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Abstract
Engineered biochars are promising candidates in a wide range of environmental 
applications, including soil fertility improvement, contaminant immobilization, 
wastewater treatment and in situ carbon sequestration. This review provides a 
systematic classification of these novel biochar composites and identifies the 
promising future trends in composite research and application. It is proposed 
that metals, minerals, layered double hydroxides, carbonaceous nanomaterials 
and microorganisms enhance the performances of biochars via distinct mech-
anisms. In this review, four novel trends are identified and assessed critically. 
Firstly, facile synthesis methods, in particular ball milling and co-pyrolysis, have 
emerged as popular composite fabrication strategies that are suitable for large-
scale applications. Secondly, biochar modification with green materials, such as 
natural clay minerals and microorganisms, align well with the on-going green 
and sustainable remediation (GSR) movement. Furthermore, new applications in 
soil health improvement and climate change mitigation support the realization of 
United Nation's Sustainable Development Goals (SDGs). Finally, the importance 
of field studies is getting more attention, since evidence of field success is criti-
cally needed before large-scale applications.
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1   |   INTRODUCTION

Biochar is the solid material derived from various biomass 
feedstocks under oxygen-limited thermal conversion pro-
cesses (IBI, 2015). Biochar is known to possess well-de-
veloped porous structures (Kwiatkowski & Kalderis, 2020; 
Leng et al., 2021), abundant functional groups (Ahmad 
et al., 2014; Wang, Ok, et al., 2020), various inorganic nu-
trients (Dai et al., 2020; Smider & Singh, 2014) and high 
carbon stability (Li et al., 2014; Spokas, 2010). Therefore, 
biochar can be used for various purposes, including soil 
fertility improvement (Arif et al., 2020; El-Naggar et al., 
2019), contaminant immobilization (Palansooriya et al., 
2020; Shen et al., 2018; Wang et al., 2020), wastewater treat-
ment (Shaheen et al., 2019; Thompson et al., 2016; Xiang 
et al., 2020), flue gas purification (Shan et al., 2019; Shi et al., 
2020) and in situ carbon storage (Han Weng et al., 2017; 
Hardy et al., 2017).

Although pristine biochar has shown excellent perfor-
mance in environmental applications, the activation or 
modification of biochar to enhance its physicochemical 
properties has emerged as a new trend (Wang, Ok, et al., 
2020). The term ‘engineered biochar’ is therefore used to 
represent these materials that have been modified or acti-
vated via physical, chemical or biological approaches for 
specific purposes (Kazemi Shariat Panahi et al., 2020; Ok 
et al., 2015; Wang et al., 2017). Numerous attempts have 
been made to activate biochar with gas, steam, micro-
waves, acids, alkalis and oxidants without the introduction 
of external doping agents (Panwar & Pawar, 2020; Sajjadi 
et al., 2019). Another route is to introduce materials other 
than biochar itself, and having distinct and useful proper-
ties, to fabricate composites.

Biochar composite promises much as a soil amend-
ment, offering multifaceted benefits in both agriculture 
and environmental remediation. On the one hand, feeding 
9 billion people by 2050 without exceeding the planetary 
boundary seems to be a tough challenge (Gerten et al., 
2020; Godfray et al., 2010). Application of certain types of 
biochar composites directly improves the physical struc-
ture and the chemical fertility of soil, leading to enhanced 
crop yield. On the other land, remediating the soils in a 
‘green and sustainable’ manner also requires future devel-
opment of novel materials (Hou, 2020; Wang et al., 2021). 
Engineered biochar composites loaded with key immobi-
lization/degradation components assure the long-term re-
mediation of contaminated soil with low life cycle impact. 
Furthermore, novel applications of biochar composites in 
other fields, such as energy storage and cement additive, 
have also emerged, leading to a ‘green transition’ in var-
ious disciplines (Atinafu et al., 2020; Gupta et al., 2018).

Although several studies have reviewed the fabrication 
methods and environmental applications of biochar com-
posites, a systematic classification and the recognition of 

emerging trends in biochar composite research are still 
lacking. Therefore, the motivation of this review is to pro-
vide a classification of biochar composites, along with a 
discussion of the enhancement mechanisms. Novel trends 
in composite fabrication and new uses in environmental 
applications are clarified. In addition, lessons from the 
field are critically summarized, and the ways in which bio-
char composites assist in the realization of a sustainable 
future are discussed.

2   |   CLASSIFICATION AND 
ENHANCEMENT MECHANISMS

Biochar composites can be divided into five categories, 
including metal-biochar composites, mineral–biochar 
composites, layered double hydroxide (LDH)–biochar com-
posites, carbonaceous engineering nano-composites and 
microorganism–biochar composites (Figure 1). Compared 
with the virgin biochar, biochar composites have shown 
excellent performances in various environmental applica-
tions (Figure 1). The enhancement mechanisms of each 
type will be discussed in the following subsections.

2.1  |  Metal-biochar composites

Introducing iron species onto biochar has proven to be 
an effective means to enhance the performances of bio-
char. Nano zero valent iron (nZVI)–biochar, iron oxide–
biochar and iron sulphide–biochar composites are the 
major composite types. Several articles have comprehen-
sively reviewed the fabrication methods, enhancement 
mechanisms and environmental applications of iron–
biochar composites (Lyu et al., 2020; Wang, Zhao, et al., 
2019; Yi et al., 2019). In brief, iron–biochar composites 
favour the adsorption and immobilization of heavy met-
als and organic contaminants via enhanced surface com-
plexation, precipitation and electrostatic interactions 
(Alam et al., 2020; He et al., 2018; Zhang, O'Connor, 
et al., 2020). Certain types of iron–biochar composites, 
such as nZVI–biochar and FeS–biochar have a high re-
duction potential towards organic contaminants and the 
Cr(VI), since they can provide Fe(0), Fe(II) and S(II) spe-
cies (Chen et al., 2020; Liu et al., 2020; Lyu et al., 2018). 
Iron–biochar composites can also activate oxidants to 
generate reactive oxygen species (ROS) for the oxida-
tion of organic contaminants (Diao et al., 2020; Park 
et al., 2018). It is noteworthy that multiple iron species 
may be present in iron–biochar composites simultane-
ously, enhancing the performances of biochar through 
various mechanisms. For instance, Fe(II) species on the 
surface of FeCl3-soaked biochar were found to be respon-
sible for Cr(VI) reduction, whereas Fe(III) species would 
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precipitate with the as-formed Cr(III) (Chen et al., 2020). 
Iron in different forms, including mining and industrial 
residues, can be successfully used as a dopant to improve 
biochar performance in the removal of contaminants, of-
fering a potentially attractive circular economy option 
(Wurzer & Mašek, 2021).

Apart from iron–biochar composites, other types of 
metal–biochar composites, such as MgO–biochar com-
posites, MnOx–biochar composites and MoS2–biochar 
composites, are also innovative candidates in environ-
mental applications. Shen et al. (2019) fabricated MgO-
coated biochar for Pb immobilization in clayey soil. The 
biochar matrix adsorbed Pb onto its surface via cation-π 
interactions, while MgO enhanced Pb immobilization 
through precipitation. Yu et al. (2017) loaded manganese 
oxide onto biochar through soaking with KMnO4. The 
resulting biochar composite successfully immobilized 
soil As because of the oxidation of As(III) to As(V). Yang 
et al. (2020) synthesized a novel g-MoS2 coated biochar 
nano-composite for ciprofloxacin adsorption. Compared 
with the virgin biochar, the composite provided more π 
electrons, enhancing the π-π EDA interactions.

