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Traffic prediction is highly significant for intelligent traffic systems and traffic management. eXtreme Gradient Boosting
(XGBoost), a scalable tree lifting algorithm, is proposed and improved to predict more high-resolution traffic state by utilizing
origin-destination (OD) relationship of segment flow data between upstream and downstream on the highway. In order to achieve
fine prediction, a generalized extended-segment data acquirement mode is added by incorporating information of Automatic
Number Plate Recognition System (ANPRS) from exits and entrances of toll stations and acquired by mathematical OD cal-
culation indirectly without cameras. Abnormal data preprocessing and spatio-temporal relationship matching are conducted to
ensure the effectiveness of prediction. Pearson analysis of spatial correlation is performed to find the relevance between adjacent
roads, and the relative importance of input modes can be verified by spatial lag input and ordinary input. Two improved models,
independent XGBoost (XGBoost-I) with individual adjustment parameters of different sections and static XGBoost (XGBoost-S)
with overall adjustment of parameters, are conducted and combined with temporal relevant intervals and spatial staggered
sectional lag. *e early_stopping_rounds adjustment mechanism (EAM) is introduced to improve the effect of the XGBoost
model. *e prediction accuracy of XGBoost-I-lag is generally higher than XGBoost-I, XGBoost-S-lag, XGBoost-S, and other
baseline methods for short-term and long-termmultistep ahead. Additionally, the accuracy of the XGBoost-I-lag is evaluated well
in nonrecurrent conditions and missing cases with considerable running time. *e experiment results indicate that the proposed
framework is convincing, satisfactory, and computationally reasonable.

1. Introduction

As a key technological component of intelligent trans-
portation systems (ITS), traffic flow prediction has become an
extensively researched topic. To support the dynamic appli-
cation of ITS, traffic forecasting models usually predict traffic
fluctuation, ranging from seconds to hours [1]. Traffic pre-
diction is proved to act a significant role in providing more
accurate online traffic demand prediction for traffic control,
management, and guidance [2]. In recent years, with the
available spatio-temporal availability of various detectors and
the advanced intelligent computing, traffic flow prediction is
extended to the network range and data-driven condition
with nonrecurrent cases [3].*e traffic flow can be affected by

nonrecurrent events such as road construction, sport events,
and weather changes, which will lead to spatio-temporal
deviations of traffic patterns, compared with regular cases.
Meanwhile, the upstream flow and downstream flow show
obvious spatial relevance of traffic propagation. To capture
both temporal and spatial relationships of the traffic network,
the cooperativity and generalization of traffic flow prediction
should be improved. How to predict the traffic flow quickly
with consideration of spatial cooperativity by congestion
propagation of segment upstream and downstream flow and
temporal multiple-step prediction, fully consider nonrecur-
rent generalization, and improve computing efficiency by
time horizon of related timesteps remain to be investigated
and answered by this paper.

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 5559562, 24 pages
https://doi.org/10.1155/2021/5559562

mailto:jiaopengpeng@bucea.edu.cn
https://orcid.org/0000-0001-6352-7094
https://orcid.org/0000-0002-0951-5911
https://orcid.org/0000-0002-2351-4544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5559562


Based on the issues above, traffic prediction problems
particularly about highway segments have attracted a lot of
attention as the rapid emerging and closing connection of
cities. *e accurate prediction of highway has obvious in-
fluence on logistics, trade, and commuting. At present, there
are a number of sensors and cameras to help us obtain traffic
data, such as Automatic Number Plate Recognition System
(ANPRS), which is installed along mainlines and exits and
entrances of toll stations in the highway, is a popular form of
expert system that has been applied in many countries. *is
system is much needed for the detection of vehicles and to
optimize all functions, including monitoring, controlling,
problem solving, fine management, and compliance. Based
on the ANPRS, travel time, traffic volume, travel route, and
other traffic data can be acquired. Current historical research
utilizes historical ANPRS data on mainlines to predict traffic
state and traffic congestion, such as iterative tensor de-
composition (ITD) [4], order-k Markov model [5], K-
nearest neighbors (KNN) [6], dynamic linear model (DLM)
[7], and linear regression [8]. However, these ANPRS
datasets on the mainline can only receive traffic data and be
studied in single direction. As we all know, the general
segments are usually divided into two directions. At the
same time, it is not accurate enough to only consider the
traffic prediction on the mainline segment. Above methods
usually ignore information about exits and entrances of
mainline and predict directly with the ANPRS datasets with
sparse distance. For instance, if there are exits and entrances
of service area, interchange, and ramps in the toll stations,
usually there will be four directions that remain to be de-
tected. A segment of a highway usually has a toll station in
each direction, and each toll station has a set of entrance and
exit. Ignoring the traffic information might greatly reduce
the accuracy of prediction for weaving sections in the
segments and affect the performance of traffic control,
management, and guidance. How to predict the traffic flow if
the highway with consideration of high-resolution sections’
divisionmode based on ANPRS is worthwhile to be resolved.

Plenty of machine learning (ML) models are used to
predict the traffic flow. Existing ML methods are still full of
challenges for how to deal with big data [9]. It is still worth
discussing and studying how to further improve the pre-
diction accuracy of highway and capture spatio-temporal
information and data analysis [10, 11]. In addition, by ac-
quiring the vast traffic sensing data, real-time traffic flow
prediction is becoming an important part of traffic control,
accident reporting, and intelligent transportation systems
[12]. Many machine learning methods have been used in the
field of traffic prediction. Since eXtreme Gradient Boosting
(XGBoost) was proposed in 2014, it has been favored by a
number of scholars. However, XGBoost in the trans-
portation fields has not yet been more developed and ap-
plied. *e extreme parallel optimization of the XGBoost
method not only reduces overfitting but also reduces
computing time. XGBoost controls the complexity of
problems and can greatly improve the efficiency of the
algorithm.

At present, a large number of studies [13] about the
highway problems are only based on the location of

detectors to obtain traffic data. But in the highway, due to the
high cost, the distance between adjacent detectors is often
far, so it is impossible to obtain more detailed traffic state
directly. It is necessary to introduce a generalized extended-
segment data acquirement mode for the highway to accu-
rately predict and find out the source of congestion. We
divide the segment into different sections according to
whether there are cameras to capture traffic information
directly. *e main contributions of this paper are summa-
rized as follows.

First, the segment data can be obtained directly when
there are cameras in the range of the road section. Second,
based on ANPRS, we propose a section-flow calculation
method for the highway to predict the traffic state finely and
microcosmically. For the segment flow which cannot be
obtained directly, we take the OD relationship between
entrances and exits of toll stations and the license plate
recognition relationship of upstream and downstream roads
for mathematical calculation. *e established calculation
method about highway can handle all similar cases and can
be extended to the same scenarios for data acquisition and
road section division to further manage and prevent traffic
congestion.*ird, compared with other prediction methods,
XGBoost has advantages in scalability, high efficiency, low
calculation cost, supporting for parallelization, and regu-
larization processing. Here, we propose an improved
XGBoost-based spatio-temporal method with the EAM
optimization mode to predict the traffic flow of the seg-
mented highway, by considering of multiple-step short-term
and long-term prediction, influence of nonrecurrent inci-
dents, and spatial interaction of sophisticated staggered
sections.

