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A B S T R A C T

This paper revisits the airline schedule-buffer choice problem analyzed by Brueckner et al. (2021) using a
simpler model where the random shocks influencing flight times are discrete rather than continuous. The
analysis yields closed-form solutions for the flight and ground buffers as well as full comparative-static results,
neither of which were available in the earlier paper. The paper also explores several extensions to the model
that were not present in the previous paper.
1. Introduction

Flight delays, fueled by the historic growth in air travel, represent
a substantial problem for passengers and airlines worldwide. Flight
times are influenced by many random daily factors, including weather,
mechanical issues, and unanticipated congestion. Airline scheduling
practices address these random influences through the use of ‘‘schedule
buffers’’, which include flight buffers (denoted ‘‘block-time buffers" in
the industry) and ground buffers. A buffer is the amount added to
minimum feasible flight or ground time to get the scheduled flight or
ground time. Flight buffers reduce the chance that an individual flight
is late, and flight and ground buffers jointly address the problem of
delay propagation, where a late inbound flight leads to late departure
of the subsequent flight and then its late arrival. According to USDOT
data, a late inbound aircraft is the primary cause of a subsequent
arrival delay.2 Ground buffers, which add extra time between flights,
are especially well suited to addressing this problem.

Brueckner et al. (2021) (hereafter BCG) presented a stylized analysis
of the choice of schedule buffers, using a model where the random
shocks affecting flight durations are continuous random variables. They
also offered empirical tests of some of the model’s predictions. Because
of its continuous formulation, their theoretical analysis was complex,
although it yielded a number of intuitive conclusions. The purpose of
the present short paper is to revisit the buffer-choice problem in a
simpler model where the random shocks influencing flight times are
discrete. In addition to providing greater transparency, the analysis
yields closed-form solutions for the buffers as well as full comparative-
static results, neither of which were available in the earlier paper.

∗ Corresponding author.
E-mail address: jkbrueck@uci.edu (J.K. Brueckner).

1 We thank Kangoh Lee for comments, but the usual disclaimer applies. Czerny acknowledges research support from the Hong Kong Research Grants Council
General Research Fund (No. 15504918).

2 See Brueckner et al. (2021) for details of the Department of Transportation data.

The study thus provides a fuller insights into a conceptually intriguing
optimization problem.

As a benchmark, the next section of the paper develops a model with
just a single flight, where delay propagation is absent given the absence
of a second flight. The subsequent section then considers a two-flight
model, where delay propagation can occur. A major question is how
the flight buffers in the two-flight model compare to the single-flight
buffer. A principal result, which is also derived by BCG, establishes
that flight 1’s buffer in the two-flight model has the same magnitude as
the single-flight buffer. Flight 1’s buffer thus plays no role in handling
delay propagation, which is instead addressed by flight 2’s buffer and
the ground buffer. The intuition underlying this result is highlighted in
the discussion. The last part of the analysis explores model extensions
by assuming that the random shocks to the durations of the two flights
are correlated rather than independent and by considering stochastic
ground times.

While BCG provided an exhaustive discussion of the prior literature,
some of major contributions can be briefly noted. Previous theoret-
ical work on the buffer-choice problem can be found in papers by
Deshpande and Arikan (2012), Arikan et al. (2013), and Kafle and
Zou (2016), which also have empirical components. Studies by Hao
and Hansen (2014), Kang and Hansen (2017), Fan (2019), Yimja and
Gorjidooz (2019), Eufrásio et al. (2021) provide additional empirical
analysis of the choice of scheduled flight times. The important dis-
tinction between the present paper (along with BCG) and the prior
theoretical literature is use of simple, sytlized models that can be
analyzed without the need for numerical simulation, with the goal
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2

of providing transparent insights into the choice problem faced by
airlines.

2. Single-flight model

Consider first a model with just a single flight, denoted 1. The
duration of an undisrupted flight is 𝑓1 = 𝑚, with a random amount
1 ≥ 0 added to 𝑚 to generate the actual flight time. With probability
− 𝑝, no flight disruption occurs, so that 𝜖1 = 0. With probability 𝑝,

the flight is disrupted, with 𝜖1 taking a value 𝑒 > 0 that reflects the
influences of weather, mechanical issues and other factors. Therefore,
the flight duration equals 𝑚 with probability 1 − 𝑝 and 𝑚 + 𝑒 with
probability 𝑝.

Because of the possibility of a flight disruption, the airline sets the
scheduled duration of the flight to be longer than 𝑚 by use of a flight
buffer 𝑏1 > 0. With departure at time zero, the scheduled arrival time
is then given by 𝑡𝑎1 = 𝑚 + 𝑏1. If there is no flight disruption, with
the duration then equal to 𝑚, the flight arrives 𝑏1 minutes early. If a
disruption occurs, then the flight arrives 𝑒 − 𝑏1 minutes late if 𝑏1 < 𝑒,
while it arrives 𝑏1 − 𝑒 minutes early if 𝑏1 > 𝑒. Passengers dislike being
late and may dislike being early as well, with the parameters 𝑥 and
𝑦 capturing lateness and earliness costs, which depend on the squares
of the times late or early.3 For example, with no flight disruption, the
early cost is 𝑦𝑏21, whereas a flight disruption when 𝑏1 < 𝑒 leads to a late
cost of 𝑥(𝑒 − 𝑏1)2. While the cost of earliness could include waiting to
be picked up at the airport after an early arrival, earliness may have
benefits as well. However, we assume that earliness is costly on balance
(but less so than lateness, with 𝑦 < 𝑥) since it involves disruption of the
passenger’s schedule. Under these assumptions, the expected early/late
cost is given by

(1 − 𝑝)𝑦𝑏21 +

{

𝑝𝑥(𝑒 − 𝑏1)2 if 𝑏1 < 𝑒
𝑝𝑦(𝑏1 − 𝑒)2 if 𝑏1 ≥ 𝑒.

(1)

In addition to the expected value in (1), the airline considers other
costs in choosing the magnitude of the flight buffer. These elements
are the cost of operating the flight, which include expenditures on fuel
and crew salaries, and the cost of ground time, which consists mainly
of gate rental costs. To facilitate comparison with the two-flight model,
suppose that the aircraft is only flown for part of the day, sitting on the
ground for the remaining time, so that the airline has ‘‘excess capacity"
(an alternate assumption is used below in the two-flight model). With
𝑇 denoting the length of the day, ground time is 𝑇 −(𝑚+𝑏1) > 0, where
𝑚 + 𝑏1 is scheduled flight time. The capital cost of the aircraft is sunk,
but letting 𝑐𝑓 denote the operating cost per minute of scheduled flight
time and 𝑐𝑔 denote the cost of ground time, total operating costs are
𝑐𝑓 (𝑚 + 𝑏1) + 𝑐𝑔(𝑇 − (𝑚 + 𝑏1)), which equals a constant plus (𝑐𝑓 − 𝑐𝑔)𝑏1.4
Realistically, the analysis assumes that flight time is more expensive
than ground time, so that 𝑐𝑓 > 𝑐𝑔 , an assumption that also eliminates
some complexity.

