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Abstract: Floods are threats seriously affecting people’s lives and property globally. Risk analysis
such as flood susceptibility assessment is one of the critical approaches to mitigate flood impacts.
However, the inadequate field survey and lack of data might hinder the mapping of flood susceptibil-
ity. The emergence of user-generated content (UGC) in the era of big data provides new opportunities
for flood risk management. This research proposed a flood susceptibility assessment model using
UGC as a potential data source and conducted empirical research in Ji’an County in China to make
up for the lack of ground survey data in mountainous-hilly areas. This article used python crawlers
to obtain the geographic location of the floods in Ji’an City from 2016 to 2019 from social media,
and the state-of-the-art MaxEnt algorithm was adopted to obtain the flood occurrence map. The
map was verified by the flood data crawled from reliable official media, which achieved an average
AUC of 0.857% and an overall accuracy of 93.1%. Several novel indicators were used to evaluate the
importance of conditioning factors from different perspectives. Land use, slope, and distance from
the river were found to contribute most to the occurrence of floods. Our findings have shown that the
proposed historical UG C-based model is practical and has good flood-risk-mapping performance.
The importance of the conditioning factors to the occurrence of floods can also be ranked. The reports
from stakeholders are a great supplement to the insufficient field survey data and tend to be valuable
resources for flood disaster preparation and mitigation in the future. Finally, the limitations and
future development directions of UGC as a data source for flood risk assessment are discussed.

Keywords: floods; user-generated content; susceptibility assessment; MaxEnt; mountainous areas

1. Introduction

Flood is a very common and quite destructive natural disaster around the world,
which is usually triggered by intense but short-term precipitation events [1]. Due to factors
such as terrain and climate, floods are especially prone to occurring in mountainous-hilly
areas [2–5]. In China, mountainous areas account for about two-thirds of the country’s
land area, and nearly half of Chinese towns are located in such areas. Among the total
flood-related deaths, deaths in mountain areas accounted for more than 70% [6,7]. Several
southeastern provinces of China (e.g., Jiangxi, Fujian, and Guangdong) suffered the most
from flooding due to the hilly terrain and high annual precipitation. In these flood-
prone areas, flood can damage massive houses and crops, causing substantial wealth
loss and increasing the possibility of regional poverty [8]. Due to the high risk of flood
disasters, flood monitoring and assessment have become necessary strategies for these
towns to formulate a sustainable land-use plan and increase urban resilience against climate
change [9].

Proper evaluation of flood risk in rural and mountainous areas is challenging. First of
all, quantification of flooding susceptibility is a multifaceted process. Floods not only occur
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as a result of excessive rainfall but also due to the comprehensive influence of various
factors such as hydrological, geological, geomorphological, and vegetation parameters [10].
When drawing flood sensitivity maps, the factors to be considered in mountainous ar-
eas are often more complicated than in large cities with flat terrain. Second, flood risk
assessment relies on a large number of observations and records of flood phenomena.
Many countries established geological disaster monitoring groups to collect field data,
and a couple of approaches such as systematic documentation collection, semi-structured
household interviews [11], and ground surveys were developed to help us identify the past
and current flooding locations [1,12]. Due to the remoteness and poor road infrastructure
in mountain villages, field data collection is inefficient and laborious [13,14]. In fact, even
in developed countries, the number of flood records is not enough for a comprehensive
understanding of flood events in mountainous areas [15]. The difficulties in field survey
and data shortage hinder flood experts and researchers in identifying flood-prone regions
and forecast flooding phenomena.

The emergence of UGC impacts the ways of field data collection and provides new
opportunities for flood disaster management. According to the Organization for Economic
Co-operation and Development (OECD), UGC refers to the content on the web which
is created outside of local observations and can take any form of images, texts, voices,
or videos [16,17]. In the era of big data, UGC increases at an annual exponential rate
owing to the widespread use of mobile phones and social media apps [18]. The rapidly
increasing UGC is becoming valuable in scientific research [19–21]. UGC was first ap-
plied to interdisciplinary research such as citizen journalism and consumers [22]. In the
past few years, the use of UGC was introduced into disaster management, and scholars
started focusing on how to utilize observations from ordinary residents in flood disaster
management [23,24]. Several scientists tried to use social media streaming data, such as
Twitter and Facebook, for hydrological monitoring and flood event early detection [18,25].
However, only a few studies have attempted to make flood susceptibility assessment by
combining users’ observations. (Fang and Hu et al., 2019) used Wuhan rainstorm in 2016
as an example and extracted information through a microblog platform to provide a basis
for disaster response, proving the usefulness of social media in disaster assessment [26].
(Zeng and Lan et al., 2020) used the simplest logistic regression model to explore the value
of UGC in modeling and mapping urban flood susceptibility. Nevertheless, these case
analyses are only focused on the geographical scope of large cities and fail to incorporate
the state-of-the-art machine learning algorithms into the model [27].

