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ABSTRACT

The current understanding of how overall principles
of translational control govern the embryo-to-adult
transition in mammals is still far from comprehen-
sive. Herein we profiled the translatomes and tran-
scriptomes of six tissues from the mice at embry-
onic and adult stages and presented the first re-
port of tissue- and stage-specific translational land-
scape in mice. We quantified the extent of gene ex-
pression divergence among different expression lay-
ers, tissues and stages, detected significant changes
in gene composition and function underlying these
divergences and revealed the changing architec-
ture of translational regulation. We further showed
that dynamic translational regulation can be largely
achieved via modulation of translational efficiency.
Translational efficiency could be altered by alterna-
tive splicing (AS), upstream and downstream open
reading frames (uORFs and dORFs). We revealed AS-
mediated translational repression that was exerted in
an event type-dependent manner. uORFs and dORFs
exhibited mutually exclusive usage and the oppos-
ing effects of translational regulation. Furthermore,
we discovered many novel microproteins encoded by
long noncoding RNAs and demonstrated their regu-
latory potential and functional relevance. Our data
and analyses will facilitate a better understanding of
the complexity of translation and translational regu-
lation across tissue and stage spectra and provide
an important resource to the translatome research
community.

INTRODUCTION

Mammalian tissues in a species show extreme functional di-
versity despite having nearly identical genome sequences.
Their unique physiological functions are achieved through
the precise orchestration of spatiotemporal changes in gene
expression. The quantification of gene expression across di-
verse tissues and developmental stages is vital for under-
standing the molecular and mechanistic principles under-
lying morphogenesis. Transcriptomic studies have charac-
terized the gene expression profile in a variety of mam-
malian tissues during development and have thus revealed
the complexity and dynamics of the transcriptome (1,2).
Proteomic studies have resolved the molecular details of
proteome variations in different mammalian tissues and
thus extended our understanding of the spatiotemporal pro-
grams of protein expression (3,4).

Transcription and translation are the two major steps
in gene expression. During translation, ribosomes perform
protein synthesis to ensure that the genetic information con-
tained in mRNA is successfully translated into the pro-
teins (5). Although transcriptomic and proteomic analyses
have provided great biological insights into tissue specificity
and physiological relevance of tissues in development, gene
translation profiles during the embryo-to-adult transition
have not been systematically investigated. Exhilaratingly, ri-
bosome profiling (Ribo-seq) enables genome-wide quanti-
tative measurements of gene translation at nucleotide res-
olution (6), thereby facilitating decoding principles of gene
translation. By pinpointing ribosomes during translation,
this technique allows a detailed analysis of the ribosome
density on individual RNAs, the characterization of canon-
ical translation events and the identification of cryptic non-
canonical open reading frames (ORFs), such as upstream
ORFs (uORFs) in 5′UTRs, downstream ORFs (dORFs)
in 3′UTRs and small ORFs (smORFs) in lncRNAs (7–12)
Thus, a multi-tissue and multi-stage survey of the transla-
tional landscape will provide insight into key translational
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contents and regulatory responses underlying the genera-
tion and maintenance of tissue and stage specificity.

In this study, we performed a genome-wide translatome
survey of six mouse tissues at embryonic and adult stages,
by combining ribosome profiling with RNA sequencing, to
comprehensively investigate tissue- and stage-specific gene
translation and translational regulation. We first quantified
the extent of gene expression divergence among different
expression layers, tissues and stages. We then characterized
tissue- and stage-specific patterns of gene expression to un-
derstand how changes in the gene composition and function
across tissues and stages relate to the regulatory architec-
ture underlying expression divergence. Furthermore, we dis-
sected the contributions of transcriptional and translational
controls to tissue and stage differences and illuminated dy-
namic changes in the translational efficiency that was opti-
mized for the translation of tissue- and stage-specific genes
by AS-, uORF- and dORF-mediated translational regula-
tory mechanisms. Additionally, we detected pervasive trans-
lation of lncRNA to demonstrate their multi-specificity
character, regulatory potentials and functional relevance.
Our analyses presented a broad overview of tissue- and
stage-specific translational landscape and provided novel
insights into the general principles of dynamic gene regu-
latory programs in mice.

MATERIALS AND METHODS

Tissue collection

Wild-type C57BL/6 mice were purchased from the Guang-
dong Medical Experimental Animal Center (Guangdong,
China; License No: SCXK (YUE) 2018–0002). Brain,
heart, kidney, liver, lung and retinal tissues were har-
vested separately from embryonic (E15.5) and adult (P42)
C57BL/6 mice and immediately snap-frozen in liquid nitro-
gen. All experimental procedures were approved by the An-
imal Ethics Committee of the Zhongshan Ophthalmic Cen-
ter, Sun Yat-sen University (Guangzhou, China; License
No: SYXK (YUE) 2018–0189), in accordance with institu-
tional animal welfare guidelines and the Animal Protection
Law of China.

Library preparation and sequencing

Frozen tissue samples were lysed using 1 ml of mammalian
lysis buffer (200 �l of 5× Mammalian Polysome Buffer, 100
�l of 10% Triton X-100, 10 �l of DTT (100 mM), 10 �l of
DNase I (1 U/�l), 2 �l of cycloheximide (50 mg/ml), 10
�l of 10% NP-40 and 668 �l of nuclease-free water). After
incubation for 20 min on ice, the lysates were cleared by cen-
trifugation at 10 000 × g and 4◦C for 3 min. For each tissue
and replicate sample, the lysate was divided into 300- and
100-�l aliquots. For the 300-�l aliquots of clarified lysates,
5 units of ARTseq Nuclease were added to each A260 lysate,
and the mixtures were incubated for 45 min at room tem-
perature. Nuclease digestion was stopped by the addition
of 15 �l of SUPERase·In RNase Inhibitor (Ambion). Sub-
sequently, the lysates were applied to Sephacryl S-400 HR
spin columns (GE Healthcare Life Sciences), and ribosome-
protected fragments were purified using the Zymo RNA
Clean & Concentrator-25 kit (Zymo Research). Ribosomal

RNA was depleted using the Ribo-Zero magnetic kit (Epi-
centre). Sequencing libraries of ribosome-protected frag-
ments (RPFs) were generated using the ARTseq™ Ribo-
some Profiling Kit (Epicentre, RPHMR12126), according
to the manufacturer’s instructions. From the 100-�l aliquots
of clarified lysates, poly(A)+ RNAs were extracted and pu-
rified, and sequencing libraries of poly(A)+ RNAs were
then generated using the VAHTSTM mRNA-seq v2 Library
Prep Kit from Illumina (Vazyme Biotech, NR601-01) ac-
cording to the manufacturer’s instructions. The resulting 48
barcoded libraries were pooled and sequenced using an Il-
lumina HiSeq 2500 instrument in single-end mode.

Sequencing data preprocessing

The raw sequence reads were demultiplexed using CASAVA
(v1.8.2), and the 3′-end adapter was clipped using Cutadapt
(v1.8.1) (with the parameters ‘-aAGATCGGAAGAGCA
CACGTCTGAACTCCAGTCA -match-read-wildcards -
m 6′). Low-quality sequences were trimmed using Sickle
(v1.33) (with the parameters ‘-q 20′). The trimmed reads
were filtered by length based on the ranges [25, 34] for
ribosome-associated footprints and [20, 50] for mRNA. The
retained reads that mapped to reference mouse rRNAs or
tRNAs were then removed, and the remaining reads were
aligned to the mouse reference genome (downloaded from
GENCODE, Release M18: GRCm38.p6) using Tophat2
(v2.0.14) (13) with the following command: ‘tophat2 -g 20 -
N 2 –transcriptome-index [index file] -G [gtf file] [fastq file]
-o [output directory]’. Only those uniquely mapped reads
were extracted for gene expression determination. The num-
ber of reads per gene was counted using the Subread R
package-featureCounts (v1.6.2) (14). To avoid differences
in library composition across samples, the raw counts for
all Ribo-seq and RNA-seq samples were combined together
and normalized against the reference to yield a pool-based
size factor using the DESeq2 R package (15), and the nor-
malized counts were further converted to transcripts per
kilobase million (TPM) values.