The profit-maximizing airline chooses 𝑏1 to minimize the sum of (1)
and (𝑐𝑓 − 𝑐𝑔)𝑏1.5 Since this expression is increasing in 𝑏1 when 𝑏1 ≥ 𝑒

3 Using squared values generates the required nonlinearity in the
ptimization problem.

4 Note that these costs are based on scheduled (as opposed to actual) flight
ime as well as scheduled ground time. According to Mayer and Sinai (2003),
irline crews are paid according to the maximum of scheduled and actual flight
imes. Allowing flight costs to depend on this maximum leads to substantial
omplications in the analysis, whereas dependence on scheduled flight time is
cceptable as an approximation. By contrast, dependence of ground costs on
cheduled ground time is accurate since gate time must be leased in advance.

5 Letting 𝑣 denote the fixed benefit from air travel, a passenger’s
illingness-to-pay for a ticket equals 𝑣 minus (1), or travel benefit minus

expected late/early cost, which equals the airfare 𝐹 . Normalizing the flight’s
passenger capacity to unity, revenue is then 𝐹 , and profit equals 𝑣 minus (1)

inus (𝑐𝑓 − 𝑐𝑔)𝑏1 minus the constant (𝑐𝑓 − 𝑐𝑔)𝑚. Choosing 𝑏1 to minimize (1)
plus (𝑐𝑓 − 𝑐𝑔)𝑏1 thus maximizes profit. Note that since this objective function
represents social cost, a planner would make the same choice as the airline.
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(in which case the second line of (1) applies), the airline will not set
𝑏1 at or above 𝑒, instead choosing 𝑏1 < 𝑒.6 The first-order condition for
𝑏1, which makes use of the first line of (1), is then

2(1 − 𝑝)𝑦𝑏1 − 2𝑝𝑥(𝑒 − 𝑏1) + 𝑐𝑓 − 𝑐𝑔 = 0, (2)

which yields the solution7

𝑏∗1 =
𝑝𝑥

𝑝𝑥 + (1 − 𝑝)𝑦
𝑒 −

𝑐𝑓 − 𝑐𝑔
2[𝑝𝑥 + (1 − 𝑝)𝑦]

. (3)

Parameter values are assumed to take values that make this 𝑏∗1
olution positive, an assumption that pertains to all subsequent buffer
olutions. Note that the solution in (3) sets 𝑏1 equal to a fraction of 𝑒
inus a positive term involving 𝑐𝑓 and 𝑐𝑔 . Since 𝑏∗1 < 𝑒, the buffer is
hen chosen so that the flight arrives late with probability 𝑝. From (3), 𝑏∗1
s naturally increasing in 𝑒 and decreasing in 𝑐𝑓 − 𝑐𝑔 . Since it is easily
een that the factor multiplying 𝑒 is increasing in 𝑥 and 𝑝, and since
he ratio involving 𝑐𝑓 − 𝑐𝑔 is decreasing in 𝑥 and decreasing in 𝑝 (given
𝑓 > 𝑐𝑔), it follows that 𝑏∗1 increases with 𝑥 and 𝑝 as well (the buffer
lso decreases with 𝑦).8 Thus, the buffer naturally rises with lateness
ost and the probability of a flight disruption, and falls with earliness
ost. Summarizing yields9

𝜕𝑏∗1
𝜕𝑒

> 0,
𝜕𝑏∗1
𝜕𝑐𝑓

< 0,
𝜕𝑏∗1
𝜕𝑐𝑔

> 0,
𝜕𝑏∗1
𝜕𝑥

> 0,
𝜕𝑏∗1
𝜕𝑦

< 0,
𝜕𝑏∗1
𝜕𝑝

> 0. (4)

oting that the variance of the flight disruption equals 𝑝(1 − 𝑝)𝑒2, (4)
mplies that a higher variance, whether its source is a higher 𝑝 or a
igher 𝑒, raises 𝑏∗1 (this conclusion requires that 𝑝 is realistically less
han 1/2).10

. Two-flight model

.1. The setup

The aircraft in the single-flight model is now assumed to make a
econd flight, carrying a different group of passengers from flight 1’s
estination city to a second destination. Note that, with the passenger
roups on the two flights being separate, connecting passengers are
bsent. However, a group of passengers whose trips require a flight
onnection could be incorporated with only minor changes in the
nalysis.

The second flight has the same undisrupted duration as flight 1,
ith 𝑓2 = 𝑚, so that actual flight time equals 𝑚 + 𝜖2, where 𝜖2 equals
with probability 𝑝 and zero otherwise. The random terms 𝜖1 and 𝜖2

re assumed to be independent, so that the forces leading to flight
isruptions are not common across the flights (the correlated case is
onsidered below).11 Despite this independence, a late arrival of flight 1
an cause a late departure and possibly a late arrival for flight 2, leading
o delay propagation. The resulting linkage between the performance
f the two flights is central to the analysis.12

6 Note that if 𝑦 were negative, the second line of (1) would be decreasing
n 𝑏1, implying that an unbounded buffer value would be optimal.

7 Since (2) is increasing in 𝑏1, the solution represents a minimum.
8 The last conclusion follows from factoring out the common term in the

enominators of (3), which is decreasing in 𝑦, and noting that the remaining
expression is positive when 𝑏1 > 0.

9 The effects of 𝑥, 𝑦, 𝑐𝑓 and 𝑐𝑔 on 𝑏1 in the model of BCG take the same
signs as in (4).

10 The variance is E𝜖21 − (E𝜖1)2 = 𝑝𝑒2 − (𝑝𝑒)2, yielding the expression in the
text.

11 Since flight 1’s destination airport is flight 2’s origin, weather at this
airport could affect both flights, in which case 𝜖1 and 𝜖2 would be positively
orrelated. While this possibility is incorporated in the analysis in Section 4,
ther sources of disruption are likely to be independent across the flights.
12 While the two flights have the same duration, a longer duration for flight
would mean a larger value of 𝑚 as well as possibly a larger value for 𝑒,

ndicating that a flight disruption is more substantial.
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The aircraft’s scheduled ground time between the flights is denoted
𝑡𝑔 , and it must be at least as large as the minimum feasible turnaround
time for the aircraft, denoted 𝑡𝑔 . This minimum time equals the interval
equired for the deplaning and boarding of passengers as well as the
leaning and refueling of the plane. The ground buffer is the difference
etween 𝑡𝑔 and 𝑡𝑔 , which equals the extra scheduled ground time

beyond the minimum required, and it is denoted by 𝑏𝑔 = 𝑡𝑔 − 𝑡𝑔 . The
ground buffer is an instrument for reducing delay propagation, as seen
in the following analysis.