*e paper is organized according to the following parts.
*e next section summarizes related literature review.
Section 3 introduces the basic methodology framework and
formation mechanism of the XGBoost model. In Section 4,
data acquirement as well as analysis and processing are
described in detail, where the training set and testing set are
specifically divided. In Section 5, parameter adjustments of
XGBoost models, special events, and missing cases are
discussed, and the accuracy of SARIMA, CNN, RF, and
LSTM are compared with variants of XGBoost by consid-
ering spatial lag. Finally, a conclusion and future research
plan are given in the last section.

2. Literature Review

Traffic prediction is mainly divided into parametric and
nonparametric methods [14]. Parametric methods mainly
include autoregressive integrated moving average model
(ARIMA) [15], Box–Jenkins time series model [16], linear
regression (LR) [17], Kalman filter (KF) [18], random forest
(RF) [19], exponential smoothing (ES) [20], and fuzzy C-
means (FCM) [11]. Many scholars have proposed variants of
ARIMA to improve prediction accuracy, such as ARIMAX,
which is made up of explanatory variables [21] and seasonal
autoregressive integral moving average (SARIMA) [22, 23].
Afterwards, more attention is drawn to spatial networks,
temporal adaptive schemes, and some hybrid models.
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Spatio-temporal ARIMA [24] is proposed to incorporate
spatial influence. Huang et al. developed a combined model
of ARIMA-ANN, in which the linear component is pro-
cessed by ARIMA, while ANN deals with the nonlinear
aspect. Consequently, the hybrid model fully improves
prediction accuracy [25].*e ability of these models to grasp
spatial dynamic and nonlinear characteristics is limited.

Due to the uncertainty of the traffic data structure and
nonlinear relationship hidden behind datasets, nonpara-
metric methods are more flexible and complex enough for
the nonlinear relationship. Statistical methods, such as
support vector machine (SVM), have been applied to predict
the traffic flow [26, 27]; however, due to its sensitivity in
selecting kernel functions and parameters, scholars obtain
chaotic wavelet SVM, least squares SVM, particle swarm
optimization SVM, and genetic algorithm SVM for opti-
mization. KNN has been widely studied as well [28, 29].
Actually, these methods are still hard to deal with large-scale
data problems. With the development of computation in-
telligence, the neural network (NN) is widely used in
multidimensional and complex nonlinear prediction prob-
lems [30, 31]. Recently, with the emerging of deep learning,
more deep and efficient structures are derived from NN,
such as deep belief network (DBN) [32], fuzzy neural net-
work (FNN) [33], convolutional neural network (CNN), and
recurrent neural network (RNN). By memorizing the
characteristics of temporal correlations, long short-term
memory network (LSTM) [34, 35] and Bi-LSTM [36] have
been proved to outperform RNN in traffic prediction. To
utilize the superiority of different methods, hybrid methods
are proposed to solve complex problems [37], such as
highway and network prediction. For example, Ma et al.
established a large-scale congestion prediction model based
on a RNN and a restricted Boltzmann machine [38]. In fact,
these deep learning methods are continuously optimized
and are not easy to be trained because the structures and
hyperparameters have many kinds in different cases. When
it comes to nonrecurrent datasets, the overfitting problem is
still tough, which leads to distinct strategies, such as hybrid
prediction methods and dropout layer optimization and
regularization.

Recently, XGBoost, which is a successful prediction
method, has been applied in lots of issues of Kaggle com-
petition and other applications with excellent results, such as
Didi products. It is a decision tree-based method developed
by Chen and Guestrin [39] and improved from Gradient
Boosting Decision Tree (GBDT), which is a type of boosting
algorithm [40]. GBDT generally passes multiple iterations,
where each iteration produces a weak classifier, and each
classifier is trained based on the residuals of the previous
classifier. At present, GBDT was proposed to make short-
term traffic prediction which was viewed as combining the
strengths of boosting algorithms and decision trees [41].
However, XGBoost uses a gradient descent algorithm to
optimize the differential loss function in order to generate a
boosted set of weak prediction models [42]. In addition,
compared to the traditional GBDT and statistical learning
and ML methods, XGBoost employs a regularization
strategy to control model complexity and greatly avoid

overfitting. Furthermore, it holds efficient computing power,
scalability, and less memory consumption [43]. In our study,
based on the EAM mode, the proposed improved XGBoost
models are superior to other methods in terms of prediction
accuracy.

3. Methodology

3.1. Methodology Framework. Figure 1 shows the proposed
methodology framework. Data part is composed of segment
data obtained directly by cameras which can get detected
traffic information and ANPRS data based on the OD re-
lationship. *e whole data part consists of data collection,
calculation, preprocess, and spatio-temporal correlation
analysis. *e model part comprises adjusting multiple pa-
rameters, tree structure operation, model optimization of
EAM mode, and results’ evaluation.

3.2. XGBoost. XGBoost is based on the GBDT model and
improves on the calculation speed of the algorithm, while
optimizing its performance and efficiency, attempting to
achieve the ultimate balance. Compared with GBDT,
XGBoost explicitly adds the complexity of the tree structure
as a regular term and uses second derivative information in
the derivation of the optimization objective equation,
whereas GBDTonly uses the first-order allowance. XGBoost
implements an approximate algorithm for the split-node
search, which is used to quicken and reduce memory
consumption. *e node splitting algorithm automatically
utilizes the feature of sparseness, and the data is sorted in
advance and stored in the form of blocks, which are con-
ducive to parallel computing.

*e core idea of XGBoost [39] is that it continuously
adds new trees and performs feature splitting to grow a tree
during implementation. Each time a tree is added, it learns a
new function to fit the pseudoresiduals of the last prediction.
When we get K trees after training, we need to predict the
score of a sample. In fact, according to the characteristics of
this sample, each tree will fall into a corresponding leaf node.
Accordingly, the scores must be summed corresponding to
each tree which will be as the forecasting value of the sample.