It is noteworthy that co-doping biochar with various 
metals has emerged as a novel trend (Rajapaksha et al., 
2016). Mg-Al biochar composites exhibited high phos-
phate adsorption capacity because of chemical precipita-
tion (i.e., the formation of AlPO4 and Mg3(PO4)2) (Zheng 
et al., 2020). A Mg-Fe biochar composite reduced soil Cd 
bioavailability through enhanced surface complexation 
and ion exchange (Gao et al., 2019). A Fe-Mn biochar 
composite immobilized soil As through triggering the for-
mation of stable hydrous oxide-bound As forms (Lin et al., 
2019), while Fe-Mn-Ce biochar composite was also proven 
to immobilize soil As because of the same mechanism 
(Zhang et al., 2020). A CuZnFe2O4–biochar composite pro-
moted the adsorption of bisphenol A and sulfamethoxaz-
ole through hydrogen bonding, hydrophobic interactions 
and π-π EDA interactions (Heo et al., 2019). Metal co-dop-
ing is a facile method for the enhancement of biochar 
properties. This method has proven effective in environ-
mental remediation. More studies should be conducted to 
examine the feasibility in other applications. For instance, 
it is suggested that co-doping nutrients, such as K, Ca and 
Mg, onto biochar may directly promote soil fertility and 

Mineral-biochar

LDH-biochar

Graphene-biochar

CNT-biochar

Microorganism-biochar

Co-pyrolysis

Post-pyrolysis

modification

Metal-biochar

Fertility improvement

Applications

Negative priming

Immobilization

Degradation

Adsorption

Composite

F I G U R E  1   various types of engineered biochar composites with distinct surface morphologies and their environmental applications. 
metal-biochar: mgo-coated corncob biochar composite for pb stabilization in clayey soil. hexagonal and cubic mgo particles were well 
dispersed on the biochar (shen  2019). mineral–biochar: montmorillonite–biochar composite for slow release of ammonium and phosphate. 
montmorillonite particles were observed on the surface of bamboo biochar, but did not completely cover the surface (chen et al., 2017). ldh–
biochar: ni-fe ldh–biochar composite for phosphate adsorption. ldh flakes were attached to corn stalk biochar (yang et al., 2019). graphene–
biochar: graphene-coated cotton wood biochar for methylene blue adsorption (zhang e., 2012). cnt-biochar: multiwalled carbon nanotube 
(mwcnt)–biochar composite for the encapsulation of phase change material to store thermal energy. a tubular surface morphology was 
observed (atinafu et al., 2020). microorganism–biochar: bacterium delftia sp. b9-inoculated corn stalk biochar for cd immobilization in soil. 
the cells were attached to the pores (liu, tie, et al., 2020). all images were reproduced with permission 
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simultaneously enhance biochar carbon sequestration po-
tential (Mašek et al., 2019). If properly designed, co-doped 
biochars could immobilize metals in soil while simultane-
ously releasing nutrients (Igalavithana et al., 2017).

2.2  |  Mineral–biochar composites

Natural minerals can promote the performance of bio-
char during soil remediation, resulting in fertility im-
provements, and assist in wastewater treatment (Table 1). 
Montmorillonite, a typical clay mineral having a 2:1 sheet 
structure, could adsorb metals and retain cationic nutri-
ents effectively via cation exchange with hydrated Na+, 
K+, Mg2+ and Ca2+ in the interlayer spaces (Brigatti et al., 
2006; Rumble et al., 2018; Wang et al., 2020). For instance, 
bark chip biochar with montmorillonite immobilized 
soil Cu, Zn and Pb effectively because of cation exchange 
(Arabyarmohammadi et al., 2018). Co-pyrolysed bamboo 
biochar–montmorillonite acted as a slow-release fertilizer 
for NH+

4
 (Chen et al., 2017). Instead of making use of the 

cation exchange mechanism, Herath et al. (2020) consid-
ered montmorillonite to be a silicon source. Soil As could 
be effectively immobilized via the formation of Si–ferrihy-
drite complex on the Si-rich montmorillonite–biochar com-
posite. Attapulgite (palygorskite), a fibrous clay mineral 
with lamellar structure, has also attracted much attention 
because of its abundant hydroxyl groups. Attapulgite–bio-
char composites have proven effective for the immobiliza-
tion of As and Cd in river sediments because of enhanced 
surface complexation (Wang, Gu, et al., 2019), and for the 
adsorption of oxytetracycline in the aqueous media be-
cause of enhanced π-π EDA interactions and the forma-
tion of hydrogen bonds (Wang, Yang, et al., 2019). Struvite 
(NH4MgPO4) is a nutrient-rich mineral that has been com-
monly used as a fertilizer. Co-precipitation of struvite di-
rectly onto biochar could enhance the slow release of PO3

4
, 

favouring fertility improvement (Hu et al., 2019) and metal 
immobilization (Li, Wang, et al., 2020). Mineral additives 
can also reduce potential toxicity of biochar produced from 
waste materials, thus enabling an otherwise unutilized re-
source to be brought to beneficial use (Mumme et al., 2018).

2.3  |  LDH–biochar composites

Layered double hydroxides (LDHs) are anionic clay miner-
als consisting of positively charged metal hydroxide layers 
and anions in the interlayer space for charge neutralization 
(Ma et al., 2016; Wang & Ohare, 2012). A wide variety of 
LDH–biochar composites having different divalent and 
trivalent metal cations (e.g., Mg-Al, Mg-Fe, Zn-Al, Ca-Al, 
Ni-Fe) have been widely used in contaminant adsorption LD
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(Table 2). The enhancement mechanisms include provid-
ing hydroxyl groups for surface complexation (Bolbol et al., 
2019) and hydrogen bonding (Zhang et al., 2018), increas-
ing anion exchange capacity (Gao et al., 2020) and enhanc-
ing co-precipitation (Wan et al., 2017). Because of the high 
anion exchange capacity of LDH-biochar composites, these 
materials have been extensively used for the adsorption of 
anionic contaminants, including phosphate (Yang et al., 
2019), nitrate (Xue et al., 2016) and arsenic (Wang et al., 
2016) (Table 2). Notably, LDH–biochar composites can also 
be used for the adsorption of organic contaminants because 
of pore-filling, π-π EDA interactions and hydrogen bond-
ing (Meili et al., 2019; Zubair et al., 2020). LDH–biochar 
composites can simultaneously immobilize metals while 
improving nutrient retention because of the multifaceted 
enhancement mechanisms (Figure 2, section 4). Zhang 
et al. (2018) observed that heavy metals in soil, including 

Cu, Zn, Ni, Cd and Pb, would be immobilized via strong in-
teractions such as surface complexation, precipitation and 
isomorphic substitution, while nutrients, such as NH+

4
 and 

NO
3
 would be adsorbed through much weaker interactions 

(i.e., hydrogen bonding, anion exchange and micropore fill-
ing) (Figure 2). Therefore, soil metals could be immobilized 
in the long run, while nutrients would be released slowly.

