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ABSTRACT
This research aims to estimate the overflow capacity of a curved labyrinth using different intelligent
predictionmodels, namely the adaptive neural-fuzzy inference system, the support vector machine,
the M5 model tree, the least-squares support vector machine and the least-squares support vector
machine–bat algorithm (LSSVM-BA). A total of 355 empirical data for 6 different congressional over-
flowmodels were extracted from the results of a laboratory study on labyrinth overflowmodels. The
parameters of the upstream water head to overflow ratio, the lateral wall angle and the curvature
angle were used to estimate the discharge coefficient of curved labyrinth overflows. Based on vari-
ous statistical evaluation indicators, the results show that those input parameters can be relied upon
to predict the discharge coefficient. Specifically, the LSSVM-BA model showed the best prediction
accuracy during the training and test phases. Such a low-cost prediction model may have a remark-
able practical implication as it could be an economic alternative to the expensive laboratory solution,
which is costly and time-consuming.

ARTICLE HISTORY
Received 11 August 2020
Accepted 20 May 2021

KEYWORDS
Discharge coefficient;
labyrinth overflow; artificial
intelligence; support vector
machine (SVM); machine
learning

1. Introduction

Labyrinth overflows are one of the most important struc-
tures used to regulate water levels and control flow in
rivers and canals. The use of a labyrinth overflow can
be considered as an effective and economical solution,
especially if the construction site of the overflow is lim-
ited in width and water level upstream. By increasing
the length of the crown to a certain width, labyrinth
overflows can pass more flow for the same hydraulic
load. Accordingly, forecasting the discharge coefficient
and the efficiency of this type of overflow have cap-
tured the interest of researchers and encouraged them to
explore advanced experimental methods that help pre-
dict the discharge coefficient and seek the optimal geom-
etry that leads to more efficient labyrinth overflows. The
hydraulics of labyrinth overflows were first investigated
by Gentilini (1941). The design of this type of overflow
was developed by Taylor (1968). Tullis et al. (1995) evalu-
ated many parameters to find the most effective ones for
estimating the amount of labyrinth overflow discharge.
They also examined the dimensionless relationship of
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the submerged water head to the labyrinth overflow and
established a relationship between the water head and the
discharge at the labyrinth overflow. Their results showed
that, when the ratio of the total head of water upstream
to the total head of water downstream (in the case of a
submerged overflow) is greater than 0.5, the submerged
flow conditions are affected by the water head upstream
(Tullis et al., 2007). In another study, Kumar et al. (2011)
worked on estimating the overflow capacity of triangular
labyrinth overflows.

By examining the hydraulic performance of curved
trapezoidal labyrinth overflows in plan, Crookston and
Tullis (2012) found that the discharge coefficient of
this type of overflow is a function of the ratio of the
upstream water head to the height of the overflow. In a
laboratory study, Noori and Aaref (2017) analyzed the
performance of a circular-crowned labyrinth overflow.
They observed that the discharge coefficient is a func-
tion of the water head upstream of the overflow, and
that increasing the dimensionless parameter of the water
head to the height of the overflow reduces the discharge
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coefficient. In addition to laboratory work, recent studies
have shown that the use of contemporary intelligent algo-
rithms can be used asmodels to understand the dynamics
of labyrinth overflows. For example, Roushangar et al.
(2018) studied the discharge coefficient of labyrinth over-
flows and arched labyrinth overflows using the support
vectormachine (SVM) algorithm and concluded that this
method has a high accuracy for predicting the discharge
coefficient of labyrinth overflows. In a study conducted
by Akhbari et al. (2017), they found that the M5 method
gives better performance with respect to predicting the
discharge coefficient of labyrinth overflows compared to
the radial base neural networks (RBNN) method. Olyaie
et al. (2018) used the feed-forward back-propagation
neural network (FFBPN), gene-expression programming
(GEP), least-squares support vector machine (LSSVM)
and extreme learning machine (ELM) methods to pre-
dict the discharge coefficient of piano-key overflows.
They found that the LSSVM and ELM methods were
the top performers. Shafiei et al. (2020) used the evo-
lutionary firefly algorithm (FFA) algorithm to optimize
the membership functions of the adaptive neural-fuzzy
inference system (ANFIS) model and observed that the
ANFIS-FFA model was significantly more accurate than
the ANFIS model in estimating the discharge coefficient
of labyrinth overflows.