This study explored the integration of social media data with flood risk assessment
in mountainous-hilly areas. The Ji’an County is in Jiangxi Province of China, where flood
events frequently occurred and received much attention from users on the web in recent
years. The case analysis aimed to explore the potential of UGC in flood susceptibility
assessment. Our results indicate that UGC based on several years of users’ observations
can achieve satisfactory results in flood assessment. Stakeholders such as ordinary resi-
dents can play a critical role in disaster management despite them being non-scientists.
Considering the negative impacts of flood in mountainous areas, we argue that affected
citizens, spontaneous volunteers, and official emergency services should cooperate more
in flood disaster management in the future. Finally, bearing in mind the uncertainties
of UGC, the limitations of UGC are discussed, and several strategies are proposed for
its better application in flood disaster management. It is expected that the outcome can
provide insight for policy-makers on disaster prevention and mitigation and strengthen
the monitoring and risk management of flood disasters in mountainous areas, as well as
provide a reference for disaster prevention in other countries and cities with scarce data.

2. Study Area

Ji’an County (Figure 1) is one of the central cities of Jiangxi Province, where the Gan
River runs from south to north, bringing abundant rainfall. Ji’an’s geographical extent
is between latitudes of 25◦58′ to 27◦57′ N and longitudes of 113◦46′ to 115◦56′ E. The
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city is a typical mountainous and hilly landform, surrounded by mountains with the
Jitai Basin in the middle, whose elevation ranges from 100 m to 1542 m. The region is
composed of 13 administrative counties, with a total of 213 towns, covering a total area
of about 20,000 km2, and holds a population of 5.4 million. The climate of the study
area is dominated by a subtropical monsoon climate. The mean annual precipitation is
about 1504 mm with a mean temperature of approximately 17.8 degrees according to the
long-term (1988–2018) data from weather stations.
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Over the past five years, the city experienced catastrophic floods almost every year,
causing huge losses to the lives and property of the people in the village (Table 1). In
the flood event of 2019, from June 6 to June 9, the torrential rains and cyclonic storms
combined together to produce the most devastating flood disaster. According to the
statistics, the flood killed more than 15 people, collapsed more than 1300 houses, affected
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nearly 2 million people’s livelihoods, and destroyed thousands of hectares of crops. The
flood caused economic losses of USD 0.2 billion.

Table 1. Examples of severe flood events in 2016–2019.

Flood Period Affected People Affected Areas Direct Economic
Losses (USD)

6–9 June 2019 0.5 million Jizhou District, Jishui County, Yongxin County, and Suichuan County 190 million

6–7 July 2018 20 thousand 24 townships in Jishui, Qingyuan, Taihe, Wan’an, Yongfeng, and
other counties (districts) 121 million

4–8 May 2016 9 thousand Suichuan, Yongfeng, Jinggangshan, Jishui County, and other places 80 million

Although the flood events passed, the traces caused by floods remain on the Internet.
Online reports not only have words and pictures but are also full of videos and sympa-
thy for the victims. Thus, it is urgent to evaluate the flood susceptibility for the city’s
future development.

3. Research Method

Scientific communities have developed various approaches to assess flood hazards
and quantify flood susceptibility [28]. The earlier approaches included subjective expert
knowledge, frequency ratio, weighting factor, Shannon’s entropy, discriminant analysis,
bivariate or multivariate regression, generalized linear model, logistic regression, etc. [29].
Recently, several complex and more intelligent machine learning methods, such as artificial
neural networks (ANNs), support vector machines (SVMs), random forest (RF), and deci-
sion trees (DTs), are proposed for flood assessment [4,30,31]. All these statistical methods
are fit for flood susceptibility assessment.

Maximum entropy (MaxEnt) model was chosen particularly here because the model
is practical and requires relatively fewer training data and no need to generate non-flood
points for supervised classification. The MaxEnt model is an advanced machine learning
algorithm and was first used by scholars to study the distribution of animal and plant
populations [32–34]. The model was soon adopted by scholars in other research fields,
including flood sensitivity assessment research, and proved to be very accurate [35].

Here, it was used to verify the performance of UGC as source data to evaluate flood
susceptibility in mountainous areas.