XGBoost [44], as a tree integration model, sums the
results of K trees, where 􏽢yi is the final predicted value:

􏽢yi � ϕ xi( 􏼁 � ε 􏽘
K

k�1
fk xi( 􏼁, fk ∈ F. (1)

Here, K represents the number of trees, fk is the model
of the k tree, and ε is the learning rate. Supposing that there
are n samples and m features in a given sample set,

D � xi, yi( 􏼁􏼈 􏼉, |D| � n, xi ∈ R
m

, andyi ∈ R( 􏼁, (2)

where xi represents the i sample and yi represents the i

category label, and the space F of the regression tree is

F � f(x) � wq(x)􏽮 􏽯 q: R
m⟶ T andw ∈ R

T
􏼐 􏼑. (3)

Here, q represents the structure of each tree and maps
samples to corresponding leaf nodes, T represents the
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number of leaf nodes of each tree, w represents a set of leaf
node scores of each tree, and f(x) corresponds to the
structure q of the tree and the weight w of the leaf nodes.
*erefore, the predicted value of XGBoost is the sum of the
values of the leaf nodes corresponding to each tree. In this
study, the goal is to optimize K trees; hence, we minimize the
following objective equation with a regular term to make the
tree fk suitable for training data under the max_depth
constraint:

L(ϕ) � 􏽘
i

l 􏽢yi, yi( 􏼁 + 􏽘
k

Ω fk( 􏼁. (4)

In equation (4), the first term is training loss error and l is
a differentiable convex loss function that measures the
difference between predicted value 􏽢yi and target value yi.
*e second term is a regular term, which controls the
complexity of the tree and prevents overfitting. 􏽢yi is updated
by adding a new tree weighted by the learning rate ε, which is
represented by equation (5). Among them, c and λ are
regularization parameters which are used to adjust com-
plexity of the tree:

Ω fk( 􏼁 � cT +
1
2
λ􏽘

T

j�1
w

2
j . (5)

ri indicates that the residual term after the ithfitting is
expressed by equation (6). Each time a new tree is added, the
pseudoresidual of the last prediction must be fitted:

ri+1 � ri − 􏽢yi. (6)

During training, a new f function is added in the new
round to minimize the objective function. In the tth round,
our objective equation is

L
(t)

� 􏽘
n

i�1
l yi,

􏽤
y

t−1
i + ft xi( 􏼁􏼒 􏼓 +Ω ft( 􏼁. (7)

Next, we expand the objective function by Taylor ex-
pansion, taking the first three terms and removing the high-
order small infinitesimal term. Finally, our objective func-
tion is transformed into equation (8), and gi and hi are the
first derivative and second derivative, respectively:

L
(t) ≈ 􏽘

n

i�1
l yi,

􏽤
y

t− 1
􏼒 􏼓 + gift xi( 􏼁 +

1
2
hif

2
t xi( 􏼁􏼔 􏼕

+Ω ft( 􏼁,

(8)

gi � z
􏽢y

(t−1) l yi,
􏽤
y

t− 1
􏼒 􏼓, (9)

hi � z
2
􏽢y

(t− 1) l yi,
􏽤
y

t− 1
􏼒 􏼓. (10)

According to equations (3), (5), and (8),

L
(t) ≈ 􏽘

n

i�1
giwq xi( ) +

1
2
hiw

2
q xi( )􏼔 􏼕 + cT +

1
2
λ􏽘

T

j�1
w

2
j

� 􏽘
T

j�1
􏽘
i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠wj +

1
2

􏽘
i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠w
2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + cT.

(11)

Ij � i|q(xi) � j􏼈 􏼉 is defined as the sample set of leaf j.
When q(x) is fixed, we transform the iteration about the tree
model into an iteration about the leaf nodes of the tree.
Accordingly, score w is found to correspond to the optimal
leaf node j. *e optimal value of the leaf node is brought into
the objective function, and the corresponding value of the
final objective function can be expressed as follows:

wj � −
􏽐i∈Ij

gi

􏽐i∈Ij
hi + λ

,

L
(t)
−

(q) � −
1
2

􏽘

T

j�1

􏽐i∈Ij
gi􏼒 􏼓

2

􏽐i∈Ij
hi + λ

+ λT.

(12)

In general, we cannot enumerate all possible tree
structures and choose the optimal one; hence, we use a
greedy algorithm as it can greatly improve computing ef-
ficiency. We start with a single leaf node and iteratively split
it to add nodes to the tree. By enumerating the feasible
segmentation points and selecting the minimum target
function and maximum gain partition, the gain equation
becomes

Gain �
1
2

􏽐i∈IL
gi􏼐 􏼑

2

􏽐i∈IL
hi + λ

+
􏽐i∈IR

gi􏼐 􏼑
2

􏽐i∈IR
hi + λ

−
􏽐i∈Igi( 􏼁

2

􏽐i∈Ihi + λ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − c.

(13)

*e above equation is used to evaluate the loss function
after slicing. In practice, however, it is used to evaluate the
candidate after slicing. *e XGBoost model produces many
simple trees that are used to assess scores of leaf nodes
during splitting. *e first, second, and third terms of the
equations represent the scores on the left, right, and original
leaves, respectively. In addition, c is a regularization pa-
rameter on other leaves and is used during training.
XGBoost supports parallelism. During the learning process,
the features must be sorted by a loss function to determine
the best segmentation point. To acquire model best per-
formance, the appropriate and reasonable parameters in the
XGBoost model must be set and adjusted for different tasks.
Generally, the XGBoost model optimizes parameter settings
by cross validation, which are described in Section 5.

4. Data

4.1. Data Sources. Our data is derived from Shaoxing,
Zhejiang Province, China, as shown in Figure 2(a), and road
network exhibition comes from Python package OSMnx
[45]. *e data range is from September 1st to November
19th, 2019 (23040 intervals over 80 days in total). *e lat-
itude range and longitude range of the target network are
(120.523, 120.916) and (30.047, 30.153), and the total length
of the target highway is about 39.25 kilometers, as shown in
Figure 2(b), with a speed limit of 100 km/h. From southeast
to northwest, the direction of the traffic flow is up-direction.
However, from northwest to southeast, the direction of the
traffic flow is down-direction. In total, there are three toll
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stations, as shown in Figure 2(c), which are 1035 Keqiao Toll
Station (indicated by black circle 1), 1037 Shaoxing Toll
Station (indicated by black circle 2), and 1039 Shangyu Toll
Station (indicated by black circle 3), and every toll station
has its own entrance and exit connected with up-direction
and down-direction, that is, there are double entrance-and-
exit combination. Moreover, four detected cameras are
numbered officially 20311, 20312, 20301, and 20302 from
northwest to southeast. Each camera can acquire real-time
data including vehicle ID, passing time, passing site ID (toll
station or detected camera), license plate numbers, and
driving direction.

We divide the entire segment into 7 sections from
northwest to southeast, which are labeled as Sections 1–7.
Among them, Sections 1, 4, and 7 are virtually partial
sections without any cameras, which do not have cameras to
capture vehicle information and usually get different traffic
information from adjacent sections, as entrances and exits of
toll stations affect the flow of the mainline. A number of loop
detectors and highway research data measure the traffic
counts in each time interval, but the observation of the traffic
flow does not differentiate road directions. In our study,

based on the characteristics of up-direction and down-di-
rection flow, each section is further divided into two roads.
Up-direction from northwest to southeast is set as Road 1 to
Road 7. *e down-direction from northwest to southeast is
set as Road 8 to Road 14. To illustrate in detail, Section 1
includes up-direction Road 1 and down-direction Road 8,
while Section 2 includes up-direction Road 2 and down-
direction Road 9 in Figure 2(c).

