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A B S T R A C T   

This study aims to establish a stochastic link-based fundamental diagram (FD) with explicit 
consideration of two available sources of uncertainty: speed heterogeneity, indicated by the speed 
variance within an interval, and rainfall intensity. A stochastic structure was proposed to 
incorporate the speed heterogeneity into the traffic stream model, and the random-parameter 
structures were applied to reveal the unobserved heterogeneity in the mean speeds at an iden
tical density. The proposed stochastic link-based FD was calibrated and validated using real-world 
traffic data obtained from two selected road segments in Hong Kong. Traffic data were obtained 
from the Hong Kong Journey Time Indication System operated by the Hong Kong Transport 
Department during January 1 to December 31, 2017. The data related to rainfall intensity were 
obtained from the Hong Kong Observatory. A two-stage calibration based on Bayesian inference 
was proposed for estimating the stochastic link-based FD parameters. The predictive perfor
mances of the proposed model and three other models were compared using K-fold cross- 
validation. The results suggest that the random-parameter model considering the speed hetero
geneity effect performs better in terms of both goodness-of-fit and predictive accuracy. The effect 
of speed heterogeneity accounts for 18%–24% of the total heterogeneity effects on the variance of 
FD. In addition, there exists unobserved heterogeneity across the mean speeds at an identical 
density, and the rainfall intensity negatively affects the mean speed and its effect on the variance 
of FD differs at different densities.   

1. Introduction 

The fundamental diagram (FD), which aims to establish a fundamental relationship among traffic speed, traffic density, and traffic 
flow, forms the basis of traffic flow theory. Since the introduction of the linear speed–density relationship by Greenshields et al. (1935), 
its mathematic formulations have been extensively improved (Del Castillo and Benitez, 1995; Greenberg, 1959; Ji et al., 2010; Kerner, 
2004; Lighthill and Whitham, 1955; Newell, 1961; Pipes, 1967; Richards, 1956; Underwood, 1961; Van Aerde, 1995). These re
lationships can be either established empirically or derived using microscopic models. Further improvements have been made to 
decompose a single model into multiple models to better fit the empirical data (Drake et al., 1967; Edie, 1961; May, 1990; Wang et al., 
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2011; Wu, 2002; Zhang and Kim, 2005). Multi-regime models divide the entire traffic flow into multiple relatively homogeneous traffic 
conditions, for each of which a specific curve is fitted to represent a distinct traffic condition. 

Both single- and multi-regime models establish an equilibrium speed–density relationship under a strong hypothesis that each 
density corresponds to only one deterministic value of mean speed. This relationship, however, very likely fails to hold in reality due to 
the existence of inherent uncertainty in macroscopic traffic flow (Qu et al., 2017; Siqueira et al., 2016). Different drivers have different 
perceptions and responses in various traffic environments and road conditions, which results in different average speeds. Even a 
population of identical driver–vehicles on a homogeneous road could have different average speeds at a given density (Treiber and 
Kesting, 2013). The heterogeneity of traffic environments, road conditions, vehicles, drivers, and driving behaviors and dynamic 
instabilities of traffic flow produce wide scattering in empirical speed–density or flow–density plots, which indicates that the mean 
speeds or flow rates that correspond to each density vary substantially over a finite range rather than remaining fixed (Coifman, 2015; 
Daganzo, 2002; Dong et al., 2015; Kerner, 2009; Laval et al., 2006; Nishinari et al., 2003; Tang et al., 2011; Treiber and Helbing, 1999; 
Treiber et al., 2006; Treiber and Kesting, 2013; Windover and Cassidy, 2001). 

Therefore, various stochastic structures have been proposed to represent uncertainty of traffic flow during FD modeling (Qian et al., 
2017; Qu et al., 2017; Siqueira et al., 2016). Most studies have focused on headway distribution, allowing different headway values to 
correspond to one speed (Chen et al., 2014; Ghiasi et al., 2017; Li and Chen, 2017). Most of the previous studies assumed headway 
distributions with respect to the mean speed as position-dependent or state-dependent log-normal distributions under given speed 
ranges around an expected value. It implies that all headways for a position or a steady state within a given speed range were assumed 
to follow a certain log-normal distribution. They estimated the speed-dependent flow rate distribution based on the probability dis
tribution of headways within a given speed range, and finally derived the joint probability functions of flow and density with the use of 
car-following models or cellular automaton (Jabari and Liu, 2012, 2013; Jabari et al., 2014; Li and Chen, 2017; Ossen and Hoo
gendoorn, 2011; Sumalee et al., 2011). Some other studies have identified the time gap as a random variable to establish stochastic 
traffic flow models in which the time gap was assumed to follow a Log-normal, Gamma, or Weibull distribution, and the modeling 
approach based on time gap is similar to that based on headway (Kim and Zhang, 2008; Tordeux et al., 2010; Wu and Liu, 2013). All 
these stochastic FDs can explain the scattering features of flow–density plots from the microscopic perspective. 

However, these headway- or time gap-based models rely on the assumption of a specific distribution for microscopic variables that 
varies with traffic environments, traffic conditions, vehicles, drivers, and driving behaviors. These presumed distributions may not be 
able to fully capture the characteristics of microscopic variables due to the heterogeneity of the empirical data. For example, the 
headway or time gap distributions may vary according to traffic rules and driver behaviors, or the distributions that result from 
different car-following types may differ due to the heterogeneity in vehicle types. In addition, most of these stochastic FDs have 
complicated modeling procedures, so their application in real-time traffic environment is inconvenient due to their derivation from 
prespecified microscopic traffic models. 

Theoretically, as an alternative to derivation of the parameters from prespecified microscopic models, the stochastic FD can be 
calibrated directly from the empirical macroscopic traffic data. However, this method has rarely been studied. To establish a stochastic 
FD based on the empirical macroscopic traffic data, two core questions must be answered: How should the uncertainty of traffic flow be 
represented using the available variables? How should a physically reasonable and elegant formulation to incorporate random var
iables into traffic stream models be explored? To address the two research questions, this study aims to (a) explore a stochastic 
structure to incorporate the variables that represent the uncertainty into the traffic stream model; (b) establish a stochastic link-based 
FD under an explicit consideration of various heterogeneity effects. 

