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Abstract 
In traditional finite element failure analyses of geotechnical structures, the micro grain rotations cannot be modelled and 
numerical solutions are mesh dependent. In this study, a user element including rotational degree of freedom has been 
developed based on micropolar theory (Cosserat theory), then an enhanced non-associated sand model is calibrated 
with laboratory data and used to model the plane strain tests. The simulated results demonstrate the polarized model is 
able to model reasonably the sand behavior as well as the grain rotations in the localized region. What’s more, with this 
enhanced model, the mesh independent numerical solutions in terms of mechanical responses, shear bands thickness 
and orientations have been obtained.

Article highlights 

(1)	 In failure analysis of geostructures, significant rota-
tions of soil grains have been observed to occur in 
the strain localized regions, but the current com-
mercial Finite Element tools cannot model the micro 
rotations. Therefore, a user defined element must be 
developed to include the rotational degree of free-
dom.The micropolar approach is proven to be effec-
tive to model the grain rations in present paper.

(2)	 More suitable than other classical soil or sand con-
stitutive models, the selected non-associated sand 
model inpresent paper is capable of describing well 
the contraction and shear dilatancy behaviors of 

sand. Then the modelhas been enhanced by means 
of micropolar technique, in this way, the reasonable 
strain localization phenomenain laboratory tests 
could be predicted well.

(3)	 There are always the mesh dependent problems for 
traditional simulations of the strain localization phe-
nomena in finite element analysis. It can be found in 
present paper that the mesh independent numerical 
solutions are obtained by means of micropolar tech-
nique. Furthermore, the micropolar approach can 
obviously improve convergence difficulties in finite 
element analyses.
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1  Introduction

For the failures of geotechnical structures related to 
granular assemblies, strain localization always occurs 
accompanied with the reduction of bear capacity. In this 
process, significant grain rotations inside the localized 
regions play important roles [1]. Moreover, research-
ers have confirmed grains’ translations and rotations in 
shear strain localized region with the digital correction 
of particle-scale volume, allowing the complete kinemat-
ics of particles to be characterized in laboratory tests [2].

Many constitutive models have been developed to 
describe the behavior of granular soils. However, most 
models are formulated based on classical continuum 
mechanics theory in finite element analysis, which can-
not consider rotational degrees of freedom (dofs), but 
can only take into account translational dofs. Conse-
quently, when modeling the strain localization phe-
nomena, there are mesh dependent problems and 
pathological solutions. One of the potential reasons for 
this defect is that when the simulated localized region is 
over-developed for static problems using classical mod-
els, the property of field control equations will change 
from elliptical to hyperbolic. Consequently, we cannot 
obtain the unique numerical solution, especially in the 
post-failure stage.

In recent years, various regularization techniques, e.g. 
micropolar theory, viscosity, non-local theory, and high-
gradient theory, have been used to alleviate the mesh 
dependency or sensitive problems in simulating strain 
localizations by finite element method (FEM). Compared 
with other approaches, micropolar theory is easy to be 
implemented and physically meaningful. Moreover, it 
is also suitable for capturing shear-dominated failure 
mode. Accordingly, extending a classical model to the 
micropolar model has been embraced a lot. Numerical 
simulations using micropolar Lade hardening model 
have been carried out by Alsaleh et al. [3, 4] to model 
the strain localization phenomena. Arslan and Sture [5] 
used the micropolar Drucker-Prager model to study the 
micro and macro relations in materials. de Borst and 
Sluys [6] investigated the strain localization phenom-
ena and strain softening behaviors under both static and 
dynamic condtions with the micropolar J2 model. The 
micropolar approach was also used to model the behav-
iors of hypoplastic materials by Huang and Bauer [7]. 
Li and Tang [8] used a pressure dependent micropolar 
model to simulate the strain localizations of a soil layer 
and the failure of a slope. Different from other research-
ers’ attempts on conventional models, such as J2 model, 
Drucker-Prager model among others, a non-associated 
critical state based model for granular materials has 

been first formulated within the micropolar framework in 
present study. The polarized sand model demonstrates 
great ability to reasonably model the micro grain rations 
and the localized failure mode in plane strain tests. Fur-
thermore, the improved model is able to guarantee the 
accuracy of solutions and efficiently overcome the mesh 
dependency problems in numerical simulations. In other 
words, the polarized model is more reasonable than the 
model based on classical theory to model shear bands in 
laboratory tests, in terms of mechanical responses, grain 
rotations, shear band patterns, etc.

