send the corresponding correlation 

detection result to Fusion to complete the final multi-source edge data anomaly detection. 

The user can also send the corresponding query information to QuerySpout, and QueryPoint 

will receive the query information of the user, to query the corresponding data abnormality 

according to the user's request and output. 

4.1 Edge computing detection algorithm for unary outliers 

This section will give a definition of the unary and multivariate parameter relationship 

data outliers detection. 

Definition 1. The unary data collected by edge devices and transmitted with the form of 

time series data, which can be simplified: 

TSm={S1, S2,…, Si,…, Sm}         (1) 

Si={s1,s2,…, sj,…,sn}               (2) 

where: 1≤ i ≤ m, 1≤ j ≤ n, TSm represents a time series representation data set of multi-source 

edge data. m represents the number of data in the set. In the formula (1), Si represents a single 

edge data, and in the formula (2), n represents the length of Si. Where sj represents the data 

value of a specific acquisition time, sj=(vj, tj), tj represents the time stamp of sj, vj represents 

the data value of tj, and tj is strictly incremented in the time series. 

According to the time series representation Si of the single edge data above, we will 

introduce a sliding window (slide windows, SW) [46] to store part of the data of Si, and set 

the length of the SW to Lensw and ignore the time series data in the SW. For the label, we 

give the definition of the outlier distribution of the time series data in the SW. 



μ = ∑ 𝑣𝑖 𝑛⁄
𝑛
𝑖=1           (3) 

σ = √∑ (𝑣𝑖 − μ)2 𝑛⁄𝑛
𝑖=1

2
         (4) 

Definition 2. Partial time series in SW can be simplified as: STn={v1, v2,…,vt,…,vn} 

(1≤t≤n), then the mean of n points is defined as mean u(3) and variance 𝜎(4), under the 

assumption of normal distribution, the region μ+3𝜎 contains 99.7% of the data, if vt (1≤t≤n) 

and the unary outlier distribution of all the data in the SW. If the mean 𝜇 exceeds 3𝜎, then 

this value can be marked as an outlier. 

Based on the definitions, ECDA-UO is described as follows: 

Algorithm 1. ECDA-UO 

Input: Time series data TS, length of sliding window SW Lensw, subsequence moving distance Lenmove, minimum 

length threshold of sliding window εsize and relative outlier distance threshold 3σ; 

Output: result of outliers set Ωab. 

1. Ωab=∅; /* Initialization parameter set */ 

2. Hashmap  MapForUO=new HashMap();/*A new Hashmap to store exception parameters */ 

3. qTS=InitQueue(Lensw), listSW=InitList(Lensw);/* Initialize data queue and sliding window list */ 

4. while TS.length()>Lensw  

5.     caclcSWD is (SW,TS,Lensw);/* Output Lensw from TS into SW and calculate Outlier */ 

6.     IF 𝜇(vi)>3𝜎 && Len>εsize 

7.           qTS.enQueue(tssub);/* Put the subsequence tssub into the queue qTS */ 

8.     End if 

9.    while qTS.length()≠0/ Select tssub from the queue qTS to judge again */ 

10.        tssub=qTS.deQueue(); 

11.       if calcValue 𝜇(tssub)> 3𝜎&&tssub.length<εsize  

12.          Ωab=Ωab∪tssub /*Put tssub into Ωtssub */ 

13.      else 

14.          qTS.enQueue(tssub); /*Reduce the lenmove of tssub again, create a new tssub */ 

15.       End if 

16.    End while 

17. mapForUO.put(abID,tssub);/*Put outliers into Hashmap*/ 

18. Return mapForUO. / * End of algorithm */ 

ECDA-UO mainly uses the time series continuity of the edge data itself and detects the 

abnormalities that may occur in the edge data by calculating the mean and variance of the 

relative unary outlier distribution. The algorithm can detect data anomalies of single source 

edge data. 

