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Abstract 

The rapid development of information and communication technologies has triggered the 

proposition and implementation of smart manufacturing paradigms. In this regard, efficient 

allocation of smart manufacturing services (SMSs) can provide a sustainable manner for 

promoting cleaner production. Currently, centralized optimization methods have been widely used 

to complete the optimal allocation of SMSs. However, personalized manufacturing tasks usually 

belong to diverse production domains. The centralized optimization methods could hardly include 

related production knowledge of all manufacturing tasks in an individual decision model. 

Consequently, it is difficult to provide satisfactory SMSs for meeting customer’s requirements. In 

addition, energy consumption is rarely considered in the SMS allocation process which is 

unfavorable for performing sustainable manufacturing. To address these challenges, augmented 

Lagrangian coordination (ALC), a novel distributed optimization method is proposed to deal with 

the energy-optimal SMS allocation problem in this paper. The energy-optimal SMS allocation 

model is constructed and decomposed into several loose-coupled and distributed elements. Two 

variants of the ALC method are implemented to formulate the proposed problem and obtain final 

SMS allocation results. A case study is employed to verify the superiority of the proposed method 

in dealing with energy-optimal SMS allocation problems by comparing with the centralized 

optimization method at last. 

Keywords: smart manufacturing service (SMS), energy consumption, SMS allocation, augmented 

Lagrangian coordination (ALC) 
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1 Introduction 

Modern industries are undergoing significant changes in their business models to overcome the 

ever-intensive challenges of market competition, global warming, and product personalization. To 

fulfill the demand for more sustainable and cleaner production, many service-oriented smart 

manufacturing paradigms such as Internet of Manufacturing Things [1–4], cloud manufacturing 

[5,6], and social manufacturing [7,8] have been developed under the support of new generation 

information and communication technologies, e.g. cloud computing [9], Industrial Internet of 

Things (IoT) [10,11], big data analytics [12], cyber-physical system (CPS) [13–15], digital twin 

[16,17], and smart product-service systems [18]. 

As the crucial element of service-oriented smart manufacturing paradigms, smart manufacturing 

service (SMS) results from the encapsulation of manufacturing capabilities and resources in the 

shop-floor. SMS allocation aims to allocate SMSs to execute personalized manufacturing tasks 

through a process of SMS composition and optimal selection [19]. Efficient SMS allocation can 

not only avoid idle manufacturing resources but also facilitate full-scale sharing and 

on-demand-use of manufacturing capabilities, which can provide a sustainable manner for 

implementing smart manufacturing. 

The study on realizing the optimal allocation of SMSs has been done by abundant research 

work. Three major issues are associated with this area. The first issue is to develop efficient 

cloud-based management platform for achieving the optimal allocation of SMSs, including the 

blockchain-based service composition platform [20,21], digital dentistry platform [22], additive 

manufacturing service platform [23], logistics-aware manufacturing service collaboration platform 

[24], etc. The second issue mainly focuses on constructing SMS allocation models according to 

different production requirements and constraints. A lot of researchers studied the quality of 

service (QoS)-based allocation model [25–27]. Meanwhile, the SMS allocation models subjected 

to the constraints of sustainability consideration [28], service correlation [29], synergy effect [30], 

long/short-term utility [31] were also investigated. The third issue is concerned about the 

optimization algorithms for SMS allocation, such as genetic algorithm [27], grey wolf optimizer 

[25,32], integer bi-level multi-follower programming method [28], extended flower pollination 

algorithm [26], ensemble optimization approach [33], and artificial bee colony optimization 

algorithm [34–36]. 

Despite significant progress has been achieved by the aforementioned studies, quite a few 

challenges still exist in performing effective and efficient service allocation in the context of smart 

manufacturing. Firstly, few studies consider energy consumption in the SMS allocation process 

[37,38]. Industrial enterprises account for nearly fifty percentages of the world’s energy 

consumption that intensifies the effects of global warming [39,40]. In order to achieve cleaner 

production, energy consumption should be taken as a key evaluation criterion for getting optimal 

SMS allocation results [41]. Secondly, most of the existing research adopted centralized 

methods/strategies to solve SMS allocation problems. However, personalized manufacturing tasks 

are always diverse and belong to different production domains or disciplines. Centralized 

methods/strategies with only one decision model usually have limited expertise of each production 

domain, and they could hardly consider all manufacturing tasks simultaneously. Hence, it is 

difficult for them to get satisfactory SMS allocation results to meet customers’ manufacturing 

requirements. Thirdly, SMSs for different manufacturing tasks may have different 

service-provision modes. It is very little if anything to include all related parameters of SMSs in a 



single decision model through centralized methods/strategies. In addition, when a huge number of 

tasks and SMSs are involved, the complexity of the SMS allocation problem becomes extremely 

high. Bringing all production expertise and service parameters together in a decision model is 

often regarded as inefficient and undesired. Therefore, the distributed optimization 

methods/strategies are needed to accomplish energy-optimal SMS allocation and promote more 

sustainable and cleaner production.  