In this paper, the formulations of elastic and plastic 
models based on micropolar theory have been illustrated 
and derived in detail at first. Then the enhanced non-asso-
ciated sand model by the micropolar approach has been 
implemented into a user subroutine with finite element 
method. After that, the polarized model has been cali-
brated and verified by the laboratory plane strain tests. At 
last, the applications of the polarized sand model has been 
conducted by modelling shear bands in different meshes.

2 � General formulations of model 
in micropolar theory

In addition to the translational field, extra rotational dofs 
are endowed to the element in micropolar theory (also 
called Cosserat theory [9]). Rotational dofs, independent 
from the translational dofs, are easily added in the bal-
ance equations at constitutive level. Furthermore, micro 
rotations and the corresponding couple stresses can be 
explained from the viewpoint of material mechanics. The 
rotations in a micropolar model are considered as the 
rotations of grains or aggregates. In contrast, the classical 
model considers only the translations or displacements of 
material points.

In order to illustrate the micropolar theory clearly, the 
plain strain problems are first investigated. After adding 
a rotational dof to the micro-element, each element has 
three generalized dofs.

Contrary to the stress and strain in traditional contin-
uum mechanics, the strain and stress vectors in micropo-
lar media can also consider microscopic curvatures and 
moments,

(1)� =
[
ux uy �z

]T

(2)� =
[
�xx �yy �zz �xy �yx �zx lc �zy lc

]T

(3)� =
[
�xx �yy �zz �xy �yx mzx∕lcmzy

/
lc
]T
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in which mzx and mzy are couple stresses corresponding to 
the micro curvatures κzx and κdzy, and lc, is a internal size 
scale like mean particle size d50.

For a model based on micropolar theory, not only the 
equilibrium and compatibility equations, but also the 
constitutive laws have been generalized by including the 
additional components of strain and stress vectors [10].

2.1 � Equilibrium equations

The unified equilibrium governing equations for both 
static and dynamic problems in micropolar theory can be 
expressed

in which σij and mkj,j denote Cauchy stress and micro-
couple stress, and fj and ck represent body force and 
micro moment, respectively. The first sub-equation is the 
same with that in a classical model. The second one is a 
special form in micropolar theory. For the shear stress 
components in micropolar theory, the symmetrical part 
�S =

(
�xy + �yx

)/
2 produces shear strain whereas the skew 

part �A =
(
�xy − �yx

)/
2 only causes rotations.

2.2 � Kinematics equations

In micropolar theory, the formulations of normal strain 
components �xx and �yy are identical to the forms in clas-
sical continuum theory, whereas, the shear strain compo-
nents �xy and �yx are linked not only to the translations but 
also to the rotation. The curvatures �xz and �yz are calcu-
lated from the gradients of rotational quantity ωz.

2.3 � Elastic constitutive laws

Summarize the equilibrium and kinematic equations in 
matrix–vector forms,

where u (including rotation) and f (including body 
moment) denote displacement vector and body force 
vector, respectively, and L is named strain operator matrix,

(4)

{
�ij,i + fj = 0

mkj,j + ekij�ij + ck = 0

(5)�xy =
�uy

�x
− �z , �yx =

�ux

�y
+ �z

(6)�xz =
��z

�x
, �yz =

��z

�y

(7)� = ��

(8)�T� + � = 0

The strain rate is related to stress rate through elastic 
stiffness matrix,

in which λ = 2 Gυ/(1-2υ) υ is Poisson’s ratio, G and Gc 
denote shear modulus and micropolar shear modulus, 
respectively.

2.4 � Elastoplastic constitutive laws

For small strain micropolar continuum, it is supposed that 
total strain includes elastic part and plastic part.