Triplet periodicity analysis

Three-nucleotide (3-nt) periodicity is a well-known intrin-
sic property of genuine translation. Triplet periodicity and
metagene analysis were performed to evaluate the quality
of Ribo-seq experiments. Briefly, footprint profiles within
coding sequences (CDSs) of canonical protein-coding genes
were produced by assigning ribosomal P-sites to each nu-
cleotide position per codon, that is, reading frames 1, 2 and
3. The average footprint density of metagene profiles along
the CDS was calculated by dividing the number of P-sites
in each of the three reading frames by the total number
of P-sites within the CDS. In contrast to the RNA-seq
reads that mapped evenly to the three sub-codon positions,
the ribosome-associated footprints mapped primarily to the
first nucleotide of the codon, that is, reading frame 1.

Detection of actively translated ORFs

Canonical and noncanonical ORF detection was per-
formed using Ribo-TISH (v0.2.1) (16) with the longest
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strategy under the default threshold setting, which uses
a frame test based on the nonparametric Wilcoxon rank-
sum test to determine the significance of 3-nt periodic-
ity in the P-site signals along an ORF. Notably, to in-
crease the statistical power of the ORF identification, the
aligned BAM files for two replicates of each tissue were
merged together with ‘samtools merge’ (v1.6), and only
those uniquely mapped reads were used in the Ribo-TISH
analysis. The final set of actively translated ORFs with an
AUG-start codon followed by an in-frame stop codon in
annotated transcripts was stringently filtered based on the
requirement of a minimum length of 18 nucleotides and
the expression of the ORF-containing gene at an above-
background level. uORFs were defined as ORFs originating
from the 5′UTRs of annotated protein-coding genes (that is,
with TisType: 5′UTR); dORFs were defined as ORFs origi-
nating from the 3′UTRs of annotated protein-coding genes
(i.e. with TisType: 3′UTR), and smORFs were defined as
ORFs originating from annotated long noncoding genes.

Defining expressed genes

To determine putative genes expressed at levels that are
significantly higher than the background levels, a half-
Gaussian distribution of expression values (log2(TPM))
for each sample was fitted through kernel density estima-
tion using the ks R package (http://cran.r-project.org/web/
packages/ks/ks.pdf). The half-Gaussian was then mirrored
to full Gaussian distribution. A 2-fold standard deviation
below the mean of the distribution was chosen as the mini-
mum threshold for gene expression. Different threshold val-
ues, which were defined in a sample-specific manner, were
used to filter low-abundance genes. Genes below the thresh-
old in any one replicate of each tissue were filtered out in the
subsequent analysis. Additionally, the translated genes were
further required to contain actively translated ORFs.

Calculation of expression divergence

The divergence of expression profiles between a pair of tis-
sues was measured based on the Euclidean distance (root
mean squared deviation) (17), which was defined as follows:

deuc (n, m) =
√∑N

i=1
[log2(xi + 1) − log2(yi + 1)]2/N

where xi and yi represent the normalized TPM values of
gene i in two samples from tissues n and m, and N represents
the number of protein-coding genes used in the comparison
of global gene expression patterns (here, N is 17 488). No-
tably, for a pair of tissues, there were four-way combinations
of samples due to two replicates of each tissue. The larger
value of the Euclidean distance, the greater the divergence
is, indicating higher dissimilarity.

Gene classification

The different omics-based analyses have allowed the clas-
sification of the mouse protein-coding genes with regard
to tissue-restricted expression. In line with this, we took
advantage of the algorithm provided in the Human Pro-
tein Atlas (18) to define tissue-specific genes that can be

grouped as follows: (i) ‘tissue-enriched’ genes, defined as
genes showing at least 5-fold higher expression in one tissue
compared with all other tissues; (ii) ‘group-enriched’ genes,
defined as genes showing at least 5-fold higher expression
in a group of tissues (2–5) compared with all other tissues;
(iii) ‘expressed-in-all’ genes, defined as genes expressed in all
analyzed tissues; (iv) ‘not detected’ genes, defined as genes
not present in any of the analyzed tissues; and (v) ‘mixed’
genes defined as genes not belonging to any part of the
other categories. The RNA-seq- and Ribo-seq-based classi-
fications of all mouse protein-coding genes were conducted
using the TissueEnrich R package (19) with a modification:
‘maxNumberOfTissues = 5′, which took a tabulated matrix
of TPM values (averaged over replicates of each tissue) with
genes as rows and tissues as columns as the input.

Tissue specificity analysis

The tissue specificity of each gene was estimated using the
� index (20) as follows:

τ =
∑n

i−1 (1 − x)

n − 1
; x = xi

max
1≤i≤n

(xi )

where n represents the number of tissue types and xi repre-
sents the average TPM value of the gene between two repli-
cates in tissue i. This index varies on a scale from 0 to 1,
where 0 indicates ubiquity and 1 indicates specificity.

Gene ontology (GO)-based enrichment analysis

All GO annotations for Mouse Genome Informatics (MGI)
were extracted from the ‘mgi.gaf.gz’ file (v2.1 and re-
lease date 9 October 2019) that was downloaded from
the Gene Ontology homepage (http://current.geneontology.
org/products/pages/downloads.html). After assigning all
genes to GO terms, only those GO terms for biological pro-
cesses containing at least five genes were retained for func-
tional enrichment analysis. In total, 17 596 genes assigned to
4896 GO terms were included in this analysis. The hyperge-
ometric distribution was further used to determine whether
a GO term was overrepresented in a given gene set. After
multiple testing corrections using the Benjamini–Hochberg
(BH) approach, those GO terms with a false discovery rate
(FDR) below 5% were determined to be statistically signif-
icant.

Differential gene expression analysis

To allow proper comparisons among the RNA-seq and
Ribo-seq data, raw read counts obtained at the exon level
using featureCounts were combined together and normal-
ized against the reference to yield a pool-based size fac-
tor, and the resulting data were used for differential ex-
pression analysis with the DESeq2 R package (15). A gene
was considered to be significantly differentially transcribed
or translated if it met the following criteria: (i) the FDR
was controlled at the 5% level, and (ii) the absolute fold-
change (FC) threshold was set to the most typical cutoff
value of 2 (FC > 2 and FC < 1/2). After characterizing
concordant and discordant changes in transcription and
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translation, we defined three distinct patterns of differen-
tial genes, as done previously (21), which represent differ-
ent modes of regulation: ‘mRNA+RPF both’, which indi-
cated concordant differential expression in both transcrip-
tion and translation, representing transcriptional forward-
ing; ‘mRNA only’, which indicated differential expression
in transcription but not in translation, representing transla-
tional buffering, and ‘RPF only’, which indicated differen-
tial expression in translation but not in transcription, rep-
resenting translational reinforcing.

Principal component analysis

To dissect the main contributing layer of gene expression
regulation (transcriptional forwarding, translational buffer-
ing and translational reinforcement) for each of the coregu-
latory functional arrangements, principal component anal-
ysis (PCA) was performed, as described in a previous re-
port (22). For each arrangement, we calculated the rela-
tive fractions of previously defined differential genes with
three different modes of regulation that were used as the
input for the PCA. The prcomp and fviz pca biplot func-
tions from the factoextra R package (https://cran.r-project.
org/web/packages/factoextra/index.html) were used for the
PCA and visualizing the output of the PCA, respectively.
The placement of each cluster in the PCA plot was based
on the directionality of three layers of gene expression reg-
ulation.

Estimation of translational efficiency

Translational efficiency (TE), defined as the rate of protein
production per mRNA (6), was calculated for a given gene
as the ratio of TPM values of Ribo-seq to RNA-seq reads
within the annotated CDS region. Notably, it was not a di-
rect measure of protein output but ribosome density, and ri-
bosome density per mRNA was used as a proxy for relative
translational efficiency. Given a high degree of TE correla-
tions between two replicate samples of each tissue (mean
Pearson’s correlation coefficient, r = 0.911), the TE values
were averaged between replicates for each gene in the sub-
sequent analysis. TE range for each tissue was calculated as
the ratio of 97.5% to the 2.5% quantile of the TE values.