Mahmoud et al. (2021a) utilized a hybrid MLP–firefly
algorithm (MLP-FFA) to estimate the discharge coef-
ficient of labyrinth spillways. The outcomes indicated
that the proposed methods demonstrated higher per-
formance in the training and testing stages. In another
work, Mahmoud et al. (2021b) estimated the flowrate of
a sharp-crest triangular labyrinth weir as a function of its
side leg angle α and total head ratio (H/P) through sev-
eral soft computing techniques. They concluded that the
competence of soft computing techniques in the testing
stage cannot guarantee their accuracy in the interpolation
task. Basser et al. (2014) compared two support vector
regression types, namely polynomial-based (SVR_poly)
andRBF-based SVR (SVR_rbf)with theAdaptiveNeuro-
Fuzzy System (ANFIS) and Artificial Neural Network
(ANN) algorithms to estimate the best parameters for a
protective spur dike. The results showed that combina-
tion methods achieved the best performance in terms of
percentage reduction in the scour depth with a smaller
network size. Karami et al. (2017) predicted the dis-
charge capacity in triangular labyrinth side-weirs using
several hybrid machine learning methods. The SVR-FFA
model indicated the highest ability among the models.
Hassanvand et al. (2018) studied flood routing using the
bat algorithm and the imperialist competitive algorithm
(ICA) to optimize the structure of ANN models. They

observed that the ANN–ICAmodel predicted the hydro-
graph volume, peak flow and flood time more accurately.
Dianatikhah et al. (2020) utilized the kidney algorithm
to increase the generation of energy in a multi-reservoir
for its operation. It achieved a high convergence rate. Sun
et al. (2021) utilized SVR optimized with fruitfly opti-
mization algorithms (FOAs) to predict the scour hole pat-
tern in the equilibrium phase. Other researchers applied
the sunflower optimization (SO) algorithm with ANFIS
and ANN for lake water level simulation. They observed
that the ANFIS-SO model had the most accurate perfor-
mance (Ehteram et al., 2021; Mahdavi-Meymand et al.,
2019; Zhou et al., 2019).

The state of the art indicates that the use of intelli-
gent models in predicting various hydraulic phenomena,
especially in recent years, has received much attention
(Mahdavi-Meymand et al., 2019; Zhou et al., 2019). Some
studies focused on predicting the discharge coefficient
of linear labyrinth overflows, but a few studies were
concerned with predicting the discharge coefficient of
curved labyrinth overflows, which have better hydraulic
performance than linear labyrinth overflows (Yildiz &
Uzucek, 1996). Note that, in curved labyrinth overflows,
the angle of the overflow (θ) is deemed an impor-
tant parameter for predicting the discharge coefficient,
which is a constant in linear labyrinth overflows, and
this parameter is not considered in predicting the dis-
charge coefficient of linear labyrinth overflows (Sangse-
fidi et al., 2018). Therefore, predicting the discharge coef-
ficient of this overflow model with different angles of
curvature is crucial for designers. Also, reviewing previ-
ous studies shows that hybrid algorithms are successful
in predicting problems related to water and hydraulic
structures. Therefore, in the present study, for the first
time, we predict the throughput coefficient of a curved
labyrinth overflow using the new least-squares sup-
port vector machine–bat algorithm (LSSVM-BA) hybrid
model. To confirm the performance of this algorithm,
we use powerful simulation algorithms such as ANFIS,
M5, SVM and LSSVM, each one of which has a special
performance.

The rest of the paper is structured as follows. In
Section 2, we give a brief description of the various
soft computing algorithms we used in addition to the
hybrid LSSVM-BA model that we introduce. We also
explain the empirical data used in this research and
the statistical tools by which we evaluate the various
prediction models. In Section 3, we provide an analy-
sis of the data and discuss the performance indicators
through a comprehensive set of performance diagrams.
We conclude and highlight our contributions in the final
section.
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2. Materials andmethods

This section describes the methodology and dataset used
in this study. We give a brief description of each of the
soft computing algorithms we used in this work, namely
the ANFIS, SVM, M5, LSSVM and LSSVM-BA algo-
rithms, to estimate the discharge coefficient of a labyrinth
overflow.

2.1. Adaptive neuro fuzzy inference system (ANFIS)

The theory of fuzzy sets was proposed by Zadeth (1965)
at Berkeley University in the United States. Fuzzy the-
ory is capable of establishing mathematical formulations
of many concepts, variables and complex and ambiguous
systems, and provides the basis for reasoning, inference,
control and decision-making in conditions of uncer-
tainty. The adaptive neuro-fuzzy inference system uses
neural network learning and fuzzy logic algorithms to
design a nonlinear mapping between input and output
space.

The ANFIS method was introduced by Jang (1993).
The ANFIS structure has five layers, including input,
base, middle, defuzzification layer and summation layer,
and are directly related to each other. Each node has a
function with adjustable or fixed parameters. The appro-
priate structure is selected based on input data, mem-
bership rank, input, and output membership rules and
functions. In the training phase, by modifying the mem-
bership degree parameters based on the acceptable error
rate, the input values are closer to the actual values.
The ANFIS technique uses neural network learning algo-
rithms and fuzzy logic to design nonlinear mapping
between input and output space and has good training,
fabrication and classification capabilities. It also has the
advantage of allowing the extraction of fuzzy rules from
numerical information or expert knowledge and com-
paratively forming a rule-foundation. In addition, it can
regulate the complex transformation of human intelli-
gence into fuzzy systems. Its learning rule is based on
the error propagation algorithm to minimize the aver-
age squares of error between the network output and the
actual output. The operation of the ANFIS model was
briefly presented by Jang (1993).