The procedural approach (Figure 2) taken in the present research can be summarized
as (i) collection and preparation of the required data for the flood modeling in the study
area; (ii) retrieval of the flood historical events in UGC to determine geographical location
of floods; (iii) identification of key factors affecting flood occurrence and susceptibility
mapping; (iv) reliability assessment of the model by the division of training data, reported
by ordinary users and test data, reported on official websites; (v) statistical analysis of flood
susceptibility map and policy recommendations.

3.1. Data Collection

The Internet environment in China is different from that of many countries in the
world. For instance, Twitter, Facebook, YouTube, and WhatsApp are not popular in
the country. Compared to the Internet environment in other countries, the participation
platform in China is diverse. Individuals and business enterprises use social media tools
such as WeChat and Sina Blog to release news and disaster situation information on the
web. Several social networking sites (SNSs) such as Zhihu (similar to Quora), Baidu
Baike (similar to Wikipedia), and Tianya communities (a bulletin board service) are also
very popular among users for uploading and sharing disaster information. The users’
observations posted on the web are usually not well organized in a structured way. The
information relevant to the specific flood event is inundated with irrelevant information.
Fortunately, data mining technology and AI can help us retrieve unstructured data and
effectively search the relevant UGC for flood inventory.
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A web crawler combined with a natural language process (NLP) and social media ap-
plication programming interface (API) was designed and implemented to help us identify
the locations of flood events. The crawler searched 5689 records relating to the historical
flood events in Ji’an, which were obtained from 248 websites and 125 social media accounts
(BBSs, blogs, and microblogs), including authoritative media (e.g., Ji’an Evening News,
Xinhua, government official website). The result of the crawler was carefully reviewed
by three individuals on their types of posts, time, and geographical locations to remove
repetitive and error-prone points. After filtering, 242 disaster points uploaded by users
during 2016–2019 were considered very reliable, and their locations were labeled on a map
(Figure 3). Of these 242 sites, 162 were reported to occur in villages, 15 were located on the
street, and 65 occurred in other places such as a certain residential area, parking lot, or a
building, etc. (Table 2).

The crawled flood data were divided into two categories. One category was 191 points
in total floods, reported on social media, such as microblogs, WeChat, Tieba, etc., and
uploaded by ordinary users’ accounts. There were a total of 191 flood points, and they were
used to train the model. The other category was flood events published on a government
official website or from authentic news media such as Ji’an Headlines, Ji’an Evening News,
etc. There were 51 points in total, which were saved for model validation.

3.2. Conditioning Factors

Flood susceptibility assessment requires comprehensive consideration of various fac-
tors, including watershed features, storm characteristics, and regional characteristics. The
selection of conditioning factors should take into account both the natural topography and
land-use type. Based on previous studies, eight conditioning factors including elevation,
slope angle, aspect, curvature, rainfall, NDVI, LULC (land use/land cover), and distance
from rivers were selected to establish our flood model.
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Table 2. Location type and the results and rules of the crawled data.

Location
Type

Number of
Floods Proportion Search Engine Key Words Date Posted Source Type

Village 162 66.94%
Baidu Search,
Yahoo Search

Ji’an rainstorm,
(i’an flash flood,

Ji’an typhoon flood

25 February
2016–15 July

2019

News report, Weibo,
Blog, Baidu Post Bar,

TV news, WeChat
Street 15 6.2%

Others 65 26.86%

The factors were derived from different data resources such as DEM (Digital Ele-
vation Model), weather stations and publications, and satellite imagery. The data were
downloaded from Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 17 March
2020)) or National Geomatics Center of China (NGCA), respectively. The slope angle,
slope aspect, altitude, plan curvature, and profile curvature were extracted from ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global DEM. LULC
types were prepared from remote sensing image data. Distance-from-rivers map was
derived from the river distribution shapefile using the Euclidean distance tool in ArcGIS.
Table 3 summarizes the factors, data sources, and factor classes used in this study. All the
data layers were prepared in raster format with a spatial resolution of 30 m × 30 m.