The scheduled departure time of flight 2, denoted 𝑡𝑑2, equals the
cheduled arrival time of flight 1 plus the scheduled ground time, or
𝑑2 = 𝑚 + 𝑏1 + 𝑡𝑔 . If 𝜖1 = 0, so that flight 1 is not delayed, instead

arriving early, then flight 2 departs on time. However, if flight 1 arrives
late, then flight 2’s departure may be delayed. Late departure occurs
if the earliest possible departure of flight 2, which equals flight 1’s
arrival time plus the minimum turnaround time, exceeds 𝑡𝑑2, flight 2’s
cheduled departure time. In other words, late departure occurs if

+ 𝑒 + 𝑡𝑔 > 𝑚 + 𝑏1 + 𝑡𝑔 = 𝑡𝑑2. (5)

Recalling 𝑏𝑔 = 𝑡𝑔 − 𝑡𝑔 and rearranging, (5) reduces to

𝑏1 + 𝑏𝑔 < 𝑒. (6)

Thus, if flight 1 is delayed, flight 2 departs late when 𝑏1 and 𝑏𝑔 satisfy
(6), departing on time otherwise.

The focus of flight 2’s passengers, however, is on their arrival time,
not their departure time. If flight 2 departs on time, then the analysis
of its arrival time follows the single-flight case. The expected late/early
cost for its passengers is given by the expression that pertains to the
single-flight case, equal to (1) with 𝑏2 in place of 𝑏1.

If flight 2 departs late, then derivation of its arrival time is more
involved. Flight 2’s scheduled arrival time is 𝑡𝑎2 = 𝑚+𝑏1+𝑡𝑔+𝑚+𝑏2, with
the last two terms capturing the scheduled duration of flight 2. When
flight 2 departs late, its actual arrival time is equal to the departure
time 𝑚 + 𝑒 + 𝑡𝑔 plus 𝑚 + 𝜖2. When 𝜖2 = 0, late arrival occurs when

𝑚 + 𝑒 + 𝑡𝑔 + 𝑚 + 0 > 𝑚 + 𝑏1 + 𝑡𝑔 + 𝑚 + 𝑏2 = 𝑡𝑎2, (7)

or when

𝑏1 + 𝑏2 + 𝑏𝑔 < 𝑒, (8)

with early arrival occurring when the inequality (8) is reversed. When
𝜖2 equals 𝑒 instead of 0, the zero on the LHS of (7) is replaced by 𝑒, and
the condition (8) for late arrival of flight 2 is replaced by

𝑏1 + 𝑏2 + 𝑏𝑔 < 2𝑒. (9)

Early arrival of flight 2 when 𝜖2 = 𝑒 occurs when the inequality in (9)
is reversed.

Table 1 shows how all this information can be used to build the
airline’s objective function for choosing 𝑏1, 𝑏2, and 𝑏𝑔 . The first column
f the table shows the different combinations of the random terms
1 and 𝜖2, with the second column showing the probabilities of the
ombinations. The third column shows the late/early cost for flight 1
assengers. The single-flight expression in (1) can be generated from
he table by just focusing on flight 1. The different expressions in
he ‘‘Flt. 1 Early/Late Cost’’ column would be multiplied by their
ssociated probabilities and summed, an exercise that leads to (1). To
ncorporate flight 2, the expressions in the ‘‘Flt. 2 Early/Late Cost"
olumn would also be weighted by their associated probabilities and
ummed, with the resulting expression added to (1) to get expected
ate/early cost for both flights.13 While (1) itself is fairly simple, the
esulting composite expression is much more complicated, involving

13 Note that ‘‘Early/Late Cost" expressions for flights 1 and 2 that appear
n the same row of Table 1 have no relation to one another aside from their
ppearance in the same ‘‘Random Outcome" block of the table.
3

many more conditional statements of the type 𝑏1 + 𝑏𝑔 > 𝑒, etc. But the
same approach used in excluding the second line of (1) can be applied
more broadly to generate a set of solutions for all three buffers.

To better understand the entries in the ‘‘Flt. 2 Late/Early Cost"
column, observe that in rows 1–3, 𝜖1 = 0 means that flight 2 departs
on time (noted in the next column), which in turn implies that the
early/late cost expressions for flight 2 are the same as those in the
single-flight case. In row 4, 𝜖1 = 𝑒, but with 𝑏1 + 𝑏𝑔 ≥ 𝑒 assumed,
flight 2 departs on time, and since 𝜖2 = 0 in these rows, flight 2 is
early, with early cost of 𝑦𝑏22. For the next two entries (in rows 5 and
6), 𝑏1+𝑏𝑔 < 𝑒 is assumed, so that Flight 2 departs late. Then, late/early
arrival is governed by (8) and the reverse inequality, with late time
equal to 𝑒−(𝑏1 + 𝑏2 + 𝑏𝑔) and early time the negative of this expression.
In rows 7 and 8, 𝜖2 = 𝑒, but flight 2 departs on time, so that the single-
flight expressions apply for flight 2. In rows 9 and 10, flight 2 departs
late, and late/early arrival is governed by (9), with the late/early times
adjusted accordingly.

3.2. Derivation of 𝑏∗1 and 𝑏∗2 solutions

Excess capacity is absent in the two-flight model,14 so that the cost
of scheduled flight and ground time is 𝑐𝑓 (𝑏1 + 𝑏2) + 𝑐𝑔𝑏𝑔 plus the
onstant 𝑐𝑓 (2𝑚). The airline’s goal is to minimize expected late/early
ost plus the first of these expressions, ignoring the constant. It is
seful to consider the first-order condition for 𝑏𝑔 first. Differentiating
he relevant expressions in Table 1, this condition is15