Analysis of differential translational efficiency

The changes in the TE of a gene between different tissues
within the same stage and within the same tissue between
different stages were assessed using the DESeq2 R package
(15) with a threshold of 0.05 to control the FDR and an ab-
solute FC > 2. A table of raw read counts within the whole
CDS regions obtained using featureCounts was used as the
input for this analysis.

Detection of alternative splicing

Alternative splicing events were identified in RNA-seq data
by the VAST-TOOLS pipeline (v2.4.0; https://github.com/
vastgroup/vast-tools) (23). Briefly, the clean reads were first
mapped to genome assemblies using Bowtie to obtain un-
mapped reads, and these were then aligned to a predefined

splice junction library (the mm10 VastDB library). Unique
exon-exon junctions (EEJ) were generated to derive mea-
surements of exon inclusion levels using the metric ‘Percent
Spliced In’ (PSI), which utilized all hypothetically possible
EEJ combinations from annotated and de novo splice sites,
including cassette, mutually exclusive and microexon events
(24).

Sample preparation for liquid chromatography-tandem mass
spectrometry (LC-MS/MS)

Mouse brain or liver tissue separately at E15.5 and P42 was
homogenized in lysis buffer (8 M urea, 100 mM Tris-HCl,
0.5% sodium deoxycholate, pH 8.0) with 1× protease in-
hibitor (EDTA-free, Roche) by using an automated homog-
enizer (Bertin Technologies). The temperature of the cool-
ing unit chamber was controlled at 4◦C during homoge-
nization. After centrifugation at 16 000 g, 4◦C for 20 min,
the supernatant fraction was collected and adjusted to 2.0
mg/ml with BCA assay. About 100 �g of each sample was
aliquoted for subsequent protein digestion. Samples were
reduced with 5 mM dithiothreitol at room temperature for
30 min, followed by 15 mM iodoacetamide alkylation in the
dark for another 30 min. Then samples were diluted in 50
mM ammonium bicarbonate to reach 1 M urea concen-
tration followed by Lys-C digestion (Mass Spectrometry
Grade, Wako) with a final enzyme-to-protein ratio 1:100
(w/w) at 25◦C for 6 h and trypsin digestion (Sequencing
Grade, Promega) with a final enzyme-to-protein ratio of
1:50 for 12 h at 25◦C. Digestion was stopped by adding 1%
formic acid (FA). Next, the sample was desalted with a C18
Sep-Pak cartridge (Waters), dried by a vacuum centrifuge
and then resuspended in 0.1% FA. Notably, two biologi-
cal replicates for each tissue were prepared for LC-MS/MS
analysis.

LC-MS/MS analysis and differential protein expression
analysis

LC-MS/MS analyses were performed on an Orbitrap Fu-
sion Tribrid mass spectrometer (Thermo Fisher Scientific)
coupled with an EASY-nLC™ 1200 System (Thermo Fisher
Scientific) with C18 analytical column. Mobile phases A
and B consist of 0.1% FA in water and 0.1% FA in 80%
ACN, respectively. A 150 min gradient at a flow rate of 300
nL/min was used. Mobile phases B was increased to 11% at
10 min, 30% at 100 min, 45% at 125 min, 100% at 140 min
and held for 10 min. Data were collected in data-dependent
acquisition (DDA) mode with HCD fragmentation at TopN
mode. The resolution was set at 120 000 for MS1 and 30 000
for MS2 with 54 ms maximum injection time. Of note, each
biological replicate was run in two technical replicates.

All resulting spectra were searched against
UniProt/Swiss-Prot mouse protein database (August
2020, 17 020 entries) using MaxQuant software (v1.6.15.0)
(25). The following parameters were used for the search:
a mass tolerance of 10 ppm for precursor ions, ±0.02 Da
for fragment ions, carbamidomethylation of cysteine as a
fixed modification, oxidation of methionine and protein
N-terminal acetylation as variable modifications. Two
miscleavages were allowed for the trypsin digest, and a
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maximum of three variable modifications was allowed per
peptide. An FDR of 0.01 was set as a threshold for peptide-
and protein-level identifications. The differential protein
expression analysis was then performed using the DEP R
package (26), where the MaxQuant ‘proteinGroups.txt’ file
was used as an input.

Western blot analysis

Mouse brain tissues were grounded with liquid nitrogen
and lysed with Cell Disruption Buffer (Invitrogen PARIS
Kit). Proteins were separated by sodium dodecylsulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred to 0.2 �m polyvinylidene fluoride (PVDF)
membranes. The membranes were blocked with 5% non-
fat milk for 1 h and incubated with indicated primary an-
tibodies overnight at 4◦C. After washing to remove the un-
bound primary antibody, the membranes were incubated
with secondary antibody for 1 h. The anti-ATF2 (Ori-
Gene, #TA316504), anti-CEBPD (OriGene, #TA322658)
and anti-ATF5 (OriGene, #TA312342) primary antibodies
were used at 1:500 dilution, the anti-�-Tublin (CST, #2128)
and anti-GAPDH (Proteintech, #60004–1-Ig) primary an-
tibody were used at 1:2000 dilution, and the anti-rabbit
IgG (CST, #7074) and anti-mouse IgG (CST, #7076) sec-
ondary antibody were used at 1:5000 dilution. Then, the
membranes were washed with TBST and western blotting
signals were developed using Immobilon Western Chemilu-
minescent HRP Substrate (Millipore) and imaged with Al-
liance Q9 system (UVITEC).

Luciferase reporter assay of uORF-mediated regulation

To validate the regulatory effects of uORFs on downstream
CDS translation under different conditions, we chose an
uORF (chr15:80255680–80256381) from the Atf4 gene that
was detected in all the tissues. The 5′UTR of Atf4 was
fused to the firefly luciferase (Fluc) ORF and further
cloned into pcDNA3.1 (pcDNA3.1–5′UTR-Fluc). Briefly,
the 5′UTR sequence was amplified by polymerase chain
reaction (PCR) from mouse Brain cDNA, and the Fluc
ORF sequence was also amplified by PCR from pmirGlo
(Promega). The fusion 5′UTR-Fluc sequence was then in-
serted between the 5′BamHI and 3′XhoI restriction sites by
seamless cloning strategy using ClonExpress® Ultra One
Step Cloning Kit (Vazyme, # C115). The uORF-mutant
5′UTR sequence was amplified from the wild-type 5′UTR
sequence by overlap extension PCR using mutation primers
(see Supplementary Table S10), and the mutant plasmid was
generated by the same strategy as wild-type plasmid. The
sequences of the wild-type and mutant plasmids were ver-
ified by Sanger sequencing. For dual luciferase assay, one
million Neuro-2A cells were co-transfected with 2250 ng
of pcDNA3.1–5′UTR-Fluc (wild-type or mutant) and 250
ng of transfection control Renilla luciferase (Rluc) plasmid
pRL-TK (Promega). At 24 h post-transfection, cells were
passaged to 24-well plates, cultured in the media contain-
ing 10% and 1% fetal bovine serum (FBS) for 48 h, respec-
tively. The Fluc and Rluc luminescence were measured us-
ing the Dual-Luciferase Reporter Assay System (Promega,
#E1910) and further, the FLuc/RLuc luminescence ratio
was calculated for comparative analysis.

Proteomic validation of translated noncanonical ORFs

Two public proteomics data (accession number:
PXD009909 and download link: https://phosphomouse.
hms.harvard.edu/data/) and an in-house proteomics data
(accession number: PXD025201) were used to detect
protein products encoded by noncanonical ORFs. Notably,
the first public dataset included samples from five of
our analyzed tissue types, and the second public dataset
included samples of another tissue type. The raw data
files were analyzed using MaxQuant software (v1.6.15.0)
(25) against a custom-made database, which combined all
mouse sequences from UniProt/Swiss-Prot (August 2020)
with sequences derived from u/dORFs and smORFs, based
on the target-decoy strategy (Reverse) with the standard
search parameters with the following exceptions: (i) the
peptide-level FDR was set to 5% and the protein-level FDR
was excluded; (ii) the minimal peptide length was set to six
amino acids; and (iii) a maximum of two missed cleavages
was allowed. In total, 451 uORF-, 113 dORF- and 263
smORF-encoded peptides were supported by at least one
unique peptide, respectively.