Recently, a novel distributed optimization method named augmented Lagrangian coordination 

(ALC) was proposed for complex system design [42,43]. As a decomposition-based method, ALC 

has shown its potential in tackling various complicated engineering problems such as supply chain 

configuration [44,45] due to its promising features of offering disciplinary decision autonomy, 

maintaining flexible coordination structure, and keeping mathematical rigor. Given the 

aforementioned challenges, ALC is used to solve the energy-optimal SMS allocation problem. 

The main goal of this paper is to investigate how can ALC method be applied in solving the 

energy-optimal SMS allocation problem. The following research questions are of our interest: (1) 

What is the workflow of energy-optimal SMS allocation, and how to construct its mathematical 

model? (2) How to formulate the energy-optimal SMS allocation problem according to the ALC 

application procedure? (3) Will the ALC method be effective and efficient in solving the 

energy-optimal SMS allocation problem? 

The remainder of this paper is organized as follows. The service allocation in smart 

manufacturing and ALC method are briefly introduced in Section 2. Section 3 depicts the 

mathematical model of energy-optimal SMS allocation. Section 4 illustrates the ALC formulations 

for the energy-optimal SMS allocation problem. Section 5 presents a case study for testing the 

proposed method. Conclusions and future work are summarized in Section 6. 

2 Overview of SMS allocation and ALC method 

The primary purpose of this section is to describe the workflow of SMS allocation and the basic 

steps of implementing the ALC method. 

2.1 Service allocation in smart manufacturing 

Fig. 1 demonstrates the workflow of service allocation in smart manufacturing. Three different 

kinds of entities are included in this process, i.e. customer, service provider, and cloud-based 

manufacturing platform. The customer acts as the service demander that has many personalized 

manufacturing requirements to fulfill. The personalized requirements are represented as 

manufacturing tasks which are then submitted to the cloud-based manufacturing platform and 

form a task pool. Meanwhile, traditional manufacturing resources such as machine tools and 

assembly stations, are enabled to be smart, connected, and autonomous with the information and 

communication technologies (e.g. inserted IoT sensors), and become smart manufacturing 

resources (SMRs). The service provider indicates the SMR that has manufacturing capabilities to 

fulfill specific manufacturing requirements. SMRs with their manufacturing capabilities are 

encapsulated into SMSs and published on the cloud-based manufacturing platform. A service pool 

will be formed based on the published SMSs. Then, the service allocation process can be 

implemented.  

Firstly, candidate SMSs for each task are selected according to the information of 

manufacturing tasks and SMSs. An SMS whose capability information can match the 

requirements of a task is considered as a candidate SMS. The capability information mainly refers 



to an SMS’s process capability, service quality, availability, etc. For example, a milling machine 

can be a candidate SMS for a milling task. The second is to identify appropriate objectives to 

accomplish the optimal allocation of SMSs. Time and cost are the two most common objectives 

during the SMS allocation process. In order to promote sustainable manufacturing, this study 

considers energy consumption as an extra evaluation parameter for the SMS allocation. Then, 

invoke the optimization method/strategy to solve the SMS allocation problem. ALC is selected to 

perform the SMSs allocation to get more satisfactory results in this paper. After obtaining the 

optimal SMS allocation results, a service provider can get a piece of manufacturing task to 

perform, and the customer can get a set of SMSs to fulfill its personalized manufacturing 

requirements. 

 

 

Fig. 1. Workflow of service allocation in smart manufacturing 

 

2.2 ALC method 

ALC is a distributed optimization method which is initially used for dealing with 

multidisciplinary design optimization problems. The major idea of ALC method is to decompose 

complex system design problem into several elements, and then coordinate the decomposed 

elements to obtain final optimization results by augmented Lagrangian relaxation and 

block-coordinate descent (BCD) [43]. 