2.4  |  Carbonaceous engineered nano-
composites

Graphene–biochar and carbon nanotube (CNT)–biochar 
composites enhance the adsorption of organic contami-
nants. The abundance of π electrons in these carbonaceous 
engineered nano-composites contribute to their excellent 
adsorption performance. The high adsorption capacity of 

F I G U R E  2   Possible metal and nutrient retention mechanisms of Mg/Fe-LDH biochar composites. Metals can be immobilized via 
strong interactions including surface complexation, precipitation and isomorphic substitution in the long run, while nutrients adsorbed 
via hydrogen bonding, anion exchange and micropore filling can be released slowly. Reproduced with permission from Zhang et al. (2018). 
Copyright 2018 American Chemical Society
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graphene nanosheet–biochar composites for phthalic acid 
esters has been attributed to enhanced hydrophobic in-
teractions, and π-π EDA interactions (Abdul et al., 2017; 
Zhang et al., 2012). Graphene oxide (GO)-biochar com-
posites promotes the adsorption of sulfamethazine mainly 
via π-π EDA interactions, while pore-filling, ion exchange 
and hydrogen bonding also play a vital role (Huang et al., 
2017). Multiwalled carbon nanotube (MWCNT)–biochar 
composites revealed excellent adsorption performance to-
wards methylene blue because of electrostatic interactions 
(Inyang et al., 2014). Interestingly, an engineered MWCNT–
biochar composite had an excellent encapsulation capacity 
of n-dodecane, a phase change material for energy storage. 
It could be that the biochar composite possessed stable net-
works, favouring the attachment of organic molecules by 
surface tension and capillary forces (Atinafu et al., 2020).

Carbonaceous engineered nano-composites have been 
used for the remediation of metals. Inyang et al. (2015) 
fabricated a novel MWCNT–biochar composite for the 
simultaneous removal of Pb and sulphapyridine in the 
aqueous media. The enhancement mechanisms of organic 
contaminant adsorption were attributed to the aforemen-
tioned π-π EDA interactions and hydrogen bonding, while 
Pb removal was possible because of surface complexation 
with oxygen-containing functional groups. Apart from 
surface complexation, Liu et al. (2016) suggested that the 
mechanisms enhancing adsorption by GO– and CNT–bio-
char composites also include cation-π interactions.

2.5  |  Microorganism–biochar composites

Microorganisms can improve the performances of biochar 
in removing contaminants in three ways (Table 3). Firstly, 
inoculation of microorganisms having high degradation 
capabilities for organic contaminants onto a biochar en-
hances the overall biodegradation directly. For instance, 
rice husk biochar inoculated with the dibutyl phthalate 
(DBP)-degrading strain Bacillus siamensis showed elevated 
contaminant degradation, with the rate constant increasing 
from 0.11 day−1 for the biochar alone to 0.24 day−1 (Feng 
et al., 2020). Another study by Xiong et al. (2017) found 
that engineered Mycobacterium gilvum-rice straw biochar 
composite degraded soil polycyclic aromatic hydrocarbons 
(PAHs) more effectively than the unmodified biochar.

Second, considering that microbial cells are rich in var-
ious oxygen- and nitrogen-containing functional groups, 
including carbonyl, hydroxyl and amine, several studies 
have used microorganism-biochar composites for soil metal 
immobilization. Heavy metals and metalloids, such as Cu, 
As and Cd, can be immobilized via surface complexation 
(Ma et al., 2020; Tu et al., 2020; Wang, Li, et al., 2021). Third, 
the phosphate released from the microorganisms can also 
immobilize soil metals via precipitation (Tu et al., 2020). 

Microorganism–biochar composites can also be used for soil 
fertility improvement because of the ability of microorgan-
isms to release phosphate and fix nitrogen (Wei et al., 2020).

2.6  |  Other types

Considering that wood biochars possess relatively low nu-
trient contents for soil fertility improvement, Buss et al. 
(2019) applied an ash–biochar composite to infertile soil. 
Rather than the rapid release of nutrients by direct ap-
plication of plant ash, the biochar composite released nu-
trients much more slowly. This was because the original 
wood ash (obtained from a heating plant with steam tem-
perature 140℃) with similar characteristics with biomass 
feedstock could be further transformed to a more stable 
form, namely charcoal after co-pyrolysis. Liu et al. (2019) 
synthesized a novel composite consisting of biochar, 
urea, bentonite and polyvinyl alcohols for the controlled 
release of nitrogen. Wang et al. (2018) modified biochar 
with calcium alginate to improve the water and nutrient 
retention capabilities via swelling and ion exchange, re-
spectively. Zhao, Cao, et al. (2016) co-pyrolysed sawdust 
and switchgrass biomass directly with phosphate fertiliz-
ers to produce engineered composites for nutrient release 
and metal immobilization. Without doubt, novel biochar 
composites would emerge, together with novel synthesis 
methods (section 3) and applications (section 4).

3   |   EMERGING TRENDS IN 
COMPOSITE SYNTHESIS

Biochar composites can be synthesized either via co-py-
rolysis or post-pyrolysis modification (Mandal et al., 2020; 
Tan et al., 2016). In the former approach, enhancement 
agents, such as metal oxides and minerals, are doped to the 
biochar feedstock prior to pyrolysis. In contrast, more stud-
ies tend to adopt the latter method of post-pyrolysis bio-
char modification. Considering that the biochar-producing 
process involves high temperatures, the feasibility of the 
introduction of certain chemicals is limited. For instance, 
biochar–goethite composites having excellent As adsorp-
tion and immobilization performances could only be syn-
thesized using post-pyrolysis modification, since goethite 
(α-FeOOH) would be transformed into hematite (α-Fe2O3) 
if the temperature reaches 260~280℃ because of dehydra-
tion (Ammasi, 2020; de Faria & Lopes, 2007). For a compre-
hensive view on conventional biochar composite synthesis 
methods, readers are referred to Mandal et al. (2020).

Green fabrication has emerged as a novel trend in bio-
char composite synthesis, aligning well with the green 
chemistry concept. In the context of biochar composite 
synthesis, a green fabrication method should use safer 
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chemicals and milder reaction conditions (USEPA, 2017). 
For instance, Zhang, O'Connor, et al. (2020) used banana 
peel extracts rather than toxic NaBH4 for nZVI loading onto 
the resulting banana peel biochar. After that, the dissolved 
oxygen in water could oxidize nZVI into iron oxides. The as-
formed biochar-iron oxide composite could adsorb methy-
lene blue more effectively than the pristine biochar. Instead 
of pyrolysing the feedstock under high temperatures (i.e., 
>300℃), another study by Zhang et al. (2020) prepared the 
S-Fe–biochar composite using a one-step hydrothermal 
method, lowering the reaction temperature to 180℃, while 
simultaneously introducing Fe and S to the biochar.

It is noteworthy that ball milling, a green and facile 
physical modification method, has proven successful for 
biochar composite fabrication. Compared with conven-
tional chemical modification approaches, ball milling is a 
solid-to-solid modification method that avoids the intro-
duction of toxic chemicals. Typically, the internal barrel 
of the ball mill can be separated into four zones, namely 
the cascading zone, the cataracting zone, the fracture zone 
and the grinding zone (Figure 3) (Peng et al., 2017). The 
combined effects of four zones lead to the thorough mix-
ing of biochar and the chemicals, while the fracture zone 
and grinding zone play significant roles in the downsiz-
ing process. Because of grinding and fracturing, the sizes 
of particles can be reduced simultaneously during ball 
milling, thus increasing the reactivity and producing na-
no-sized biochar composites. He et al. (2021) synthesized 
a FeS-biochar composite after milling FeS and biochar 
with zirconia balls for 12  h. Scanning electron micros-
copy analysis indicated the fracture and deformation of 
the original large block structures of both materials into 
nano-sized particles, while X-ray diffraction analysis 
confirmed the doping of FeS onto biochar. Li, Wan, et al. 
(2020) found that ball milling could extrude biochar into 
the interlayers of vermiculite (a typical 2:1 clay mineral), 
forming a novel biochar–clay nano-composite efficient in 

As(V) adsorption. Wang et al. (2020) also noticed that ball 
milling resulted in the formation of the nanoparticles of 
Fe(0)–biochar composites with excellent Cr(VI) reduction 
performances. It is concluded that biochar composite syn-
thesis methods tend to be more environmentally friendly 
and facile. Physical modification methods, rather than 
chemical doping approaches, appear to be more viable.