In vitro translation experiments

Plasmid constructs. To generate 3xFlag fusion protein
constructs, smORF sequences with endogenous pseudo
5′UTRs (defined as the upstream of the smORF start
codon) were amplified by RT-PCR and then cloned into
the pcDNA3.1–3xFlag vector, which is a homemade plas-
mid from pcDNA3.1(+) (Invitrogen). A mutation construct
(5′UTR-ORFmut-3xFlag) in which the smORF start codon
was mutated to ATT was generated using a Mut Express
II Fast Mutagenesis Kit V2 (Vazyme). The wild-type and
mutant plasmids were verified by Sanger sequencing. The
designed sequences used in this study were listed in Supple-
mentary Table S10.

In vitro translation (IVT). Both wild-type and mutant
plasmids were transfected into Neuro-2A cells using Lipo-
fectamine 3000 reagent (Invitrogen), and 48 h later, the
cells were harvested and resuspended in RIPA buffer (Be-
yotime) with protease inhibitor cocktail (Roche). The cellu-
lar lysates were denatured at 85◦C for 5 min and then sep-
arated on 16.5% Tricine gels for 1 h at 30 V and then for
4 h at 100 V. The proteins were then electroblotted onto
a polyvinylidene fluoride (PVDF) membrane (Millipore),
and the PVDF membranes were then blocked in 5% non-
fat dry milk in TBST for 1 h. Western blotting was per-
formed using anti-Flag (1:1000) (Sigma) or anti-GAPDH
(1:5000) (Proteintech) primary antibodies, and the mem-
branes were incubated with secondary antibodies conju-
gated to horseradish peroxidase (anti-mouse from CST,
1:10 000) for 1 h. The Western blotting signals were de-
veloped using Immobilon Western Chemiluminescent HRP
Substrate (Millipore) and imaged with ChemiDoc™ Imag-
ing Systems (Bio-Rad).

Functional annotation of lncRNA-derived peptides

Conserved domain and protein homology detection. Each of
the putative smORF-encoded peptides (SEPs) was queried
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against the Conserved Domain Database (CDD) using a
web Batch CD-Search tool (27) with the default param-
eters. In total, 192 SEPs could be assigned at least one
known CDD domain. All mouse protein-coding transcript
translation sequences were downloaded from GENCODE
(Release M18: GRCm38.p6), and the sequences of pro-
teins composed of <100 amino acids (aa) were further
retrieved as the set of known small proteins. Each SEP
was then queried against these known small proteins using
BLASTp software (v2.7.1+) (28) with a hit e-value thresh-
old of 0.0001. In total, 91 SEPs were identified to have rec-
ognizable homologs of these known small proteins.

Subcellular localization prediction. The localization of
each SEP was predicted using DeepLoc (v1.0) (29) with de-
fault parameters. These SEPs were classified into 10 dif-
ferent localizations, including the nucleus (n = 287), cy-
toplasm (n = 113), extracellular (n = 697), mitochondrial
(n = 782), cell membrane (n = 32), endoplasmic reticu-
lum (n = 29), plastid (n = 55), Golgi apparatus (n = 17),
lysosome/vacuole (n = 3) and peroxisome (n = 3). Mean-
while, the subcellular localization also included an addi-
tional label, where S indicates soluble (n = 1775) and M
indicates membrane (n = 268).

Transmembrane helix and signal peptide prediction. Trans-
membrane and secreted SEPs were predicted using the
web applications TMHMM 2 (http://www.cbs.dtu.dk/
services/TMHMM/) and SignalP-5.0 (http://www.cbs.dtu.
dk/services/SignalP/) with the default parameters. The pre-
dictions provided the most likely location and orientation
of the transmembrane helices in the sequence as well as the
presence of signal peptides and the location of their cleavage
sites in the proteins. A total of 150 SEPs were predicted to
be either transmembrane and/or secreted, of which 91 were
solely transmembrane, 47 were solely secreted and 12 were
both transmembrane and secreted.

Coexpressed genomic neighboring protein-coding genes.
Each lncRNA with smORF was assigned to its nearest
protein-coding gene using bedtools (v2.25.0), and then
each protein-coding gene assigned to a translated lncRNA
was matched to its immediately neighboring protein-coding
gene, which was used as a control, as described in a
previous study (1). Pearson’s expression correlation be-
tween lncRNA–mRNA and mRNA–mRNA pairs was
computed in all samples in our dataset. Candidate coex-
pressed lncRNA–mRNA pairs were identified as those with
correlation coefficients >0.75 and in which each lncRNA–
mRNA correlation was significantly higher than the corre-
sponding mRNA–mRNA control, tested using the function
paired.r from the psych R package (v1.9.11) with a thresh-
old of 0.05 to control the FDR. The protein-coding genes
of these pairs were used for GO enrichment analysis.

RESULTS

Transcriptional and translational profiles of mouse embryonic
and adult tissues

To obtain a global view of gene translation and transla-
tional regulation in mammalian embryonic and adult tis-

sues, we performed Ribo-seq and RNA sequencing (RNA-
seq) to profile six tissues from wild-type C57BL/6 mice
at embryonic day (E) 15.5 and postnatal day (P) 42 (Fig-
ure 1A). These tissues included ectoderm-derived brain and
retinal tissues, mesoderm-derived heart and kidney tissues,
and endoderm-derived liver and lung tissues. In total, the
Ribo-seq experiments yielded >2.58 billion raw reads, with
an average of ∼107 million reads per library, and the RNA-
seq experiments yielded >1.19 billion raw reads, with an av-
erage of ∼50 million reads per library (Supplementary Table
S1). The ribosome-protected fragments (RPFs) obtained
from the Ribo-seq analyses showed a predominant length of
29–30 nucleotides (Supplementary Figure S1a), which is the
known fragment size protected by 80S ribosomes. On aver-
age, 76.4% of the RPFs were mapped to annotated coding
sequences (CDSs), whereas 10.2% were mapped to 3′UTRs,
7.3% were mapped to intronic sequences (introns), and 6.1%
were mapped to 5′UTRs. Compared with RNA-seq reads,
Ribo-seq reads had a strong preference for CDS and 5′ un-
translated regions (UTRs) (Supplementary Figure S1b), re-
flecting a hallmark of good translation-specific data. Meta-
gene analysis of the RPFs mapped to annotated CDS re-
gions revealed a characteristic three-nucleotide (3-nt) peri-
odic subcodon pattern and a striking bias toward the trans-
lated frame, with 79% of the RPFs accumulated in the first
frame (Supplementary Figure S1c). As expected, the RNA-
seq data did not show 3-nt periodicity or frame preference
(Supplementary Figure S1d). Our experiments were highly
reproducible, as indicated by nearly perfect Pearson’s cor-
relation coefficients (r) between the two replicate samples
of each tissue (mean r = 0.965 and 0.986 for Ribo-seq and
RNA-seq, respectively) (Supplementary Figure S1e). Prin-
cipal component analysis (PCA) showed a distinct separa-
tion of both the Ribo-seq and RNA-seq data among differ-
ent stages and tissues (Supplementary Figure S1f). Overall,
these results demonstrated that our sequencing data were of
high quality.

Global shifts in gene expression across tissues and stages

Gene expression divergence has been proposed as a pheno-
typic trait reflecting the evolution of gene regulation and
characterizing dissimilarity between tissues within the same
species (17). Therefore, using the generated Ribo-seq and
RNA-seq datasets, we investigated divergence in gene ex-
pression between and within embryonic tissues and their
corresponding adult tissues. To do this, the Euclidean dis-
tance metric was applied to quantify gene expression diver-
gence between a pair of tissues (see Materials and Methods
section).