The remainder of this paper is structured as follows: Section 2 explains the sources of uncertainty and the structures of a stochastic 
link-based FD. Section 3 describes the characteristics of real-world traffic data in Hong Kong. Section 4 presents the model specification 
and the methods for calibration. Section 5 presents the methods used for model comparison and validation. In Section 6, the stochastic 
FD is calibrated and validated using real-world traffic data from Hong Kong. In Section 7, the stochastic components of the variance of 
FD are discussed. Finally, concluding remarks and potential directions for future research are provided in Section 8. 

2. Stochastic model under explicit consideration of speed heterogeneity 

2.1. Sources of uncertainty 

From a macroscopic perspective, traffic flow uncertainty can be incorporated as variance in the FD. In the speed–density rela
tionship, the uncertainty is represented by the variance of the mean speed corresponding to a particular density. Vehicular speed 
exhibits an inherent random character because it depends on the heterogeneity of drivers’ perceptions and responses regarding various 
external traffic environments and dynamic instabilities of traffic flow. Even under identical traffic environments, different drivers have 
different perceptions and responses, which results in various speeds. This variation is attributable to the heterogeneity of the vehicle 
types and drivers with varied perceptions and responses regarding identical external traffic environments. 

Speed heterogeneity is a source of uncertainty and can be directly obtained using on-road detectors. With the advent of various 
high-tech devices, considerable high-resolution traffic data can be collected by on-road detectors installed for real-time traffic 
monitoring, which can continuously record and store the information of individual vehicles. By using a real-time data processing 
system, high-resolution macroscopic traffic data, including space mean speed and speed variance, can be readily obtained by 
aggregating individual vehicle data within a short time interval (e.g., 2 min). Within such a short interval, the external traffic envi
ronment can be considered nearly identical for all passing vehicles. Thus, speed variance, which is calculated as the variance of the 
space mean speeds of all vehicles, can represent the speed heterogeneity at an identical density under a uniform traffic environment. 
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In addition to speed heterogeneity, traffic environment is another factor influencing vehicular speed. Drivers exhibit different 
perceptions, responses, and driving behaviors in varied traffic environments. For example, under rainy conditions, drivers tend to 
reduce their speeds, which results in a lower mean speed (Lam et al., 2013). The reduced speeds largely depend on drivers’ responses to 
the rainfall, thus influencing the speed variance. Thus, rainfall intensity which represents a kind of traffic environment is another 
source of uncertainty. In this study, two available sources of uncertainty are considered: (1) Speed heterogeneity at an identical density 
under an identical traffic environment, which is indicated by the speed variance within a short interval, and (2) rainfall intensity, 
which represents the traffic environment. Other than the observable heterogeneity due to speed heterogeneity and rainfall intensity, 
several unobservable heterogeneity may exist due to various unknown factors, such as occurrence of traffic incidents, strong prevailing 
wind, and sun glare effect, some of which may relate to density. Both observable heterogeneity and unobservable heterogeneity are 
expected to contribute to the uncertainty of traffic flow. 

2.2. Ideal model considering speed heterogeneity 

As shown in Fig. 1, for a given density k under an identical environmental condition where the rainfall intensity is indicated by r, an 
on-road detector continuously measures a sample of n vehicles from a population of passing vehicles in each short interval (e.g., 2 min) 
and outputs the mean speed u and speed variance Var(u). Under an identical environmental condition, as all factors remain constant, if 
the detector repeats sampling from the population of vehicles, for a given density k and rainfall intensity r, the mean speed u will follow 
a distribution with a population mean μ and variance of mean speed σ2

h(k,r). Under an identical environmental condition with rainfall 

Fig. 1. Definition of speed heterogeneity.  
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intensity r, in each interval, for a given density k, the variance σ2
h(k, r) can be estimated as 

σ2
h(k, r) =

σ2
p(k, r)

n
(1)  

where σ2
p(k, r) is the population variance of vehicular speed. 

For a given density k, each sample outputs its own speed variance Var(u), which is an unbiased estimator of population variance 
σ2

p (k, r) of vehicular speeds at density k and rainfall intensity r within the given interval. This means that in the presence of adequate 
samples, the long-term averages of these speed variances at k and r approach the population variance σ2

p (k, r). Therefore, both the 
population variance σ2

p(k, r) of vehicular speed and the variance σ2
h(k, r) of mean speed are dependent on k and r. Then, σ2

h(k, r) can be 
determined as 

σ2
h(k, r) =

σ2
p(k, r)

n
=

Var(u)
n

= g
(
k, rβ1, β2,…, βj

)
(2)  

where g(⋅) indicates the relationships among the variance σ2
h(k,r), density k, and rainfall intensity r, which can be estimated from the 

traffic data, and β1,β2,…, βj are model parameters in the relationship g(⋅). 
If the population mean speed in the interval is assumed to be a function of k and r (i.e., μ = f(k, r)), then for a case in which all 

environmental factors remain constant and there is no data noise in the model, an “ideal” relationship can be obtained as 

u = f (k, r) + εh(k, r) where εh(k, r) ∼ N
(
0, σ2

h(k, r)
)

σ2
h(k, r) = g

(
k, rβ1, β2,…, βj

) (3)  

where εh(k,r) is assumed as a normal distribution due to the speed heterogeneity for given k and r. No data noise is included in the 
model. This model is considered ideal because even if there exists an ideal relationship among mean speed u, density k, and rainfall 
intensity r, the expected observed speed will still follow the distribution sampled from the population of vehicles by the detector, due to 

Fig. 2. Framework of stochastic link-based fundamental diagram.  
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the speed heterogeneity under an identical traffic environment. 