− 2𝑝(1 − 𝑝)𝑥(𝑒 − (𝑏1 + 𝑏2 + 𝑏𝑔)) if 𝑏1 + 𝑏𝑔 < 𝑒 and 𝑏1 + 𝑏2 + 𝑏𝑔 < 𝑒

+ 2𝑝(1 − 𝑝)𝑦(𝑏1 + 𝑏2 + 𝑏𝑔 − 𝑒) if 𝑏1 + 𝑏𝑔 < 𝑒 and 𝑏1 + 𝑏2 + 𝑏𝑔 > 𝑒

− 2𝑝2𝑥(2𝑒 − (𝑏1 + 𝑏2 + 𝑏𝑔)) if 𝑏1 + 𝑏𝑔 < 𝑒 and 𝑏1 + 𝑏2 + 𝑏𝑔 < 2𝑒

+ 2𝑝2𝑦(𝑏1 + 𝑏2 + 𝑏𝑔 − 2𝑒) if 𝑏1 + 𝑏𝑔 < 𝑒 and 𝑏1 + 𝑏2 + 𝑏𝑔 > 2𝑒

+ 𝑐𝑔 = 0. (10)

While (10) is not immediately useful in solving for 𝑏𝑔 , it can be
sed to solve for 𝑏1 and 𝑏2, eventually leading to a 𝑏𝑔 solution. In
ifferentiating the flight-2 components of the objective function with
espect to 𝑏1, the derivative contains the first four lines of (10), as can
e seen from differentiating the expressions in rows 5–6 and 9–10 of
able 1 with respect to 𝑏1. But from (10) itself, the sum of the first four

ines of (10) must equal −𝑐𝑔 at the optimum. Therefore, the derivative
f the flight-2 components of the objective function with respect to
1 equals −𝑐𝑔 . With the derivative of the above cost function equal to
𝑓 , it remains to add the derivative of the flight-1 components of the
bjective function. As noted above, these components equal the single-
light expression (1), which means that the derivative is equal to the
irst two terms in (2). Adding 𝑐𝑓 − 𝑐𝑔 , the first-order condition is then
dentical to the condition (2) from the single-flight model.16 Therefore,
he optimal value of 𝑏1 in the two-flight model is the same as the solution
∗
1 in the single-flight model.

This result also emerges in the analysis of BCG. The implication
s that flight 1’s buffer, being the same as in the single-flight model
here delay propagation is absent, plays no role in addressing delay
ropagation in the two-flight model. As a result, delay propagation
s dealt with entirely by flight 2’s buffer and the ground buffer. The
ntuitive explanation is that, while a lengthening of flight 1’s buffer to

14 BCG explore the effects of changing the current excess-capacity assump-
tions by adding it to the two-flight model, so that extra ground time exists
after flight 2. In the current setting, the buffers would then be set to eliminate
the chance of late arrival for flight 2, as in BCG. The effect of removing excess
capacity from the single-flight model can also be investigated.

15 Since the 𝑏𝑔 -derivative of (10) is positive, the second-order condition is
satisfied.

16 The second-order condition is again satisfied here and in the choice of 𝑏2

below.
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Table 1
Objective function components.

Random Probability Flt. 1 Flt. 1 Flt. 2 Flt. 2 dep. Flt. 2 row
outcome Early/Late cost Arrival Early/Late cost on time Arrival #

𝜖1 = 0, 𝜖2 = 0 (1 − 𝑝)2 𝑦𝑏21 early 𝑦𝑏22 yes early 1

𝜖1 = 0, 𝜖2 = 𝑒 (1 − 𝑝)𝑝 𝑦𝑏21 early 𝑥(𝑒 − 𝑏2)2 𝑖𝑓 𝑏2 < 𝑒 yes late 2
𝑦(𝑏2 − 𝑒)2 𝑖𝑓 𝑏2 ≥ 𝑒 yes early 3

𝜖1 = 𝑒, 𝜖2 = 0 𝑝(1 − 𝑝) 𝑥(𝑒 − 𝑏1)2 𝑖𝑓 𝑏1 < 𝑒 late 𝑦𝑏22 𝑖𝑓 𝑏1 + 𝑏𝑔 ≥ 𝑒 yes early 4

𝑦(𝑏1 − 𝑒)2 𝑖𝑓 𝑏1 ≥ 𝑒 early 𝑥(𝑒 − (𝑏1 + 𝑏2 + 𝑏𝑔 ))2 𝑖𝑓 𝑏1 + 𝑏𝑔 < 𝑒 no late 5
and 𝑏1 + 𝑏2 + 𝑏𝑔 < 𝑒

𝑦(𝑏1 + 𝑏2 + 𝑏𝑔 − 𝑒)2 𝑖𝑓 𝑏1 + 𝑏𝑔 < 𝑒 no early 6
and 𝑏1 + 𝑏2 + 𝑏𝑔 ≥ 𝑒

𝜖1 = 𝑒, 𝜖2 = 𝑒 𝑝2 𝑥(𝑒 − 𝑏1)2 𝑖𝑓 𝑏1 < 𝑒 late 𝑥(𝑒 − 𝑏2)2 𝑖𝑓 𝑏1 + 𝑏𝑔 ≥ 𝑒 yes late 7
and 𝑏2 < 𝑒

𝑦(𝑏1 − 𝑒)2 𝑖𝑓 𝑏1 ≥ 𝑒 early 𝑦(𝑏2 − 𝑒)2 𝑖𝑓 𝑏1 + 𝑏𝑔 ≥ 𝑒 yes early 8
and 𝑏2 ≥ 𝑒

𝑥(2𝑒 − (𝑏1 + 𝑏2 + 𝑏𝑔 ))2 𝑖𝑓 𝑏1 + 𝑏𝑔 < 𝑒 no late 9
and 𝑏1 + 𝑏2 + 𝑏𝑔 < 2𝑒

𝑦(𝑏1 + 𝑏2 + 𝑏𝑔 − 2𝑒)2 if 𝑏1 + 𝑏𝑔 < 𝑒 no early 10
and 𝑏1 + 𝑏2 + 𝑏𝑔 ≥ 2𝑒
m
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address delay propagation would distort its role in balancing early and
late costs for flight 1, the ground buffer offers a superior, nondistorting
instrument for addressing propagation. Therefore, reliance on flight 1’s
buffer is inefficient.

From the solution in (3), 𝑏∗1 is less than 𝑒. It is easy to see that
∗
1 + 𝑏∗𝑔 must also be less than 𝑒, using (10). To proceed, suppose to the
ontrary that 𝑏∗1 + 𝑏∗𝑔 ≥ 𝑒. Then none of the conditions in the first four
ines is satisfied, so that the derivative of the objective function with
espect to 𝑏𝑔 equals 𝑐𝑔 . With the function thus increasing in 𝑏𝑔 when
1+𝑏𝑔 ≥ 𝑒, values that satisfy this inequality cannot be optimal, so that
he optimum must satisfy 𝑏∗1+𝑏

∗
𝑔 < 𝑒. As a result, under the optimal ground

uffer, flight 2 departs late when flight 1 arrives late, otherwise departing on
ime. Note that the costliness of ground time means that it is not optimal
o eliminate the chance of late departure for flight 2. The ground buffer,
owever, reduces the extent of the departure’s lateness. While flight 1
rrives 𝑒 − 𝑏∗1 minutes late, flight 2 departs 𝑒 − 𝑏∗1 − 𝑏∗𝑔 minutes late, a
maller value.