4.2. ANPRS of Generalized Segmented Data Acquirement.
First, according to up-direction or down-direction, the
vehicle is, respectively, mapped in different roads. Upstream
and downstream traffic data of the respective ANPRS are
counted according to license plate matching.*e numbers of
vehicles of every 5 minutes in the chronological order are
also counted as segment data. It means that one license plate
number corresponds to one vehicle. For toll stations, when
vehicles pass entrances or exits, its license plate numbers can
be selected and recorded by cameras. In the study of
highway, there are four cameras. If we can only obtain the
traffic data of four sections according to the location of

1

2

3

Section1

Section2

Section3

Section4

Section5
Section6

Section7

20311

20312

20301
20302

Up-directionDown-direction

Road 1

Road 8

Road 2Road 9
Road 3Road 10

Road 4Road 11

Road 5
Road 12 Road 6

Road 13

Road 7Road 14

1035

1037

1039

(a) (b)

(c)

Figure 2: Target highway.
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cameras directly, it is not conducive to better understand the
traffic situations and OD law with toll stations and ramps.
*erefore, the ANPRS data acquirement mode not only
divides the whole segment more finely but also grasps more
traffic information so as to accurately predict the future
segmented traffic flow. *e method is applicable to any
highways with the same structure, such as service areas and
roundabouts. In addition, these kinds of toll stations and the
replacements including entrances and exits in the highway
are universal in any country.. According to the above, we
propose a generalized method for accurately acquiring data
on highway segment.

To illustrate, for different sections, there are two ways to
obtain the accurate traffic flow. *e first way is directly
obtain segment data through the cameras capturing the
number of vehicles of the corresponding sections. In our
target highway, Sections 2, 3, 5, and 6 can acquire segment
data directly. *e second way is that the corresponding
sections are not clearly displayed in the traffic data such as
Sections 1, 4, and 7. Hence, the data is obtained by per-
forming the proposed calculation mode according to license
plate recognition and OD flow relationship as the entrances
and exits of each toll station.

*e generalized extended-segment data calculation
mode is as follows. According to Figure 3, we calculate the
up-direction traffic flow (Road A1) and down-direction
traffic flow (Road B1) of Section X1, as shown in the fol-
lowing equations:

f
RoadB1
Down − f

S1
Down−exit + f

S1
Down−entrance � f

R1
Down, (14)

f
S1
Down−entrance + f

S1
Up−entrance � f

S1
entrance, (15)

f
R1
Up − f

S1
Up−exit + f

S1
Up−entrance � f

RoadA1
Up , (16)

f
S1
Up−exit + f

S1
Down−exit � f

S1
exit. (17)

After vehicles enter through the descending entrance of
the toll station S1, the license plate numbers are detected at
the toll station and continued to be captured by the camera
R1. *rough license plate recognition and comparison, the
number of vehicles with the same license plate numbers is
fS1
Down−entrance. *e total number of vehicles at the toll station

S1 entrance will be obtained by considering the previous
data processing stage. According to equation (16),
fS1
Up−entrance is also known.
Part of the vehicles pass through the camera R1, pass up-

direction exit of toll station S1, and leave the highway, where
the license plate numbers are detected at the toll station.
*ese vehicles are then first captured by the camera R1. By
comparing the license plate, the number of vehicles with the
same license plate numbers can be expressed as fS1

Up−exit. *e
total number of vehicles at toll station exit S1 will be ob-
tained by analyzing the previous data. And, according to
equation (18), fS1

Down−exit is also known. So far, other than the
up-direction Road A1 and down-direction Road B1 of
Section X1, which are unknown, the remainders are all

known. *erefore, the flow of Road A1 and Road B1 can be
obtained by the following equation:

f
RoadB1
Down � f

R1
Down − f

S1
Down−entrance + f

S1
exit − f

S1
Up−exit,

f
RoadA1
Up � f

R1
Up − f

S1
Up−exit + f

S1
entrance − f

S1
Down−entrance.

⎛⎜⎝ ⎞⎟⎠.

(18)

For our target highway, traffic flow data of Section 1
(Road 1 and Road 8), Section 4 (Road 4 and Road 11), and
Section 7 (Road 7 and Road 14) can be obtained by per-
forming the same calculation. *e flow of all sections (Road
1–Road 14) can be obtained as ground truth, laying the
foundation for subsequent traffic prediction studies.

4.3. Data Preprocess and Hardware. *e outliers in the
datasets will far exceed the ground truth and greatly affect
the accuracy of prediction. In order to suppress the influence
of outliers, we apply winsorization to preprocess data [46].
Winsorization attempts to replace the minimum and
maximum values within a dataset with their closest values.
Winsorization is especially useful when dealing with traffic
data influenced by incidents and occasional factors such as
adverse weather or traffic accidents. Since no event and
weather records are available for the traffic datasets used in
this study, winsorization plays a vital role in suppressing the
effect of extreme values. Mathematically, winsorization is
represented by equation (19). Assuming that the value of the
sequence to be processed is given by w, where
w � (w1, w2, . . . , wk), the processed value wK

i following
winsorization will be

w
K
i �

wi+1, if wi � min(w),

wi, if min(w)<wi <max(w),

wk−1, if wi � max(w).

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (19)

Here, wi is the i pending value, min(w) is the minimum
value of the pending value, max(w) is the maximum value of
the pending value, k is the number of pending values, and
wK

i is the winsorized value of the i pending value.
We divide the datasets of 80 days into 75 days for the

training set and 5 days for the testing set. Moreover, nu-
merous training iterative processing is conducted to find the
recursive relationship in the traffic flow in order to attain
more accurate prediction. *e entire datasets take the past
six 5min flow data so as to predict the future. Python library
Keras, which is based on Tensorflow, is used to build our
models. All experiments are performed by a PC Server with
the following configuration: Intel(R), Xeon(R), CPU E5-
1650, 3.50GHz, and 64GB of memory.