2.3. Random-parameter model with consideration of speed heterogeneity 

In general, the above ideal relationship can never be absolutely achieved, due to the presence of various unobserved heteroge
neities (other than speed heterogeneity) and data noise. Therefore, a random-parameter structure with the parameters ω1,ω2,…, ωm is 
introduced into the relationship μ = f(k, r) to reveal the unobserved heterogeneity in the mean speeds across density k. In addition, a 
parameter γ is used to represent the effect of rainfall intensity and a general random error is added in Eq. (3) to represent the effects of 
data noise. Fig. 2 presents the framework of the random-parameter model with consideration of speed heterogeneity (RPWSH). 

Based on above ideal relationship, a complete model under general conditions can be obtained as 

u = f (k, rω1, ω2,…,ωm, γ) + εh(k, r) + ε
where ω1 ∼ Dω1 , ω2 ∼ Dω2 ,…,ωm ∼ Dωm , εh(k, r) ∼ N

(
0, σ2

h(k, r)
)
, ε ∼ N

(
0, σ2) (4)  

where f(⋅) indicates the relationship among mean speed, density, and rainfall intensity; ω1,ω2,…, ωm are random parameters, and Dω1 , 
Dω2 ,…, Dωm are their distributions, respectively; γ is the effect of rainfall intensity; and ε is a general random error resulting from the 
data noise, which is assumed to be normally distributed with a mean of zero and variance of σ2. In RPWSH, f(⋅), σ2

h(k, r) and Dω1 , Dω2 ,…, 
Dωm can be determined from the traffic data. 

3. Data collection and processing 

Here, two case studies were conducted in Hong Kong to illustrate the procedure for calibrating the proposed stochastic FD. A 
metropolitan area located in the eastern Pearl River Delta of the South China Sea, Hong Kong is one of the most densely populated cities 
globally, with a total area of approximately 1,100 km2. The population is multi-national and exceeded 7.4 million in mid-2019. The 
Hong Kong government possesses complete high-quality datasets, thus making the multisource high-resolution data, such as those 
related to traffic flow, speed, and weather, available for this study. 

Our traffic data were obtained from the Hong Kong Journey Time Indication System (JTIS) operated by the Hong Kong Transport 
Department. The JTIS provides the average journey time estimates for several major routes in Hong Kong with an updated interval of 
every 2 min (Lam et al., 2013). Autoscope video traffic detectors were installed at the major roads in Hong Kong to collect real-time 
traffic data, such as space mean speed, its variance, and traffic count. Two road sections were selected for the case studies: one at 
Gloucester Road westbound, a major urban three-lane expressway, and the other at Victoria Park Road westbound, an urban two-lane 
road. The traffic data were collected at 2-min intervals from January 1 to December 31, 2017. 

The mean speed u, speed variance Var(u), and traffic count n in the 2-min intervals on the two selected traffic lanes were obtained 
using traffic detectors. The variance of mean speed due to speed heterogeneity was calculated from Var(u)/n. As the traffic density data 
were not available from the JTIS traffic detector dataset, the traffic density k on a per-lane basis was derived from the following Eqs. 
(5)–(7): 

k =
1

nlane
×

n × 30
u

(5)  

where nlane is the number of lanes in the selected road sections. As explained above, within each interval, all factors remained constant. 
Due to the speed heterogeneity, the mean speed u follows a distribution with mean μ and variance σ2

h(k,r). Considering a Taylor series 
expansion of Eq. (5), we approximate the density k using a quadratic polynomial for k around the point u = μ, as follows: 

k =
30n
nlane

×

(
1
μ −

1
μ2 (u − μ)+ 1

μ3(u − μ)2
)

(6) 

The mean speed u and speed variance Var(u) in the dataset are the unbiased estimations of population mean μ and population 
variance σ2

p(k, r), respectively. Based on the expectation of Eq. (6), we have 

Table 1 
Descriptive statistics of data.  

Site Sample size Variable Min. Max. Mean Std. 

1 254,954 u (km/h)  1.04 100.44 64.87 23.02 
k (veh/km/lane) 0.5 194.94 21.16 21.36 
r (mm/min) 0 2.50 0.0048 0.06 
Var(u)/n (km/h)2 0.05 211.16 2.78 4.08 

2 243,174 u (km/h)  1.02 89.56 57.92 14.53 
k (veh/km/lane) 0.84 199.00 19.66 20.26 
r (mm/min) 0 2.50 0.0048 0.06 
Var(u)/n (km/h)2 0.06 154.09 4.53 7.64  
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E(k) =
30n
nlane

×

(
1
μ+

σ2
h(k, r)

μ3

)

=
30n
nlane

×

(
1
u
+

Var(u)
nu3

)

(7) 

The rainfall intensity r is the rainfall precipitation during a certain period. The rainfall intensity per minute during January 1 to 
December 31, 2017, was obtained from the Hong Kong Observatory. The average rainfall intensity on a per-minute basis was 
determined by averaging the rainfalls in the 2-min interval to represent the environmental condition within the interval. 

First, the raw data were filtered to ensure data validity and the outlier observations due to the malfunction of the traffic detectors 
were eliminated. Then, all observations with traffic count smaller than five were eliminated because of their unreliability. Similarly, 
the corresponding traffic datasets of rainfall intensity data with incomplete records (of which there were 370) were removed. After this 
data cleaning, our dataset finally comprised 254,954 observations in site 1 and 243,174 observations in site 2. The descriptive statistics 
of the field data are summarized in Table 1. 

4. Model specification and calibration 

4.1. Model specification 

To establish RPWSH, the relationships σ2
h(k,r) = g(k,r

⃒
⃒β1,β2,⋯,βj), μ = f(k, r⎟ω1,ω2,…, ωm, γ) and the distributions Dω1 , Dω2 ,…, Dωm 

need to be specified based on real-world traffic data. Accordingly, the formulation of RPWSH is specified in the following subsections. 

4.1.1. Variance due to speed heterogeneity 
Fig. 3 illustrates the relationship between the estimated variance Var(u)/n and density k. As indicated by the red solid lines in Fig. 4, 

the relationship between the variance σ2
h(k, r) and density k can be modeled by a negative power function. Therefore, g(⋅) is defined as 

g(k, r|β1, β2, β3) = β1(1+ β2r)k− β3 (8)  

where β1, β2, and β3 are model parameters. 