Rainfall is a trigger factor leading to floods. The magnitude of rainfall directly affects
the severity of flood disaster. The spatial distribution of rainfall was obtained from a
30+ year quasi-global rainfall dataset, called Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS), which incorporates satellite imagery with in situ station data
to create gridded rainfall time series. This study filtered out the maximum daily rainfall
between 2016 and 2019 from the dataset in Google Earth Engine and used it for further
analysis. Elevation is also an important factor contributing to the occurrence of floods.
Generally, water flows downward due to the force of gravity, rainfall accumulates in the
low-lying areas, and thus lower elevation is more prone to flooding. Slope is another factor
frequently used in flood susceptibility assessment [36–38]. Slope directly affects surface

http://www.gscloud.cn/
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runoff velocity and vertical infiltration, thus affecting flood susceptibility. Note that areas
with smaller slopes are prone to floods. Aspect will affect precipitation, sunshine hours, and
soil moisture content, which indirectly affects the occurrence probability of flood [39,40].
Curvature represents the degree and direction of a curved surface, which determines
whether the water flows in a convergent or divergent manner. LULC is considered essential
for identifying flood-prone areas [41]. LULC affects runoff speed, sequestration, infiltration,
and evaporation transport [42]. Urban and impervious surfaces will increase rainwater
runoff. NDVI describes the vegetation density of a region. It is generally believed that
vegetation has an influence on both the surface runoff and infiltration capability of land [43].
NDVI was extracted from Landsat 8 OLI images by analyzing the spectral reflectance
measurements obtained in the visible (red) and near-infrared regions. River is also closely
related to floods. After a precipitation event, when discharge increases and overtops its
bank, floods may occur in the surrounding area [44]. Linda also concluded that river
networks play an important role in floods [45]. The closer a settlement is to the river, the
more vulnerable it is to floods. Figure 4 shows the maps of each conditioning factor.

3.3. MaxEnt Modeling for Flood Occurrence

Maximum entropy model (i.e., MaxEnt model) is a machine learning model that looks
for the most dispersed or the closest uniform distribution method to predict the probability
of occurrence of things under the condition of satisfying constraint rules. The model
only considers the known sample information in the calculation. By superimposing the
geographic location of the flood with all the input conditioning factors, a large number of
sample points is randomly generated, and then the corresponding relationship with the
conditioning factors is established to generate constraint rules. The model has two main
components: one is the entropy value, which is used to establish the objective function; the
other is the constraint, which is used to calibrate the model.

Assuming that the probability variable X ∈{x1, x2 . . . , xn} of flood occurrence in the
study area, its probability distribution is p(X = xi) = pi, i = 1, 2, . . . , n. Then the entropy
of the variable X is defined as:

H(X) = −
n
∑

i=1
p(xi) log p(xi)

= −
n
∑

i=1
p(X) log p(X)

H(X) depends on the distribution of X and has nothing to do with the specific value
of X. After introducing various conditioning factors Y (Y ∈ {y1, y2, . . . , yk}), the entropy
of the variable X under the condition known as Y is:

H(X|Y) =
k
∑

i=1
p(yi)H(X|Y = yi)

= −
k
∑

i=1
p(yi)

n
∑

j=1
p(xj|yi) log p(xj|yi)

We used the spatial analysis tools in ArcGIS software to calculate the geographic
coordinates of the flood points and input them into MaxEnt model. According to the
principle of maximum entropy, the objective function of the maximum entropy (MaxEnt)
model is:

X∗ = argmaxH(X|Y)

The maximum entropy model continuously adjusts the parameter values through the
random seed generation algorithm to find the optimal solution. To prevent the result from
falling into a local optimum, this study used the average value of multiple training results
as the final result and obtained the flood susceptibility map.



Sustainability 2021, 13, 6929 8 of 18Sustainability 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 
Figure 4. Condition factors for flood susceptibility assessment. (a) Rainfall, (b) DEM, (c) Slope, (d) 
Aspect, (e) Curvature, (f) LULC, (g) NDVI, (h) Distance from river. 
Figure 4. Condition factors for flood susceptibility assessment. (a) Rainfall, (b) DEM, (c) Slope,
(d) Aspect, (e) Curvature, (f) LULC, (g) NDVI, (h) Distance from river.



Sustainability 2021, 13, 6929 9 of 18

Table 3. Data source and dataset used in this study.

No. Data Category Source of Data GIS Data Type Scale Derived Map

1 Rainfall data Google Earth GRID 30 m × 30 m Maximum daily rainfall

2 Topographic map DEM GRID 30 m × 30 m Elevation, Slope, Aspect,
Curvature

3 Satellite imagery OLI of Landsat 8 image GRID 30 m × 30 m LULC, NDVI
4 River distribution data NGCA Shape file - Distance from rivers

3.4. Quality Assessment and Validation

The accuracy detection of the flood susceptibility map is important for verifying the
effectiveness of UGC.

Several statistical indices, such as confusion matrix, receiver operating characteristic
(ROC), and area under curve (AUC), were used to assess the performance of a classifier [46].
Four parameters in confusion matrix, namely true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), widely used in different types of evaluation models,
such as decision tree, logistic regression, and linear discriminant analysis [7,47], were
calculated (see Table 4).