4.4. Exploring Spatio-Temporal Correlations for Lag
Calibration. *ere is a spatial transmitting correlation be-
tween the highway traffic flow of different sections. In order
to prove it, we use the Pearson correlation test given in the
following equation to test that T in the datasets and the next
section lag by intervals of one 5min, two 5min, three 5min,
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and four 5min for spatial correlation between spatial
variables:

Corr(Y, Z) �
E (Y − E(Y))′(Z − E(Z))􏼂 􏼃

E (Y − E(Y))
2

􏽨 􏽩E (Z − E(Z))
2

􏽨 􏽩
, (20)

where Y and Z are two random variables with the same
number of observations. In our study, Y and Z represent the
data correlation between the front road in the same direction
and the adjacent following road in Figure 2. *e adjacent
following road is the data of the front road lagging T

intervals.
We calculate T intervals without lag and then calculate

T + 1, T + 2, T + 3, and T + 4 of the lagging intervals of the
next section of the adjacent section. As shown in Figure 4,
the left picture is up-direction Road 1 to Road 7 and the right
picture is down-direction Road 8 to Road 14. *e best
correlation performance occurs at T + 1, which is better than
T without lag. As the spatial distance continues to increase,
the average correlation gradually decreases sharply. It in-
dicates that there is a strong spatial correlation between each
road and its adjacent section. On the contrary, it is not
surprising that a variable with a short lag T interval, which
has a high correlation, but a variable with a large lagging
interval, also has a certain degree of correlation with the
previous section. *is correlation analysis of the datasets
provides evidence for setting spatial lag with the length of
one interval which is really necessary in order to predict
accurately.

5. Case Studies

5.1. XGBoost Parameter Adjustment. We independently
adjust the XGBoost parameters of the corresponding sec-
tions for each of the 7 sections of up-direction and down-
direction, named XGBoost-I. When training iterations,
early_stopping_rounds adjustment mechanism (EAM) for
adjusting parameters is introduced to improve the XGBoost
method. When the lowest error iteration comes up, the
model continues to iterate 100 times. After that, if no lower
error is found, the iteration is terminated. Otherwise, the
model will repeat the above EAM mode. *is is done to
avoid missing optimal parameters until the best case.

Num_boost_round, which refers to the number of
boosting trees, represents the number of training iterations.
A value that is too small can result in underfitting, while a
value that is too large can cause overfitting. Num_boos-
t_round and learning_rates are generally adjusted with the
same parameters, where learning_rates is comprised with a
list of learning rates each time. *e adjustment of up-di-
rection and down-direction of the num_boost_round and
learning_rates parameters of XGBoost-I is shown in Fig-
ure 5. We choose the minimum average Root Mean Square
Error (RMSE) shown in equation (21) of 14 roads in up-
direction or down-direction for all parameters including
num_boost_round and learning_rates parameter settings.
Here, learning_rates is 0.04, and the lowest mean RMSE is
determined to be 24.1448. *e num_boost_round results of
the 14 roads (Roads 1–14) are shown in Table 1.

Duringmodel training, the other parameters also need to
be determined. max_depth is the maximum depth of a tree
by increasing the value to make the model more complex
and avoid overfitting. Min_child_weight determines the
minimum leaf nodes’ sample weight, which is used to avoid
overfitting as well. When the value is large, the model can
avoid learning special local samples. We adjust max_depth
and min_child_weigh synchronously, and the adjustments
of up-direction and down-direction are shown in Figure 6.
Both max_depth and min_child_weigh are traversed of the
whole range from 1 to 10, and the corresponding best pa-
rameters are recorded as 3 and 10.*e lowest mean RMSE is
found to be 23.6388.

Reg_alpha is the L1 regularization term of the weight,
which improves the processing speed of the model.
Reg_lambda is the weighted L2 regularization and is used to
control the fitting situation of XGBoost. We synchronize
reg_alpha and reg_lambda, as shown in Figure 7, in terms of
up-direction and down-direction adjustments. *e best
parameters corresponding to reg_alpha and reg_lambda are
0.05 and 0.1, respectively.*e parameters have little effect on
the error result, and the lowest mean RMSE is 23.6285.

Gamma specifies the minimum dropping loss function
which is required for node splitting. Subsample is a ratio set
that is used to train the model subsamples to the entire
training process. *is parameter controls the ratio of ran-
dom sampling for each tree. Setting scale_pos_weight

S1

R1

Down (Road B1)

Up (Road A1)

Road A1

Road B1
Down

UP
Section X1

Section X2

Figure 3: Schematic diagram of traffic flow calculation for Section X1.
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Figure 4: Continued.
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enables the algorithm to converge faster. Evals is a list that
evaluates elements in the list during training, allowing to
observe the effect of the validation set during training.
Common parameters are used to control the macrofunction
of XGBoost. *e learning objective parameter is used to
control the ideal optimization goal and measurement in the
result of each step.

XGBoost consists of over thirty hyperparameters; hence,
we choose the following parameters that confer greater
impact on the optimization performance. *e best relevant
parameter settings of the XGBoost-I model are depicted in
Table 2.

Here, we set another static XGBoost (XGBoost-S) model
in regard to the overall adjustment of parameters among all
sections of up-direction and down-direction. Specifically,
the optimal situational parameters are adopted for the 14
roads, and its adjustment parameter settings are shown in
Table 3.

5.2. Evaluation Index. For the evaluation of different pre-
diction methods, we employ Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE) as the evaluation index. Given the
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Figure 4: Pearson correlation results of up-direction and down-direction.
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Figure 5: Num_boost_round and learning_rates up-direction and down-direction parameters’ adjustment results.

Table 1: num_boost_round results of 14 roads.

Dir. Section num_boost_round Dir. Section num_boost_round

Up

Road 1 358

Down

Road 8 219
Road 2 453 Road 9 531
Road 3 437 Road 10 571
Road 4 301 Road 11 299
Road 5 271 Road 12 373
Road 6 344 Road 13 424
Road 7 340 Road 14 280
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Figure 6: max_depth and min_child_weigh up-direction and down-direction parameter adjustment results.
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predicted value 􏽢ft and the ground truth ft, RMSE, MAE,
and MAPE are calculated as follows:

RMSE �

������������

1
T

􏽘

T

t�1
ft − 􏽢ft􏼐 􏼑

2

􏽶
􏽴

, (21)

MAE �
1
T

􏽘

T

t�1
ft − 􏽢ft􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (22)

MAPE � 􏽘
T

t�1

ft − 􏽢ft

ft

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
×
100
T

. (23)

5.3. Spatial Lag. *is model is divided according to the
datasets in Section 4.3, which are trained and tested from
two perspectives: temporal and spatial. Time series is sig-
nified in temporal data, whereas movement of the position is
based on spatial data of seven sections used as input. Here,
we explore two input methods: lag input and ordinary input.
*e time series is organized according to the past several
5min, while the spatial position follows the traffic statistics
of the seven sections (Roads 1–14) as input. For the entire
target highway, when the vehicles travel from Section 1 to
Section 7, or between any section, or dynamically from the
current section to the next section of temporal and spatial
displacement, the downstream traffic is transmitted by
upstream, and the lagging relationship exists between up-
stream and downstream along with spatial lag.*erefore, the
lag input is able to consider to reflect the propagation law of
the traffic flow across the entire highway segment. As the
traffic statistics’ interval is 5min, we take the spatial lag of
one 5min as input for each direction of upstream and
downstream. Generally, driving speed will not exceed the
speed limit, but vehicles on the highway generally are driven
close to the speed limit. According to the calculation results
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Figure 7: reg_alpha and reg_lambda up-direction and down-direction parameter adjustment results.