4.2 Edge computing detection algorithm for multivariate parameter relationship 

The edge data acquired usually has a certain relation. One can use the relationship among 

edge devices to determine whether an edge data has an abnormality. 



Definition 3. According to a certain correlation known in the multi-source time series 

TSm={S1, S2,…, Sm}, the necessary combination and transformation of Sm is performed to 

obtain a time series S'k satisfying the multivariate linear correlation. And put it into the 

correlation parameter set Ωk, denoted as Ωk={S'1, S'2,…, S'k}.  

According to definition 3, we carry out the necessary combination and transformation 

operations of the partial time series set TS'sub of TS'm that satisfy the known correlation, 

making it a multi-source time series TS'k with linear correlation and put them into different 

parameter sets Ωk respectively, and then verify whether the corresponding linear correlation 

constraints are met between the actual observations of the edge data and Ωk. We will use the 

TSm of SW as the starting point, and the corresponding TSm correlation detection is performed. 

However, there may be no corresponding linear correlation or nonlinear correlation in TSm, so 

TSm first needs to be converted into multi-source time series TS'k with linear correlation. In 

order to ensure the smooth progress of subsequent tests. Based on the above considerations, 

ECDA-MPR is described as follows: 

Algorithm 2. ECDA-MPR 

Input: Exception ID list listForAB, mapForUO, mapForMPR; 

Output: Exception result set Ωresult. 

1. ΩR=ΩE=Ωm=∅,Ωresult=∅;/* Initialize the parameter set and exception result set */ 

2. Ωdel=Ωadd=∅;/* Initialize 2 temporary collections for integration of exception data */ 

3. Hashmap  mapForResult=new HashMap();/*Built a Haspmap to store exception results*/ 

4. Hashmap  mapForMPR=new HashMap();/*Built a Haspmap to store exception parameters */ 

5. listTS=InitList(TS) 

6. while length(Ωk)≠0 

7.    item= Dequeue(Ωk); 

8.    stpi=listTS.get(pi);/* Fetches the corresponding data by the sensing timing p */ 

9.   corr=corrDetc(item, stpi, stpj…);/* Verify relevant time series data meets constraints */ 

10.   If corr is true  

11.       R=ΩR∪item;/* Incorporate parameters of related time series data into ΩR*/ 

12.   Else 

13.     ΩE=ΩE∪item; 

14.   End if 

15. End while 

16. Ωm=ΩE-ΩR;/* Get the exception parameter set */ 

17. Ωc=mapForUO.get(abID); /* Get the exception parameter set */ 

18.   If Ωm≠∅ && Ωc≠∅/* Both algorithms are enabled* / 

19.          for each abm in Ωm 

20.              if abm∉ Ωc 

21.                Findvalue(abm, Ωm);/*Find abi∉{Ωk-abm}*/ 

22.                Ωdel=Ωddel∪abi; 

23.           End if 

24.        End for 

25.       for each abc∈Ωc &&abc∈ΩR 

26.           Findvalue (abc,ΩR);/* Find abi∈Ωk-abc*/ 

27.         Ωadd=Ωadd∪abi; 



28.       End for 

29. Ωresult=Ωc∪(Ωm-Ωdel)∪Ωadd; 

30.     If Ωresult≠∅/* The loop ends and the exception in Request is stored in Hashmap*/ 

31.       for each abi in Ωresult 

32.           mapForResult.put (abID, abi)/* Store abnormal results in Hashmap*/ 

33.       End for 

34.     End if 

35.   End if 

36. End for 

37. Return mapForResult. / * End of algorithm */ 

ECDA-MPR combines the abnormal result sets of edge data acquired by the timing and 

correlation algorithms, which mainly optimizes the abnormal detection results of ECDA-UO, 

supplements the data anomalies that ECDA-UO can't find, and also eliminates the 

corresponding data without abnormalities. According to the detailed flow of ECDA-MPR, the 

computational complexity of ECDA-MPR is O(n2) 

5. Prototype development  

The edge data acquisition device in the prototype system is shown in Figure 5. 