4   |   NEW APPLICATIONS IN SOIL 
HEALTH IMPROVEMENT AND 
CLIMATE CHANGE MITIGATION

In recent years, soil health has emerged as the most widely 
acknowledged concept in terms of sustainable utilization 
of valuable soil resources and tackling the soil constraints, 
and has caused a global evolution of traditional soil use and 
management strategies towards a more sustainable man-
ner (Hou et al., 2020). Soil health has been defined as ‘the 
capability of soil to function as a living system’ (FAO, 2011). 
However, soils from all parts of the world, in particular East 
Asia, South Asia, East Australia, Central Africa and South 
America (Figure 4), suffer from various constraints, in-
cluding physical ones such as poor soil structure and water 
holding capacity, chemical ones such as nutrient loss and 
contamination, and biological ones such as soil pathogens 
and faunal reduction (FAO, 2015). New applications of 
biochar composites to improve soil health include physical 
structure enhancement (section 4.1), metal immobilization 
in soil (section 4.2), organic contaminant degradation/reten-
tion (section 4.2), water and nutrient retention (section 4.3), 
salinity adaptation (section 4.4) and antibiotic resistance 
gene suppression (section 4.5), ultimately assisting the soil to 
‘act as a living system’. Global climate change is an immense 
challenge, attracting researchers from all disciplines. In the 
context of soil use and management, the application of novel 
biochar composites also helps to mitigate climate change. 

F I G U R E  3   A mechanistic understanding of the ball milling process, an emerging physical method to fabricate biochar composites. 
The combined effects of four zones, including the cataracting, cascading, grinding and the fracture zone, contribute to thorough mixing. 
Reproduced with permission from Peng et al. (2017). Copyright 2017 Elsevier
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The following subsection discusses novel applications of bio-
char composites for climate change mitigation (section 4.6).

4.1  |  Soil physical structure 
enhancement

Application of unmodified biochar has been acknowledged 
as an effective means to enhance the physical structure 
of soils (Herath et al., 2013; Hou, Wang, et al., 2020). The 
comprehensive review by Blanco-Canqui (2017) suggested 
that fresh biochar application increases soil porosity by 
14% to 64%, while reducing soil bulk density by 3% to 31%. 
Furthermore, biochar application can enhance soil aggrega-
tion, which could be that organic carbon particles can form 
ligands with soil particles (Blanco-Canqui, 2017). Although 
biochar itself has already shown excellent performances in 
soil aggregation, a recent study by Liu, Kong, et al. (2020) in-
dicated that application of Fe–biochar composite increased 
the stability of soil aggregates. This was attributed to the fact 
that iron oxides on the biochar surface induced co-precipita-
tion with soluble organic carbon in the soil solution, while si-
multaneously acting as a cementing agent for soil aggregate 
formation (Liu, Kong, et al., 2020). In addition, considering 
that organo-mineral interaction is the key factor controlling 
soil aggregation (Possinger et al., 2020), it is proposed that 
mineral–biochar composites can also improve the physical 
properties of the amended soil. More evidences from the lab 
and the field are required to further test this hypothesis.

4.2  |  Contaminant remediation

Although biochar alone has revealed its potential in soil 
metal immobilization, biochar modification to produce 
engineered composites is a feasible way to improve the 
performance of biochar. Biochar composites aid in metal 
immobilization in various ways. For instance, iron–biochar 
composites promote the stabilization of both cations (e.g., 
Cd, Pb) and oxyanions (e.g., As, Sb) via enhanced surface 
complexation (Gao et al., 2019; Qiao et al., 2018; Teng et al., 
2020). Ash-biochar composites with high alkalinity increase 
soil pH, favouring the electrostatic interactions for metal-
lic cations and negatively charged soil colloids (Lei et al., 
2020). Nano zero valent iron– and iron sulphide–biochar 
composites promote soil Cr(VI) reduction (Liu, Yang, 
et al., 2020; Lyu, Zhao, et al., 2018; Wang et al., 2019). In 
particular, immobilization of soil As with unmodified bio-
char seems impractical (Beiyuan et al., 2017). An elevated 
soil pH resulting from biochar addition would mobilize 
the arsenate oxyanions (e.g., H2AsO4

 and H2AsO4
) in turn 

(Bandara et al., 2020; Vithanage et al., 2017). Many attempts 
have been made to discover novel biochar composites to im-
mobilize soil As. The LDH–biochar composites immobilize 
As because of their high anion exchange capacity and high 
abundance of surface hydroxyl functional groups that pro-
mote both inner- and outer-sphere surface complexation 
(Gao et al., 2020). Iron–biochar composites are the most 
promising candidate in soil As immobilization. It has been 

F I G U R E  4   Soil health status for present land use. Copyright FAO
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recognized that As will form stable inner-sphere complexes 
with iron oxides (such as FeOOH and Fe2O3) via ligand ex-
change with surface hydroxyl groups of the FeO6 octahedra 
(Dixit & Hering, 2003; Sherman & Randall, 2003). Indeed, 
iron–oxide biochar composites have successfully stabilized 
As (Lin et al., 2017). Precursors of iron oxides, including 
ZVI and iron sulphates, can be used to form iron–biochar 
composites for As immobilization (Fan et al., 2020). Further 
insights on metal immobilization performances of engi-
neered biochar composites, readers are referred to Wang, 
Ok, et al. (2020) and Rajapaksha et al. (2016).

Apart from metal immobilization, novel biochar com-
posites have been successfully used for organic contami-
nant remediation. Microorganism-inoculated biochar has 
shown excellent contaminant degradation performance. 
For instance, rice husk biochar inoculated with the dib-
utyl phthalate (DBP)-degrading strain Bacillus siamensis 
boosted DBP degradation while simultaneously restrict-
ing plant uptake of this contaminant (Feng et al., 2020). 
During this process, biochar acted in a secondary role; 
that is, it provided the supporting matrix to adsorb and re-
tain DPB (Feng et al., 2020). Another study by Xiong et al. 
(2017) applied Mycobacterium gilvum-inoculated biochar 
to a soil contaminated by PAHs. Biochar facilitated the 
mass transfer of PAHs from soil to the carbonaceous ma-
trix, where these contaminants could be degraded by the 
inoculated microorganisms.

Metal–biochar composites immobilize organic con-
taminants via various mechanisms, including adsorption, 
plaque formation and microbial stimulation. Biochar-
supported CuZnFe2O4 composites were shown to adsorb 
bisphenol A and sulfamethoxazole via enhanced hydro-
gen-bonding and π-π EDA interactions (Heo et al., 2019). 
A MoS2 nanosheet–biochar composite could adsorb cipro-
floxacin more effectively than the corresponding pristine 
biochar by a factor of 5.5. In this case, the abundance π 
electrons of the nanosheet promoted π-π EDA interactions 
(Yang et al., 2020). Iron oxide–biochar composite applica-
tion resulted in the formation of an iron plaque within the 
rhizosphere, reducing the uptake of the pesticide chlorpy-
rifos by Allium fistulosum (Welsh onion) (Tang et al., 
2017). Iron oxide–biochar composites can also stimulate 
the biodegradation of atrazine, since the atrazine-degrad-
ing strain Acinetobacter lwoffii DNS32 is able to form bio-
films on iron biochar composites (Tao et al., 2019).