Table 2: Parameter settings of XGBoost-I

Type Parameter Settings

Booster

max_depth 3
min_child_weight 10

gamma 0
subsample 1
reg_alpha 0.1
reg_lambda 0.05

scale_pos_weight 1

General
Booster gbtree
Silent 0

Nthread max

Learning target

Objective reg:gamma
eval_metric Depending on objective

Seed 0
learning_rates 0.04
eval_metric rmse

evals evallist

Table 3: Parameter settings of XGBoost-S.

Type Parameter Settings

Booster

max_depth 5
min_child_weight 10

gamma 0
subsample 1
reg_alpha 0.01
reg_lambda 0.05

scale_pos_weight 1

General
Booster gbtree
Silent 0

Nthread max

Learning target

Objective reg:gamma
eval_metric Depending on objective

Seed 0
learning_rates 0.25

num_boost_round 80
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in regard to the speed limit and the Pearson spatio-temporal
correlation test in Section 4.4, the rationality and effec-
tiveness of one 5min spatial lag is verified. Figure 8 shows
the spatial lag of the target highway.

5.4. XGBoost-Related Models. For XGBoost models ex-
amined in this study (XGBoost-I and XGBoost-S are
ordinary input without spatial lag), input modes are
calibrated about different analyses above, called XGBoost-
I-lag and XGBoost-S-lag, respectively, by spatial lag.
Comparisons are made for highway traffic prediction of
seven sections (14 roads). *e according prediction results
of up-direction and down-direction are given in Tables 4
and 5 . Before comparing with baseline methods, it is
necessary to study the corresponding different methods of
XGBoost.

On the whole, in regard to fourteen roads of up-direction
and down-direction, except Roads 4, 7, and 14, RMSE and
MAE of the XGBoost-I-lag model are found to be optimal.
ForMAPE, except for Roads 3, 4, 6, 7, and 13, XGBoost-I-lag
is the best among the other 9 roads. Among the average
results of all these roads, RMSE, MAE, and MAPE of the
XGBoost-I-lag model are found to be better than those of the
XGBoost-I model by 3.33%, 3.99%, and 2.87%, respectively.
RMSE, MAE, and MAPE outperform those of the XGBoost-
S model by 7.14%, 4.68%, and 5.97%, respectively, and are
better than the XGBoost-S-lag model by 4.33%, 1.29%, and
2.38%, respectively. Notably, these three errors of the
XGBoost-S-lag model are observed to be better than the
XGBoost-S model by 3.02%, 3.56%, and 3.81%, respectively.
Overall, the XGBoost-I-lag prediction result is considered to
be the most accurate because it is due to the respective
adjustment of different road parameters. Moreover, the
fourteen roads, whose results are individually adjusted
corresponding to the XGBoost-I parameter model, are also
found to be better than the overall adjustment of the
XGBoost-S parameter model. *at is, the separate optimal
parameter structure of each road is evidently better than the
entire optimal parameter structure. In addition, the spatial
lag input results of both XGBoost-I and XGBoost-S are
better than the ordinary input. On the contrary, concerning
different segment features of the fourteen roads, errors of
Section 1 (Road 1 and Road 7), Section 4 (Road 4 and Road
11), and Section 7 (Road 7 and Road 14) are slightly larger
than other sections. One possible reason is that the flow of
these three sections is calculated using proposed formula
deduction, and slight differences in the results are directly
captured by the cameras. *erefore, improving the quality
and maintenance of data acquisition equipment is still
necessary for traffic prediction, and it is really necessary to
expand segments for fine traffic information prediction. For
Roads 4, 7, and 14, the best data interval should not be 5
minutes lag, so the XGBoost-I method of ordinary input is
better than XGBoost-I-lag.

Figure 9 demonstrates the comparison between the
predicted value and the ground truth of four types of
XGBoost models on the up-direction of Road 2 that is
predicted by the testing set.

*e accuracy of the proposed XGBoost methods is
verified using three types of errors in traffic prediction that
are superimposed to various periods of twenty-four hours.
Figure 10 depicts the performance of up-direction and
down-direction traffic prediction using the proposed
methods, respectively. In 24 h point-line plot, the distri-
bution range of the prediction error of the XGBoost-I-lag
model is shown with the solid red line representing average
of errors. In addition, the black line represents average errors
of XGBoost-I, the yellow line represents average errors of
XGBoost-S, and the blue line represents average errors of
XGBoost-S-lag. When checking the errors corresponding to
the flow level, the prediction accuracy within prediction time
is observed to continuously change with peak hours and
nonpeak hours. When checking for errors based on the
percentage deviations gathered from the observations,
MAPE is used to judge the prediction accuracy. Evidently,
with increase in the traffic flow, both RMSE and MAE rise
substantially. When the observed flow is low, especially at
late night and early morning, RMSE and MAE are lower
because both they only consider the magnitude of deviation
between the predicted value and observed value. Similarly,
when examining the nature of the error corresponding to the
time of day, compared to nonpeak hours, MAPE is seen to be
relatively low during peak hours. To illustrate, the proposed
model with the improved EAM mode totally performs well
during the whole twenty-four hours. And, the effect of lag
input is fully reflected.

Figure 10 infers that the XGBoost-I-lag model (solid red
line) can provide accurate and stable traffic flow prediction.
During peak hours, the model can be used to predict the
traffic flow in a little failure. *erefore, reliable and accurate
prediction of the traffic flow during times of heavy traffic is
critical. Implementing alternative traffic management
strategies as traffic managers can avoid traffic disruptions
and provide decision-supporting solutions which should be
conducted.

5.5. Special Case. Figures 11 and 12 show the prediction
results for special days provided by the XGBoost-I-lag
model. *e blue line represents the predicted value, and the
red line represents the ground truth of the traffic flow.
Accordingly, the entire performance of the XGBoost-I-lag
model is found to be really good in normal traffic conditions,
while being really effective during special time. Two special
traffic events, which are recorded during the day of the
simulation, can be the reason why the traffic state is be-
coming congested from no congestion state.*e XGBoost-I-
lag model is able to capture the sudden change. A traffic
accident causes continuing congestion for one hour, while
occurring around 7:00. After the incident is handled, normal
traffic operations are restored. Moreover, the weather event,
which is abnormal (rain, snow, fog, etc.) long after 17:00, is
ending at approximately 21:00. During the special period,
severe traffic congestion and slow driving behaviors occur,
and the traffic flow is greatly reduced as shown. In theory,
the XGBoost-I-lag model is able to handle complex inter-
actions of input variables and can make reasonable
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Figure 8: Spatial lag of up-direction and down-direction.