Substitute Eqs. (12) into (10), we get

The plastic strain is formulated

in which 𝜆̇ is named plastic multiplier, m denotes the direc-
tion of plastic flow and Q is the potential function. The 
consistency condition controls plastic flow. In plasticity 
theory, the Kuhn-Tucker must be guaranteed

where κ contains hardening variable vector, and � =
��

��
 

and h = −
𝛋̇

𝜆̇

𝜕𝐅

𝜕𝛋
 . Then, the stress–strain relation in a 

micropolar continuum can be obtained by combining 
Eqs. (13) and (17)

(9)�T =

⎡
⎢⎢⎢⎣

�

�x
0 0 0

�

�y
0 0

0
�

�y
0

�

�x
0 0 0

0 0 0 −1 1 lc
�

�x
lc

�

�y

⎤
⎥⎥⎥⎦

(10)𝛔̇ = 𝐃e𝛆̇𝐞

(11)

�e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� + 2G � � 0 0 0 0

� � + 2G � 0 0 0 0

� � � + 2G 0 0 0 0

0 0 0 G + Gc G − Gc 0 0

0 0 0 G − Gc G + Gc 0 0

0 0 0 0 0 2G 0

0 0 0 0 0 0 2G

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)𝛆̇ = 𝛆̇𝐞 + 𝛆̇𝐩

(13)𝛔̇ = 𝐃e(𝛆̇ − 𝛆̇𝐩)

(14)𝛆̇𝐩 = 𝜆̇𝐦, with 𝐦 =
𝜕𝐐

𝜕𝛔

(15)F(�,�) = 𝜙(�) − 𝜎̄(�) = 0

(16)

⎧⎪⎨⎪⎩

𝜆̇ ≥ 0

F ≤ 0

𝜆̇F = 0

(17)Ḟ = 𝐧T 𝛔̇ − h𝜆̇ = 0
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3 � Extension of classical model 
to a micropolar one

3.1 � Introduction of the classical model

The models for granular materials have been improved 
from linear elasticity to ideal plasticity and then to non-
linear hardening during the past decades. In present 
study, a different model based on critical state proposed 
by Yin and Hicher [11] has been selected for polarization.

The constitutive laws in p’–q plane are derived

The forms of bulk modulus K and shear modulus G are 
expressed [12]

 in which e denotes void ratio, υ is Poisson’s ratio, pat and 
p’ represent the atmospheric pressure and mean effective 
stress, respectively. ζ controls the nonlinear effect. K0, G0 
are the initial values of K and G, which can be linked by υ,

The plastic strain is formulated

The yield function is expressed

in which kp, controlling the initial slope of the 
curve q∕p� − �

p

d
 , affects the plastic shear modulus, and 

Mp = 6sin(ϕp)/(3–sin(ϕp), representing the peak stress 
ratio, can be obtained from the peak friction angle ϕp. 
The potential surface, considering dilation and contrac-
tion, can be formulated as

(18)𝛔̇ =

[
𝐃e −

𝐃e𝐦𝐧𝐓𝐃e

h + 𝐧𝐓𝐃e𝐦

]
𝛆̇

(19)𝜀̇e
v
=

ṗ�

K
, 𝜀̇e

d
=

q̇

3G

(20)K = K0 ⋅ pat
(2.97 − e)2

1 + e

(
p�

pat

)�

(21)G = G0 ⋅ pat
(2.97 − e)2

1 + e

(
p�

pat

)�

(22)
K

G
=

2(1 + �)

3(1 − 2�)

(23)𝜀̇
p

ij
= d𝜆

𝜕g

𝜕𝜎�
ij

(24)f =
q

p�
−

Mp�
p

d

kp + �
p

d

where Ad is the input parameter controlling dilatancy, 
Mpt = 6sin(ϕpt)/(3–sin(ϕpt)) represents the stress ratio at 
phase transformation state in p’–q plane. ϕp and phase 
transformation friction angle ϕpt be calculated by ϕu and 
ec (on the critical state line in p’–q plane and in e–log p’ 
plane in Fig. 1).

And we calculate void ratio ec on the critical state line

Input parameters np and nd control the peak and 
phase transition point, λ represents the CSL slope in 
e–log p’ plane, and eref means the reference critical void 
ratio on critical state line at pat. From above equations 
and the p’–q–e plane Fig. 1, we can find that for both 
loose and dense materials, it guarantees the void ratio 
and the stress reach the critical state line simultaneously.

The plasticity multiplier dλ can be derived as the man-
ner in conventional plasticity theory, then the constitu-
tive laws can be solved.

(25)

�g

���
ij

=
�g

�p�

�p�

���
ij

+
�g

�q

�q

���
ij

with
�g

�p�
= Ad

(
Mpt −

q

p�

)
;
�g

�q
= 1

(26)tan�p =
(ec
e

)np
tan�u, tan�pt =

(ec
e

)−nd
tan�u

(27)ec = eref − � ln

(
p�

pat

)

3

2
ij ijq s s

CSL

M
( )A A

A

CSL
ce

e

3kkp

log p

Loose sand

0e

A

d

0e
Dense sandAA

A

e

e

Fig. 1   Principle of the critical state based nonlinear sand model
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3.2 � Enhanced model in micropolar theory

By considering curvatures and coupled stresses, the classical 
model aforementioned has been extended to the micropo-
lar model. Thus, more advanced than the strain and stress 
invariants of a classical model, the modified invariants of the 
micropolar model were formulated.