It is noteworthy that metal–biochar composites have 
also been adopted as novel catalysts, initializing the genera-
tion of reactive oxygen species (ROS) in persulfate (PS) and 
peroxymonosulphate (PMS) systems (Figure 5). Doping 
biochar with CuFe2O4 enhanced electron transfer, facilitat-
ing O2 reduction to O

2
 (Figure 5a). The resulting O

2
 was 

responsible for catalysing the redox pair cycles of Fe(II)/
Fe(III) and Cu(I)/Cu(II). The Cu(I) and Fe(II) species gen-
erated during this process then catalysed the formation of 

SO
4
, enhancing the o-nitrochlorobenzene degradation in 

soil (Zhao et al., 2020). Nano zero valent iron (nZVI)–bio-
char composites were used as a catalyst to activate peroxy-
monosulphate for atrazine degradation (Figure 5b). The 
atrazine molecule was firstly adsorbed by the nZVI-biochar 
composite. After, dissolved Fe2+ released from the compos-
ite activated peroxymonosulphate to generate ROS, includ-
ing SO

4
, ·OH and 1O2. Compared with the virgin biochar 

and nZVI, the novel biochar composite revealed a syner-
gistic effect on peroxymonosulphate activation and atra-
zine degradation (degradation rates of 40%, 55% and 96% 
for biochar–PMS, nZVI–PMS and biochar composite–PMS 
systems, respectively) (Diao et al., 2020). Considering that 
sulphate radical-based advanced oxidation is a low-impact 
remediation strategy with excellent performance (Hou, 
2020), application of these biochar composites for the cata-
lytic generation of ROS in this system aligns well with the 
concept of green and sustainable remediation (GSR).

4.3  |  Nutrient retention

Soaking biochar or biomass feedstock directly with salts of 
nutrients, and applying the resulting material to soil would 
undoubtedly increase soil fertility. However, nutrients may 
be easily leached out in the long run, leading to decreased 
soil fertility. In contrast, applying mineral-biochar com-
posites to soil improves soil health because of enhanced 
nutrient retention. Application of a Mg-Fe LDH–biochar 
composite favoured the retention of NH+

4
 (via hydrogen 

bonding) and NO
3
 (because of anion exchange) while si-

multaneously immobilizing toxic metals (Zhang et al., 
2018) (Figure 2). Biochar composite prepared via co-py-
rolysis of spruce residues and the biomass combustion ash 
reduced the loss of K during leaching and allowed a higher 
plant K use efficiency (Buss, Jansson, & Mašek, 2019). 
Potassium–iron biochar composites reduced the leaching 
of PO3

4
 and NO

3
 from soil, while increasing the plant avail-

able fractions of K, Ca, PO3
4
 and NO

3
 in soil by 22% to 78% 

(Chandra et al., 2020). The reduced loss of soil nutrients 
along with an increase in nutrient bioavailability suggest 
that such biochar composite can be used as a fertilizer 
(Chandra et al., 2020). A montmorillonite–biochar com-
posite revealed potential for the controlled release of NH+

4
 

and PO3
4
. The retention of NH+

4
 was ascribed to the high 

CEC of the montmorillonite, while PO3
4
 retention resulted 

from ionic bonding with cations in biochar (e.g., Ca2+, 
Mg2+) (Chen et al., 2017). A MgCO3–biochar composite ap-
plication to soil not only enhanced PO3

4
 retention because 

of chemisorption, but also favoured water retention as a 
result of physical adsorption (Shen et al., 2020). Therefore, 
biochar composites having high adsorption capacities ren-
der the long-term retention of nutrients. An ideal biochar 
composite for soil fertility improvement should possess a 
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well-developed pore structure and high ion exchange ca-
pacity. However, it should be noted that the adsorption of 
nutrients should be reversible so that nutrients can be re-
leased in turn, and be taken up by plants.

4.4  |  Salinity adaptation

Salt toxicity decreases crop yield, threatening food secu-
rity. As a result of osmotic and oxidative stresses, a high 
level of reactive oxygen species (ROS) that can damage nu-
cleic acids and proteins can be generated (Farhangi-Abriz 
& Nikpour-Rashidabad, 2017; Napieraj et al., 2020). Metal 
oxide–biochar nano-composites have proven effective in 
aiding the salinity adaptation of safflower (Ghassemi-
Golezani et al., 2020). Because of their high pore volumes, 
specific surface areas and CECs, both MgO– and MnO–
biochar nano-composites adsorb sodium effectively, thus 
reducing sodium uptake by plants. Furthermore, magne-
sium and manganese are closely related to chlorophyll 
generation (Peng et al., 2019; Sun et al., 2001). Increased 
content of photosynthetic pigments after the application 
of these composites can also diminish the oxidative stress 
caused by salt toxicity (Ghassemi-Golezani et al., 2020).

4.5  |  Antibiotic resistance gene 
suppression

The amendment of soils with biochar composites can 
also promote soil health via suppressing the abundance 
of antibiotic resistance genes (ARGs) while simultane-
ously increasing microbial diversity. Li et al. (2019) ap-
plied a novel struvite–humic acid biochar composite to a 
Zn contaminated manure soil. Although this amendment 
only immobilized Zn slightly by 8.6%, the abundance of 

ARGs was dramatically decreased by 37.2% after 56 days. 
Bacterial community analysis indicated that the addition 
of biochar composite increased soil microbial diversity 
and decreased the abundance of the source phylum of 
ARGs. Similarly, Li, Wang, et al. (2020) found that varia-
tions in bioavailable Cu concentration in soil may contrib-
ute to the fluctuation of ARG abundance. The decreased 
bioavailable metal content because of biochar composite 
addition accounted for the suppression of ARGs, but the 
mechanisms remained unknown.

4.6  |  Climate change mitigation

Biochar production and its storage in soils are promising 
methods of abating climate change. It has been suggested 
that the global implementation of biochar would offset 
12% of current anthropogenic CO2-C equivalent GHG 
emissions (Woolf et al., 2010). Although biochar alone 
can reduce global GHG emissions, recent evidence has 
shown that the application of biochar composites to the 
soil, rather than the virgin biochar, could further mitigate 
climate change in two distinct ways.