Fig. 3. Relationship between variance due to speed heterogeneity and density.  

Fig. 4. Bayesian graph for the random-parameter model with consideration of speed heterogeneity  
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4.1.2. Traffic stream model with random-parameter structure 
To establish the relationship among the population mean speed μ, density k, and rainfall intensity r, we compared the goodness-of- 

fit of the following four traffic stream models on the traffic data obtained from the selected sites: Greenshields’s model (Greenshields 
et al., 1935), Greenberg’s model (Greenberg, 1959), Underwood’s model (Underwood, 1961), and Drake’s model (Drake et al., 1967). 
The random-parameter structure was introduced in all four models, and the parameters were assumed to follow Normal, Log-normal, 
Gamma, and Weibull distributions, respectively. All models were calibrated using the Bayesian hierarchical modeling approach. The 
results show that Drake’s model with Normal distributions for the parameters in the random-parameter structure yielded the best 
performance in terms of goodness-of-fit and exhibited the lowest deviance information criterion (DIC) value. Therefore, the funda
mental relationship among μ, k, and r and the random-parameter structure can be defined as (Drake et al., 1967) 

μ = uf (1+ γr)exp
(

−
1
2

(
k
ko

)2)

, where uf ∼ N
(

μuf
, σ2

uf

)
, ko ∼ N

(
μko

, σ2
ko

)
(9)  

where γ is a fixed parameter for the effect of rainfall intensity; uf and ko are the free-flow speed and the optimal density, respectively, 
both of which are assumed to be normally distributed; μuf

and σ2
uf 

represent the mean and variance of uf, respectively; and μko 
and σ2

ko 

represent those of ko. 

4.1.3. Formulation of RPWSH 
Combined with Eqs. (8) and (9), the formulation of RPWSH in Eq. (4) can be transformed into 

u = uf (1 + γr)exp
(

−
1
2

(
k
ko

)2)

+ εh(k, r) + ε

where εh(k, r) ∼ N(0, β1(1 + β2r)k− β3 ), uf ∼ N
(

μuf
, σ2

uf

)
, ko ∼ N

(
μko

, σ2
ko

)
, ε ∼ N

(
0, σ2)

(10) 

Taking a Taylor series expansion of Eq. (10), the speed–density relationship can be approximated using a quadratic polynomial near 
the point (uf = μuf

, ko = μko
). Applying expectation on both sides, the expectation E(u) of the mean speed can be estimated as 

E(u) = u
(
μuf

, μko

)
+

1
2

∂2u
∂u2

f
σ2

uf
+

1
2

∂2u
∂k2

o
σ2

ko
(11)  

where ∂2u/∂u2
f and ∂2u/∂k2

o are the second-order partial derivatives of u to uf and ko, respectively. 
The total variance Var(u) of the mean speed, i.e., the variance of FD, can be estimated as 

Var(u) =
(

∂u
∂uf

)2

σ2
uf
+

(
∂u
∂ko

)2

σ2
ko
+ σ2

h(k, r) + σ2 (12)  

where ∂u/∂uf and ∂u/∂ko are the first-order partial derivatives. 
Thus, the 95% confidence interval can be estimated as 

E(u) ± 1.96 ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(u)

√
(13)  

4.2. Two-stage calibration based on Bayesian inference 

RPWSH can be considered a two-stage process for calibration. In the first stage, the variance σ2
h(k, r) is calibrated based on the speed 

variance Var(u), traffic count n, density k, and rainfall intensity r in the given interval to obtain the distribution εh(k,r). In the second 
stage, given εh(k,r), the random-parameter model is calibrated to determine the parameters μuf

, μko
, σ2

uf
, σ2

ko
, γ and σ2 to obtain RPWSH. 

The two-stage process of model calibration can be simultaneously achieved using Bayesian inference. Based on Bayes’ theorem, 
Bayesian inference can incorporate more evidence and new information to update the probability for a hypothesis (Lunn et al., 2013). 
In the two-stage calibration, the information regarding the first-stage model is incorporated into the second-stage model at each 
iteration of Bayesian updating. Fig. 4 illustrates the Bayesian graph for RPWSH. The distribution of the mean μσ2

h 
of variance σ2

h(k, r) is 

estimated in the first-stage model, and simultaneously, the estimated distribution is considered as the prior distribution of σ2
h(k, r) in 

the second-stage model. In addition, combined with the available information, Bayesian inference can be used to predict the distri
bution of a new unknown mean speed under a given density and rainfall intensity. 

In the first stage, as the variance σ2
h(k, r) is estimated by Var(u)/n, it is assumed that 

Var(u)
n

∼ N
(

μσ2
h
, σ2

σ2
h

)
where μσ2

h
= β1(1+ β2r)k− β3 (14)  

where μσ2
h 

is the mean of σ2
h(k, r) and σ2

σ2
h 

is the variance of σ2
h(k,r). Bayesian modeling is used to estimate the parameters β1, β2, β3 and 

σ2
σ2

h
. According to Bayes’ theorem, the posterior distribution p(β1, β2, β3, σ2

σ2
h

⃒
⃒
⃒Var(u)/n, k, r) can be determined as 
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p
(

β1, β2, β3, σ2
σ2

h

⃒
⃒
⃒
⃒
Var(u)

n
, k, r

)

∝p
(

Var(u)
n

⃒
⃒
⃒β1, β2, β3, σ2

σ2
h

)

p(β1)p(β2)p(β3)p
(

σ2
σ2

h

)
(15)  

where p(Var(u)/n
⃒
⃒
⃒β1, β2, β3, σ2

σ2
h
) is the likelihood of Var(u)/n (i.e., L(β1,β2,β3,σ2

σ2
h
;Var(u) /n)), and p(β1), p(β2), p(β3) and p(σ2

σ2
h
) are the 

prior distributions specified for β1, β2, β3 and σ2
σ2

h
, respectively. 