In the formula, the plastic micro-curvature rate tensor and 
the plastic deviatoric strain rate tensor are represented by 𝜅̇p

ij
 

and ėp
ij
 , and mij and sij denote the micro moment tensor the 

deviatoric stress tensor, respectively. Thereafter, the devia-
toric stress q can be expressed in a matrix–vector form

where P matrix is defined

Similarly, the equivalent plastic strain �p
d
 is newly updated 

in matrix–vector form

with the definition of matrix Q

(28)d� =

[
�f

��ij

]T
Dijkld�kl

[
�f

��ij

]T
Dijkl

�g

��kl
−

�f

��
p

d

�g

�q

(29)𝜀̇
p

d
=
[
1

3
ė
p

ij
ė
p

ij
+

1

3
ė
p

ij
ė
p

ji
+

2

3
𝜅̇
p

ij
𝜅̇
p

ij
l2
c

] 1

2

(30)J2 =
1

4
sijsij +

1

4
sijsji +

1

2
mijmji

/
l2
c

(31)q =

√
1

2
����

(32)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0 0

−1 2 −1 0 0 0 0

−1 −1 2 0 0 0 0

0 0 0 3∕2 3∕2 0 0

0 0 0 3∕2 3∕2 0 0

0 0 0 0 0 3 0

0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(33)�
p

d
=

√
2

3
(��)�� ��

(34)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2∕3 −1∕3 −1∕3 0 0 0 0

−1∕3 2∕3 −1∕3 0 0 0 0

−1∕3 −1∕3 2∕3 0 0 0 0

0 0 0 1∕2 1∕2 0 0

0 0 0 1∕2 1∕2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

It can be observed that after the strain and stress vec-
tors are expanded to include micro curvatures and micro 
moments, the strain and stress invariants must be also 
redefined, then the traditional model can be extended to 
a micropolar model. If the rotational dof is restricted, the 
micropolar model can be also retrieved to a traditional 
model.

4 � Finite element implementation 
of the polarized model

4.1 � User defined element in micropolar theory

As aforementioned, a micropolar element should have 
three dofs for plane strain problem. Through the user inter-
face in software ABAQUS, a user element with 8 nodes and 
4 reduced integration points, considering the independent 
rotation has been developed as shown in Fig. 2.

According to FEM, the displacement and rotation u of 
the user element can be derived from the counterparts δe 
at each node via the interpolation function N.

The interpolation functions are defined

(35)� = ���

(36)� =

⎧⎪⎨⎪⎩

u

v

�z

⎫⎪⎬⎪⎭
, �� =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�1

�2

�3

�4

�5

�6

�7

�8

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, �i =

⎧⎪⎨⎪⎩

ui

vi

�zi

⎫⎪⎬⎪⎭
(i = 1, 2,…, 8)

(37)

� =
�
�N1 �N2 �N3 �N4 �N5 �N6 �N7 �N8

�
, with � =

⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦

4

1 2

3

51 2

34

6

7

8

(a) (b)

Fig. 2   Plane strain element of micropolar continuum: a 8-node ele-
ment; b reduced integration



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:725  | https://doi.org/10.1007/s42452-021-04708-z

Then, the strain components can be derived from the 
displacement and rotation.

B = LN is the strain matrix. Then the stress can be 
obtained according to constitutive law

The global coordinates of the element can also be 
obtained by interpolating nodes’ coordinates.