The general procedure of adopting the ALC method to solve engineering problems can be 

described as follows. Firstly, decompose the original problem into a few loose-coupled elements 

given some specific principles, such as system structure, disciplines. Secondly, identify key links 

between the decomposed elements. Key links refer to the variables or parameters shared by two or 

more elements. Thirdly, introduce auxiliary variables of key links to each element, and use the 

augmented Lagrangian relaxation technology to fully separate coupled elements. Lastly, formulate 

Manufacturing 
Resource

Manufacturing 
Task

Service Pool Task Pool

Capability Requirement

Cloud-based Manufacturing Platform

Smart Manufacturing Service Allocation

EnergyTime Cost

Evaluation Index

Optimal Results

Task1 Task2 Task3 Task4

SMS1.1

SMS1.2

SMS1.3

SMS1.4

SMS2.1

SMS2.2

SMS2.3

SMS2.4

SMS3.1

SMS3.2

SMS3.3

SMS3.4

SMS4.1

SMS4.2

SMS4.3

SMS4.4

SMS1.1 SMS2.3 SMS3.2 SMS4.4 SMSSubtask



the separable elements according to different coordination strategies, and get the optimization 

results. There are two kinds of coordination strategies in the ALC method, i.e. distributed 

coordination strategy and centralized coordination strategy. Hence, the ALC method is categorized 

into two variants, distributed ALC and centralized ALC. As shown in Fig. 2, an original problem is 

decomposed into four elements, i.e. p1, p2, p3, and p4. Fig. 2(a) shows the distributed ALC solution 

and Fig. 2(b) shows the centralized ALC solution. Comparing with the distributed solution, an 

auxiliary element p0 is introduced to centralized ALC and acts as a master element to coordinate 

all the decomposed elements. Then, all the decomposed elements can be handled in a parallel 

manner. In distributed ALC, related elements can be coordinated directly, which provides better 

convergence efficiency than centralized ALC. The following steps are included in implementing 

these two coordination strategies.  

(1) Set the initial value of variables in all elements and parameters of augmented Lagrangian 

relaxation.  

(2) Use the BCD method to solve each decomposed element with fixed augmented Lagrangian 

relaxation parameters. In the distributed strategy, the elements are solved iteratively from the 

higher level to the lower level. For example, p1 in Fig. 2(a) is solved first, then p2 in Fig. 2(a) is 

solved. In the centralized strategy, p0 in Fig. 2(b) is solved first, then p1, p2, p3, and p4 in Fig. 2(b) 

are solved in parallel. 

(3) Judge whether the convergence condition is satisfied. If the convergence condition is not 

satisfied, go to the fourth step; otherwise, terminate the whole procedure and obtain the 

optimization result. 

(4) Update the parameters of augmented Lagrangian relaxation, then return to the second step. 

This section is a brief introduction of the ALC method. More detailed information can be 

referred to [43,46,47]. 

 

 

Fig. 2. Two variants of ALC method [43,47] 

 

The reason that ALC is selected to perform the proposed problem can be summarized as two 

aspects. Regarding the proposed energy-optimal SMS allocation problem, personalized 

manufacturing tasks always involve multiple production domains or disciplines. Meanwhile, 

different manufacturing tasks may require diverse service-provision modes. Traditional centralized 

optimization method with only one decision model could hardly consider both each production 

domain’s expertise and all the service parameters. Hence, a distributed optimization method is 

needed to perform the energy-optimal SMS allocation problem. In terms of the distributed method, 

ALC is a decomposition-based method which was proposed for the multidisciplinary design 

optimization problems. Hence, ALC has the potential to involve multiple production domains or 

disciplines from personalized manufacturing tasks. Besides, according to the working logic of 
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ALC method, the original problem can be decomposed into individual elements in a loose-coupled 

manner. Each decomposed element can have its own decision autonomy. Thus, the diverse 

service-provision modes can be allowed when using the ALC method to solve the proposed 

energy-optimal SMS allocation problem. Overall, ALC can be a promising candidate for solving 

the proposed energy-optimal SMS allocation problem. 

3 Mathematical model for energy-optimal SMS allocation 

Table 1 Notations 

Notations Description 

f  Overall objective of energy-optimal SMS allocation 

T  Manufacturing time of completing all tasks 

C
 

Manufacturing cost of completing all tasks 

E  Energy consumption of completing all tasks 

maxT  Maximum manufacturing time of completing all tasks 

maxC
 

Maximum manufacturing cost of completing all tasks 

maxE  Maximum energy consumption of completing all tasks 

tw  Weight coefficient for manufacturing time of completing all tasks 

cw
 

Weight coefficient for manufacturing cost of completing all tasks 

ew  Weight coefficient for energy consumption of completing all tasks 

.i jO  jth candidate SMS for ith task 

im  The number of candidate SMSs for the ith task 

.i jt  Manufacturing time for .i jO  completing the ith task 

.i jc  Manufacturing cost for .i jO  completing the ith task 

.i je  Energy consumption for .i jO  completing the ith task 

( . ,( 1). )t i j i k  Linking time for .i jO  and ( -1).i kO , 2i   

( . ,( 1). )c i j i k  Linking cost for .i jO  and ( -1).i kO , 2i   

.i js  Selection coefficient for .i jO  

is  Vector of selection coefficient for .i jO  

af  Objective function of element ap  

[ ]a
x  Vector of auxiliary variables from element ap  

.a bcc  consistency constraints for key links between element ap and element bp  

[ ]