Both the retention of biomass carbon in biochar and its 
stability can be enhanced in certain types of biochar-based 
composites as compared with pristine biochar (Buss et al., 
2019). Evidence has shown that co-pyrolysis of biomass 
feedstock and minerals increases biochar carbon stability. 
Li et al. (2014) noticed that carbon retention of calcium di-
hydrogen phosphate [Ca(H2PO4)2]–biochar composite in-
creased by 29% compared with untreated rice husk biochar, 
possibly because of enhanced aromaticity as confirmed by 
13C NMR and FTIR analysis. Minerals would increase bio-
char aromaticity via enhancing the cross-linking between 
the less stable aliphatic fraction into condensed aromatic 
moieties (section 2.2) (Rawal et al., 2016). An increase in 

F I G U R E  5   (a) Persulfate (PS) activation by a novel CuFe2O4–biochar composite for o-nitrochlorobenzene degradation. Reproduced 
with permission from Zhao et al. (2020). Copyright 2020 Elsevier. (b) Peroxymonosulphate (PMS) activation by nZVI–biochar composite for 
atrazine degradation. Reproduced with permission from Diao et al. (2020). Copyright 2020 Elsevier 

(a) (b)
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aromaticity renders long-term carbon stability (Wang, 
O’Connor, et al., 2020). Apart from elevating aromaticity, 
minerals may also interact with biomass directly during py-
rolysis, forming stable chemical bonds. Ahmad et al. (2019) 
observed that silica–biochar composites synthesized via 
ball milling and co-pyrolysis possessed the highest carbon 
sequestration potential. The stable bond of Si-C formed 
during fabrication accounted for the high stability of re-
sulting biochar composite. Liu, Gao, et al. (2020) found that 
vermiculate addition increased biochar carbon stability 
through the formation of Si-O-C and Fe-O bonds.

Applying biochar composites to soil could regulate soil 
GHG emissions. For example, negative priming was ob-
served for a coastal wetland soil amended with an iron–bio-
char composite. The addition of the iron–biochar composite 
caused the formation of large aggregates (i.e., 0.25 – 1 mm) 
where soil organic carbon was stabilized (Liu, Kong, et al., 
2020). Applying a novel rhamnolipid–biochar composite to 
oil-contaminated soil was shown to enhance the biodeg-
radation of petroleum hydrocarbons, while reducing the 
emissions of N2O. However, soil GHG emissions in biochar 
composite amended soils are regulated both by the type of 
biochar composite applied and the soil properties. Our pre-
vious study showed that biochar would be more effective 
in GHG emissions reduction for coarse-textured soils than 
fine soils (p < 0.05) (Wang, O’Connor, et al., 2020). The for-
mation of more water-stable aggregates in coarse soils may 
account for this phenomenon.

4.7  |  Safety concerns associated with 
composite application

Biochar has dark sides (Godlewska et al., 2021). The re-
lease of toxic polycyclic aromatic hydrocarbons (PAHs) 
and toxic metals after soil amendment (Godlewska et al., 
2021), the re-mobilization of soil contaminants because 
of facilitate transport by biochar colloids (Hameed et al., 
2021), the faded performances as a result of long-term 
aging (Wang, O’Connor, et al., 2020) have raised a debate 
whether this ‘black gold’ can be applied safely.

So do biochar composites. Apart from the safety con-
cerns raised by toxic chemicals during their fabrication 
(section 3), toxic effects of biochar composites to organ-
isms in the entire ecosystem must not be overlooked. For 
instance, graphene and CNT nanoparticles on the bio-
char surface may induce toxic effects on living organisms 
via different mechanisms, such as cytotoxicity, oxidative 
stress, and deactivation of proteins (Hu & Zhou, 2013). 
Furthermore, microorganisms inoculated in biochar may 
further act as invasive species, causing ecological disas-
ter after composite application (Clout & Williams, 2009). 
Prior to field application of biochar composites, these 
safety concerns should be carefully taken into account.

5   |   FIELD IMPLEMENTATION: 
SUCCESSES AND LESSONS

Although a number of studies have tested the feasibility 
of biochar composites in various environmental applica-
tions, evidence from the field experiments are still very 
rare. However, conclusions drawn from the limited num-
ber of extant field implementations provide valuable in-
formation on how useful these composites are in practical 
applications (Table 4).

Iron–biochar composites can immobilize toxic metals 
and metalloids successfully at the field scale. For instance, 
applying iron-biochar composite at a low rate (i.e., 1.5 t 
ha−1) to a rice paddy decreased the bioavailable forms of 
As and Cd by 26% and 36%, respectively, within 20 months 
(Pan et al., 2019). Considering that iron oxides are easy 
to obtain, and that the synthesis method is quite simple, 
iron–biochar composites may be a promising candidate 
for large scale applications. Furthermore, iron–biochar 
composites can also increase phosphorus bioavailability. 
Wu et al. (2020) suggested that because of the high isoelec-
tric points of the amorphous iron oxides in biochar com-
posites, phosphorus would be adsorbed and retained in 
the field.

Not all biochar composites perform well in field appli-
cations. Rafiq et al. (2017) produced attapulgite–biochar 
composites with different mixing ratios and applied these 
composites in pastures of the Tibetan Plateau to promote 
plant growth. Only when attapulgite and biochar were 
mixed at the mass ratio of 1:1 did the biomass increase 
slightly, by 12.8%. In comparison, mixing attapulgite and 
biochar at other ratios and applying these amendments 
alone, surprisingly and substantially decreased the bio-
mass yield (by up to 47.8%). The reasons accounting for 
this failure remain unknown.

It should be noted that the performance of biochar 
composites in field studies are typically worse than those 
reported from laboratory studies. In the field, often pos-
itive results are observed only when biochar composites 
are applied at extremely high rates (e.g., 100 t ha−1). It is 
likely that: (1) the field performances are affected by ad-
ditional factors, including the climate and natural events 
such as flooding; (2) the influence of soil heterogeneity, 
which is more pronounced in the field; and (3) the raw 
material for large-scale composite fabrication may be of 
lower quality as compared with high grade chemicals in 
laboratory tests. For these reasons, it is suggested that 
more field studies should be conducted to test the appli-
cability of additional types of biochar composites, rather 
than a sole focus on iron–biochar and clay–biochar com-
posites. The roles of biochar composites in other applica-
tions, such as organic contaminant degradation/retention, 
GHG emissions mitigation and salinity adaptation, should 
also be assessed. Most importantly, the effects of various 

 14752743, 2022, 1, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/sum

.12731 by H
ong K

ong Poly U
niversity, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



28  |      WANG et al.

T
A

B
L

E
 4

 
Fi

el
d 

ap
pl

ic
at

io
ns

 o
f b

io
ch

ar
 c

om
po

si
te

s

Lo
ca

ti
on

Fi
el

d 
ch

ar
ac

te
ri

st
ic

s
B

io
ch

ar
A

pp
lic

at
io

n 
ra

te
St

ud
y 

du
ra

ti
on

A
im

 o
f b

io
ch

ar
 

co
m

po
si

te
 

ap
pl

ic
at

io
n

E
ff

ec
ti

ve
ne

ss
R

ef
er

en
ce

s

G
ua

ng
do

ng
, 

C
hi

na
R

ic
e 

pa
dd

y 
w

ith
 2

.9
 m

g 
kg

−
1  C

d 
an

d 
22

.6
 m

g 
kg

−
1  A

s, 
so

il 
pH

 4
.5

8,
 

or
ga

ni
c 

m
at

te
r c

on
te

nt
 1

.5
%

Ir
on

-b
io

ch
ar

 
co

m
po

si
te

1.
5 

t h
a−

1
20

 m
on

th
s

To
 im

m
ob

ili
ze

 C
d 

an
d 

A
s

D
ec

re
as

e 
N

H
4H

2P
O

4-
ex

tr
ac

ta
bl

e 
A

s a
nd

 D
TP

A
-e

xt
ra

ct
ab

le
 

C
d 

by
 2

5.
8%

 a
nd

 3
6.