Table 4. Confusion matrix.

Reference Points

Flood Non-Flood

Predicted Points
Flood True Positive, TP False Positive, FP

Non-flood False Negative, FN True Negative, TN

According to the confusion matrix, the indexes for model validity can be calculated.
The overall accuracy (OA) represents the proportion of samples that predict correctly (TP
and TN) in all samples.

OA =
TP + TN

TP + TN + FP + FN
OA can directly reflect the correct proportion of points, but when the number of

samples in each category is not balanced, it is necessary to use the Kappa coefficient to
evaluate the accuracy of the model, which is calculated as follows.

Kappa = OA−pe
1−pe

pe =
TP+TN×TP+FP+(FP+TN)×(FN+TN)

(TP+TN+FP+FN)2

The Kappa coefficient is a measure of the comparison between the effective prediction
result and random guess, and the value is between 0 and 1. The higher the Kappa coefficient,
the higher the explanatory power of the model.

Both OA and Kappa coefficients are an evaluation of the overall performance of the
model. Some models may have high overall accuracy, but the prediction of a certain
category contains a large number of errors. For a single category, there are producer’s accu-
racy and user’s accuracy to measure the prediction error in a single category. Producer’s
accuracy (PA) is calculated by dividing the number of correctly predicted points by the total
reference points: for flood, = TP

TP+FN ; for non-flood, PA = FP
FP+TN . User’s accuracy (UA) is

another indicator that characterizes the number of missed errors in a single category. It is
the number of correctly predicted points divided by the total number of predicted points:
for flood, = TP

TP+FP ; for non-flood, UA = FN
FN+TN ,
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4. Results
4.1. Conditioning Factor Statistics

Before modeling, the independence of variables was tested using the Statistical Pack-
age for the Social Sciences (SPSS). When two or more variables are highly correlated,
multicollinearity appears, which is an issue that should be seriously considered. In statis-
tics, two parameters called tolerance (TOL) and the variance inflation factor (VIF, the
reciprocal of the TOL) are widely used to indicate whether multicollinearity appears. In
general, if the value of TOL is greater than 0.1 and VIF is less than 10, then it indicates
that there is no multicollinearity among the variables. Herein, according to the criteria, the
model satisfies the requirements of no multicollinearity (Table 5).

Table 5. Multicollinearity analysis of the predictors.

Predictors TOL VIF

X1: Slope 0.534 1.872
X2: Aspect 0.922 1.085

X3: Elevation 0.280 3.576
X4: Land use 0.907 1.103
X5: Rainfall 0.842 1.188
X6: NDVI 0.474 2.110

X7: Curvature 0.983 1.017
X8: Distance from river 0.502 1.992

After the collinearity test, a statistical analysis was carried out to intuitively under-
stand how factors affect the occurrence of floods. Factors of maximum daily rainfall, DEM,
slope, and distance from river were divided into five categories according to the natural
breakpoint method. Aspect, land use, and curvature were categorized according to their
natural attributes.

It can be seen from the first category in Table 6 that floods mainly occur in areas
where the maximum daily rainfall exceeds 150 mm. As the precipitation increases, the
number of flood points also increases. In the DEM category, 52.47% of the collected floods
were found to occur at an altitude of less than 80 m, and the majority of the floods occur
at elevations from 48 m to 160 m. For slope, most of the flood events occurred between
slope values of 0◦ and 14◦, accounting for 94.63% of the total flood occurrence. The aspect
has nine directions: Flat, North, Northeast, East, Southeast, South, Southwest, West, and
Northwest. However, no matter which direction, they contained a certain number of the
flood occurrence points, and no obvious tendency was found. Therefore, for the occurrence
of floods, slope seems to be more important than aspect in Ji’an. Curvature can be divided
into concave, flat, and convex. The concave and flat areas are more prone to flooding
than the convex surface. Note that 81 flood points were located on a convex surface, but
according to our statistic, the convex curvatures of these points were all very small and
the maximum value did not exceed 0.04. Land use was identified to have five categories:
construction land, cultivated land, woodland, lawn, and water area. Data showed that the
majority of flood points were located on construction land (accounted for 67.36%), while
woodland was less likely to experience floods. Statistics from NDVI in the table showed
that only a few points were located in areas with a high NDVI value. In the last category
of the table, distance from river, we found that the farther away from the river, the fewer
points the flood was reported at.