We first examined gene expression divergence between
different tissues (inter-tissue) within the same stage (Fig-
ure 1B, left). The inter-tissue expression divergence at the
RPF level was observed to be always significantly less than
that at the mRNA level. The median expression distance
between tissues at the RPF level relative to that at the
mRNA level was 83% and 85% for the embryonic and adult
stages, respectively. This indicated the existence of substan-
tial posttranscriptional buffering of gene expression, sug-
gesting that posttranscriptional regulation of gene expres-
sion, particularly critical translational control, might di-
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Figure 1. Global expression patterns between different tissues and stages. (A) A brief overview of the experimental design. Detailed step-by-step protocols
for the Ribo-seq and RNA-seq experiments can be found in the Materials and Methods section. (B) Boxplots of the Euclidean expression distance (root
mean squared deviation, see Materials and Methods section for more details) between different tissues at the same stage and between different stages for
the same tissue. Each point represents the Euclidean expression distance between a pair of tissues. The between-group differences were compared using a
Wilcoxon rank-sum test, and the P-values are shown. The boxplots show the medians, first quartiles and third quartiles; the lines extend to the furthest
value within 1.5 of the interquartile range, and the gray points represent the mean values.

minish the inter-tissue expression divergence in transcrip-
tion. Moreover, we also observed that the inter-tissue ex-
pression divergence at the adult stage was significantly
greater than that at the embryonic stage, with a 1.29-fold
increase at the mRNA level and a 1.32-fold increase at the
RPF level in terms of median expression distance, which
was consistent with the fact that tissues are more sim-
ilar early in development and then become increasingly
distinct.

Then, we examined gene expression divergence within
the same tissue (intra-tissue) between different stages (Fig-
ure 1B, right). A similar pattern was seen again, where
the median expression distance between tissues was around
16% smaller at the RPF level than at the mRNA level.
Collectively, the translatomes were more similar not only
between different tissues at the same stage but also be-
tween different stages for the same tissue than the tran-
scriptomes. In addition, regardless of expression layers, the
intra-tissue expression divergence was generally found to
be slightly less than the inter-tissue expression divergence
at the embryonic stage (median expression distance: 1.58
versus 1.62 and 1.33 versus 1.35 at the mRNA and RPF
levels, respectively) and much less than that at the adult
stage (median expression distance: 1.58 versus 2.09 and
1.33 versus 1.78 at the mRNA and RPF levels, respec-
tively). This consequently demonstrated that gene expres-
sion patterns were more similar between different stages for
the same tissue than between different tissues at the same
stage.

Changing patterns of gene and pathway contents underlying
expression divergence

We then sought to characterize the genes and pathways un-
derlying the expression divergence and analyze their chang-
ing patterns. To this end, we classified all the protein-
coding genes into five major categories separately based on
their transcriptional and translational levels in six tissues,
namely, ‘tissue-enriched’, ‘group-enriched’, ‘expressed-in-
all’, ‘mixed’ and ‘not-expressed’ (Figure 2A and Supple-
mentary Table S2; see Materials and Methods section). Af-
ter characterizing the composition and fraction of genes
in each category, we found a dramatic difference in gene
composition of each category between the mRNA and
RPF levels (Figure 2B), although the majority (>90%) of
all expressed genes in these two levels were shared (Sup-
plementary Figure S2a). The most dramatic difference
was observed for the mixed category, followed by group-
enriched, tissue-enriched, and expressed-in-all categories.
On the other hand, we found that during the embryo-to-
adult transition, some categories exhibited obvious changes
in gene fraction (Figure 2A). There was a general trend for
the tissue-enriched category to have an increased gene frac-
tion and the expressed-in-all category to have a decreased
gene fraction. As a result of this shift, enhanced tissue speci-
ficity of gene expression was observed in the adult (Supple-
mentary Figure S2b).

Along with these changes, gene ontology (GO) enrich-
ment analysis revealed extensive differences in the function
of the resulting genes (Figure 2C and Supplementary Ta-
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Figure 2. Genes and pathways underlying gene expression divergences. (A) Classification of mouse protein-coding genes based on their expression levels
in all six tissues, done with the TissueEnrich R package (see Materials and Methods section for more details). The pie charts show the numbers and
percentages of genes in each category. (B) Overlap of protein-coding genes for each category between the mRNA and RPF levels. (C) Venn diagrams
showing GO term overlap across different expression layers and stages separately for each category. (D) Relative fractions of specific and shared GO terms
for each category of genes between the mRNA and RPF levels. (E) An example for translation/translational regulation-related GO terms, uniquely enriched
in the expressed-in-all category of genes at the RPF level. (F) Relative fractions of specific and shared GO terms for each category of genes between the
embryonic and adult stages. (G) UpSet plot showing the number of specific and shared GO terms enriched in retina-specific genes. The 20 adult-specific
GO terms are highlighted in the red rectangle, where the majority are associated with light-induced transformations or responses. For panels C, D, F and
G, GO enrichment analysis was performed using a hypergeometric test, with an FDR of 5% used to determine significant terms.

ble S3; see Materials and Methods section). The compar-
ison of GO terms enriched for each category of genes at
the RPF level with those at the mRNA level showed that
the mixed category had the largest functional differences
between the two levels, followed by group-enriched, tissue-
enriched and expressed-in-all categories (Figure 2D). The
RPF level made an important contribution to the uncou-
pling functional profiles, contributing an average of 27%

(range 6–36%) specific terms. For instance, some GO terms
enriched in the expressed-in-all category, including ‘forma-
tion of translation preinitiation complex’, ‘IRES-dependent
viral translational initiation’, ‘ribosome disassembly’ and
‘miRNA mediated inhibition of translation’, were uniquely
found at the RPF level (Figure 2E). On the other hand,
the comparison of GO terms enriched for each category
at the embryonic stage with those at the adult stage fur-
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ther revealed stage-dependent enrichment, with an aver-
age of 73% (range 43–100%) terms uniquely found in a
single stage (Figure 2F). For instance, the retina-specific
genes of adult mice were greatly involved in light stimulus-
related functions, such as ‘detection of light stimulus in-
volved in ‘visual perception’, ‘sensory perception of light
stimulus’ and ‘cellular response to light stimulus’ (Figure
2G). These functions were related to enhancing visual func-
tions, which might be a result of increases in visual stimuli
and interactions with light that promote neural plasticity
in the retina after eye-opening. The lung-specific genes of
adult mice were more significantly involved in immunity-
related functions compared with their embryonic counter-
parts, which was likely a manifestation of immune matura-
tion during the postnatal period. Altogether, these results
demonstrated the importance and significance of the trans-
latome in ensuring proper tissue architecture and function-
ality.

Regulatory changes contributing to tissue- and stage-specific
gene expression

We next attempted to access the contributions of regula-
tory changes to divergent gene expression. To infer reg-
ulatory change from gene expression, we performed dif-
ferential gene expression analysis across different tissues
and stages (see Materials and Methods section). On aver-
age, thousands of tissue- or stage-specific differentially ex-
pressed genes (DEGs) were detected, but showing profound
uncoupling differential changes between the mRNA and
RPF levels (Figure 3A; Supplementary Figures S3–4 and
Supplementary Table S4). Based on their differential pat-
terns, we classified these DEGs into three different types
representing three modes of regulation, namely, forward-
ing (mRNA+PRF both), buffering (mRNA only) and re-
inforcing (RPF only) (see Materials and Methods section).
The results showed that differences in transcription were
not always forwarded to the RPF level and on average,
and >24% of differentially transcribed genes were trans-
lationally buffered (Figure 3B). In addition, translational
reinforcement could also influence gene expression inde-
pendently, with at least 20% of DEGs found in translation
that was not observed at the mRNA level, which empha-
sized the complexity of translational regulation in modu-
lating gene expression. Combining with proteomics data
from brain and liver, we found that the majority (>65%) of
differential expression across tissues and stages in protein
could be traced back to transcription and translation, of
which about 7–39% were as a result of translational buffer-
ing and reinforcement, further highlighting the importance
of translational regulation in controlling protein synthe-
sis (Supplementary Figure S5a; see Materials and Methods
section). Taking differentially translated genes-Atf2 (rein-
forcing) and Atf5 (buffering) between stages in the brain as
an example, we used western blot analysis to confirm that
the specific changes in translation could be reflected at the
protein level (Figure 3C and Supplementary Figure S5b; see
Materials and Methods section).