In differentiating the objective function with respect to 𝑏2, satisfac-
ion of 𝑏∗1 + 𝑏∗𝑔 < 𝑒 rules out the flight-2 cases in rows 4, 7, and 8 of
able 1, leaving only the cases where flight 2 departs late. As with 𝑏1,
he 𝑏2 derivative of the flight-2 components in lines 5–6 and 9–10 is
he same as the first four lines of (10). With 𝑏𝑔 chosen optimally, this
erivative is then again equal to −𝑐𝑔 . Initially assuming 𝑏2 ≥ 𝑒 and
ifferentiating the remaining flight-two components in rows 1 and 3,
he result is then added to 𝑐𝑓 (the 𝑏2-derivative of the cost term) minus
𝑔 , yielding 2(1 − 𝑝)2𝑦𝑏2 + 2(1 − 𝑝)𝑝𝑦(𝑏2 − 𝑒) + 𝑐𝑓 − 𝑐𝑔 . Positivity of this
xpression means that 𝑏2 < 𝑒 must instead be optimal, and using rows
and 2 then yields the first-order condition

(1 − 𝑝)2𝑦𝑏2 − 2(1 − 𝑝)𝑝𝑥(𝑒 − 𝑏2) + 𝑐𝑓 − 𝑐𝑔 = 0 (11)

nd the solution
∗
2 =

𝑝𝑥
𝑝𝑥 + (1 − 𝑝)𝑦

𝑒 − 1
1 − 𝑝

𝑐𝑓 − 𝑐𝑔
2[𝑝𝑥 + (1 − 𝑝)𝑦]

. (12)

This solution is the same as the single-flight solution on the RHS
of (3) except for the 1∕(1 − 𝑝) term in the second expression. This
term, being larger than 1, makes the solution smaller than the RHS of
(3). Therefore, the optimal value of 𝑏2 in the two-flight model is smaller
than the single-flight value, a result that also holds in BCG’s model when
𝑐𝑓 > 𝑐𝑔 . To understand this conclusion, recall that flight 2’s buffer and
the ground buffer are together responsible for addressing early/late
arrival of flight 2. When flight 2 departs late, 𝑏2 and 𝑏𝑔 are in fact
4

perfect substitutes in this task, given that they appear in summation
form in lines 5–6 and 9–10 in Table 1. But since 𝑐𝑓 > 𝑐𝑔 , 𝑏2 is a
ore expensive instrument than 𝑏𝑔 , making usage of the ground buffer
referable and pushing 𝑏2 toward zero. However, 𝑏2 still plays a role in
ddressing flight 2’s late arrival when the flight departs on time, as seen
n lines 1–3 of Table 1. Therefore, 𝑏2 is not set at zero, but downward
ressure from the late-departure case makes it optimal to set 𝑏2 below
he single-flight value.

The effects of the parameters on 𝑏∗2 are the same as the effects on 𝑏∗1
ith the exception of the effect of 𝑝, which is ambiguous. The reason

or this ambiguity is that the increase in 1∕(1 − 𝑝) when 𝑝 rises offsets
he decrease in the last ratio in (12), leaving the net effect unclear.17

ummarizing yields

𝜕𝑏∗2
𝜕𝑒

> 0,
𝜕𝑏∗2
𝜕𝑐𝑓

< 0,
𝜕𝑏∗2
𝜕𝑐𝑔

> 0,
𝜕𝑏∗2
𝜕𝑥

> 0,
𝜕𝑏∗2
𝜕𝑦

< 0,
𝜕𝑏∗2
𝜕𝑝

> (<) 0.

(13)

In contrast to (13), the model of BCG, because of its greater complexity,
was unable to generate any comparative-static results at all for 𝑏∗2.

3.3. Solving for 𝑏∗𝑔

To solve for 𝑏∗𝑔 , the first step is to note that the inequalities 𝑏∗2 < 𝑒
and 𝑏∗1 + 𝑏∗𝑔 < 𝑒 imply 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 2𝑒. This inequality means that
he buffers take values smaller than the ones that would completely
liminate the chance of late arrival for flight 2 when it departs late.
ote that satisfaction of 𝑏∗1+𝑏

∗
2+𝑏

∗
𝑔 ≥ 2𝑒 would also imply 𝑏∗1+𝑏

∗
2+𝑏

∗
𝑔 ≥ 𝑒,

so that neither of the conditions (8) and (9) for lateness of flight 2 when
it departs late would hold.

Next, observe that 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 2𝑒 allows the case in the fourth
ine of (10) to be ruled out. The 𝑏𝑔 solution still depends, however, on
hether 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 is smaller or larger than 𝑒. In the first case, the

econd line of (10) is excluded, leaving the first, third and fifth lines.
he first-order condition for 𝑏𝑔 is then

2𝑝(1−𝑝)𝑥(𝑒−(𝑏1+𝑏2+𝑏𝑔)) − 2𝑝2𝑥(2𝑒−(𝑏1+𝑏2+𝑏𝑔)) + 𝑐𝑔 = 0. (14)

Solving for 𝑏1 + 𝑏2 + 𝑏𝑔 then yields

∗
1 + 𝑏∗2 + 𝑏∗𝑔 = (1 + 𝑝)𝑒 −

𝑐𝑔
2𝑝𝑥

< 𝑒. (15)

17 If 𝑐𝑓 − 𝑐𝑔 is small, this ambiguous effect will be dominated by the positive
𝑝 effect from the first term in (12), making 𝜕𝑏∗∕𝜕𝑝 > 0.
2
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Alternatively, when 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 ≥ 𝑒 holds, solving using the second,
third and fifth lines of (10) yields

𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 =
[

1 +
𝑝𝑥

𝑝𝑥 + (1 − 𝑝)𝑦

]

𝑒 −
𝑐𝑔

2𝑝[𝑝𝑥 + (1 − 𝑝)𝑦]
≥ 𝑒. (16)

By inspection, the inequality 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 2𝑒 is validated by the
olutions in (15) and (16). But in addition, the solutions in (15) (in
16)) must actually be less than (greater than or equal to) 𝑒. From
nspection, the RHS of (15) is less than 𝑒 when 𝑒 < 𝑐𝑔∕2𝑝2𝑥, and
earrangement shows that the RHS of (16) is greater than or equal to 𝑒
hen the reverse of the previous inequality holds. Using this condition
long with (15) and (16), the solution for 𝑏𝑔 can then be written