Accelerometer detached and attached are used with machine tool. The data items that the 

prototype system can collect include: tool number, tool position, spindle speed, and machine 

status. Since the limited communication speed between the PC and the controller by Python, 

the frequency of the collected data is about 1-2 seconds. The tool position and spindle speed 

collected at low frequencies can still help identify the operation of the machine tool when it is 

associated with G code. The collected edge data is stored in a local PostgreSQL database. 

Users can access data by using a valid username and password. 

 

Figure 5. Accelerometer detached (left) and Accelerometer attached (right) 



Edge data transmitted by MTConnect format was acquired using a National Instruments 

PCI-6221 data acquisition card in Figure 6. It is capable of sampling analog and digital 

signals and is compatible with Linux-based drivers. It also provides the signal conditioner 

SCC-ACC01 with the ability to amplify the acceleration signal. The actual position, speed 

and acceleration of each axis of the machine can be obtained. Each axis is connected to an 

encoder, which is a relative encoder that provides a frequency proportional to its speed. 

Although this can measure speed of the spindle immediately, the data must be further 

processed to determine the actual acceleration and jerk. A convenient method is to connect all 

encoders to the display box, display the actual position of each axis and the spindle speed, 

and position all machine axes at the zero point of the coordinate system before starting the 

acquisition. Use the comedic driver collection library to periodically capture data and store it 

in an internal database. The position sensor is an optical encoder that outputs a sequence of 

numbers; the order varies depending on the direction of motion. The distance and direction of 

motion are determined by reading the sequence and parsing it. 

    

Figure 6: Shield Connector Block SCC-68 

5.1 MTConnect agent 

The MTConnect agent is the main part of providing the MTConnect interface. It uses 

HTTP as the agent to process MTConnect requests and respond to the corresponding 

MTConnect data stream. In the best case, the agent is embedded in the machine controller 

and sends data directly from within the controller. For machines that cannot be directly 

supported, MTConnect standard provides a version of the agent, which is divided into two 

parts: the agent itself and MTConnect adapter. Although the agent still provides MTConnect 

interface, it no longer provides data directly to the controller. It first gets the data from 

MTConnect adapter. This separation allows MTConnect agent to maintain a wide range of 



versatility, while the adapter can be highly customized to meet the controller's requirements. 

In an agent, data samples for its devices are stored in buffers of configurable length. Each 

new sample stored in this buffer is marked with a millisecond-precise timestamp and a unique 

incremental sequence ID to identify the original order of the data samples. 

5.2 MTConnect adapter 

The Adapter is a software application which gathers data from a device and streams this 

data to the agent in a standard format [37]. If an agent is used and is detached from the 

adapter, data collection will first be sent to MTConnect adapter. Although the adapter and the 

agent communicate via a standard port such as TCP/IP, the adapter can be directly connected 

to the machine controller or sensor. It's easy to establish a connection to a dedicated hardware 

platform.  

As a connection between the machine tool and MTConnect agent, the task of the adapter 

is to collect data from two different sources. The first is a data collection agent that provides 

its data through a TCP agent. The second source is the EMC2 controller, which provides 

internal status such as processing mode, command location or other path related information. 

To get this data, the adapter writes an EMC2 controller-based plug-in in C++. The ability to 

transfer additional data values from a data acquisition agent is achieved by extending the 

adapter functionality. The collected data is then packaged into a time-stamped string and 

passed to the agent by a TCP connection. 

DAQ Assistant is used to receive the raw data from the adapter in Figure 7. Testing is 

conducted by switching on the Accelerometer and pressing the RUN button on the DAQ 

Assistant interface. Once there are waves (small fluctuation) occur as shown on the left below, 

it means the accelerometer is connected. 