.

c

a bcc  .a bcc  associated with cp  element, c=a or b 

cc  Augmented Lagrangian relaxation function 

.a lν  lth vector of Lagrangian multiplier parameters of element ap  

.a lw  lth vector of Lagrangian weight coefficients of element ap  

 



In practice, the circumstances of SMS allocation are complex and multiple. For simplicity of 

understanding, an SMS allocation model shown in Fig. 3 is used to illustrate how the ALC can be 

applied in solving energy-optimal SMS allocation problems. Notations are listed in Table 1. 

The presented SMS allocation model is constructed based on the following assumptions: (1) all 

tasks in the model follow a serial sequence; (2) candidate SMSs of each task can meet the quality 

and production capability requirements, and are available for performing related tasks; (3) each 

candidate SMS can be only selected to perform one task, and each task can be only assigned to 

one candidate SMS; and (4) time, cost, and energy consumption are considered as the evaluation 

criteria for getting the optimal SMS allocation results. Note that only the energy consumption 

which is generated during production processes is considered in this model. 

 

 

Fig. 3. SMS allocation model 

 

As shown in Fig. 3, n tasks are submitted to the task pool of the cloud-based manufacturing 

platform. There are mi candidate SMSs in the service pool to complete task i. The sum of weighted 

total time, cost and energy consumption is minimized in this model. Then, the mathematical model 

of this energy-optimal SMS allocation problem can be presented as follows (refer to Table 1 for 

the description of notations). 
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Eq. (1) represents the objective function. It consists of three parts, i.e. weighted T , C cost, 

and E of completing all tasks. Tmax, Cmax, and Emax are used to nondimensionalize each part. Eqs. 

(2)-(4) are employed to calculate T , C cost, and E of completing all tasks. The total 

manufacturing time T  is composed of the manufacturing time of each task and the linking time 

between two related SMSs. The linking time mainly refers to the logistics time and storage time. 

Similarly, the total manufacturing cost C  consists of the manufacturing cost of each task and the 

linking cost between two related SMSs. The linking cost mainly refers to the logistics cost and 

storage cost. As the aforementioned assumption, only the energy consumption of manufacturing 

phases is calculated in the formulation. Eqs. (5)-(6) ensure that only one SMS will be selected to 

complete task i. 

In order to better illustrate the following ALC formulations, eqs. (2)-(4) are inserted into eq. (1). 

Then, the mathematical model of energy-optimal SMS allocation can be presented as follows. 
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     (7) 
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4 ALC formulations for energy-optimal optimal allocation of SMSs 

4.1 Decomposition of the original problem 

 

 

Fig. 4. Decomposition model of original problem 

 

According to the procedure of adopting ALC to solve engineering problems, the first is to 

decompose original energy-optimal SMS allocation problem into several elements. Since different 

tasks may belong to different production domains or disciplines, the required SMS provision mode 

for each task may be different. Hence, in this study, the production domain of each task can be 

considered as the rule to decompose the original energy-optimal SMS allocation problem. Assume 

that each task in Fig. 3 belongs to a different production domain. Then, the decomposition of the 

original problem can be presented as Fig. 4 which consists of n elements, i.e. p1, p2, …, pn.  

Based on the decomposition model, the mathematical model presented by eqs. (7)-(9) can be 

rewritten as follows. 
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As it can be seen from Fig. 4 and the rewritten mathematical model, element ip  and -1ip  

( 2i  ) are linked by ( 1).1is  ,…, ( 1).i js  ,…,
1( 1). ii ms
 . Hence, the key links between element ip  

and -1ip  ( 2i  ) are identified as ( 1).1is  ,…, ( 1).i js  ,…,
1( 1). ii ms
 . Define .1 .2 .[ , ,..., ]

i

T

i i i i ms s ss . 

The key links in this model can be represented as 1s ,…, -1is ,…, 1ns . 