After the partial differential operation, we get

The Jacobian matrix [J], used to realize the map 
between (ξ, η) and (x, y), is formulated

4.2 � Finite element discretization

According to the virtual displacement principle for plane 
strain problem, the potential energy of a structure can be 
expressed as the weak form

(38)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N1 =
1

4
(1 − �)(1 − �) −

1

2

�
N5 + N8

�
, N5 =

1

2

�
1 − �2

�
(1 − �)

N2 =
1

4
(1 + �)(1 − �) −

1

2

�
N5 + N6

�
, N6 =

1

2
(1 + �)

�
1 − �2

�

N3 =
1

4
(1 + �)(1 + �) −

1

2

�
N6 + N7

�
, N7 =

1

2

�
1 − �2

�
(1 + �)

N4 =
1

4
(1 − �)(1 + �) −

1

2

�
N7 + N8

�
, N8 =

1

2
(1 − �)

�
1 − �2

�

(39)� = �� = �N�� = ���

(40)� = ���� = ������

(41)

⎧⎪⎪⎨⎪⎪⎩

x =

8�
i=1

Nixi = N1x1 + N2x2 + ⋅ + N8x8

y =

8�
i=1

Niyi = N1y1 + N2y2 + ⋅ + N8y8

(42)

⎧⎪⎨⎪⎩

�Ni

��

�Ni

��

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎢⎣

�x

��

�y

��

�x

��

�y

��

⎤⎥⎥⎥⎦

⎧⎪⎨⎪⎩

�Ni

�x
�Ni

�y

⎫⎪⎬⎪⎭
= [�]

⎧⎪⎨⎪⎩

�Ni

�x
�Ni

�y

⎫⎪⎬⎪⎭

(43)[�] =

⎡⎢⎢⎢⎣

�x

��

�y

��

�x

��

�y

��

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

�
∑

Nixi

��

�
∑

Niyi

��

�
∑

Nixi

��

�
∑

Niyi

��

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

�N1

��

�N2

��
⋅

�N8

��

�N1

��

�N2

��
⋅

�N8

��

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x1 y1

x2 y2

⋅ ⋅

x8 y8

⎤
⎥⎥⎥⎥⎦

(44)
∏
p

= ∫Ω

1

2
������tdxdy − ∫Ω

�T � tdxdy − ∫S

�TTdS

in which f and T denote the interior body force vector 
and the external surface force vector, respectively. t repre-
sents the thickness. Substitute Eqs. (40) into (44), and the 
total structural system potential energy can be obtained 
by adding all the discretized elements’ potential energy.

For a random virtual displacement, it must be required 
the partial differential 

�Πp

� ��
= 0 . In this way, the equilibrium 

equations of an element can be formulated

Ke and Pe represent the stiffness matrix of the element 
and the load vector acting on the nodes, respectively. 
Then the governing field equations for a structure can be 
expressed

in which a denotes the array containing all the node 
displacements, and K and P represents the structure stiff-
ness matrix and the equivalent node load array of the 
total system, respectively. For static problems, the New-

ton–Raphson iteration is adopted to conduct the equilib-
rium, and the state related variables can be calculated and 
updated by implicit integration in ABAQUS. In finite ele-
ment analysis, random discretized irregular elements can 
be transformed to regular ones via Jacobian matrix. Then, 
the integration operation can be replaced by sum opera-
tion at the integration point. Taking the element stiffness 
matrix as an example

(45)

∏
p

=
∑
e

e∏
p

=
∑
e

(
(��)T ∫Ωe

1

2
�T����tdxdy��

)

−
∑
e

(
∫Ωe

(��)T�T � tdxdy

)
−
∑
e

(
∫Se

(��)T�T�ds

)

(46)�e�� = �e

(47)�e = ∫Ωe

�T����tdxdy

(48)�e = ∫Ωe

�T � tdxdy + ∫Se

�T�ds

(49)�a = �
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in which Hi or Hj represents the weight factors for 
interpolation.

All the formulations of the polarized sand model are 
programed in the User defined ELement (UEL) procedure. 
The computation flow chart can be found in Fig. 3.

5 � Calibration of model parameters

The polarized model includes 12 parameters, which are 
classified into four groups: (a) parameters about elasticity 
ζ, υ, and K0, (b) parameters defining critical state λ, ϕu and 
eref, (c) parameters interlocking plasticity np, nd, Ad and kp, 
(d) and the particular parameters lc and Gc in the micropo-
lar model.

The elastic parameters ζ, K0, can be obtained from an 
isotropic compression test, and the parameters interlock-
ing plasticity np, nd, Ad and kp, can be identified with one 

(50)�e = ∫Ωe

�T����tdxdy = ∫
1

−1 ∫
1

−1

�T����|�|d�d� =

m∑
i=1

n∑
j=1

HiHj�
T����t|�|

triaxial drained test. To determine the critical state param-
eters λ, ϕu as well as eref, mechanical curves of no less than 
three set of triaxial tests with different initial densities and 
confining pressures need to be fitted. Poisson’s ratio υ can 
be assigned based on materials.