4%
, 

re
sp

ec
tiv

el
y

Pa
n 

et
 a

l. 
(2

01
9)

Ti
be

ta
n 

Pl
at

ea
u

G
ra

ss
 la

nd
, s

oi
l p

H
 5

.9
3,

 o
rg

an
ic

 
m

at
te

r c
on

te
nt

 2
.9

%
, C

EC
 

11
.9

 c
m

ol
 k

g−
1

A
tta

pu
lg

ite
-b

io
ch

ar
 

co
m

po
si

te
3 

t h
a−

1
3 

m
on

th
s

To
 p

ro
m

ot
e 

pa
st

ur
e 

gr
ow

th
In

cr
ea

se
 b

io
m

as
s o

f p
as

tu
re

 
by

 1
2.

8%
 fo

r o
nl

y 
on

e 
ty

pe
 

of
 c

om
po

si
te

, d
ec

re
as

e 
th

e 
bi

om
as

s f
or

 o
th

er
 ty

pe
s

R
af

iq
 e

t a
l. 

(2
01

7)

Zh
ej

ia
ng

, 
C

hi
na

W
he

at
-r

ic
e 

ro
ta

tio
n 

ag
ri

cu
ltu

ra
l 

la
nd

 w
ith

 0
.3

5 
m

g 
kg

−
1  C

d 
an

d 
20

.8
7 

m
g 

kg
−

1  A
s, 

so
il 

pH
 5

.3
5,

 
or

ga
ni

c 
m

at
te

r c
on

te
nt

 2
%

, s
an

dy
 

lo
am

Fe
(I

I)
-b

io
ch

ar
 

co
m

po
si

te
1.

5 
t h

a−
1

2 
ye

ar
s

To
 im

m
ob

ili
ze

 C
d 

an
d 

A
s

R
ed

uc
e 

C
d 

ac
cu

m
ul

at
io

n 
in

 
w

he
at

 a
nd

 ri
ce

 g
ra

in
 b

y 
16

%
 

an
d 

57
%

, r
es

pe
ct

iv
el

y;
 re

du
ce

 
A

s a
cc

um
ul

at
io

n 
in

 w
he

at
 

an
d 

ri
ce

 g
ra

in
 b

y 
48

%
 a

nd
 

44
%

, r
es

pe
ct

iv
el

y

Ta
ng

 e
t a

l. 
(2

02
0)

X
in

jia
ng

, 
C

hi
na

G
ra

pe
 fi

el
d,

 so
il 

pH
 8

.0
8,

 o
rg

an
ic

 
m

at
te

r c
on

te
nt

 1
.9

%
,

bi
oc

ha
r i

no
cu

la
te

d 
Ps

eu
do

m
on

as
 

pu
tid

a

50
0 

g 
bi

oc
ha

r 
pe

r t
re

e
4 

m
on

th
s

To
 im

pr
ov

e 
gr

ap
e 

qu
al

ity
In

cr
ea

se
 fr

ui
t w

ei
gh

t, 
so

lu
bl

e 
pr

ot
ei

n 
co

nt
en

t a
nd

 h
ar

dn
es

s 
by

 7
.6

%
, 2

8.
6%

 a
nd

 1
0.

8%
, 

re
sp

ec
tiv

el
y

W
ei

 e
t a

l. 
(2

02
0)

Sh
an

do
ng

, 
C

hi
na

C
oa

st
al

 sa
lin

e-
al

ka
lin

e 
so

il,
 p

H
 8

.1
0,

 
or

ga
ni

c 
m

at
te

r c
on

te
nt

 0
.8

%
, 

sa
nd

y 
lo

am

M
gO

-b
io

ch
ar

 
co

m
po

si
te

4.
5 

t h
a−

1
N

ot
 a

va
ila

bl
e

To
 in

cr
ea

se
 

ph
os

ph
or

us
 

bi
oa

va
ila

bi
lit

y 
an

d 
ri

ce
 y

ie
ld

In
cr

ea
se

 ri
ce

 sh
oo

t b
io

m
as

s 
by

 6
%

, i
nc

re
as

e 
sh

oo
t 

ph
os

ph
or

us
 c

on
te

nt
 b

y 
1%

W
u 

et
 a

l. 
(2

01
9)

Sh
an

do
ng

, 
C

hi
na

C
oa

st
al

 sa
lin

e-
al

ka
lin

e 
so

il,
 p

H
 8

.1
0,

 
or

ga
ni

c 
m

at
te

r c
on

te
nt

 0
.8

%
, 

sa
nd

y 
lo

am

Fe
(I

I)
-b

io
ch

ar
 

co
m

po
si

te
 a

nd
 

Fe
(I

II
)-

bi
oc

ha
r 

co
m

po
si

te

4.
5 

t h
a−

1
2 

ye
ar

s
To

 in
cr

ea
se

 
av

ai
la

bl
e 

ph
os

ph
or

us
 

co
nt

en
t

In
cr

ea
se

 a
va

ila
bl

e 
ph

os
ph

or
us

 
co

nt
en

t b
y 

78
.6

%
 a

nd
 9

0.
3%

 
fo

r F
e(

II
)-

 a
nd

 F
e(

II
I)

-b
io

ch
ar

, 
re

sp
ec

tiv
el

y

W
u 

et
 a

l. 
(2

02
0)

H
un

an
, C

hi
na

R
ic

e 
pa

dd
y 

w
ith

 0
.5

4 
m

g 
kg

−
1  C

d,
 

so
il 

pH
 4

.1
1,

 o
rg

an
ic

 m
at

te
r 

co
nt

en
t 3

.8
%

A
sh

-b
io

ch
ar

 
co

m
po

si
te

10
, 5

0,
 1

00
 t 

ha
−

1
6 

m
on

th
s

To
 im

m
ob

ili
ze

 C
d

D
ec

re
as

e 
C

aC
l 2-

ex
tr

ac
ta

bl
e 

C
d 

by
 7

7.
9%

, 9
5.

1%
 a

nd
 9

6.
1%

 
fo

r 1
0,

 5
0,

 1
00

 t 
ha

−
1  g

ro
up

, 
re

sp
ec

tiv
el

y

Le
i e

t a
l. 

(2
02

0)

 14752743, 2022, 1, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/sum

.12731 by H
ong K

ong Poly U
niversity, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  29WANG et al.

natural forces, including temperature variations, rainfall 
events, wind erosion and flooding events, on the perfor-
mances of biochar composites should be assessed.

6   |   BIOCHAR COMPOSITE 
APPLICATION AND SUSTAINABLE 
DEVELOPMENT

The United Nations has set the ambitious Sustainable 
Development Goals to be achieved by 2030 (UN, 2015). 
To assist in the achievement of these goals, we believe 
that biochar composites can play vital roles (Figure 6). To 
protect life on land (SDG 15, the primary aim of biochar 
composite application), ending poverty while simultane-
ously preserving the environment is the key to sustainable 
development (Hou, O’Connor, et al., 2020). To increase the 
crop yield for degraded soils (SDG 2 – zero hunger), min-
eral-rich biochar composites as slow-release fertilizers can 
be fabricated in a simple way, and further used for large-
scale applications (Chen et al., 2017; Hu et al., 2019). To 
promote human's good health and well-being (SDG 3), the 
application of iron–biochar, LDH–biochar and microbial-
inoculated biochar composites would immobilize metals 
or degrade organic contaminants in soil (Diao et al., 2020; 
Feng et al., 2020; Gao et al., 2020). Numerous attempts 
have been made to improve contaminant sorption, align-
ing well with the principle goal of SDG 6 to obtain clean 
water and sanitation (Abdul et al., 2017; Heo et al., 2019; 
Meili et al., 2019). Novel applications of biochar composite 
materials, including phase change material encapsulation 
(Atinafu et al., 2020; Jeon et al., 2019), and concrete addi-
tives (Wang, Chen, et al., 2020) assist the achievement of 
SDG 7 (affordable and clean energy), and SDG 9 (indus-
try, innovation and infrastructure). To develop sustainable 