4.2 Distributed ALC formulations for energy-optimal SMS allocation 

This primary goal of this part is to illustrate the distributed ALC formulations for 

energy-optimal SMS allocation. Based on the identified key links in the decomposition model, 

related auxiliary variables and consistency constraints are introduced to each decomposed element 

and listed in Table 2. 
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Table 2 Auxiliary variables and consistency constraints for distributed ALC 

Decomposed element Link variable Auxiliary variable Consistency constraints 
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Then, the formulation of each element is presented as follows. 

 Formulation of 1p  
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The formulation of 1p  is with respect to 
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[2]

1s . The objective 

function of 1p  includes two items. The first item is the sum of weighted manufacturing time, 

cost, and energy consumption for completing task 1. The second item is augmented Lagrangian 

relaxation for the consistency constraints which are related to element 1p . Eq. (14) represents the 

augmented Lagrangian relaxation for 1.2cc . Eqs. (15)-(16) ensure that only one SMS will be 

selected to complete task 1.  
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The formulation of ip  is with respect to 
[ ]

1

i

is  and 
[ ]i

is , and solved with fixed 
[ -1]

1

i

is  and 

[ +1]i

is . The objective function of ip  consists of three parts. The first part consists of the weighted 

manufacturing time, cost, and energy consumption for completing task i. The second part is the 

sum of weighted linking cost time and cost between element ip  and 1ip  . The third part is 

augmented Lagrangian relaxation for the consistency constraints which are related to element ip . 

Eqs. (18)-(19) represent the augmented Lagrangian relaxation for ( 1).i icc  and .( 1)i icc . Eqs. 

(20)-(21) ensure that only one SMS will be selected to complete task i-1. Eqs. (22)-(23) ensure 

that only one SMS will be selected to complete task i. 

 Formulation of np  

Objective function 

1

. . .

1 max max max

[ ] [ 1] [ ]

1 1 1

1 1 max max

min ( )( )

( . ,( 1). ) ( . ,( 1). )
( )( ) ( )( )+ ( )

n

n i

m
n j n j n j

n n t c e

j

m m
n n n

n n t c n n

j k

t c e
f j w w w

T C E

t n j n k c n j n k
j j k w w

T C








  

 

  

 
  



 cc

s

s s s s

     (24) 

Subject to 

[ -1] [ ] [ -1] [ ] [ -1] [ ] 2

1 1 .1 1 1 .1 1 1 2( )= ( ) || ( ) ||n n T n n n n

n n n n n n n n         cc s s ν s s w s s                  (25) 

( 1)[ ]

1

1, If is selected
( )

0, Otherwise

n .kn

n

O
k






 


s                           (26) 



 
1( -1).

[ ]

1

1

( ) 1
nn m

n

n

k

k






 s                                  (27) 

1, If is selected
( )

0, Otherwise

n.j

n

O
j


 


s                             (28) 

.

1

( ) 1
nn m

n

j

j


 s                                   (29) 

The formulation of np  is with respect to 
[ ]

1

n

ns , and solved with fixed 
[ 1]

1

n

n



s . The objective 

function of np  consists of three parts. The first part consists of the weighted manufacturing time, 

cost, and energy consumption for completing task n. The second part is the sum of weighted 

linking time and cost between element np  and 1np  . The third part is augmented Lagrangian 

relaxation for the consistency constraints which are related to element np . Eq. (25) represent the 

augmented Lagrangian relaxation for ( 1).n ncc . Eqs. (26)-(27) ensure that only one SMS will be 

selected to complete task n-1. Eqs. (28)-(29) ensure that only one SMS will be selected to 

complete task n. 

4.3 Centralized ALC formulations for energy-optimal SMS allocation 

The primary goal of this section is to illustrate the centralized ALC formulations for 

energy-optimal SMS allocation. An auxiliary element 0p  is introduced to enable parallel 

computation of elements 1p , 2p ,…, np . The decomposition model of the original problem is 

presented in Fig. 5. In this circumstance, 1p , 2p ,…, np  are fully separable, and 0p  acts as a 

coordinator to coordinate them by adjusting the shared key links and auxiliary variables. 

 

 

Fig. 5. Decomposition model of original problem and related key links 

 

Based on the identified key links in the decomposition model, related auxiliary variables and 

consistency constraints are introduced to each element and listed in Table 3. 
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Table 3 Auxiliary variables and consistency constraints for centralized ALC 

Decomposed element Link variable Auxiliary variable Consistency constraints 
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Then, each decomposed element can be formulated as follows. 