4.2. Susceptibility Map

The MaxEnt model has requirements of the conditioning factors’ data format. All the
raster images should be processed into ASCII images with exactly the same geographic
extents, the same number of rows and columns, and the same value of pixel size. To reduce
the error, we repeated the experiment three times and averaged the results to generate
flood probability map, as shown in Figure 5A.
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Table 6. Flood statistics according to different factor levels.

Factor Different Level Number of Floods Ratio

Rainfall

<150 7 2.89%
150–173 38 15.7%

173–193.3 43 17.7%
193.3–210 70 28.9%

>210 84 34.7%

DEM

0–48 7 2.89%
48.1–80 120 49.58%
80.1–160 77 31.8%

160.1–370 31 12.8%
>370 7 2.89%

Slope

0–2 39 16.11%
2.1–6 123 50.83%

6.1–14 67 27.69%
14.1–24 12 4.96%

>24 1 0.41%

Aspect

Flat 6 2.48%
North 32 13.22%

Northeast 32 13.22%
East 23 9.50%

Southeast 40 16.53%
South 30 12.40%

Southwest 25 10.33%
West 21 8.68%

Northwest 33 13.64%

Curvature
Concave 159 65.7%

Flat 2 0.8%
Convex 81 33.5%

LULC

Construction land 163 67.36%
Woodland 27 11.15%

Water 0 0.0%
Cultivated land 43 17.77%

Lawn 9 3.72%

NDVI

<0 9 3.72%
0–0.135 123 50.8%

0.136–0.24 84 34.7%
0.241–0.265 10 4.13%

0.266–0.3 9 3.72%
>0.3 7 2.89%

Distance from river

<4567 162 66.94%
4567–9805 39 16.11%
9805–15715 19 7.85%

15,715–22,565 14 5.78%
>22,565 8 3.31%

As can be seen from the figure, the high-risk areas of floods are mainly distributed in
the middle of Ji’an County and have a meandering shape. Overlaying Figures 4f and 5A in
ArcGIS, it can be seen that the high-risk areas predicted by the model were places where
construction land was highly concentrated. In addition, surrounding areas of Ji’an County
were predicted to have low flood risk, where woodland is the main type of land use.

To get a hierarchical map for further data analysis, the natural breakpoint method
was used to divide the level of flood risk (Figure 5A) into four categories, as shown in
Figure 5B. The predicted high-risk areas for flood in Ji’an County were concentrated in
Jizhou, Ji’an, Taihe, and Yongfeng districts. Comparing with Figure 4a, it could be seen
that the maximum rainfall is also heavily concentrated in these four districts.
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Data statistics of Figure 5B are listed in Table 7. The high risk and high susceptibility
level cover an area of 7221.9 km2, accounting for 29.29% of the total land area. The flood
disasters were densely distributed in these areas and contained 86% of the total flood
points. The data also showed that there are 10,345.8 km2 of land located in a low-risk area,
accounting for 41.9% of the total land area which means residents living in these areas do
not have to worry too much about the occurrence of floods.
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Table 7. Flood statistics of susceptibility map.

Susceptible Index Class Ranges Area (km2) Proportion Flood Density per 1000 km2

High risk 0.70–1 2718.5 11.04% 42.29
High susceptibility 0.42–0.70 4503.4 18.25% 17.34

Moderate susceptibility 0.17–0.42 7094.8 28.76% 8.26
Low susceptibility 0–0.17 10,345.8 41.94% 1.035

4.3. Accuracy Test

Several statistical indices were used to test the accuracy of the model. Figure 6 shows
the receiver operating characteristic (ROC) curve, which was averaged over the three times’
model results. The average test AUC for the three times’ runs is 0.857. As can be seen in
the figure, the thickness of the curve in the picture denoted the fluctuation range of the
ROC curve of the three times’ experiments, and the standard deviation of the three times’
results is 0.027, which means that even in the worst experiment of the three, the AUC of
the model is 0.83. In general, an AUC of 0.5 suggests no discrimination (i.e., ability to judge
areas prone or not prone to flooding based on the test), 0.7 to 0.8 is considered acceptable,
0.8 to 0.9 is considered excellent, and more than 0.9 is considered outstanding. Thus, the
predictive ability of our model is excellent.

To derive the confusion matrix, 51 flood points we saved from reliable and official
media and 51 non-flood points generated by random seed algorithm were used. We set the
flood sensitivity threshold to 0.7 to generate a binary map of flood occurrence.
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A manual inspection was conducted on the 102 points. Among the 51 reference pixels
of flood, 46 points were correctly predicted and 5 points were predicted as non-flood.
Among the 51 reference pixels of non-flood, 49 points were correctly predicted and 2 were
misclassified. The specific number was listed as the confusion matrix shown in Table 8.