cities and communities (SDG 11), the remediation of urban 
brownfields with engineered iron–biochar and clay–bio-
char composites may be a feasible route, as field trials 
have already proven the effectiveness of these materials 
(Hamid et al., 2020; Rafiq et al., 2017). Furthermore, pyro-
lysing biomass into biochar has long been acknowledged 
as a method to displace non-renewable materials with high 
carbon footprints (SDG 12 – responsible consumption and 
production), and to store carbon in the ground (SDG 13 – 
climate action) (IBI, 2015; Wang, O’Connor, et al., 2020). 
Compared with unmodified biochar, the addition of min-
erals during pyrolysis (Ahmad et al., 2019; Li et al., 2014), 
or the application of iron-biochar composites (Liu, Kong, 
et al., 2020), have proven effective for the enhancement of 
carbon stability and negative priming, respectively.

7   |   A PRACTICAL GUIDE TO 
SELECTION, FABRICATION AND 
APPLICATION OF BIOCHAR 
COMPOSITES

Based on aforementioned discussions, a practical guide for 
biochar composite selection, fabrication, and application is 
provided (Figure 7). Although the previous sections have 
assessed some of these issues, here we focus on composite 
selection for certain environmental applications to provide 
a practical reference for future biochar composite research.

For metal–biochar composites, one should bear in 
mind that the valence state of some metals can change 
(e.g., Fe), enabling oxidation–reduction reactions to occur. 
Therefore, if the major goal is to reduce Cr(VI) in contam-
inated soil or aquifer, selecting Fe(0) (Wang, Sun, et al., 
2020) or Fe(II) (Liu et al., 2021) for biochar modification 
may be a feasible way. In comparison, Mg-doped biochar 

F I G U R E  6   How does the application of biochar composites align with the UN’s Sustainable Development Goals (SDGs) 
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can only act as a sorbent or immobilization agent for the 
remediation of toxic metals (Shen et al., 2019).

Two major types of minerals are widely used for biochar 
modification, including clay minerals and phosphate miner-
als. Although LDHs are often regarded as novel, artificially 
synthesized lamellar materials, they can be classified as the 
anionic clays (Fan et al., 2014). For both cationic and anionic 
clay minerals, the major mechanisms are quite similar, in-
cluding surface complexation/precipitation with hydroxyl, 
and the ion exchange with the interlayer cations/anions 
(Mishra et al., 2018; Wang, Rinklebe, et al., 2021). Therefore, 
clay minerals can be used for metal adsorption/immobili-
zation and fertility improvement (because of reversible ad-
sorption of nutrients). Most importantly, organo-mineral 

interactions in soil is considered to be a key mechanism for 
long-term carbon stabilization (Hemingway et al., 2019; Yang 
et al., 2021). Therefore, clay–biochar composite application 
will promote carbon storage in ground in most cases.

Selection of a suitable clay–biochar composite for cer-
tain application is a challenge. Commonly, 2:1 clay minerals 
possess higher specific surface areas and cation exchange 
capacity, which may perform better than 1:1 clay minerals 
(Bergaya & Lagaly, 2013). For the fabrication of anionic clay, 
novel combinations of divalent and trivalent metal cations 
have emerged, although Mg-Al LDH is still the most com-
mon type (Zubair et al., 2021). In comparison, the aims of 
phosphate mineral attachment are much simpler, including 
metal precipitation and direct release of nutrients.

F I G U R E  7   A practical guide to biochar composite application from aims, enhancement mechanisms, selection of materials, fabrication, 
to safety concerns

 14752743, 2022, 1, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/sum

.12731 by H
ong K

ong Poly U
niversity, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  31WANG et al.

Nanomaterials, including nZVI and carbonaceous 
nanomaterials, enhance biochar performances via differ-
ent mechanisms. For nZVI, it is widely used for the in-
situ remediation of contaminated soil and groundwater 
for contaminant immobilization/reduction (Zhao, Liu, 
et al., 2016). In contrast, graphene and CNTs are mainly 
used as sorbents for contaminant removal in the aqueous 
solution, with C-π and π-π interactions usually being the 
major mechanism (Tran et al., 2017). Both types of nano-
materials raise a same concern, that is, the nanotoxicity 
to organisms (Keller et al., 2012; Seabra et al., 2014). Prior 
to field implementation and practical application of nano-
material-biochar composites, the safety concerns raised by 
these materials must be carefully assessed.

Microorganism-biochar composites play unique roles 
in contaminant remediation, with direct degradation 
being the most distinct mechanism. Their fabrication 
methods are also unique. Unlike other types of biochar 
composites that can be synthesized via a wide variety of 
methods including ball milling, co-pyrolysis and soak-
ing in solution, microorganisms can only be loaded onto 
biochar after pyrolysis production. The safety concern of 
these composites are also different from others. Prior to 
the practical application, the species to be loaded must be 
evaluated so that they won't lead to invasion.

8   |   CONCLUSIONS

Engineered biochar composites have attracted a lot of at-
tention during the recent years. We conclude that four 
novel trends have emerged, where future studies should 
be focused (Figure 8):

•	 Trend 1 – Facile synthesis of biochar composites. To re-
alize the practical application of these novel materials, 
a facile fabrication method is a prerequisite. Instead of 
complicated multi-step methods that are costly and im-
practical for large-scale fabrication, future studies should 
develop simple synthesis methods that can achieve excel-
lent doping performances, such as one-step modification 
in aqueous solution, co-pyrolysis and ball milling.

•	 Trend 2 – Green materials as primary doping agents. 
Natural minerals (clay minerals in particular) and 
layered double hydroxides have proven useful to 
enhance the performance of biochar for various 
purposes, including soil fertility improvement, contam-
inant immobilization and climate change mitigation. 
Microorganism-doping can also aid biochar in promot-
ing organic contaminant biodegradation. These na-
ture-inspired modification methods, using the power of 
natural materials and organisms to solve environmental 
problems, align well with the ongoing GSR movement. 
Tackling environmental problems with inspiration from 
nature offers green strategies with low impacts.

•	 Trend 3 – Sustainable applications for soil health im-
provement and climate change mitigation. The novel 
concept of soil health regards soil as a living system that 
should be protected and restored with care. Climate 
change is among the most pressing topics in environ-
mental studies in the last decade. More applications of 
biochar composites have emerged to protect soils while 
simultaneously storing carbon in the ground.

•	 Trend 4 – Large-scale field demonstrations to test the ap-
plicability of biochar composites. Numerous studies have 
reported excellent performances of biochar composites in 
the laboratory. However, field studies are extremely rare. 

F I G U R E  8   Emerging trends of biochar composite research and future directions 
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Future applications of these novel composites in agricul-
tural fields and contaminated sites rely on the further de-
velopment of large-scale and long-term field studies.

Undoubtedly, enhancing biochars with various doping 
agents is a frontier of biochar research. The development 
of more fabrication and enhancement methods, novel ap-
plications, and ongoing results from the field application 
of these emerging materials promise to provide a roadmap 
towards a sustainable future.
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