Given that coregulated genes have been found to of-
ten share functional properties, for the detected DEGs, we
next applied GO enrichment analysis to delineate potential

coregulatory functional arrangements. This analysis yielded
an average of 78 and 65 significantly enriched GO terms in
each inter- and intra-tissue comparison, respectively (Sup-
plementary Table S5). The DEGs across tissues at the same
stage were found to be mainly involved in the functional
maintenance of organs, and the DEGs between stages for
the same tissue were mainly related to different physiologi-
cal stages. To dissect the relative contribution of different
modes of regulation to the overall differential pattern of
each function, we performed a principal component anal-
ysis (see Materials and Methods section), which revealed
the manifestations of individual functions within the global
regulatory programs: (i) some were subjected to major tran-
scriptional or translational regulation, whereas others were
subjected to their combinatorial regulation (Figure 3D;
Supplementary Figures S6 and 7) and (ii) many functions
were orchestrated in tissue- and stage-specific regulatory
contexts (Figure 3E). Looking at the brain as an example,
its specific arrangements necessary for proper brain func-
tion ‘neurotransmitter receptor localization to postsynap-
tic specialization membrane’ (#28) was primarily under the
regulation of transcriptional forwarding, and the ‘gamma-
aminobutyric acid signaling pathway’ (#83) was primarily
under the regulation of translational reinforcement (Figure
3F), which might allow rapid changes of cellular signaling
possibly through modulating their translational efficiencies,
enabling an immediate response. Overall, the importance of
translational regulation was highlighted in terms of its con-
tribution to the high diversity of translational states, thereby
allowing for precise control of gene expression patterns.

Translational efficiency achieving dynamic range control of
gene expression

Controlling translational efficiency (TE) is frequently used
as a means of translational regulation, and thus we quanti-
fied relative TE per gene for each tissue and decoded the
patterns of TE changes. Considering that the overall TE
changes could be due to different mRNAs present in dif-
ferent tissues and stages, we only focused on the protein-
coding genes shared by all embryonic and adult tissues.
Comparative analysis of global TE distribution across tis-
sues for the same stage showed clear differences, which were,
however, of markedly smaller scale between embryonic tis-
sues than between adult tissues (Figure 4A). This was fur-
ther indicated by the observation of a sharp difference in
the number of differential TE genes (average number: 465
versus 1162) (see Materials and Methods section). Com-
parative analysis of global TE distribution across stages
for the same tissue further showed significantly enhanced
TEs in the adult, with an average of 3226 genes exhibit-
ing intra-tissue TE differences (Figure 4A). Notably, the en-
hanced TEs in the adult might be associated with changes
in poly(A) tail length because, in the embryo, short poly(A)
tails are necessary to repress translation until the appro-
priate stage of development is reached (30). This was fur-
ther supported by the observations that (i) multi-subunits
of the major deadenylase responsible for the efficient pro-
cessive shortening of poly(A) tails, CCR4-NOT complex,
were significantly more highly expressed in embryonic tis-
sues than in adult tissues (Figure 4B), and (ii) the 3′UTRs
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Figure 3. Relative contributions of transcriptional and translational regulatory changes. (A) Differential gene expression analysis across different stages
for the same tissue, performed with the DESeq2 package from Bioconductor in R (adjusted P-value < 0.05, absolute log2-fold change >1). Each point
represents a gene. Differentially expressed genes (DEGs) are classified as mRNA+PRF both (orange), mRNA only (blue) and RPF only (purple), repre-
senting three different modes of regulation: transcriptional forwarding, translational buffering and translational reinforcing. (B) Numbers of differentially
expressed genes with distinct regulatory modes (forwarding, buffering and reinforcing) between pairwise-tissue comparisons. The between-group differ-
ences were compared using a Wilcoxon rank-sum test, and the P-values are shown. (C) Western blot analysis of Atf2 and Atf5 proteins in the embryonic
and adult brain. Quantitative results are presented in bar plots, shown on the right side of the panel, where the differences were compared using a Student’s
t-test, and the P-values are shown. (D) Scatter plots of the principal component analysis results showing the manifestations of individual arrangements
within the global regulatory programs (see Materials and Methods section for more details). Each numbered point represents a coregulatory functional
term, and its position along each axis indicates the relative contribution of transcriptional and translational regulation to the overall differential patterns.
The detailed information on each GO term can be found in Supplementary Table S5. (E) Barplots showing the manifestations of individual functional ar-
rangements within the global regulatory programs, where two of the brain-specific GO terms (#28 and #83) are highlighted in the panel (F). (F) Examples
of brain-specific coregulatory functional arrangements. The pie chart shows the relative fractions of differentially expressed genes with distinct regulatory
modes. The assigned GO term names and corresponding P-values are given.
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Figure 4. Analysis of translational efficiency (TE) and alternative splicing (AS)-mediated translational regulation. (A) Cumulative distribution of TEs
of protein-coding genes shared by all embryonic and adult tissues (N = 9659). The comprison of cross-tissue TE distributions was performed using a
Kolmogorov–Smirnov test, and all P-values were statistically significant, except for one with P = 0.295 between the embryonic heart and kidney tissues.
The TE range, defined as the ratio of the 97.5% to the 2.5% quantile of the TEs, was given for each tissue. The inserted Box-Wisher plots show the numbers
of differential TE genes upon differential TE analysis across different tissues at the same stage and different stages for the same tissue (adjusted P-value
< 0.05, absolute log2-fold change >1). The difference significance of gene numbers was computed using a Wilcoxon rank-sum test. (B) Comparison of
expression levels of CCR4-NOT complex subunits between embryonic and adult tissues. The expression level differences were compared using a Wilcoxon
rank-sum test, and ***: P < 0.001; **: P < 0.01; *: P < 0.05; and ns: no significant. (C) 3′UTR length distribution of differential TE genes in each tissue
between the adult and embryonic stages. The differentially upregulated and downregulated TE genes in adult tissue are represented by orange and blue
colors, respectively. The distributions were compared using a Kolmogorov–Smirnov test. (D) Comparison of TE ranges between the embryonic and adult
tissues. The differences in the TE range were compared using a Wilcoxon rank-sum test. (E) Scatter plot of the adult-to-embryo ratio of transcriptional
abundance versus TEs for all expressed protein-coding genes. The corresponding density curves are plotted on the margins. The dotted lines of the same
colors represent the 2.5 and 97.5 percentiles of each variable, and the corresponding fold-change range is indicated. The coefficients and P-values for the
variables in a linear regression model are presented in the left upper corner. (F) Summary of AS events detected in all six tissues. (G) Comparison of the
translatable transcript number for AS and non-AS genes. The P-value obtained by a Wilcoxon rank-sum test is given. (H) Cumulative distribution of CDS
TEs in AS genes versus non-AS genes, showing that AS significantly reduced the efficiency of gene translation. (I) Magnitude of AS-mediated translational
repression for different types of AS events. The TE differences were compared using a Wilcoxon rank-sum test. (J) Venn diagrams showing AS event
overlapping between different tissues at the same stage. (K) Relative fractions of specific and shared AS events for each tissue type between different stages.
The brain is shown in panels C, E, G, H and I, and the other tissues are shown in Supplementary Figures S8 and S9.

of genes with differential TE upregulation in adult tissues
were longer (Figure 4C and Supplementary Figure S8a).
Moreover, compared to embryonic tissues, adult tissues ex-
hibited relatively wider ranges of TE (Figure 4D). For in-
stance, the TE range spanned up to 217-fold in the adult
liver, whereas the range in the corresponding embryonic
liver spanned only 23-fold. A broad TE range might allow
for greater flexibility in the control of gene translation. In
addition, we observed a considerably narrow spread of TEs
versus transcriptional abundances for all the tissues (Figure