 



Figure 7. DAQ Assistant from adapter. 

5.3 DT in the local 

As shown in Figure 8, the client is a DT model image interface using MTConnect 

standard. In the right area of the main window is the data item selected for visualization in the 

device browser. The data item includes the actual value and other information (e.g., 

timestamp, data item unit or subtype) displayed in the upper area. If the data item type is 

"sample", the past values are also plotted over time. To resolve differences from MTConnect 

or the underlying protocol, each level of MTConnect is as transparent as possible. 

 

Figure 8. Local data driven CPMT in production with MTConnect. 

To realize the experimental analysis of the whole process of pre-production, mid-

production and post-production of the processing process, and construct a full mapping of 

CPMT. Based on this requirement, the implementation of the client will be implemented 

using Microsoft .NET and Visual Studio 2018. The drawing area is implemented using 

Visual Studio's Microsoft Chart Control extension. It provides a way to draw different types 

of graphs. Once the control element is embedded in the GUI, its appearance can be 

configured through the Visual Studio IDE. Data visualization is achieved through the method 

of drawing data provided by the runtime. The first graphic of the drawing area is bound to the 

list of values passed. These lists of values are obtained directly from the DataSequence object 

stored in the Device structure by reading the getTimeScaleAsList of X-axis and the 



getSampleValueAsList of Y-axis. Even though these lists contain many elements, the entire 

read process is still very lazy with no delay and can be refreshed in real time as each change 

in the data. The 3D animation of CNC machine tools is not discussed here. This paper only 

focuses on the DT model and implementation logic of CPMT. 

5.4 DT in the cloud 

Through the analysis of real-time data, the invisible processing process is made explicit. 

As shown in Figure 9, the client of cloud-driven CPMT in production with MTConnect is 

displayed in real time. 

 

Figure 9. Cloud-driven CPMT in production with MTConnect. 

DT data includes the physical data and the virtual data: 1) the physical data collected 

from sensors in the workshop and machine tool, 2) the virtual data came from the virtual 

models and production systems (i.e. ERP, MES). The cloud-driven CPMT in production can 

optimize three functions including resource management, process control and production 

planning.  

Firstly, in terms of resource management, raw materials and processing equipment should 

be allocated according to the production tasks of components. Virtual data from the steel bars 

mechanical/thermal analysis data, and running failure data can be obtained from virtual 

models of steel bars and machine tool. Based on the above data, and the data processed by 



association, clustering, regression, etc., the service from the workshop can design a plan for 

distributing steel bars and machine tool for the current processing task. 

Secondly, the plan is transmitted to virtual machine tool for verification before the actual 

execution. With Cloud-driven CPMT in production in Figure 9, existing problems of machine 

tool can be found including collision and friction between the tool and the workpiece. 

Meanwhile, the simulation is repeated at a small cost, iterative testing can be used to optimize 

the machining plan to achieve higher machining accuracy.  

Thirdly, the machine tool starts working with the machining plan. The position of tool, 

spindle speed, feed rate, etc. can be obtained from CNC system in real-time. Virtual machine 

tool can update its status based on those data. Meanwhile, the virtual models compared with 

the processing status, if there is an inconsistency in the results, services of CPMT will 

evaluate the process to determine whether the results are caused by physical interference. 

According to the results, a virtual NC machine tools will generate real-time command to 

standardize the processing or change the machining plan. After the manufacturing process is 

completed, Dimensions, accuracy, balance and other indicators need to be tested. If the 

indicators in the virtual product meet the requirements, the processed product is qualified, 

otherwise repairs are required.  

6. Algorithm Experiment 

6.1 Test verification set  

To verify the anomaly detection capability of edge computing algorithm, the 

interpolation process of machine tool is used as the test verification set. According to the 

different types of acceleration and deceleration, the speed control can be divided into linear, 

trigonometric, exponential acceleration and deceleration, S-curve and quadratic curve 

acceleration and deceleration. In general, there is a derivative relationship between 

displacement curve, velocity curve, acceleration curve and jerk curve. Taking the quadruple 

curve acceleration and deceleration as an example: 



 

Figure 10. Schematic diagram of velocity, acceleration and jerk based on four displacement 

curves. 