For the determination of the micropolar parameter lc 
and Gc, it has been found that the shear band thickness 
is linearly proportional to d50 in laboratory biaxial tests 
or linearly proportional to the micro scale lc in numerical 
simulations [3, 13–16]. Therefore, lc, representing the scale 
of microstructure, is set to be d50, and Gc is set to half the 
shear modulus G as others do [17, 18].

Considering the low efficiency of conventional curve-
fitting method, The genetic optimization method [19], 
finding model parameters more quickly and accurately, 
has been adopted to conduct the parameters calibration.

Laboratory data of F-75 Ottawa sand shown in Fig. 4 
(emax = 0.805, emin = 0.486, Gs = 2.65, d50 = 0.22 mm) was 

Fig. 3   Computation flow chart 
of UEL

U, DU, SVARS B matrix 

i statev,

Node coordinates

AMATRIX RHS

SUBROUTINE
UEL (...)

Shape function N

External load  fext

External 

Node force
Internal 

Node force

Integration 

algorithm

(Cutting plane)

i+1Dep



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:725  | https://doi.org/10.1007/s42452-021-04708-z

selected to identify the model parameters. The experi-
mental data shown in Figs. 5 and 6 of one isotropic com-
pression test [20] as well as five triaxial tests [21] has been 
fitted. In experimental tests, with a constant confining 
pressure applied to the specimens using a cell pressure 
reservoir, a constant axial displacement rate is applied on 
the specimens. The bottom end platen is restrained from 
movement and the top end platen is rigidly connected 
to the loading ram. During the testing process, the speci-
men’s deformation is monitored by noting the displace-
ments of the grid imprinted on the membrane surface 
covering the specimen. The void ratio can be obtained 
according to the volume of drained water.

The elastic parameters obtained from the isotropic 
compression test are supposed to be universal for triaxial 
tests. There are 9 model parameters should be identified 
by fitting the laboratory data, and the rest 3 parameters 
(υ, lc and Gc) can be set in advance. It requires at least three 
drained triaxial tests with different initial confining pres-
sure and void ratio to inversely search for the critical state 
parameters using the genetic optimization approach. The 
other two parallel triaxial tests can be used to verify the 
calibrated parameter. The calibrated parameters are listed 
in Table 1.

From the comparisons between laboratory data and 
simulations in Figs. 5 and 6, it can be found that the behav-
ior of F-75 dry sand in isotropic compression and triaxial 
tests can be very well predicted by the micropolar model.

6 � Experimental verification by biaxial tests

In order to study the effects of particle size, void ratio, and 
confining pressure on the performances of granular soils, 
researchers have carried out a lot of biaxial tests on F-75 
Ottawa sand [22]. In present study, four experimental data 
set of biaxial tests of dense and medium dense sand under 
high and low confining pressure, have been selected to 
conduct model verification (i.e. Dr = 55%, σc = 15  kPa; 
Dr = 47%, σc = 100  kPa; Dr = 97%, σc = 15  kPa; Dr = 87%, 
σc = 100 kPa). During testing process, the bottom and top 
end platens were constrained from lateral movement. With 
the confining pressure imposed on testing specimen, a 
continuous displacement increment was applied on the 
top of the specimen. And deformation configuration was 
finally recorded on the membrane grid covering on the 
specimen.

When modeling strain localization, the numerical simu-
lations by the classical model were proven to be pathologi-
cal and mesh dependent in post-bifurcation regime. There-
fore, the enhanced micropolar model was adopted herein 
to describe the granular soil behavior. lc was regarded as 
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d50 of F-75 sand (0.22 mm) and Gc was half of G. Other 
calibrated model parameters are listed in Table 1. Notably, 
the critical friction angle ϕu has been slightly increased as 
shown in Table 2. The experimental findings of Alshibli 
et al. [21] can support the improvement of ϕu, that the 
strength of specimen in plane strain test is slightly higher 
than that in triaxial test. The restrained lateral movement 
of the platen end may lead to a higher residual stress. 
What’s more, the difference of ϕu may be also explained 
by the differences of Lode angles in different cases.