Table 8. Confusion matrix for the model.

Confusion Matrix Flood Non-Flood Total UA (%)

Flood 46 2 48 95.8%
Non-flood 5 49 54 90.7%

Total 51 51 102 OA = 93.14%
PA (%) 90.2% 96.07% Kappa = 0.916

As can be seen from Table 8, the overall accuracy of the model is 93.14% and the Kappa
coefficient is 0.916, which verified the overall reliability of the model. The performance
of the user’s accuracy was 95.8% and 90.7% for flood and non-flood, respectively. The
producer’s accuracy was 90.2% and 96.07% for flood and non-flood, respectively. The
producers’ accuracies and the user’s accuracies were all above 90%, which means the model
can make good predictions for each sub-category, verifying the reliability of the model.

4.4. Analysis of Variable Contributions

In this section, quantitative analysis of indices was adopted to evaluate the contribu-
tion of each influencing factor.

Percent contribution of each conditioning factor was calculated. The index represents
the normalized cumulative value of the variable gain in each iteration. To determine the
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value of the index, the increase in regularized gain is added to the contribution of the
corresponding variable in each iteration of the training algorithm or subtracted from it
if the change to the absolute value of lambda is negative. After the gains of all variables
were accumulated, the values were normalized to percentages. Permutation importance
measures the increase in the prediction error of the model after features are permuted. To
determine the value of the index, the values of a certain variable on training presence and
background data were randomly permuted for each conditioning variable in turn. After
permuting, the model was reevaluated on the permuted data, and the resulting drop in
training AUC, which was normalized to percentages, was calculated and listed in Table 9.

Table 9. Flood susceptibility map from MaxEnt model.

Variable Percent Contribution Permutation Importance

land use 54.6 13.8
slope 16.7 38.3

distance from river 14.3 18.2
rainfall 4.6 5.9
DEM 3.6 1.9

curvature 3.2 13.7
aspect 1.7 2.6
NDVI 1.5 5.6

As can be found in the table, the top three variables that contributed most to flood
risks were land use, slope, and distance from river. Their contribution rate was 54.6%,
16.7%, and 14.3%, respectively. According to our previous qualitative analysis, it could
be inferred that areas covered with construction surface, located on flat terrain, and close
to a river were at extremely high flood risk. As could be seen, although the contribution
rate of slope factor was not as high as land use, the permutation importance showed that
permuting the slope variable would bring about 38% of the model error, which made it the
most indispensable variable among all variables. Rainfall factor ranked fourth in percent
of contribution, which implied the impact of precipitation on flood risk was also worth
noting. The DEM factor made 3.6% of the contribution to predicting flood disasters, but
removing this variable would only bring about 1.9% error to the model, ranking last in
permutation importance among all variables. The curvature factor did not make much
contribution to predicting flood disasters (only 3.2%), but removing this variable would
bring a considerable 13.7% error to the model, ranking fourth among all variables. The
contribution rate of the factor NDVI ranked last in percent of contribution, but it has
some permutation importance. Taking percent contribution and permutation importance
together, it seemed that the aspect factor would be the least important factor of all factors,
which was consistent with our analysis of flood point statistics.

Figure 7 shows the results of the jackknife test of variable importance. The jackknife is
a resampling technique that estimates parameters by systematically leaving out each factor
from a dataset and calculating the values and then finding the average of these calculations.
The blue bar represents the gain of the model with the only factor, the red bar represents
the gain with all factors, and the green bar represents the gain loss without the factor.

The conditioning factor with the highest gain was again land use when used in
isolation of the jackknife test, which therefore appears to have the most useful information
by itself. In addition, when land use was omitted, the gain decreased the most, which
made it the factor that has the most information that is not present in the other variables. It
is worth noting that the DEM and slope factor independently contained more than 40% of
the useful information, which was a supplement to our above analysis.
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5. Discussion

Understanding the factors that contribute to flood occurrence and mapping the sus-
ceptibility to flood disasters is fundamental in managing flood hazards. UGC, as a new
scientific data collection method, has begun to draw attention in flood management. Aided
by information technology, such as smartphones and web applications, stakeholders in-
cluding ordinary residents have more abilities to help observe flood phenomena. Therefore,
it is crucial for scientists and management to integrate stakeholders’ contributions into
flood hazard management, especially in those areas where the traditional monitoring net-
work is not well covered. Based on these fundamental principles, this study presented the
results of a comprehensive flood susceptibility assessment using UGC as the data source
for the Ji’an areas. Using social media users’ observations and reports, a flood susceptibility
map was obtained through the MaxEnt model and described the probability of the flood
occurrence. A statistical analysis of flood points was conducted, and the importance of
eight conditioning factors was analyzed qualitatively and quantitatively.