In the second stage, the variance σ2
h(k, r) of the distribution εh(k,r) is estimated by μσ2

h
, whose distribution is the prior distribution of 

σ2
h(k, r). It is assumed that 

u ∼ N
(
μu, σ2), where μu = uf (1 + γr)exp

(

−
1
2

(
k
ko

)2)

+ εh(k, r)

uf ∼ N
(

μuf
, σ2

uf

)
, ko ∼ N

(
μko

, σ2
ko

)
, εh(k, r) ∼ N

(
0, μσ2

h

)
(16)  

where μu is the mean of u. Bayesian hierarchical modeling is used to estimate the parameters μuf
, μko

, σ2
uf

, σ2
ko

, γ and σ2. The posterior 

distribution p(μuf
, μko

, σ2
uf
, σ2

ko
, γ, μσ2

h
, σ2

⃒
⃒
⃒u, k, r) is given by 

p
(

μuf
, μko

, σ2
uf
, σ2

ko
, γ, μσ2

h
, σ2

⃒
⃒
⃒u, k, r

)
∝p

(
u
⃒
⃒
⃒μuf

, μko
, σ2

uf
, σ2

ko
, γ, μσ2

h
, σ2

)
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(17)  

where p(u
⃒
⃒
⃒μuf

, μko
, σ2

uf
, σ2

ko
, γ, μσ2

h
, σ2) is the likelihood of u, and p(uf

⃒
⃒
⃒μuf

,σ2
uf
), p(ko

⃒
⃒
⃒μko

,σ2
ko
), p(εh(k,r)

⃒
⃒
⃒μσ2

h
), p(μuf

), p(σ2
uf
), p(μko

), p(σ2
ko
), p(γ), 

p(μσ2
h
), and p(σ2) are the prior distributions for uf, ko, εh(k,r), μuf

, σ2
uf

, μko
, σ2

ko
, γ, μσ2

h
, and σ2, respectively. 

Obtaining the complete Bayesian posterior estimates requires the specification of prior distribution. In the absence of sufficient 
prior knowledge, noninformative priors are assumed here to estimate parameters in the two-stage model (Congdon, 2014; Dong et al., 
2020): 

β1 ∼ N(0, 10000), β2 ∼ N(0, 10000), β3 ∼ N(0, 10000), σ2
σ2

h
∼ IG(0.01, 0.01)

μuf
∼ N(0, 10000), μko

∼ N(0, 10000), σ2
uf
∼ IG(0.01, 0.01), σ2

ko
∼ IG(0.01, 0.01)

γ ∼ N(0, 10000), σ2 ∼ IG(0.01, 0.01)

(18)  

where IG(⋅) indicates inverse gamma distribution. 

5. Model comparison and validation 

RPWSH is compared with the following three candidate models: fixed-parameter model without consideration of speed hetero
geneity (FPWOSH), fixed-parameter model with consideration of speed heterogeneity (FPWSH), and random-parameter model 
without consideration of speed heterogeneity (RPWOSH). The effect of speed heterogeneity is considered in the model structures in 
FPWSH and RPWSH, but not in those in FPWOSH and RPWOSH. Therefore, speed variance data are included in the datasets used in 
FPWSH and RPWSH, but not in those used in FPWOSH and RPWOSH. The three candidate models are presented in Eqs. (19)–(21) 
below. 

FPWOSH can be expressed as 

u = uf (1+ γr)exp
(

−
1
2

(
k
ko

)2)

+ ε where ε ∼ N
(
0, σ2) (19)  

where the free-flow speed uf and optimal density ko are considered as fixed parameters. 
FPWSH (i.e., σ2

h(k, r)) can be expressed as 

u = uf (1 + γr)exp
(

−
1
2

(
k
ko

)2)

+ εh(k, r) + ε

where εh(k, r) ∼ N(0, β1(1 + β2r)k− β3 ), ε ∼ N
(
0, σ2)

(20) 

Comparatively, RPWOSH can be expressed as 
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u = uf (1 + γr)exp
(

−
1
2

(
k
ko

)2)

+ ε

where uf ∼ N
(

μuf
, σ2

uf

)
, ko ∼ N

(
μko

, σ2
ko

)
, ε ∼ N

(
0, σ2)

(21)  

where the free-flow speed uf and optimal density ko are considered as random parameters. 
The four models can be calibrated using Bayesian inference, as described in the above section. The above two-stage process of 

model calibration is applied to estimate the FPWSH and RPWSH parameters. Without considering the effect of speed heterogeneity, 
FPWOSH and RPWOSH can be directly calibrated using the Bayesian modeling approach and Bayesian hierarchical modeling 
approach, respectively. 

Two measures are used for comparing the estimated and predictive performances: DIC and mean absolute percentage error 
(MAPE). The DIC compares the goodness-of-fit of the Bayesian models with different numbers of parameters that are calibrated using 
the same dataset (Spiegelhalter et al., 2005). It can be defined as 

DIC = D(θ) + 2pD = D + pD (22)  

where θ indicates the posterior means of the parameters of interest, D(θ) is the deviance of θ, pD is the effective number of parameters in 
the model, and D is the posterior mean of the deviance statistics. The model with a lower DIC value is considered to perform better 
(Spiegelhalter et al., 2005). 

In contrast, the MAPE compares the predictive accuracies of the models calibrated using different datasets, and can be defined as 

MAPE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
E(u) − u

u

⃒
⃒
⃒
⃒× 100% (23)  

where E(u) and u are the predicted and observed mean speeds, respectively, and N is the sample size used for model validation. To 
perform a robust evaluation, a K-fold cross-validation is performed to assess the predictive performance of a statistical model for an 
independent dataset. In this cross-validation, the original dataset is randomly partitioned into K approximately equal-sized subsets. 
Each subset is used in turn as the validation data for assessing the predictive performance while the remaining K − 1 subsets are 
combined for calibrating the statistical model. The cross-validation process is repeated K times, and therefore, each model is calibrated 
and evaluated K times (Hu et al., 2020). For each model, the MAPE value is calculated in each validation, and then, the K MAPE values 
are averaged to obtain an overall evaluation. The model with the lowest average MAPE value is considered the best. 