 Formulations of 1p  

Objective function 
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The formulation of 1p  is with respect to 
[1]

1s , and solved with fixed 1s . The objective 

function and constraints have the same implications as the formulation of 1p  described in the 

distributed ALC method. 
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The formulation of ip  is with respect to 
[ ]

1

i

is  and 
[ ]i

is , and solved with fixed 1is  and is . 

The objective function and constraints have the same implications as the formulation of ip  

described in the distributed ALC method. 
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The formulation of np  is with respect to 
[ ]

1

n

ns , and solved with fixed 1ns . The objective 

function and constraints have the same implications as the formulation of np  described in the 

distributed ALC method. 

 Formulations of 0p  
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The formulation of 0p  only includes the objective function. It is with respect to 1s , 2s ,…, 

1ns , and solved with fixed 
[1]

1s , 
[ ]

1

i

is , 
[ ]i

is , and 
[ ]

1

n

ns . The objective function of 0p  only 

contains the augmented Lagrangian relaxation terms that are utilized to coordinate the key links 

between related elements. 

When all the decomposed elements are formulated, the energy-optimal SMS allocation problem 

can be handled based on the steps depicted in part 2.2. 

5 Case study 

A case composed of five tasks [48] is used to verify the effectiveness and efficiency of ALC 

method in performing energy-optimal SMS allocation in this section. The information about tasks 

and candidate SMSs is listed in Table 4. 

Table 4 Information about tasks and candidate SMSs 

Task SMS (
j

iO ) .i jt  .i jc  .i je   . ,( 1).t i j i k   . ,( 1).c i j i k  

Task 1 

1

1O  9 15 10 -- -- 
2

1O  8 14 15 -- -- 
3

1O  10 15 13 -- -- 

Task 2 

1

2O  18 54 20 

 2.1,1.1t  5  2.1,1.1c  10 

 2.1,1.2t  3  2.1,1.2c  9 

 2.1,1.3t  8  2.1,1.3c  16 

2

2O  19 55 16 

 2.2,1.1t  7  2.2,1.1c  15 

 2.2,1.2t  4  2.2,1.2c  12 

 2.2,1.3t  7  2.2,1.3c  19 

3

2O  18 60 18 

 2.3,1.1t  8  2.3,1.1c  17 

 2.3,1.2t  6  2.3,1.2c  15 

 2.3,1.3t  10  2.3,1.3c  21 

Task 3 

1

3O  9 43 6 

 3.1,2.1t  12  3.1,2.1c  25 

 3.1,2.2t  7  3.1,2.2c  12 

 3.1,2.3t  10  3.1,2.3c  22 

2

3O  8 50 9 

 3.2,2.1t  13  3.2,2.1c  28 

 3.2,2.2t  6  3.2,2.2c  9 

 3.2,2.3t  12  3.2,2.3c  26 



Task 4 

1

4O  14 25 25 
 4.1,3.1t  0  4.1,3.1c  0 

 4.1,3.2t  0  4.1,3.2c  0 

2

4O  16 21 23 
 4.2,3.1t  0  4.2,3.1c  0 

 4.2,3.2t  0  4.2,3.2c  0 

3

4O  13 28 21 
 4.3,3.1t  0  4.3,3.1c  0 

 4.3,3.2t  0  4.3,3.2c  0 

Task 5 

1

5O  1 41 3 

 5.1,4.1t  6  5.1,4.1c  21 

 5.1,4.2t  3  5.1,4.2c  15 

 5.1,4.3t  3  5.1,4.3c  12 

2

5O  3 39 6 

 5.2,4.1t  9  5.2,4.1c  24 

 5.2,4.2t  6  5.2,4.2c  17 

 5.2,4.3t  5  5.2,4.3c  15 

 

5.1 Effectiveness of ALC in solving energy-optimal SMS allocation problem 

In order to verify the effectiveness of ALC method in performing energy-optimal SMS 

allocation, a centralized optimization method (i.e. genetic algorithm (GA)) and two variants of the 

ALC method are executed in a same computing environment. 

The software Matlab R2016a and a PC with 2.60 GHz CPU /4.0 GB RAM are used to execute 

the whole computing process. The weight coefficients are set as 0.1tw  , 0.6cw  , 0.3ew  . 

Tmax=90, Cmax=290, and Emax=100. The maximum iteration time is set as 1000. All initial values of 

Lagrangian multiplier parameters and weight coefficients are set as 0.01. The termination 

tolerance is set as 
-2=10 . Each method runs 50 times. 