∗
𝑔 =

⎧

⎪

⎨

⎪

⎩

(1 + 𝑝)𝑒 − 𝑐𝑔∕2𝑝𝑥 − 𝑏∗1 − 𝑏∗2 if 𝑒 < 𝑐𝑔∕2𝑝2𝑥
[

1 + 𝑝𝑥
𝑝𝑥+(1−𝑝)𝑦

]

𝑒 − 𝑐𝑔
2𝑝[𝑝𝑥+(1−𝑝)𝑦] − 𝑏∗1 − 𝑏∗2 if 𝑒 ≥ 𝑐𝑔∕2𝑝2𝑥,

(17)

with 𝑏∗1 and 𝑏∗2 given by (3) and (12).18

Turning to comparative-static effects, since an increase in 𝑥 raises
the first two terms in the solutions in (17) while also raising 𝑏∗1 and
𝑏∗2, the net effect on 𝑏∗𝑔 is unclear. Since 𝑏∗1 and 𝑏∗2 are decreasing in 𝑦,
the first 𝑏∗𝑔 solution is increasing in 𝑦, although 𝑦’s effect on the second
solution in (17) is unclear given the ambiguous response of the first
part of the solution. However, because 𝑏∗1 and 𝑏∗2 are decreasing in 𝑐𝑓 ,
𝑏∗𝑔 increases with 𝑐𝑓 . Moreover, because 𝑏∗1 and 𝑏∗2 increase with 𝑐𝑔 and
the second terms in (17) decrease with 𝑐𝑔 , 𝑏∗𝑔 is decreasing in 𝑐𝑔 . The
effects of 𝑐𝑓 and 𝑐𝑔 thus conform to intuition. Finally, because the effect
of 𝑝 on 𝑏∗2 is ambiguous, 𝑏∗𝑔 also responds ambiguously to an increase
in 𝑝. Summarizing yields
𝜕𝑏∗𝑔
𝜕𝑐𝑓

> 0,
𝜕𝑏∗𝑔
𝜕𝑐𝑔

< 0,
𝜕𝑏∗𝑔
𝜕𝑥

< (>) 0,
𝜕𝑏∗𝑔
𝜕𝑦

> (<) 0,
𝜕𝑏∗𝑔
𝜕𝑝

> (<) 0. (18)

The effect of the parameter 𝑒 remains to be considered. Focusing
just on the 𝑒 terms in the solutions from (17) and using (3) and (12),
the 𝑒 term from the first line equals

(1 + 𝑝)𝑒 − 2
𝑝𝑥

𝑝𝑥 + (1 − 𝑝)𝑦
𝑒 =

(1 − 𝑝)((1 + 𝑝)𝑦 − 𝑝𝑥)
𝑝𝑥 + (1 − 𝑝)𝑦

𝑒. (19)

The factor multiplying 𝑒 is negative (positive) as 𝑥 > (<) ((1 + 𝑝)∕𝑝)𝑦,
so that the effect of 𝑒 on 𝑏∗𝑔 can take either sign (recall that 𝑥 > 𝑦
is assumed). For the second solution in (17), the 𝑒 effect is positive.19

herefore, the derivative 𝜕𝑏∗𝑔∕𝜕𝑒 can take either sign, indicating that
he ground buffer can be either increasing or decreasing in the size of the
light disruption, as measured by 𝑒. Since this somewhat counterintuitive
esult appeared in a comparative-static simulation in the more complex
odel of BCG, its appearance here as well is noteworthy. Evidently, the
ositive responses of 𝑏∗1 and 𝑏∗2 to a higher 𝑒 obviate the need for an

unambiguous similar response in 𝑏∗𝑔 . Despite this common conclusion,
BCG’s analysis produced no general comparative-static results for 𝑏∗𝑔 , in
contrast to the 𝑐𝑓 and 𝑐𝑔 effects in (18).

Even though the comparative statics for 𝑏∗𝑔 are mostly ambiguous,
arameter effects on the sum of the buffers are more often determinate.
he 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 solutions in (15) and (16) are increasing in 𝑝, 𝑒, 𝑥, de-
reasing in 𝑐𝑔 , independent of 𝑐𝑓 and either unaffected or ambiguously

18 While the inequality 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 2𝑒 is validated by the solutions in
(15)–(16) and conditions for 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < (≥) 𝑒 have been given, whether
he inequality 𝑏∗1 + 𝑏∗𝑔 < 𝑒 is validated by the actual solutions remains to be
hecked. Using the first line of (17) to solve for 𝑏∗1 + 𝑏∗𝑔 when 𝑒 < 𝑐𝑔∕2𝑝2𝑥,

the condition 𝑏∗1 + 𝑏∗𝑔 < 𝑒 reduces to a complicated inequality involving all
of the model’s parameters, which is assumed to hold. When 𝑒 ≥ 𝑐𝑔∕2𝑝2𝑥, the
inequality 𝑏∗1 + 𝑏∗𝑔 < 𝑒 reduces to the condition 𝑝𝑐𝑓 < 𝑐𝑔 , which must then hold
along with the maintained assumption 𝑐𝑓 > 𝑐𝑔 .

19 The 𝑒 expression equals the bracketed term in the second line with
the second term in (19) again subtracted off. This difference equals 𝑒 times
5

(1 − 𝑝)𝑦∕(𝑝𝑥 + (1 − 𝑝)𝑦).
affected by 𝑦. Thus, letting 𝑆∗ denote 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 ,

𝜕𝑆∗

𝜕𝑒
> 0, 𝜕𝑆∗

𝜕𝑐𝑓
= 0, 𝜕𝑆∗

𝜕𝑐𝑔
< 0, 𝜕𝑆∗

𝜕𝑥
> 0, 𝜕𝑆∗

𝜕𝑦
> (<) 0, 𝜕𝑆∗

𝜕𝑝
> 0.

(20)

ith 𝑆∗ effectively capturing the airline’s overall effort to address
arly/late arrivals and delay propagation via schedule buffers, it is
atural that 𝑆∗ increases with the size 𝑒 and probability 𝑝 of a flight
isruption and with the cost 𝑥 of lateness. Since the three buffers
ombined involve both flight and ground time, the effects of 𝑐𝑓 and
𝑔 on 𝑆∗ are unclear a priori, although determinate effects are seen in
20).