6. Results 

6.1. Calibration results for RPWSH 

As described in Section 4.2, RPWSH was calibrated using two-stage Bayesian modeling. The Markov-chain Monte-Carlo method 
was applied to generate samples from Bayesian posterior distributions. To ensure convergence of all parameters, the two-stage model 
was iterated 500,000 times, where the first 200,000 iterations were removed as burn-ins and the next 300,000 were used for parameter 

Table 2 
Estimation results for the parameters in random-parameter model with consideration of speed heterogeneity.  

Site Variable Mean S.D. 2.50% Median 97.50% 

1 Stage 1 β1 20.52 0.0303 20.47 20.52 20.58 
β2 1.14 0.0196 1.10 1.14 1.18 
β3 0.981 0.0014 0.979 0.981 0.984 

Stage 2 μko 
(veh/km/lane)  34.31 0.0187 34.27 34.31 34.35 

μuf 
(km/h)  81.60 0.0110 81.58 81.60 81.62 

γ -0.226 0.0021 -0.230 -0.226 -0.222 
σ2 (km/h)2 5.48 0.1476 5.14 5.49 5.73 
σ2

ko 
(veh/km/lane)2  18.74 0.1174 18.52 18.74 18.97 

σ2
uf 

(km/h)2  2.31 0.1585 2.05 2.29 2.68 

2 Stage 1 β1 27.40 0.0598 27.28 27.40 27.52 
β2 1.54 0.0331 1.48 1.54 1.61 
β3 0.923 0.0021 0.919 0.923 0.927 

Stage 2 μko 
(veh/km/lane)  42.76 0.0373 42.69 42.76 42.84 

μuf 
(km/h)  67.33 0.0122 67.31 67.33 67.35 

γ -0.240 0.0030 -0.246 -0.240 -0.234 
σ2 (km/h)2 1.55 0.0864 1.38 1.54 1.71 
σ2

ko 
(veh/km/lane)2  68.66 0.4003 67.86 68.67 69.44 

σ2
uf 

(km/h)2  8.38 0.1101 8.17 8.38 8.60  
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estimation. Markov chains and Gelman–Rubin plots were chosen to monitor the parameter convergence. The models were established 
and calibrated using the freeware WinBUGS14 (Spiegelhalter et al., 2005). The Bayesian credible interval (BCI) was provided to 
indicate the practical significance of the examined parameters (Gelman et al., 2003). As a rule of thumb, a variable can significantly 
impact the mean speed if the 95% BCI of its estimated mean does not cover 0, and vice versa (Chen et al., 2015; Shaheed et al., 2016). 
Table 2 presents the calibration results for RPWSH for sites 1 and 2. 

As shown in the table, all variables in the two-stage model were statistically significant at 95% BCI. The density and rainfall in
tensity had significant effects on the variance of the distribution due to speed heterogeneity. Therefore, the distribution εh(k,r) can be 
obtained as 

εh1(k, r) ∼ N
(
0, 20.52 × (1 + 1.14r)k− 0.981)

εh2(k, r) ∼ N
(
0, 27.40 × (1 + 1.54r)k− 0.923) (24)  

where εh1(k,r) and εh2(k,r) are the distributions resulting from speed heterogeneity for sites 1 and 2, respectively. 
The mean of the free-flow speed was 81.60 and 67.33 km/h for sites 1 and 2, respectively. These calculated means were consistent 

with the data measured in the field. The mean of the optimal density was 34.31 and 42.76 veh/km/lane for sites 1 and 2, respectively. 
The variances of free-flow speed and optimal density were significant, suggesting the existence of unobserved heterogeneity across the 
mean speed under an identical density. The rainfall intensity had a significant and negative impact on the mean speed for sites 1 and 2. 

Table 3 
Deviance information criterion values for the four models.  

Site Without speed heterogeneity With speed heterogeneity 
FPWOSH RPWOSH FPWSH RPWSH 

1 1,526,680 1,341,350 2,667,750 2,451,440 
2 1,499,360 1,498,310 2,991,380 2,432,930  

Table 4 
Validation results for site 1.  

Validation Subset MAPE 
FPWOSH FPWSH RPWOSH RPWSH 

1 8.81% 8.77% 8.51% 8.53% 
2 6.93% 6.90% 6.68% 6.71% 
3 9.39% 9.33% 9.09% 9.11% 
4 7.37% 7.34% 7.10% 7.10% 
5 8.44% 8.40% 8.19% 8.20% 
6 13.02% 12.97% 12.75% 12.70% 
7 8.57% 8.52% 8.37% 8.34% 
8 10.93% 10.86% 10.70% 10.66% 
9 13.95% 13.90% 13.58% 13.55% 
10 8.58% 8.53% 8.32% 8.31% 
11 11.85% 11.77% 11.49% 11.40% 
12 11.32% 11.28% 10.95% 10.92% 
Average 9.93% 9.75% 9.64% 9.63%  

Table 5 
Validation results for site 2.  

Validation Subset MAPE 
FPWOSH FPWSH RPWOSH RPWSH 

1 8.88% 8.05% 8.08% 7.91% 
2 7.93% 7.35% 7.38% 7.42% 
3 8.52% 7.92% 7.96% 7.86% 
4 7.04% 6.35% 6.38% 6.29% 
5 8.04% 7.55% 7.55% 7.59% 
6 11.26% 10.32% 10.36% 10.31% 
7 9.51% 8.63% 8.67% 8.66% 
8 9.61% 8.86% 8.88% 8.79% 
9 12.10% 11.46% 11.49% 11.21% 
10 8.79% 8.43% 8.42% 8.28% 
11 9.52% 9.30% 9.29% 9.08% 
12 9.68% 9.63% 9.56% 9.26% 
Average 9.24% 8.65% 8.67% 8.55%  
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6.2. Results of model comparison and validation 

As described in Section 5, RPWSH was compared with FPWOSH, FPWSH, and RPWOSH. Here the effect of speed heterogeneity was 
considered in FPWSH and RPWSH, whereas the random-parameter models were considered in RPWOSH and RPWSH. According to the 
DIC results in Table 3, compared with FPWOSH and FPWSH, RPWOSH and RPWSH had lower DIC values, indicating that the random- 
parameter models better explain the unobserved heterogeneity in the mean speed across densities than the fixed-parameter models. 