In numerical analysis, a weak element was assigned to 
top left corner of the model to induce a single shear band 
as the shear band patterns in the laboratory tests. Because 
obvious grain rotations have been observed inside shear 
strain localized zones, accordingly, the simulated shear 
bands characterized by micro rotations were compared 
with the shear bands in laboratory specimen. Figure 7, 
UR3 representing the rotations, displays the comparison 
between the shear band in a laboratory specimen and a 
numerical model of dense sand with high confining pres-
sure, which shows that the shear band in a testing speci-
men can be well modelled by the micropolar model, in 
terms of its location, inclination, and thickness. Figures 8 

and 9 plot the simulated and experimental data of F-75 
sand in biaxial tests in the same plane, from which it can be 
found that the principal stress ratio vs. axial strain curves of 
experimental data are modelled well and the volumetric 
strains can also be moderately predicted.

7 � Application in mesh dependency 
problems

Admittedly, the numerical solutions to strain localization 
by the classical model may have numerical difficulties or 
suffer from ill-posedness in finite element analysis. As a 
regularization approach, the performances of the polar-
ized model in improving convergences and dealing with 
mesh dependencies have been investigated.

Numerical simulations of plane strain test, with model 
dimensions of 20 cm height, 10 cm width, and 1 m thick-
ness, have been conducted by the classical model as well 
as the micropolar model. Lateral movements of the bot-
tom and top ends of the model were locked. There were 
two stages in the simulations. The first stage was the 
100 kPa confining pressure applied on the model, and 

Table 1   Calibrated constitutive 
parameters

Parameters K0 ζ ϕu eref λ kp Ad np nd

Values 60 0.63 35.8 0.776 0.015 0.004 0.4 1 2

Table 2   Model parameters 
used to simulate biaxial tests

Parameters K0 ζ ϕu eref λ kp Ad np nd

Values 60 0.63 38.5 0.776 0.015 0.004 0.4 1 2

Fig. 7   Comparisons between 
laboratory test and simulation 
for very dense sand under 
100 kPa confining pressure 
at 10% axial strain: a labora-
tory test; b simulation by the 
micropolar model
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then imposed shear load on the model top by continuous 
incremental displacement in the second stage. To investi-
gate the mesh dependency problems, four mesh densities 
from coarse to fine, i.e. mesh 10 × 20, mesh 15 × 30, mesh 
20 × 40 and mesh 30 × 60, have been discussed. Mesh 
10 × 20 means the model is uniformly discretized to 20 and 
10 elements in length and width direction, respectively.

7.1 � Mesh dependent problems by the classical 
model

7.1.1 � Shear band and mechanical behavior

Firstly, the numerical simulations of shear bands were 
performed by the classical model. The distributions of 
plastic strain of four different meshes are displayed in 

Fig. 10, and four corresponding curves of displacement 
vs. load are plotted in Fig. 10. From the shear bands in 
Fig. 10 and the mechanical responses in Fig. 10, it can be 
found that the simulations with mesh 10 × 20 and mesh 
15 × 30 have been completed, whereas, there are conver-
gence difficulties around the peak point for mesh 20 × 40 
and mesh 30 × 60. The bifurcations of numerical calcula-
tions in modeling strain softening lead to solutions mesh 
dependent, resulting in shear bands concentrate in the 
domain of a single element. When the element size is 
extremely refined to zero, the consumed energy by fail-
ure also converges to zero, which is not the feature of 
real materials [23]. What’s more, the acoustic tensors of 
many Gauss points in localized regions become singu-
lar, which is responsible for the convergence difficulties 

c = 15kPa

c = 100kPa

(a) 

(b) 

Fig. 8   Comparisons between laboratory tests and numerical simu-
lations for medium dense F-75 sand: a axial strain versus principle 
stress ratio; b axial strain versus volumetric strain

c = 15kPa

c = 100kPa

(a) 

(b) 

Fig. 9   Comparisons between laboratory tests and numerical simu-
lations for very dense F-75 sand: a axial strain versus principle stress 
ratio; b axial strain versus volumetric strain
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and pathological solutions. Figures 10 and 11 show that 
numerical simulations are severely sensitive to mesh 
sizes, that is to say, the coarser the mesh is, the thicker 
the shear band will be, and the peak load capacity of 
coarse mesh is a little higher and delayed than fine mesh. 
Furthermore, it can be found the residual strength of a 
model with coarse mesh is greater than that with fine 
mesh.  