6.1.1 Verification data set construction 

The data set consists of machine speed, acceleration, jerk, etc., D(u) represents 

displacement, and 𝑎0~𝑎4 represents coefficient: 

𝐷(u) = 𝑎0 + 𝑎1𝑢 + 𝑎2𝑢
2 + 𝑎3𝑢

3 + 𝑎4𝑢
4      (5) 

From the above reciprocal relationship, the velocity V, the acceleration 𝑎, and the jerk J 

are respectively taken as: 

{

𝑉(𝑢) = 𝑎1 + 2𝑎2u + 3𝑎3𝑢
2 + 4𝑎4𝑢

3

𝑎(𝑢) = 2𝑎2u + 6𝑎3u + 12𝑎4𝑢
2         

𝐽(𝑢) = 6𝑎3 + 24𝑎4u                             

      （6） 

where 𝑢 = 𝑡/tm :  tm  is the time of acceleration or deceleration process, t is the time of 

acceleration or deceleration, t∈[0, tm]. The following boundary conditions must be met at the 

start and end:  

{
 
 

 
 
𝐷(0) = 0

𝑉(0) = 𝑉1

𝑉(1) = 𝑉2

𝑎(0) = 0

𝑎(1) = 0

         (7) 
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t
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Among them, V1 and V2 are the starting velocity and the ending velocity of the 

machining track segment. By the boundary condition (6), the displacement, velocity, 

acceleration and jerk curves (7), the coefficients 𝑎0~𝑎4 can be calculated and brought into the 

curve equation(8):  

{
  
 

  
 𝐷

(𝑡) = 𝑉1t +
𝑉2−𝑉1

𝑡𝑚
3

𝑡3 +
𝑉1−𝑉2

2𝑡𝑚
3
𝑡4          

𝑉(𝑡) = 𝑉1t +
3(𝑉2−𝑉1)

𝑡𝑚
2

𝑡2 +
2(𝑉1−𝑉2)

𝑡𝑚
3

𝑡3

𝑎(𝑡) =
6(𝑉2−𝑉1)

𝑡𝑚
2

[𝑡 −
𝑡2

𝑡𝑚
]                        

𝐽(𝑡) =
6(𝑉2−𝑉1)

𝑡𝑚
2

[1 −
2t

𝑡𝑚
]                       

      （8） 

6.1.2 Test case 

A total of 100,000 pieces of sensor data in the data set are selected, and the actual 

observed values of the sensor data are shown in Table 1. According to the corresponding 

acceleration principle makes it easy to find that the displacements D(t) and ΔV/Δt and a(t) 

and ΔV/Δt have nonlinear correlations. 

Then we use the formula of the correlation coefficient to calculate the velocity data set 

accordingly. The algorithm proposed in this paper is used to verify the anomaly data. 

According to the detection results, there are 460 V, ΔV/Δt, a(t) anomaly data in 100000 edge 

data. The total number of abnormal data can be expressed as ABsum, and the successfully 

detected abnormal data can be expressed as ABcor, and the detection accuracy of the abnormal 

data ABac is calculated as: 

ABac= ABcor /ABsum         (9) 