As a final exercise, it is useful to compute the probability of late
rrival for flight 2, making use of the preceding results. Consider first
he case where 𝑒 < 𝑐𝑔∕2𝑝2𝑥. When flight 2 departs on time, with 𝜖1 = 0,
t arrives late when 𝜖2 = 𝑒, events that have probability (1 − 𝑝)𝑝. The
light also arrives late when 𝜖1 = 𝑒 (implying late departure) and 𝜖2 = 0,
iven that 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 𝑒 holds when 𝑒 is small (these events have
robability 𝑝(1 − 𝑝)). In addition, flight 2 arrives late when 𝜖1 = 𝑒 and
2 = 𝑒 since 𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔 < 2𝑒 holds, events that have probability 𝑝2.
herefore, the probability of late arrival for flight 2 when 𝑒 is small
quals (1 − 𝑝)𝑝 + 𝑝(1 − 𝑝) + 𝑝2 = 𝑝(2 − 𝑝) > 𝑝. When 𝑒 is large, satisfying
≥ 𝑐𝑔∕2𝑝2𝑥, flight 2 arrives on time when 𝜖1 = 𝑒 and 𝜖2 = 0 since

∗
1 + 𝑏∗2 + 𝑏∗𝑔 > 𝑒 then holds. The middle term in the previous probability
um is then replaced with zero, while the other two terms remain the
ame, so that the sum becomes (1 − 𝑝)𝑝 + 𝑝2 = 𝑝. Thus, the probability
f late arrival for flight 2 exceeds (equals) 𝑝 when 𝑒 is small (large), so
hat the probability across the two 𝑒 cases is at least as large flight 1’s
robability 𝑝 of late arrival, a natural conclusion given that flight 2 is subject
o delay propagation. Note, however, the flight 2’s probability of late
rrival is larger when 𝑒 is small than when 𝑒 is large, a counterintuitive
onclusion that is presumably related to the unexpected effects of 𝑒 on
he ground buffer.

. Extensions

This section considers two extensions to the model that were not
resent in BCG’s analysis. The first is correlation in the random shocks
ffecting flight durations and the second is stochastic ground times.

.1. Correlation between 𝜖1 and 𝜖2

While the random factors affecting flight 1’s and 2’s durations have
o far been assumed to be independent, it is useful to investigate the
ase where 𝜖1 and 𝜖2 are correlated. To this end, let 𝑅 denote the
ovariance between 𝜖1 and 𝜖2, which will be positive when common
actors affect the durations of flights 1 and 2. For example, because
light 1’s destination airport is flight 2’s origin, bad weather at that
irport will add to the durations of both flights.

When the 𝜖’s are correlated, it can be shown that Prob(𝜖1 = 𝑒, 𝜖2 =
) = 𝑝2 + 𝑅, where 𝑝 is now defined by E(𝜖𝑖) = 𝑝𝑒.20 In addition,
rob(𝜖1 = 0, 𝜖2 = 0) = (1 − 𝑝)2 + 𝑅 and Prob(𝜖1 = 0, 𝜖2 = 𝑒) =
rob(𝜖1 = 𝑒, 𝜖2 = 0) = 𝑝(1 − 𝑝) − 𝑅.21

Substituting these probabilities in the probability column of Table 1,
ew buffer solutions can be computed. It is easy to see that the 𝑏1

20 In the uncorrelated case, the expected value of 𝜖𝑖 also equaled 𝑝𝑒, but 𝑝
was defined as Prob(𝜖𝑖 = 0), a probability that is not relevant in the correlated
case.

21 See https://math.stackexchange.com/questions/2329573/joint-
probability-distribution-of-two-bernoulli-r-v-with-a-correlation-r.

https://math.stackexchange.com/questions/2329573/joint-probability-distribution-of-two-bernoulli-r-v-with-a-correlation-r
https://math.stackexchange.com/questions/2329573/joint-probability-distribution-of-two-bernoulli-r-v-with-a-correlation-r


Economics of Transportation 26-27 (2021) 100218J.K. Brueckner et al.

I
g
e
𝑏
𝑏
c
g

t

a
O
a
w

t
𝑚
s
(
A
o

𝑐

S
o
y
o

𝑏

t

a
o
m
i
i
m
f
c

5

a
t
T
i
e
o
c

v
o
e
e
f
w
s
a
w
v
i

C

n
G

R

A

solution remains the same as before, given by (3). The 𝑏2 solution is
now given by22

𝑏∗2 = 𝑒
(

1 +
(1 − 𝑝)2 + 𝑅
(1 − 𝑝)𝑝 − 𝑅

𝑦
𝑥

)−1

− 1
1 − 𝑝

𝑐𝑓 − 𝑐𝑔
2[𝑝𝑥 + (1 − 𝑝)𝑦 − (𝑥 − 𝑦)𝑅∕(1 − 𝑝)]

. (21)

Inspection of (21) shows that 𝑏∗2 is decreasing in 𝑅, so that moving from
the independent case (𝑅 = 0) to the positive-covariance case, where
𝑅 > 0, reduces flight 2’s buffer, with 𝜕𝑏∗2∕𝜕𝑅 < 0. While it is natural
that 𝑏∗1 is unaffected by 𝑅, a higher 𝑅 raises the likelihood that both 𝜖’s
are positive, making late departure and arrival for flight 2 more likely
relative to the case where the flight departs on time (which occurs when
only 𝜖2 is positive). As a result, the downward pressure on 𝑏2 that arises
in the late departure case (as discussed above) is strengthened, causing
the buffer to fall as 𝑅 increases.23

These forces are further revealed in the solution for the sum of the
buffers, which is given by

𝑏∗1 + 𝑏∗2 + 𝑏∗𝑔

=

⎧

⎪

⎨

⎪

⎩

(𝑝 + 1 + 𝑅∕𝑝)𝑒 − 𝑐𝑔∕2𝑝𝑥 if 𝑒 < 𝑐𝑔
2𝑥(𝑝2+𝑅)

(

1 +
[

1 + (1−𝑝)𝑝−𝑅
𝑝2 +𝑅

𝑦
𝑥

]−1
)

− 1
𝑝

𝑐𝑔
2[𝑝𝑥+(1−𝑝)𝑦+(𝑥−𝑦)𝑅∕𝑝]

if 𝑒 ≥ 𝑐𝑔
2𝑥(𝑝2+𝑅)

.

(22)

nspection of (22) shows that the buffer sum is increasing in 𝑅, so that a
reater covariance raises the airline’s overall buffer-driven effort to address
arly/late arrivals and delay propagation. This conclusion, combined with
∗
1 ’s independence of 𝑅 and 𝑏∗2 ’s inverse relationship, then implies that
∗
𝑔 must increase with 𝑅, so that 𝜕𝑏∗𝑔∕𝜕𝑅 > 0. Note that these kinds of
onclusions were well beyond the reach of BCG’s analysis, given the
reater complexity of their model.