 

Table 5 Optimal allocation results of SMSs 

Task 
Genetic algorithm (GA)  Distributed ALC  Centralized ALC 

j

iO  
j

it  
j

ic  
j

ie   
j

iO  
j

it  
j

ic  
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ie   
j

iO  
j

it  
j

ic  
j

ie  

1 
1

1O  9 15 10  
1

1O  9 15 10  
1

1O  9 15 10 

2 
2

2O  19 55 16  
2

2O  19 55 16  
2

2O  19 55 16 

3 
1

3O  9 43 6  
1

3O  9 43 6  
1

3O  9 43 6 

4 
3

4O  13 28 21  
3

4O  13 28 21  
3

4O  13 28 21 

5 
1

5O  1 41 3  
1

5O  1 41 3  
1

5O  1 41 3 

Value of 

Objective 
0.7008  0.7008  0.7008 

Computation 

Time 
3.03 mins  11 mins   

8.7 mins 

(1.68 mins) 

 

Table 5 contrasts the optimal results of energy-optimal SMS allocation obtained by GA and two 

variants of the ALC method. As can be seen from the table, distributed ALC and centralized ALC 

can achieve the same optimal allocation results (i.e. SMS options, value of the objective function) 

as the GA method. However, the two variants of ALC method take much longer computation time 

than the GA method, i.e. distributed ALC and centralized ALC spend 11 mins and 8.7 mins, 



respectively, whereas GA just uses 3.03 mins to perform the whole optimization process. There are 

two major reasons to lead to this phenomenon. Firstly, complex key links are identified in the 

decomposed elements. Hence, a lot of auxiliary variables are introduced to the formulation of each 

decomposed element, which will impose conspicuous challenge on the computation efficiency of 

completing the whole optimization process. Secondly, ALC is recognized as a distributed 

optimization method. The required computing environment to implement this method should be 

parallel and distributed. However, in this research, all optimization processes are completed in a 

single PC. For making a better comparison, the computation time of the centralized ALC method 

is re-calculated with a parallel and distributed manner. In this circumstance, the whole 

computation time is the sum of computation time of master element p0 and maximum computation 

time of the five decomposed elements p1, p2, p3, p4, and p5. Then, the computation time of 

centralized ALC is calculated as 1.68 mins. Therefore, the computing efficiency of the ALC 

method will be well enhanced when the whole computing process is executed in a real parallel and 

distributed environment. 

5.2 Performance analysis of ALC method 

This primary goal of this part is to analyze the performance of ALC method in dealing with the 

energy-optimal SMS allocation problem. The analysis consists of two aspects. The first aspect is 

about the convergence performance of the ALC method. The second aspect is about the 

performance of the rate of getting the optimal result. For better illustration, the circumstances of 

termination tolerance 
-3=10 , 

-4=10 , and 
-5=10  are investigated in this section. 

 

 

Fig. 6. Iteration times for 
310   
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Fig. 7. Iteration times for 
410   

 

 

Fig. 8. Iteration times for 
510   

 

The iteration times of the whole optimization process being finished is used to evaluate the 

convergence performance of each method. Regarding different termination tolerances, iteration 

times of the GA method and two variants of the ALC method in solving the energy-optimal SMS 

allocation problem are compared in Fig. 6, Fig. 7, and Fig. 8. As shown in Fig. 6, when the 

termination tolerance is set as 
-3=10 , the average iteration times of the GA method, distributed 

ALC, and centralized ALC running fifty times are 51.58, 3.22, and 2.90, respectively. As shown in 

Fig. 7, when the termination tolerance is set as 
-4=10 , the average iteration times of the GA 

method, distributed ALC, and centralized ALC running fifty times are 55.90, 3.22, and 2.88, 

respectively. As shown in Fig. 8, when the termination tolerance is set as 
-5=10 , the average 

iteration times of the GA method, distributed ALC, and centralized ALC running fifty times are 

57.60, 3.22, and 2.90, respectively. It can be seen that the GA method needs more iteration times 

than the two variants of the ALC method to complete the whole process. Thus, the ALC method 

has better convergence performance in solving the energy-optimal SMS allocation problem. 

 

 

Average times: 55.90

Average times: 3.22
Average times: 2.88

GA method

Centralized ALC
Distributed ALC

Times

Times

Average times: 57.60

Average times: 3.06 Average times: 3.24

GA method

Centralized ALC Distributed ALC

Times

Times



 

Fig. 9. Rate of getting the optimal result (
310  ) 

 

 

Fig. 10. Rate of getting the optimal result (
410  ) 

 

 

Fig. 11. Rate of getting the optimal result (
510  ) 

 

As mentioned in section 5.1, the known optimization result of the energy-optimal SMS 

allocation problem is 0.7008. Regarding different termination tolerances, the rates of the GA 

method and two variants of the ALC method getting the known optimal result are compared in Fig. 