4E and Supplementary Figure S8b), which indicated that
the effects exerted by transcriptional regulation on gene ex-
pression outputs were diluted by modulating the TE. To
some extent, this could also partially explain the effect size
of the inter-tissue expression divergence at the RPF level be-
coming significantly smaller than that at the mRNA level,
as described in our previous section. Collectively, these re-
sults illuminated dynamic changes in the translational effi-
ciency that was optimized for the translation of tissue- and
stage-specific genes.
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Alternative splicing-dependent modulation of translational
output

Given the prevalence of alternative splicing (AS) in multicel-
lular eukaryotes and its importance in post-transcriptional
gene expression control (31), we comprehensively detected
all major types of AS events from our RNA-seq datasets,
including individual and complex combinations of cassette
exons and microexons (AltEx), Alternative 5′ and 3′ splice
site choices (Alt5 and Alt3, respectively), and intron reten-
tion (IR), and examined the effect of AS events on gene
translation (see Materials and Methods section). In total,
we identified 12 716 AS events in 5160 protein-coding genes,
with IR being the most common AS event accounting for
32% of the total AS events, followed by AltEx (31%), Alt3
(22%) and Alt5 (15%) (Figure 4F and Supplementary Ta-
ble S6). On average, 2591 and 2315 AS events were iden-
tified in each tissue of the embryo and adult, respectively.
Although AS could significantly increase coding diversity
within genes (Figure 4G and Supplementary Figure S9a),
by comparing TEs of protein-coding genes with and with-
out AS events, we observed a consistent trend where AS dra-
matically reduced the efficiency of the resulting gene trans-
lation (Figure 4H and Supplementary Figure S9b). The
magnitude of AS-mediated translational repression was fur-
ther shown to be generally associated with the types of AS
events, with IR AS events causing the most prominent re-
pressive effect and AltEx AS events causing the least promi-
nent repressive effect (Figure 4I and Supplementary Fig-
ure S9c). Notably, of the identified AS events, the majority
were occurred exclusively in one tissue and a single stage
(Figure 4J,K), suggesting the existence of tissue- and stage-
specific AS-dependent translational regulation. Overall,
these results demonstrated that AS represents a widespread
and universal translation regulatory mechanism, making
tissue- and stage-specific contributions to the translational
output.

uORFs and dORFs fine-tuning translational output

To further determine the underlying regulatory elements
modulating TE changes, we specifically searched for ac-
tively translated ORFs within the 5′- and 3′-UTRs of
protein-coding genes (see Materials and Methods section).
In total, we identified 6702 unique uORFs in 4297 protein-
coding genes across all the tissues, with a median length of
25 codons. In addition to thousands of uORFs, we only
identified a total of 830 unique dORFs in 637 protein-
coding genes, with a median length of 41 codons (Fig-
ure 5A). Using mass spectrometry (MS)-based proteomics
data, we further provided directly in vivo evidence for trans-
lation of 451 uORFs and 113 dORFs, confirming the stable
expression of hundreds of u/dORF-encoded peptides (Sup-
plementary Table S7).

We found large variations in the number of uORFs
among tissues and stages, ranging from 682 in the adult
heart to 2534 in the embryonic kidney. Notably, this vary-
ing number of uORFs was not induced by sequencing
depths (Supplementary Figure S10a), which should be an
actual reflection of uORF usage patterns. Of the identi-
fied uORFs, many (47% in the embryo and 61% in the
adult) were detected exclusively in one tissue, showing some

degree of tissue specificity, but some were commonly de-
tected in multiple tissues (Figure 5B), which might be as-
sociated with a high prevalence of uORFs in the expressed-
in-all category of genes (Figure 5C). For each tissue type,
80–85% of uORFs were detected exclusively in a single
stage (Figure 5D), showing a strong stage specificity. These
findings would thus imply that uORF-mediated transla-
tional regulation might occur in a tissue- and stage-specific
manner. Furthermore, we provided experimental evidence
for condition-dependence of uORF-mediated translational
regulation, demonstrating that uORFs, acting as repres-
sors of downstream CDS translation, exerted distinct re-
pressive effects under different conditions (Figure 5E). In
addition, uORF-mediated regulation of downstream CDS
translation did not always confer the repressive effect (Sup-
plementary Figure S10b). For instance, in the embryonic
brain uORFs significantly repressed translation of their
downstream CDSs, whereas in the adult brain uORFs sig-
nificantly enhanced translation of their downstream CDSs
(Figure 5F), which could be achieved by either leaky scan-
ning or translational re-initiation (32,33). GO enrichment
analysis revealed that uORF-containing genes were not
only enriched for many tissue-specific biological functions,
but also frequently enriched for basic cellular processes
(Supplementary Table S8), particularly those involved in
posttranslational modifications such as ‘protein polyubiq-
uitination’, ‘protein glycosylation’ and ‘protein phosphory-
lation’ (Figure 5G), which suggested that uORFs are reg-
ularly used in protein modification processes to tune pro-
teomic diversity.

Similar to uORFs, dORFs also had a high prevalence
in the expressed-in-all category of genes (Supplementary
Figure S10c) and showed tissue- and stage-specific usage
(Supplementary Figure S10d,e). Interestingly, dORFs and
uORFs did not tend to simultaneously present in the same
gene, exhibiting a mutually exclusive pattern of usage (Fig-
ure 5H). Contrary to uORFs, dORFs significantly en-
hanced the translation of their corresponding CDSs. This
trend was consistently observed in all embryonic tissues but
not in all adult tissues (Supplementary Figure S10f), sug-
gesting that the enhancive effect of dORFs on their CDS
translation might also be condition dependent. The func-
tional importance of dORFs in each tissue was further ex-
amined, but regrettably, they did not exhibit enrichment for
any particular functions possibly due to their much smaller
size.

Pervasive translation of long noncoding RNAs

Apart from the uORFs and dORFs, translation can also
occur in small ORFs (smORFs) within putative long non-
coding RNAs (lncRNAs). Herein, we identified a total of
2023 actively translated smORFs in 1034 lncRNAs, with
>92% of smORFs originating from lincRNAs, antisense
transcripts and processed transcripts (Figure 6A and Sup-
plementary Table S7). The capacity for these smORFs to
produce a stably translated protein was further accessed
by two independent methods, including that (i) MS-based
proteomics data provided directly in vivo evidence for pep-
tide products translated from 263 of the 2023 smORFs, and
(2) in vitro translation experiments showed peptide gener-
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Figure 5. uORF- and dORF-mediated translational regulation. (A) Number of u/dORFs and u/dORF-containing genes detected in each tissue. (B) Venn
diagrams showing uORF overlapping between different tissues at the same stage. (C) Prevalence of uORFs in each category of genes, with higher prevalence
in the expressed-in-all category of genes and lower prevalence in the tissue-enriched category of genes. (D) Relative fractions of specific and shared uORFs
for each tissue type between different stages. (E) Luciferase reporter assay of uORF-mediated regulation. Here an uORF of the Atf4 gene that underwent
active translation in all tissue types was selected to construct wild-type and mutant reporter vectors (see Materials and Methods section for more details).
The difference significance was obtained using a Wilcoxon rank-sum test, and the P-values are shown. (F) Cumulative distribution of CDS TEs in uORF-
containing genes versus those lacking uORFs. Here, uORF-containing genes were grouped by their number of uORFs, showing that the number of uORFs
was associated with the extent of decrease in CDS TEs. The TE differences were compared using a Wilcoxon rank-sum test. (G) Heat map for the enriched
GO terms with a frequency of >2 across tissues. Bright yellow color represents significant enriched GO term. (H) Overlap between genes with uORFs and
dORFs, showing a trend of mutually exclusive usage. The brain is shown in panel F, and the other tissues are shown in Supplementary Figure S10.

ation for 3 out of 10 randomly chosen smORFs, namely,
Lsmem2, RP23-83I13.10 and RP23-52N2.1 (Figure 6B).
Pervasive translation of lncRNAs would open the possibil-
ity that lncRNAs are a source of cryptic translation events
with functional roles.