In the K-fold cross-validation, K was chosen as 12. Then, for each site, the overall dataset was divided into 12 approximately equal 
subsets (11 × 21, 246 + 1 × 21, 248 for site 1 and 11 × 20, 264 + 1 × 20, 270 for site 2). The traffic data available in 11 of the 12 
datasets were combined for calibrating the four models, and those in the remaining dataset were used for evaluating the predictive 
performance of the candidate models. The MAPE values were calculated in each model’s validation, and then averaged to obtain the 
overall results. Tables 4 and 5 present the cross-validation results for sites 1 and 2, respectively. 

RPWSH had the lowest average MAPE value, indicating that the random-parameter model considering the effect of speed het
erogeneity exhibits the best predictive accuracy among the four models. Moreover, FPWSH and RPWSH had lower average MAPE 
values than FPWOSH and RPWOSH, respectively. These results indicate that irrespective of including the random-parameter structures 
or not, the models considering the effect of speed heterogeneity exhibit better predictive performance. Compared with FPWOSH and 
FPWSH, RPWOSH and RPWSH had lower average MAPE values, respectively. These results indicate that irrespective of involving the 
effect of speed heterogeneity or not, the random-parameter models exhibit better predictive performance than the fixed-parameter 
models. 

7. Discussion 

This study focused on the effect of heterogeneity on the mean traffic speed at the macroscopic level. The FD can be considered as a 
static representation of macroscopic traffic characteristics, which focuses on the flow–speed–density relationships in a static and 
macroscopic sense (Jabari et al., 2014). There exist various heterogeneity sources, most of which are unobservable and cannot be 
quantified, although several sources can be identified with additional information. Both observable and unobservable heterogeneity 
can be explained in the proposed stochastic link-based FD (i.e., RPWSH). Speed heterogeneity is an observable component that can be 
directly obtained from the traffic data, some unobserved heterogeneity components at an identical density are identified by the 
random-parameter structures, and other unobservable heterogeneity components are expressed using the general random error. 

The impact of heterogeneity can be expressed in terms of the variance of FD (Qian et al., 2017). In the presence of these hetero
geneity effects, the variance of the parameters in Eq. (12) is expected to be statistically significant in the regression analysis. Through 
two-stage calibration of RPWSH, the variances of free-flow speed and optimal density, as well as the distribution resulting from the 
speed heterogeneity and general random error, are statistically significant in the regression analysis. These findings indicate that all 
abovementioned heterogeneity effects exist and contribute to the uncertainty of traffic flow. 

Based on the estimated parameters, the expected mean speed, the expected variance of RPWSH and the 95% confidence interval 
can be calculated using Eqs. (11) – (13). Taking the rainfall intensity r = 0 mm/min as an example, Fig. 5 illustrates the expected mean 
speed with 95% confidence interval for sites 1 and 2. In the figure, the blue dots indicate traffic data in sites 1 and 2, the red solid lines 
represent the speed–density relationship calibrated by RPWSH, and the red dotted lines represent the upper and lower bounds at the 
95% confidence interval. 

7.1. Variance of RPWSH 

In RPWSH, the total variance of FD is the sum of three variances, (a) the variance due to speed heterogeneity, (b) the variance due to 
the unobserved heterogeneity identified by the random-parameter structures and (c) the variance of the general random error. The 

Fig. 5. Stochastic fundamental diagrams for general conditions (r = 0 mm/min).  
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Fig. 6. Effect of rainfall intensity.  
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proportions of the three variances in the total variance of FD can be calculated using Eqs. (25)–(27). 

Ph =
σ2

h(k, r)
Var(u)

(25)  

where Ph is the proportion of variance σ2
h(k, r) in the total variance of FD, and Var(u) is the total variance of mean speed. 

Pu =

(
∂u
∂uf

)2

σ2
uf
+

(
∂u
∂ko

)2

σ2
ko

Var(u)
(26)  

where Pu is the proportion of variance caused by the unobserved heterogeneity in the total variance. 

P =
σ2

Var(u)
(27)  

where P is the proportion of variance of general random error in the total variance. 
As the uncertainty is expressed in terms of the total variance of FD, 64%–92% of uncertainty can be identified in RPWSH. In 

addition, approximately18%–24% of uncertainty can be attributed to speed heterogeneity, which is an observable component that can 
be directly obtained from the traffic data. Approximately 45%–69% of uncertainty is attributable to the density-dependent unobserved 
heterogeneity identified in RPWSH. In contrast to the constant variance of FPWOSH, the variance of RPWSH is related to the density 
and rainfall intensity; that is, it is density- and rainfall intensity–dependent. The variance of RPWSH contains more-complete infor
mation on density and rainfall intensity than that of FPWSH and RPWOSH because density and rainfall intensity are involved in both 
variances due to speed heterogeneity and unobserved heterogeneity. With the observable and identifiable information, the prediction 
of the mean and variance of FD becomes more reliable as the proportion of the unobservable component is reduced. 

7.2. Effect of speed heterogeneity 

The effect of speed heterogeneity can be explained as the uncertainty caused by diverse vehicles and various drivers with varied 
perceptions and responses regarding the identical traffic environment and geometric features, such as lane markings on the road for 
determining whether lane changing is allowed. Speed heterogeneity is indicated by the variance of vehicular speeds within a given 
interval. In RPWSH, the effect of speed heterogeneity is expressed by a distribution with respect to traffic density and rainfall intensity. 
The variance caused by speed heterogeneity decreases with an increase in density and increases with the rainfall intensity. The 
proportion of the variance due to speed heterogeneity in total variance of RPWSH for site 1 varies from 0.67% to 85.82% across 
densities, with a mean of 18.97%, and that for site 2 varies from 0.62% to 92.53%, with a mean of 23.44%. 