9, Fig. 10, and Fig. 11. As shown in Fig. 9, when the termination tolerance is set as 
-3=10 , the 

Rate of the optimal result
GA method: 44%

Centralized ALC: 76%

Distributed ALC: 82%

Rate of the optimal result
GA method: 54%

Centralized ALC: 78%

Distributed ALC: 80%

Rate of the optimal result
GA method: 36%

Centralized ALC: 68%

Distributed ALC: 84%



rates of GA, distributed ALC, and centralized ALC getting the optimal result are 44%, 82%, and 

76%, respectively. As shown in Fig. 10, when the termination tolerance is set as 
-4=10 , the rates 

of GA, distributed ALC, and centralized ALC getting the optimal result are 54%, 80%, and 78%, 

respectively. As shown in Fig. 11, when the termination tolerance is set as 
-5=10 , the rates of 

GA, distributed ALC, and centralized ALC getting the optimal result are 36%, 84%, and 68%, 

respectively. It can be seen that the ALC method has a higher rate to get the known optimal result 

than the GA method. Thus, the ALC method is more reliable in solving the energy-optimal SMS 

allocation problem. In addition, as shown in Fig. 9, Fig. 10, and Fig. 11, the fluctuation range of 

the optimal value obtained by the GA method is much larger than the two variants of the ALC 

method, which indicates that the stability of the ALC method is better than the GA method to deal 

with the energy-optimal SMS allocation problem. 

Overall, the ALC method demonstrates many promising advantages (e.g. reliability, stability) 

over the GA-based centralized optimization method in performing the energy-optimal SMS 

allocation. 

The case study in this paper is used to show the potential advantages of ALC in solving the 

smart manufacturing service allocation problem by taking into account energy consumption. 

Despite the above advantages, there are still some limitations in the case study. Firstly, the SMS 

allocation problem considered in this case study not quite large. The performance analysis with 

reference to the problem size and problem scalability may be more convincible to prove the 

superiority of ALC method. Large-scale cases with more tasks, services, and variables should be 

be investigated in the future. Secondly, there are many alternative methods that can be used for 

solving the service allocation problems. More comparisons with other methods (e.g. particle 

swarm optimization, artificial bee colony algorithm) should be made in the following research to 

find more efficient methods and further verify the superiority of ALC method. 

6 Conclusions 

Smart manufacturing paradigms are supposed to provide a service-oriented, high-efficient and 

sustainable production manner for industrial enterprises, and their key technologies have gained 

wide attention from both academia and industry. SMS allocation acts as a crucial part in 

promoting cleaner production among these technologies. The primary purpose of this paper is to 

use the ALC method to perform the energy-optimal SMS allocation. 

The major contributions of this research can be summarized into four aspects. Firstly, the 

workflow of SMS allocation is identified, based on which the mathematical model of SMS 

allocation was further constructed. In the constructed model, energy consumption was considered 

as an evaluation criterion to implement sustainable and smart manufacturing. Secondly, the 

distributed optimization mechanism was introduced to solve the energy-optimal SMS allocation 

problem by taking into account the multiple production domains/disciplines of manufacturing 

tasks. Thirdly, the proposed energy-optimal SMS allocation problem was formulated according to 

two variants of the ALC method, i.e. distributed ALC and centralized ALC. Fourthly, the 

effectiveness of the proposed method in performing the energy-optimal SMS allocation was 

verified by a case study which demonstrated that the ALC method could achieve the same 

allocation results as the GA-based centralized optimization method. In addition, it has been proved 

that the ALC method can achieve better performance in terms of performing energy-optimal SMS 

allocation. 



Based on the abovementioned contributions, potential future work may embrace the following 

facets. Firstly, how to construct a more comprehensive mathematical model for energy-optimal 

SMS allocation? The mathematical model of this study just considers the tasks in a serial sequence. 

In practice, the tasks in parallel sequence or hybrid sequence can be a more complex circumstance. 

Secondly, how to design a sustainable mechanism to implement SMS allocation? When exceptions 

occur, necessary measures should be taken to ensure that the tasks can still be completed 

according to the customer’s requirements. Thirdly, how to develop a platform to execute 

energy-optimal SMS allocation in real-life? A platform is needed to facilitate the transactions 

between stakeholders and monitor the real-time information during tasks being executed by 

related SMSs. 
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