Given that determining a gene’s pattern of expression is
a key step toward understanding its function, we next ana-
lyzed the patterns of lncRNA translation across tissues and
stages. On average, 403 and 407 smORFs were detected in
each tissue of the embryo and adult, respectively. Despite
no statistically significant difference in the average num-

ber of smORFs between two stages (P = 0.937, Wilcoxon
rank-sum test), during the embryo-to-adult transition, we
found a significant change in translational pattern, where
the translated fraction in the tissue-enriched category of
lncRNAs increased from 23% to 40% whereas this frac-
tion in the expressed-in-all category of lncRNAs decreased
from 38% to 21% (P = 1.89e-08, Fisher’s exact test; Figure
6C). Coinciding with these changes, translation of lncRNAs
showed an increased tissue-specificity in the adult (Figure
6D). The fraction of tissue-specific translated lncRNAs was
nearly 1.27-fold higher in the adult than in the embryo (66%
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Figure 6. lncRNA translation. (A) Number of actively translated smORFs detected in each tissue by using Ribo-TISH. The smORF distribution by
locus biotypes of the GENCODE lncRNA annotation (Release M18) is shown below, where the lncRNAs have been reclassified into nine distinct locus
biotypes based on their location with respect to protein-coding genes, including lincRNA, macro lncRNA, antisense, bidirectional promoter lncRNA,
3prime overlapping ncRNA, processed transcript, sense intronic, sense overlapping and TEC (to be experimentally confirmed) (see definitions of detail
on these biotypes at https://www.gencodegenes.org/pages/biotypes.html). (B) In vitro experiments for validating smORF translation. Molecular weights of
micropeptides are indicated in kilodaltons (kDa). (C) Fraction of translated lncRNAs in each lncRNA class, where classification of lncRNAs was based
on their expression levels in the six tissues, done with the TissueEnrich R package. (D) Venn diagrams showing translated lncRNA overlapping between
different tissues at the same stage. (E) Relative fractions of specific and shared translated lncRNAs for each tissue between different stages. (F) A brief
overview of functional characterization of smORF-encoded peptides (SEPs). (G) Enriched GO terms for protein-coding genes significantly correlated with
their neighboring translated lncRNAs, determined by GO enrichment analysis (n = 166; P-value < 0.01, hypergeometric test).

versus 52%). Moreover, translation of lncRNAs also had
stage-specificity, with an average of 67% (range 63–72%) de-
tected exclusively in a single stage (Figure 6E).

To gain insight into the potential translation functions,
we subsequently performed functional annotation on these
putative smORF-encoded peptides (SEPs) (Figure 6F; see
Materials and Methods section). Their peptide sequences
were first queried separately against the CDD domains and
the annotated known small proteins in the mouse genome,
which revealed that only a small subset (220) were rele-
vant to the well-characterized protein domains or small pro-
teins, meaning that the majority (>89%) of the 2023 SEPs
were novel. Subcellular localization prediction revealed that
these SEPs were primarily localized to the mitochondria
(782, 38.7%), followed by the extracellular (697, 34. 5%), nu-
cleus (287, 14.2%) and cytoplasm (113, 5.6%). Notably, of
these SEPs, 1755 (86.8%) were predicted to be soluble. This
also partially explained the lower validation rate in the pro-
teome and IVT assay. Nevertheless, 150 SEPs were further
predicted to be either transmembrane and/or secreted, sug-

gesting that they could act as potential mediators of cell–cell
communication given that cellular communication is typ-
ically mediated by the secretion of small diffusible signal-
ing molecules or through direct cell–cell contact (34). GO
enrichment analysis on the coexpressed adjacent protein-
coding genes with these translated lncRNAs (see Materi-
als and Methods section) showed that they were frequently
enriched for functions associated with tissue development,
differentiation and morphogenesis (Figure 6G and Supple-
mentary Table S9), indicating their potential functional im-
portance. Overall, these results revealed that the translation
of at least some, if not all, lncRNAs could produce stable
peptides with potential regulatory roles in vivo.

DISCUSSION

A comprehensive translatome profile of the tissue types and
stage types can reveal the enormous diversity in gene trans-
lation and its regulation associated with tissue and stage. In
this study, our comparative translatome analysis provided
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many novel insights into translational regulation that mod-
ulates the dynamics of gene expression and physiological
functions in a tissue- and stage-specific manner. The func-
tional characterization of genes and pathways underlying
the divergences in gene expression within and between em-
bryonic tissues and their corresponding adult tissues further
enhanced our understanding of the molecular basis of tissue
physiology. We observed the incomplete coupling between
biological functions of transcribed and translated genes,
highlighting the significance of translation and its regula-
tion in ensuring the proper functioning of tissue at different
life stages. Notably, translational profiling will enable a bet-
ter definition of ‘housekeeping genes’, as supported by the
observation that approximately 9.3% of ubiquitously tran-
scribed genes are not included in the set of ubiquitously
translated genes. This change is likely subject to a disal-
lowance of regulation during the process transition from
transcription to translation.

Tight regulatory controls of transcription and translation
play an important role in the development of the embryo
and the maintenance of adult tissues. We note that although
translational up- and downregulation may have very dif-
ferent mechanistic underpinnings and functional outcomes,
distinguishing between their regulatory effects would re-
quire enhanced knowledge from the regulators, which can
be precisely obtained through perturbation experiments.
Controlling TEs is frequently used as a means of trans-
lational regulation, which delivers dynamic and context-
specific TE changes, thereby influencing quantitative dif-
ferences in gene outputs in different tissues and life stages.
uORF- and dORF-mediated translational regulation rep-
resents another important layer for the manipulation of
gene expression. We revealed that many uORFs provide
functionally important repression of the downstream CDS
translation in a dose-dependent manner, in line with pre-
vious reports (35,36). However, some uORFs exert differ-
ent regulatory effects on translation of the downstream
CDSs in adult tissues, demonstrating the complexities of
uORF-mediated translational regulation (33). Behind the
complexities, many properties may contribute to an uORF’s
role in translational regulation, including the length of the
5′UTR, the secondary structure and GC content, as well as
the strength of the surrounding Kozak context, the uORF
length, and conservation, which have been substantially dis-
cussed in detail in previous reports (32,37). Apart from
uORFs encoding regulatory peptides, some uORFs have
been reported to encode for proteins with functions inde-
pendent of the control of the downstream CDS (38). In ad-
dition to uORFs, translation of dORFs in the 3′-UTRs rep-
resents a new translation regulatory mechanism, enhancing
translation of their corresponding CDSs (11), but notably,
dORFs did not always confer translational enhancement,
which might also be condition dependent.

The identification of actively translated smORFs in lncR-
NAs broadens our understanding of coding ability in the
mouse genome. We revealed a notable number of trans-
lated lncRNAs that exhibit unanticipated tissue- and stage-
specificity. However, as demonstrated in our previous study
(39), translatable lncRNAs are also obviously different from
annotated protein-coding genes, with markedly distinguish-

ing properties, including expression, structural, sequence,
evolutionary and functional features, which underpin the
mysteries surrounding the biology of lncRNAs. Although
our analysis revealed pervasive translated lncRNAs in dif-
ferent tissues and stages, translatable lncRNAs are not nec-
essarily detectable peptides. Indeed, only a portion of the
translated products was validated by different strategies, in-
cluding in vivo peptide detection by mass spectrometry and
in vitro translation experiments. One possibility is that some
peptides likely escape detection due to extremely low expres-
sion abundance (40), and another possibility is that some
peptides are likely degraded during proofreading through
nonsense-mediated decay (41). In addition, detectable pep-
tides are not necessarily functional peptides. To understand
the functional potential of these putative peptides, we used
integrative annotation approaches and pointed to their po-
tential functional relevance. Nevertheless, understanding
the full repertoire of translated lncRNAs and their biolog-
ical functions remains challenging. The translated details
of individual lncRNAs and their biological functions also
need to be further experimentally validated.

In summary, our analyses will facilitate a better under-
standing of how tissue-specific and stage-specific pheno-
types are achieved through the precise control of gene trans-
lation and its regulation and our data may serve as a valu-
able resource for future research in the field of translatomics.
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