Percent contribution showed that land use, slope, and distance from river are the
top three factors that contribute most to flood occurrence. Permutation importance value
indicated that slope is the most indispensable factor when making the flood susceptibility
map. Jackknife test revealed that the land-use factor contains the most useful information
to evaluate flood risk that is not present in the other variables. The flood points crawled
from official and authentic media verified the accuracy of the UGC-generated map. These
flood points were mostly located in areas prone to flood, and the confusion matrix showed
an overall accuracy of 93.14% of the map (see Table 8). In addition, the model achieved a
satisfactory result with an ROC value of 85.7%.

The mapping reminds us that the high-risk areas are mainly distributed in those
communities that are close to rivers. Four administrative districts, i.e., Ji’an, Jizhou, Taihe,
and Yongfeng, were identified to have the highest flood risk. The information in the map is
very valuable for disaster reduction. For instance, if an area is assigned with “high values”
in the susceptibility map, flood management such as drainage system improvement should
be given priority in these areas. Large areas of impervious surfaces should not be planned
for construction in high-flood-risk areas, such as areas with low slope terrain close to the
river. In addition, an increase in the use ratio of woodland in the city can reduce the risk of
flood hazards.

The case study shows that the model was able to recognize high-risk areas with few
reports. Due to the adverse effects of floods on the lives of local residents, locations with
frequent floods are likely to respond on social media. In a mountainous area, such as
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Ji’an City, where data are difficult to obtain, using data generated by users on the network
as a data source can also help city managers identify flood risks. The flood events on
the network provide a valuable resource for scientific research and disaster recovery and
they can break through the bottleneck of data quantity to analyze the flood disaster in
mountainous areas. Thus, UGC in flood management was of great value and particularly
significant for planning purposes or for establishing land-use regulations.

In the age of the Internet, scientists should integrate users’ contribution to flood
disaster management. Although the Internet landscape in China is different from other
countries, the role and contents of UGC on social media of different countries are similar
and can be used in hydrological monitoring, estimating flood inundation extent, and
flood event detection for effective disaster risk management. Our analysis provides useful
insights for flood susceptibility assessment. The results of our model are satisfying, which
provides a way for other mountainous cities to carry out the research.

Using network media data as a data source is still facing some challenges. First
of all, the spatial distribution of flood events tends to be in areas with high population
density, and media reports are more likely to be concentrated in regions with higher
economic losses. Secondly, the number of potential contributors affects the effectiveness
of the method, while the regional smartphone and Internet penetration affect the number
of potential contributors. In some areas, there may be fewer people using the network
to publish location information. In addition, although collecting social media data is
more labor-saving than field survey of flood occurrence, crawling data still need to be
verified manually and removing repeated reports, which reduces the efficiency of flood
assessment. More state-of-the-art natural language processing algorithms need to be
applied to the process of extracting geographic locations of floods. The efficiency and
accuracy comparison between the flood susceptibility model of UGC and field survey data
can be conducted in future studies.

6. Conclusions

Floods are the most frequent type of natural disaster that seriously affects people’s lives
and property globally. Food susceptibility assessment is one of the critical approaches to
mitigate flood impacts. The inadequate field survey and lack of data hinder the assessment
of flood sensitivity in mountainous and hilly areas. The effectiveness of using UGC reported
on social media as source data in flood sensitivity assessment in mountainous areas remains
unknown. This study used different types of UGC on the web (i.e., text, photo, video)
across web platforms (websites, blogs) to model flood susceptibility in a mountainous-hilly
area that is severely affected by floods. The application of UGC in this study was novel,
and the state-of-the-art MaxEnt algorithm was adopted to draw the susceptibility map.
Moreover, several indicators commonly used in the field of machine learning were used
here to evaluate the importance of each conditioning factor. The results reveal that UGC is
of great value for flood susceptibility assessment and proved to be an effective data source.
The proposed model is practical and has high accuracy. Factors of land use, slope, and
distance from river were found to contribute most to the occurrence of floods in this area.
The accumulative UGC can be used as an important supplement to the insufficient field
survey data. Thus, in the future, flood management should pay more attention to bringing
in stakeholders’ contribution and public participation. The limitations of UGC are worth
noting, that is, the spatial distribution of floods will be affected by population density and
smartphone penetration. More efficient algorithms for mining flood-related UGC data
need to be studied in the future, and a better mechanism should be established to motivate
users to participate more actively in flood disaster management.
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