Table 4: Up-direction-related XGBoost models’ prediction results.

Methods Error Road 1 Road 2 Road 3 Road 4 Road 5 Road 6 Road 7

XGBoost-I
RMSE 33.6726 17.5608 20.2317 25.0574 19.4625 20.8586 29.1977
MAE 23.8850 13.0644 15.1233 18.3011 14.4374 14.0289 19.9576
MAPE 13.9770 12.1249 13.7570 10.8040 12.2136 12.0916 14.6106

XGBoost-I-lag
RMSE 31.8362 16.6891 19.9832 26.2245 18.7313 19.9094 30.4392
MAE 21.9729 12.2463 14.5271 18.4053 14.2437 13.6255 20.6569
MAPE 13.2454 11.5523 13.4027 10.9286 12.0946 12.5402 15.2520

XGBoost-S
RMSE 34.5123 18.3918 22.1078 26.1455 21.2394 21.7922 29.5969
MAE 24.1088 13.3061 15.4927 18.4941 15.0558 14.1222 19.6536
MAPE 14.1671 12.1188 13.7593 10.8694 12.6695 15.9026 14.4065

XGBoost-S-lag
RMSE 32.2435 17.2803 20.9974 26.6617 20.2683 21.0335 31.4545
MAE 22.2236 12.4192 14.5295 18.5168 14.4424 13.7168 20.8345
MAPE 13.5993 11.5780 13.2273 11.1660 12.5718 13.7145 15.4466

Table 5: Down-direction-related XGBoost models’ prediction results.

Methods Error Road 8 Road 9 Road 10 Road 11 Road 12 Road 13 Road 14

XGBoost-I
RMSE 27.6826 19.5893 18.5488 31.1616 18.1484 17.9374 31.6893
MAE 19.7969 14.3576 13.3581 21.9113 13.2407 11.7431 21.9664
MAPE 11.0912 12.6743 12.8101 13.7022 12.1961 13.7475 14.6207

XGBoost-I-lag
RMSE 24.2552 17.8684 17.4214 29.0122 18.0647 17.7709 31.9440
MAE 17.5001 12.7666 12.5606 20.4316 13.2205 11.7270 22.2563
MAPE 9.7786 11.2418 11.9682 12.5774 12.1162 14.1016 14.5804

XGBoost-S
RMSE 28.2182 20.2276 18.9394 32.1894 18.7528 19.9912 32.6606
MAE 19.5314 14.3086 13.3500 22.1994 13.3074 11.8262 22.4856
MAPE 11.0098 12.6626 12.8490 13.8508 12.3134 14.9592 14.9703

XGBoost-S-lag
RMSE 25.2074 18.7069 18.1568 30.3098 19.1776 20.2706 32.8841
MAE 17.3920 13.0054 12.7606 20.9290 13.6335 11.9992 22.6842
MAPE 9.8163 11.4915 12.2118 12.7907 12.4502 14.7001 14.8923
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Figure 10: Continued.
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Figure 9: *e four XGBoost models on the first-day predicted results and ground truth.
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Figure 10: *ree errors for the up-direction and down-direction of twenty-four hours’ prediction.
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Figure 11: Special sample (traffic accident) traffic flow prediction results of the XGBoost-I-lag method.
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prediction in order to achieve adequate prediction results.
*erefore, the XGBoost-I-lag model predicts various sudden
events in dynamic traffic systems and possesses excellent
prediction performance.

5.6. Missing Rate. In intelligent transportation systems, data
missing is an inevitable and widespread phenomenon, al-
thoughmany studies [4] have been conducted inmissing traffic
data prediction recently, improving the real performance of
recovered data sufficiently, efficiently, and accurately. We test
the general problem against our model in this investigation. In
case of different data missing rates, the performance of the
model is further verified. Many reasons exist in the traffic flow,
such as problems of the sensors, manual shutdown of the
system, or signal transmission errors. Our complete datasets
are divided into the following two cases of randommissing data
in order to detect the predictive performance of XGBoost-I-lag
for missing data. One case is short-termmissing, which lasts 30
minutes. *e missing is mainly due to unstable equipment or
chaotic environment. *e other case is long-term missing,
which lasts for several hours or days. Missing conditions are
mainly caused by system shutdown. Average results are on
RMSE and MAE error results for the cases where up-direction
and down-direction datasets aremissing of 10%, 20%, 30%, and
40%, which are shown in Figures 13 and 14 . We believe that
over 50% of the missing data would confer difficulty in ex-
ploring the laws of transmission in this study.With the increase
of the missing rate from 10% to 40%, RMSE increases from
over 42% to more than 72%. For MAE, it increases from over
45% to more than 75%.

Judging from the average results of up-direction and
down-direction, as the missing rate gradually increases, the
error suddenly increases. When the missing rate increases to
40%, RMSE and MAE also increase by more than 70%. It is
obvious that missing data has a great impact on the results of
XGBoost-I-lag traffic flow prediction.*ough it performswell
in full data, the importance of data preprocessing is seen to
have a substantial influence on the accuracy of the model as
well as the prediction results.

5.7. BaselineMethods. *e proposed method in this study is
compared with the following two baselines:

SARIMA: seasonal autoregressive integrated moving
average is particularly applied in time series analysis,
such as traffic flow and stock, whose data show evidence
of nonstationarity, where an initial differencing step
can be applied one or more times to eliminate non-
stationarity. *e datasets are summarized at 5-minute
intervals, and the SARIMA (1, 0, 0) (0, 0, 1, 12) model is
used to predict future 5-minute intervals of data.
CNN: convolutional neural network uses convolution
layers with filters to extract local features by sliding
windows, which can model nearby or larger spatial
dependencies. It has been effectively used in traffic flow
prediction and has achieved significant results in
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Figure 12: Special sample (weather factor) traffic flow prediction results of the XGBoost-I-lag method.
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Figure 13: RMSE of up-direction and down-direction with dif-
ferent missing rates.
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capturing the long-term time dependence of the traffic
flow. *e network structure of CNN used in this study
is described in Table 6.
RF: random forest is an algorithm fused by many
decision trees, belonging to the algorithm of the bag-
ging framework. Using the integrated idea, random
forest combines multiple decision trees to improve the
accuracy of classification, where each decision tree is a
basic classifier.*e training of each decision tree model
can be extracted using self-help sampling, which ran-
domly selects a subset from all features to train the
model. Based on the classification results of all decision
trees, the prediction results of the model are obtained
through voting. *e learning rate of the random forest
is set to 0.25, the number of trees is set to 80, and other
parameters are set according to their default values.
LSTM: long short-term memory network is excellent
variant models of RNN, inheriting most characteristics
from RNN models. It uses a finite sequence to predict
traffic based on historical traffic data, which is a typical
deep learning method for time series prediction. LSTM
is suitable in dealing with problems that are highly
related to time series. It can fit sequence data and solve
problems pertaining to vanishing gradients by forget-
ting gate and output gate.*e network structure of each
LSTM is shown in Table 7.