Table 1. Velocity data statistics 

Linear acceleration S-curve acceleration Quadratic curve acceleration 

Time（s） Velocity 

（mm/s） 

Time（s） Velocity 

（mm/s） 

Time（s） Velocity 

（mm/s） 

0~0.08 3.25~26 0~0.14 1-25 0~0.34 1.08-25 

0.08~0.4 24 0.14~0.4 25 0.34~0.42 25 

0.4~0.48 24~1 0.4~0.58 25~1.06 0.42~0.68 25~1.36 

0.48~0.6 1~24 0.58~0.66 1.06~19.5 0.68~0.86 1.36~14.5 

0.6~0.72 24~2.82 0.66~0.82 19.5~1.06 0.86~0.93 14.5~7.06 

0.72~0.8 2.82~24 0.82~0.94 1.06~26 0.93~1.24 7.06~26 

0.8~1.72 24 0.94~2 26 1.24~2.25 26 



1.72~2 24~2.63 2~2.24 26~1.08 2.25~2.44 26~4.28 

2~2.26 2.63~24 2.24~2.36 1.08~26 2.44~2.56 4.28~18.9 

2.26~2.32 24 2.36~2.32 26 2.56~2.78 18.9~1.08 

2.32.6~2.46 24~1 2.3~2.59 26~1.08 - - 

6.2 Analysis of abnormal detection results 

6.2.1 Data abnormal detection for ECDA-UO and ECDA-MPR 

 

 

Figure 11. Data abnormal detection for ECDA-UO by unary parameter 



 

Figure 12. Data abnormal detection for ECDA-UO by multivariate parameter 

ECDA-UO uses the temporal continuity of the edge data itself and calculates the relative 

outlier distance, which can detect data anomalies of single-source edge data. As shown in 

Figure 11, with unary parameter, the data anomalies of the edge data in boxes 1, 2 and 3 can 

be detected. However, ECDA-UO only considers the inherent time series continuity of 

single-source edge device data, and ignores the correlation between multi-source edge data. 

Therefore, there may be a problem that some data anomalies cannot be detected effectively 

by unary parameter. 

ECDA-MPR mainly uses the multivariate parameter among the sensing data (lines 1-28 

of algorithm 2) to detect possible abnormalities in the edging data. If ECDA-MPR only 

considers the relationship among edge devices, and ignores the time series continuity of edge 

data itself. There may be two problems: 

1) If there are fewer elements in the parameter set Ωk, it is difficult to accurately locate 

the abnormal edge data by the relationship among edge devices. Consider a set of 

linear relationship sequences TS2 = ｛S1, V2｝ in the parameter set Ω2. After the 

relationship test of multivariate parameter, we found that there are abnormal data in 

the sensor data (S1, V2). As shown box 1, box 2, box 4 and box 5 in Figure 12, there 

are data abnormalities in (S1, V2), whether S1 or V2 is abnormal, or both of them are 

abnormal, it is difficult to locate. 
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2) If all parameters in the parameter set Ωk are abnormal at the same time, the 

corresponding data abnormality may not be successfully detected by the multivariate 

parameter. As shown box 3 in Figure 12, when TS2 = ｛S1, V2｝, S1 and V2 have data 

abnormalities at the same time, and the abnormal data also meet the constraints of the 

corresponding binary linear model, then the corresponding abnormal data cannot be 

detected by multivariate parameter. 

Therefore, ECDA-MPR is proposed based on ECDA-UO, which adopts an effective 

data fusion process (FP) on the two test results (line 29-37 of algorithm 2) to obtain more 

accuracy  abnormal data. 

6.2.2 Comparison of abnormal detection accuracy 

ECDA-UO can only find 334 out of 460 abnormal data in the quad curve acceleration 

and deceleration data set (ABac=0.73). ECDA-MRP can use the multivariate parameter 

relationship to find 420 out of 460 abnormal data (ABac=0.91), and can accurately locate the 

abnormal data. ECDA-MRP algorithm proposed in this paper can perform data fusion 

operations on the unary and multivariate parameter relationship data outliers. Therefore, the 

detection results of ECDA-MRP are significantly better than ECDA-UO. Based on all the 

edge data in the dataset, ECDA-UO, ECDA-MRP and benchmark methods (AD_IP [47], 

AD_KNN [36]) are used to detect the abnormality of the sensor data, and experimental 

results are compared and analyzed in Figure 13. The detection result of ECDA-MRP is 

significantly better than ECDA-UO. Although the two comparison benchmark methods are 

based on time series important point segmentation and k-nearest neighbor search based on 

fast selection strategy to find corresponding anomaly data, the above methods do not make 

good use of the “widespread” correlation between multivariate parameter relationships, so 

that multi-source related data anomalies cannot be effectively identified. Therefore, ECDA-

MRP algorithm not only has strong anomaly detection capability, but also can reduce the 

pressure on the cloud service center. 