7.1.2 � Inclination of shear band by the classical model

When it came to the investigations of the mesh depend-
ency problems in the past, many discussions were focused 
on shear band thickness and the strength in softening 
regime, however, the differences of shear band inclinations 

Fig. 10   Shear bands in different meshes by the classical model: a mesh 10 × 20; b mesh 15 × 30; c mesh 20 × 40; d mesh 30 × 60
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Fig. 11   Displacement versus load of different meshes by the classi-
cal model

Fig. 12   Shear band inclined angles in different meshes by the classical model: a mesh 10 × 20 β1 = 52.69°; b mesh 15 × 30 β2 = 57.65°; c mesh 
20 × 40 β3 = 60.15°
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have never been studied. In present study, we also con-
sidered the shear band inclinations of different meshes. 
The inclined angle between the horizontal line and the 
centerline of the shear band can be measured to define 
shear band orientations. The centerline may be regarded 
as the sliding surface. Because the computation of mesh 
30 × 60 faces numerical difficulties earlier, shear band 
inclined angles of other three meshes are measured in 
Fig. 12 (i.e., β1 = 52.69°, β2 = 57.65°, and β3 = 60.15°), from 
which we can find a finer mesh produces a steeper shear 
band inclination.

To summarize the numerical mesh dependent prob-
lems by the classical model. First, upon the occurrence of 
bifurcation, the acoustic tensors of the elements inside 
shear band will become singular, resulting in numerical 
problems and convergence difficulties. Second, shear 
bands patterns, specially the thickness and inclination, 
are severely sensitive to the element size. Third, load peak 
as well as the residual strength also significantly rely on 
the element size.

7.2 � Mesh independent performance 
by the micropolar model

7.2.1 � Shear band and mechanical behavior

To verify the performances of micropolar technique in 
solving mesh dependency problems, the shear bands in 
biaxial tests were simulated again using the micropolar 
model. The shear bands of four different meshes are dis-
played in Fig. 13. Better than the calculations by the classi-
cal model, all four simulations by the polarized one could 
be completely finished without convergence difficulties 
or numerical problems. And the very similar shear bands 
of the four different meshes can be easily observed at first 
glimpse. Furthermore, the curves of displacement vs. load 
of different meshes are presented in Fig. 14, showing that 
the mesh dependency problems have been significantly 

relieved even in the softening regime. Except the too 
coarse mesh 10 × 20, the mechanical curves of other three 
meshes are completely consist with each other.

7.2.2 � Inclination of shear band by the micropolar model

The regularization efficiency of the micropolar approach 
in relieving mesh dependency problems can be also dem-
onstrated by the the shear band inclinations with different 
meshes in Fig. 15, which shows a well unified shear band 
inclinations of the three fine meshes β2 =  β3 =  β4 = 53.22° 
except for a slightly different β1 = 53.10° in coarse mesh 
10 × 20.

To summarize, the micropolar model demonstrates 
a good convergence property and is capable of solving 
the mesh dependency problems significantly in simu-
lating strain softening behavior and strain localization 
phenomena.

Fig. 13   Shear bands in different meshes by the micropolar model: a mesh 10 × 20; b mesh 15 × 30; c mesh 20 × 40; d mesh 30 × 60
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8 � Conclusion

In present study, a traditional elastoplastic model 
for granular material based on critical state has been 
improved by micropolar approach to take into account 
the micro-rotations. The finite element implementation 
of the polarized model has been formulated in detail. 
After the illustrations of model, parameters calibration 
are carried out by fitting the experimental data of F-75 
Ottawa sand. With the calibrated parameters, it has been 
verified that the micropolar model is capable of predict-
ing well the results in laboratory biaxial tests. In contrast, 
if the classical model is used to model strain softening 
or strain localization phenomena, the solutions in post-
bifurcation regime are pathological and mesh depend-
ent. At last, by discussing the simulated shear bands in 
biaxial tests with the classical model as well as with the 
polarized model, the great performance of micropolar 
approach in regularizing numerical solutions or reliev-
ing mesh dependency problems has been verified. Not 
only the shear band patterns in terms of the thickness 
and orientation but also the mechanical responses are 

independent on the discretization in finite element 
analysis. Most notably, the physically meaningful grain 
rotations considered in a micropolar model is also one 
of the most attracting factors in present study. With the 
outstanding features of physical meaning, convergence 
efficiency and finite element mesh independency, there 
is no doubt the polarized model can be used to model 
more strain localized failure modes in geotechnical 
structures, such as slope, shallow foundation, passive 
retaining walls, among others.
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