Returning to the assumption of independent 𝜖’s, it also possible to
investigate the effect of flight-specific 𝑝 values, 𝑝1 and 𝑝2. Flight 1’s
buffer is naturally independent of 𝑝2, while if 𝑥 is sufficiently close to
𝑦, an increase in 𝑝2 raises 𝑏∗2 without affecting 𝑏∗𝑔 , an intuitively sensible
conclusion.

4.2. Random ground time

Suppose that instead of flight durations being random, aircraft
ground time is stochastic, a result of unforeseen factors that slow the
turnaround time between flights. Flight durations are now equal to 𝑚,
but the minimum turnaround time equals 𝑡𝑔 +𝑒𝑔 with probability 𝑞 and
𝑡𝑔 with probability 1 − 𝑞, where 𝑒𝑔 > 0. With a flight disruption absent
for flight 1, a buffer is unneeded, which means that its scheduled and
actual arrival time is 𝑚. Flight 2’s scheduled departure time is 𝑚 + 𝑡𝑔 ,
and it departs late if 𝑚 plus the disrupted minimum turnaround time
exceeds this value, or if 𝑚 + 𝑡𝑔 + 𝑒𝑔 > 𝑚 + 𝑡𝑔 , which reduces to 𝑏𝑔 < 𝑒𝑔 .

With a flight buffer potentially optimal, flight 2’s scheduled arrival
time is 𝑚 + 𝑡𝑔 + 𝑚 + 𝑏2. When no turnaround disruption occurs, flight
2’s arrival time is 𝑚+ 𝑡𝑔 +𝑚, making it 𝑏2 minutes early and yielding a
cost of 𝑦𝑏22, which occurs with probability 1 − 𝑞.

When a turnaround disruption occurs and 𝑏𝑔 ≥ 𝑒𝑔 holds, flight 2
departs on time and arrives early, leading again to an early cost of 𝑦𝑏22,
which occurs with probability 𝑞. Adding (1 − 𝑞)𝑦𝑏22, 𝑞𝑦𝑏

2
2 and the buffer

costs 𝑐𝑓 𝑏2 + 𝑐𝑔𝑏𝑔 , overall expected cost is increasing in both 𝑏2 and 𝑏𝑔 ,
ruling out optimality of the case where 𝑏𝑔 ≥ 𝑒𝑔 .

22 It is easily seen by rearrangement that the first expression in (21) reduces
o the analogous expression in (12) when 𝑅 = 0.
23 Note that a positive 𝑅 also increases the probability that both 𝜖’s are zero,
n outcome under which a small 𝑏2 is favored, so as to reduce earliness cost.
bserve also that, if 𝑦 were greater than 𝑥, the effect of 𝑅 on 𝑏2 would become
mbiguous. Evidently, 𝑥 > 𝑦 is needed for a determinate effect because more
6

eight is then placed on the late-arrival as opposed to early-arrival outcomes.
Thus, 𝑒𝑔 > 𝑏𝑔 must hold, so that flight 2 departs late when a
urnaround disruption occurs. Flight 2’s actual arrival time is then
+ 𝑡𝑔 + 𝑒𝑔 +𝑚, and this time is greater than (less than or equal to) the

cheduled arrival time as 𝑚+𝑡𝑔+𝑒𝑔+𝑚 > (≤) 𝑚+𝑡𝑔+𝑚+𝑏2, or as 𝑏𝑔+𝑏2 <
≥) 𝑒𝑔 , yielding late (early) minutes equal to 𝑒𝑔 − 𝑏𝑔 + 𝑏2 (𝑏𝑔 + 𝑏2 − 𝑒𝑔).
dding buffer costs and earliness cost when no flight disruption occurs,
verall expected cost is then

𝑓 𝑏2 + 𝑐𝑔𝑏𝑔 + (1− 𝑞)𝑦𝑏22 +

{

𝑞𝑥(𝑒𝑔 − (𝑏𝑔 + 𝑏2))2 if 𝑏𝑔 + 𝑏2 < 𝑒𝑔
𝑞𝑦(𝑏𝑔 + 𝑏2 − 𝑒𝑔)2 if 𝑏𝑔 + 𝑏2 ≥ 𝑒𝑔 .

(23)

ince (23) is increasing in 𝑏𝑔 and 𝑏2 when 𝑏𝑔 + 𝑏2 ≥ 𝑒𝑔 , the first line
f the expression is relevant. Differentiating and solving for the buffers
ields a negative solution for 𝑏∗2, which is inadmissible. Therefore, 𝑏∗2 is
ptimally set at zero, in which case

∗
𝑔 = 𝑒𝑔 −

𝑐𝑔
2𝑞𝑥

. (24)

The ground buffer is increasing in the size 𝑒𝑔 and probability 𝑞 of the
urnaround disruption and decreasing in 𝑐𝑔 .

It makes intuitive sense that the potential turnaround disruptions
re addressed entirely by the ground buffer. The explanation of this
utcome is similar to that underlying the magnitude of 𝑏∗2 in the basic
odel, and it can be seen by considering the first line of (23) while

gnoring the (1−𝑞)𝑦𝑏22 term. While the two buffers are perfect substitutes
n reducing lateness cost (appearing as a sum), the flight buffer is
ore expensive. As a result, the ground buffer is favored, and this

orce is further amplified when the earliness-cost term (1− 𝑞)𝑦𝑏22 is also
onsidered, making 𝑏2 = 0 optimal.

. Conclusion

This paper has provided a simplified version of the schedule-buffer
nalysis of Brueckner et al. (2021), using a more transparent model
hat generates closed-form solutions and comparative-static results.
his approach helps to generate fuller insights into a conceptually

ntriguing optimization problem while allowing exploration of several
xtensions not considered by BCG. Future work could perhaps build
n this simpler approach by including more than two flights or two
ompeting airlines.24

Beyond its theoretical interest, the analysis has real-world rele-
ance. Some of its predictions are confirmed by the empirical results
f BCG, which rely on voluminous USDOT data on the daily flight op-
rations of individual aircraft to compute flight and ground buffers. For
xample, the results show that a higher flight-time variance (measured
or the same flight in the previous year) raises flight buffers, consistent
ith the impacts of 𝑒 and 𝑝 in (3) and (12). In addition, mixed evidence

hows that the variance’s effect on ground buffers is sometimes positive
nd sometimes negative, consistent with (19). Flight buffers also rise
ith airport congestion, another factor that may increase flight-time
ariability. Therefore, the paper’s theoretical analysis (like that of BCG)
s closely linked to actual outcomes.
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