 

Figure 13. Comparison of abnormal detection accuracy. 

6.3 Time-Consuming in edge computing and cloud computing 

In the data collection process, each machine's sensor aggregates the collected data in the 

machine and then transmits the data to the edge node. The edge computing test was 

performed using the data set of the previous section. When the data received by an edge node 

reaches the threshold, or the waiting time reaches the threshold, the currently received data is 

all transferred to default DataSpout port and distributes the relevant data to ECDA-UO to 

start timing continuity detection. After ECDA-UO completes the timing correlation detection, 

ECDA-UO will send the corresponding edge data to the corresponding ECDA-MPR for data 

correlation check. At the same time, ECDA-UO will send the timing continuity check result 

to Fusion. ECDA-MPR will also send the corresponding correlation detection result to Fusion.  

Table 2. Comparison of Time-Consuming in edge computing and cloud computing 

Operation 
Time-Consuming in Edge 

Computing/ms 

Time-Consuming in Cloud 

Computing/ms 

Receive 256.3 342.1 

Save 156.3 281.6 

ECDA-UO 2.3 2.8 

ECDA-MPR 0.76 0.9 

According to different processing methods, the corresponding processing average time 

is as shown in Table 2. The cloud computing receiving data is larger in scale and the 

bandwidth pressure is higher. The network transmission time is significantly longer than the 

edge computing. Because the computing power of the cloud center node is relatively strong, 
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the time spent on the anomaly detection is shorter than the edge calculation. Due to the 

pressure of data size and bandwidth, the processing time of cloud computing is relatively 

high. Therefore, the detection anomaly detection performance of ECDA-MPR is better. 

7. Conclusion and future work  

Machine tool is transforming from isolated manufacturing unit to intelligent service 

providers. By DT and edge computing technique to build a CPMT, the virtual and real 

mapping can be realized, and the machining process of the physical machine tool can be 

guided according to the simulation result. A local and cloud DT application are developed at 

the application layer. In order to eliminate the time delay and low precision of cloud 

modeling, a novel edge computing algorithm is proposed to detect the abnormality of the 

edge data from two aspects: the unary outliers of the edge data itself and the multivariate 

parameter correlation among edge devices.  

This work still has some limitations. One of statements made by the authors is that, 

owing to commercial privacy restrictions, incompatibility between machine tools and CNC 

system interfaces, edge data detection methods and digital twin models are not applicable to 

all machine tools. Therefore, digital twin application needs to be made based on currently 

open protocols and interfaces. Nevertheless, this work presents a case study of an edge 

computing-based cyber-physical machine tool and more open discussions are welcome in this 

research area.  

Meanwhile, a few potential research points are indicated, to be specific: (1) Enrich the 

data visualization and data analysis such as a bar diagram, curve diagram or 3D diagram 

depend on the data that need to be displayed. The mature 3D modeling is introduced into the 

software to realize the 1:1 modeling of physical machines and virtual machines. (2) Cloud 

database. Currently the data values are stored in a local file instead of a cloud database. 

Future work can consider how to upload and download data from the cloud. (3) The operating 

mechanism of CPMT in the CPPS. One of the values of CPMT is how to combine production 

systems to improve efficiency. New requirements for DT need to be explored. For example, 

DT application can endow the physical objects with a certain degree of autonomy. 
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