5.8.ComprehensiveResults. We compare the performance of
XGBoost-I and XGBoost-S with the four baseline methods
(SARIMA, CNN, RF, and LSTM) based on the datasets.
Figure 15 depicts the error results of different methods as
well as their corresponding spatial lag.

Compared to traditional prediction methods, XGBoost is
found to perform better. Except SARIMA, the spatial lag input
of the other methods is better than the ordinary input.

However, SARIMA explores the individual prediction in each
road without reflecting the characteristics in lag input. In-
stead, due to misalignment of the data, the prediction effect is
evidently reduced. In addition, calculation time is based on
the training and testing time. Running time of programs
determines CPU time of the system. *e longer the run time
is, the more resources the CPU uses. XGBoost-I provides the
best performance with the runtime of 162 s, though XGBoost-
S gets the least running time of only 123 s. *is is due to the
number of trees for different roads of XGBoost-I that is
different, which maximizes optimization. *erefore, an ad-
ditional number of branches are explored, with the time being
longer than XGBoost-S. *e RF completion time is 214 s,
which also serves as an ideal method in view of the results.
Supporting parallel training of random forests can speed up
training and is also suitable for high-dimensional data pro-
cessing. Although the running time of CNN (225 s) is close to
RF, its prediction is much worse. *e traditional prediction
methods SARIMA (383 s) and LSTM (2827 s) have longer
running time. Although LSTM acquires satisfactory results,
time costs and system consumption are too much. *erefore,
XGBoost-I is considered to be the best choice among these six
common methods for highway traffic prediction.

We utilize historical data for the next 60 minutes to
predict highway traffic in the next 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, and 60 minutes. Figure 16 presents the corre-
sponding average results of the 12 methods in short-term 5-
minute steps (5, 10, 15, 20, 25, and 30).

We compare XGBoost family models with baselines
models (SARIMA, CNN, RF, and LSTM) and the corre-
sponding different input modes. Accordingly, short-term
traffic flow prediction results of RMSE, MAE, and MAPE by
XGBoost-I-lag are the most accurate. *e reason is that
XGBoost adopts different parameter adjustments and tree
structures for different sections when considering temporal
and spatial characteristics. Moreover, it can be observed that,
in short-term traffic flow prediction, the spatial lag input of
different methods is better than the results of ordinary input.
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Figure 14: MAE of up-direction and down-direction with different
missing rates.

Table 6: CNN network structure.

Layer (type) Output shape Param #
input_1 (InputLayer) (None, 6, 7) 0
conv1d_1 (Conv1D) (None, 6, 7) 56
conv1d_2 (Conv1D) (None, 6, 7) 56
conv1d_3 (Conv1D) (None, 6, 7) 56
conv1d_4 (Conv1D) (None, 6, 7) 56
conv1d_5 (Conv1D) (None, 6, 7) 56
conv1d_6 (Conv1D) (None, 6, 7) 56
flatten_1 (flatten) (None, 42) 0
dense_1 (dense) (None, 12) 516

Table 7: Each LSTM network structure.

Layer (type) Output shape Param #
lstm_1 (LSTM) (None, 6, 7) 252
dense_1 (dense) (None, 64) 3200
dense_2 (dense) (None, 12) 780
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Figure 15: Continued.
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Figure 15: Comparison of three errors in different methods of up-direction and down-direction.
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CNN shows the worst prediction ability, while RF and LSTM
show similar accuracy, indicating that spatio-temporal
characteristics play vital roles in short-term traffic prediction.
*e prediction errors in each method increase synchronously

as the prediction range increases. Different XGBoost methods
have more stable prediction trends than other methods.

Long-term forecasting is mainly contributed to travelers
who plan for longer trips that are considered to be more
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Figure 16: Comparison of traffic prediction performance of different methods in short-term 5-minute time steps of mean RMSE, MAE, and
MAPE.
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Figure 17: Comparison of traffic prediction performance of different methods in long-term 5-minute time steps of mean RMSE, MAE, and
MAPE.
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challenging than short-term forecasting. We predict the
traffic flow for the next (35, 40, 45, 50, 55, 60) minutes based
on the historical data. Figure 17 presents the results of
XGBoost-I, XGBoost-S, SARIMA, CNN, RF, LSTM, as well
as the corresponding spatial lag.

Regarding CNN-lag, the spatial lag input, which can be
better to highlight the ability of spatial features, is evidently
far superior to CNN in terms of long-term traffic flow
prediction. For long-term traffic prediction, spatial infor-
mation contributes better than temporal characteristics.
Additionally, the advantages of CNN in utilizing the spatial
characteristics in the traffic network are confirmed. *e
spatial lag results among the other methods are better ap-
parently. Similar to short-term prediction, CNN performs
the worst prediction performance. At the same time, RF still
performs similarly to LSTM and the errors increase as the
prediction range increases. However, the long-term pre-
dictive performance is marginally faster than the short-term
performance. Compared with other models, XGBoost-I-lag
achieves the best accuracy in both short-term and long-term
of highway traffic flow prediction and obtains themost stable
trend. *ese results prove the superiority and feasibility of
the improved XGBoost model with proposed EAM opti-
mization mode and tree structures, and the model is able to
capture the traffic features and the regularity of the highway
traffic flow.

6. Conclusion and Future Research

*e ability of predicting the highway traffic flow in an ac-
curate manner is important in proactive traffic management
strategies in order that it can provide reliable travel infor-
mation for commuters. In this paper, improved XGBoost
traffic flow prediction methods and a generalized seg-
mented-data acquirement mode are proposed. *en, we
introduce an optimization way based on the EAMmode and
a lag strategy involving spatio-temporal delivery. For the
computing and processing datasets, the XGBoost-I pa-
rameter structures are adjusted corresponding to up-di-
rection and down-direction roads separately. XGBoost-I-lag
achieves the best performance compared with XGBoost-S
series models and other baseline models. Multistep per-
formance is evaluated, and the model is examined under the
predicting of segment data and ANPRS data to prove the
accuracy. It is confirmed that the missing data greatly affects
the traffic flow prediction results in the XGBoost-I-lag.
Except for SARIMA, the spatial lag input of all methods is
better than the ordinary input. It is also observed that the
identified spatio-temporal lag strategy is extremely necessary
of highway traffic prediction.

In the near future, we plan to improve the predicted
accuracy of the improved XGBoost framework in the fol-
lowing two directions: (1) more effective XGBoost param-
eters are worth exploring and adjusting and further
expanding the usability of the EAM optimization mode. (2)
Extensive segmented data calculation mode should explore
more practical scenarios to divide sections subtly, and we
also plan to broaden this research to estimate wider highway.
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