7.3. Effect of unobserved heterogeneity 

Besides speed heterogeneity, there exists unobserved heterogeneity across the mean speeds at an identical density. The effect of the 
unobserved heterogeneity can be explained as an uncertainty caused by other unknown factors related to density, such as occurrence of 
traffic incidents, strong prevailing wind, and sun glare effect, and the heterogeneity in vehicles or drivers with different perceptions, 
responses, and driving behaviors in varied traffic environments. In RPWSH, the effect of unobserved heterogeneity at an identical 
density can be expressed using the random-parameter structures in the model. The proportion of the variance due to unobserved 
heterogeneity in total variance of RPWSH for site 1 varies from 0.10% to 90.92% across densities with a mean of 45.91%, and that for 
site 2 varies from 1.02% to 97.73% with a mean of 68.54%. 

7.4. Effect of rainfall intensity 

Fig. 6 illustrates the calibrated speed–density relationship. The free-flow and mean speeds at the optimal density decrease with an 
increase in the rainfall intensity. As shown in Fig. 6, in site 1, the free-flow speed is reduced from 81.60 km/h for 0-mm/min rainfall 
intensity to 72.22, 62.83, 53.45, and 44.06 km/h for 0.5, 1.0, 1.5, and 2.0 mm/min rainfall intensities, respectively, and further 
decreased to 34.68 km/h for 2.5 mm/min rainfall intensity. In addition, the mean speed at the optimal density (34.31 veh/km/lane) is 
reduced from 48.70 km/h for 0-mm/min rainfall intensity to 43.10, 37.50, 31.90, and 26.30 km/h for 0.5, 1.0, 1.5, and 2.0 mm/min 
rainfall intensities, and further decreased to 20.70 km/h for 2.5 mm/min rainfall intensity. For site 1, the 0.5-mm/min increase in 
rainfall intensity reduces the free-flow speed by 9.38 km/h and the mean speed at the optimal density by 5.60 km/h. Similarly, for site 
2, the 0.5-mm/min increase in rainfall intensity reduces the free-flow speed by 8.08 km/h and the mean speed at optimal density by 
4.71 km/h. 

7.5. Effect of data noise 

In RPWSH, the effect of data noise is expressed by a general random error, including density-independent unobserved heteroge
neity and random variation, as well as measurement errors. The proportion of the variance of random general error in total variance of 
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RPWSH for site 1 varies from 8.37% to 97.87% across densities with a mean of 35.12%, and that for site 2 varies from 1.62% to 88.22% 
across densities with a mean of 8.02%. The variance of a general random error is associated with the accuracy of the statistical models: 
the smaller is the variance, the higher is the accuracy (Lunn et al., 2013; Washington, et al., 2003). Table 6 presents the variances of 
general random errors of FPWOSH, FPWSH, RPWOSH, and RPWSH. The variance of the general random error in RPWSH is the 
smallest, indicating that RPWSH has higher accuracy than FPWOSH, FPWSH, and RPWOSH. 

8. Conclusion 

This paper proposes a stochastic link-based FD with an explicit consideration of speed heterogeneity (i.e., RPWSH) for investigating 
the effects of vehicle and driver heterogeneity at an identical density under an identical traffic environment on the macroscopic re
lations of traffic flow. Another density-dependent unobserved heterogeneity in the mean speed is revealed using random-parameter 
structures. The influence of rainfall intensity is identified in the proposed model. A two-stage Bayesian inference is applied for esti
mating the model parameters. Through its calibration and validation using real traffic data, the proposed framework is demonstrated 
to perform better in terms of both goodness-of-fit and predictive accuracy. 

The merits of our proposed model (i.e., RPWSH) consists of five aspects. First and foremost, the RPWSH uncovers various sources of 
uncertainty of link traffic flow and adequately explains the scattering phenomenon of empirical speed–density plots in a static and 
macroscopic sense. Second, the structures of RPWSH better capture the characteristics of traffic data, resulting in a better fit. Third, 
RPWSH fully contains the information of the observable and identifiable variables, which makes the calibrated free-flow speed and 
optimal density more reliable as the proportion of the unobservable component is reduced. Fourth, the expected mean, variance, and 
upper and lower limit values of the 95% confidence interval are dependent on the density and rainfall intensity. Considering the 
stochastic influence of density and rainfall intensity, the predictive accuracy of RPWSH for the expected mean and variance of mean 
speed is enhanced. Finally, the less-complicated formulations of our proposed model are more convenient for application in real-time 
traffic monitoring. 

The proposed stochastic link-based FD will help traffic engineers implement appropriate transportation planning and management, 
network design, vehicle routing, and traffic control. From a theoretical perspective, the RPWSH facilitates the investigation and 
explanation of various observed traffic phenomena related to heavy scatters in empirical speed–density plots. From an application 
perspective, a reliable relationship between the parameters and the less complicated formulations of RPWSH can be applied to estimate 
and predict the real-time traffic state and operating speed. Combined with the additional information, such as travel time data and GPS 
data, the proposed stochastic FD can predict within-day and day-to-day dynamics of link-based travel times. 

In RPWSH, the rainfall intensity is a weather-dependent variable that represents a traffic environment. The rainfall intensity is of 
particular interest due to the local conditions in Hong Kong. Owing to the humid subtropical climate in Hong Kong, which causes an 
annual average of about 140 rainy days with rainfall intensity of more than 2,300 mm over the past 10 years (http://www.weather. 
gov.hk/en/cis/dailyElement.htm#), road traffic in Hong Kong frequently suffer from the adverse weather conditions such as rainstorm 
and typhoon. No generality should be lost by applying the modeling framework elsewhere with a different weather feature of interest 
(e.g., snowfall, crosswind, storm). In addition to speed heterogeneity and rainfall intensity, many other factors contribute to the 
uncertainty of traffic flow, such as heterogeneity in the traffic environment, traffic conditions, road design, vehicles, and drivers with 
different perceptions, responses, and driving behaviors in a variety of traffic environments. In addition, the unobserved heterogeneity 
may exist not only in the mean of the mean speeds but also in their variance. We plan to explore the effects of other traffic envi
ronments, traffic conditions, and road designs, as well as the heterogeneity in the driver and vehicle, on the uncertainty of traffic flow. 
The unobserved heterogeneity in the variance of mean speeds is also worthy of further investigation. 
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