2.2. Support vectormachine (SVM)

The support vector machine was first introduced to the
scientific community by Vapnik et al. (1995). SVM can be
used in classifier and regressor problems. A regression-
based SVM is usually called an SVR and the main aim
of an SVM is to minimize the structural risk for solv-
ing complex problems (Samadianfard et al., 2019; Sun

et al., 2021). One of the advantages of this algorithm is
that it does not fall into the trap of local optimizations
owing to the use of global optimization methods in its
structure. Also, the support vector machine algorithm
uses a nonlinear function to map the input vector to a
higher dimensional space. It then estimates the value of
the outputs using linear regression. It is assumed that
(x, y) is the data of the observation phase, where x is
the input vector and y is the output of the observations.
Using Equation (1), this algorithm establishes a linear
relationship between inputs and outputs:

y′ = f (x) = ωTφ(x)+ b (1)

where y′ is the output of the model, f (x) indicates the
linear relationship between inputs and outputs and φ(x)
is the function of nonlinear mapping. ω and b represent
weight and bias in the model. The goal is to reduce the
difference between the model outputs and the actual out-
puts. For this purpose, the objective function of Equation
(2) is minimized using the second-order optimization
method:

Min : ψ = 1
2 ||ω||2 + γ

n∑
i=1
(ξi + ξ∗

i )

subject to:

⎧⎨
⎩

ω φ(xi)+ b − y ≤ ε + ξi
y − ω φ(xi)+ b ≤ ε + ξ∗

i
ξi, ξ∗

i , i = 1, 2, 3, . . . , n
(2)

In the first part of this equation, ||ω||2/2 represents
weights. The second part γ is a positive real number
and represents the penalty factor, ξi and ξ∗

i are penalty
coefficients around the top and bottom of the error. The
parameter ε represents the accuracy of the model. In this
regard, the first part indicates the simplicity of the model
and the second term indicates the experimental error of
the model. In this study, the radial kernel function was
used (Equation 3):

K(x, xi) = exp
(−||x − xi||2

2σ 2

)
(3)

where σ represents the width of the kernel function
and K is the nonlinear function of the kernel (Smola &
Schölkopf, 2004).

2.3. M5model tree

TheM5model tree was first proposed by Quinlan (1992)
to solve regression problems. This algorithm consists of a
number of branches and leaves that have a linear regres-
sion relationship at the end of each leaf. The algorithm
consists of two stages of growth and pruning. In the
growth phase, the input data is divided into several sub-
sets, and a regression relationship is formed for each
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subset. The criterion for this division is the standard devi-
ation and error reduction (Kisi, 2015). This criterion is
defined in relation (4):

SDR = sd(T)−
∑
i=1

|Ti|
|T| sd(Ti) (4)

In this equation, SDR represents the reduction of the
standard deviation, sd the value of the standard devia-
tion, T the parent node data, and Ti the node data of the
child. Next, the child node that has the highest reduc-
tion in standard deviation relative to the parent node is
selected. After the end of this stage, the tree model has
a large size, which makes pre-fit. Therefore, the pruning
stage is performed and the extra branches of the tree are
removed until the error of the model does not increase
(Mansouri et al., 2016).

2.4. Least-squares support vectormachine (LSSVM)

The LSSVM was provided by Suykens (2001). This
algorithm has less complexity than the standard support
vector machine owing to its use of the least-squares opti-
mization method instead of the second-order method
(Suykens, 2001). This method converts the nonlinear
relationship of inputs and outputs into a linear relation-
ship by mapping inputs from a lower dimension to a
higher dimension. This is useful in the miniaturization
and solving of nonlinear problems (Anandhi et al., 2008).
Equation (5) describes the linear regression relationship
between inputs and outputs in the least-squares support
vector machine algorithm:

y′ = WT�(x)+ b (5)

where W is the weight of the inputs, b is the bias, Φ is
a nonlinear function for mapping inputs from the main
space to a higher dimension space, x is the input of the
model and y′ is the output value of the model. The goal
is to reduce errors between inputs and outputs while
maintaining model simplicity. To this end, the objective
function of Equation (6) must be minimized (Anandhi
et al., 2008):

Min : 
(W, e) = 1
2W ∗ WT + 1

2C
N∑
i=1

ei

subject to : ei = yi − y′i
(6)

where C is the penalty factor and a positive real num-
ber. The first part of Equation (6) indicates the weights,
and the lower they are, the less complex the model will
be. The second statement of Equation (6) is related to the
penalty function of the difference between the actual out-
put values and the model. Regarding the parameter C, it

can be said that small or large values of this parameter
in the statement of Equation (6) cause the simplicity or
complexity of the model (Modaresi et al., 2018).

2.5. Bat optimization algorithm

The bat algorithm operates based on a sound echo and
the bat’s position. The bat produces sound pulses and
receives their echoes. Bats have the ability to detect prey
based on echoes. Because the sound echo produced for
different objects is different, the bat’s ears use thismethod
to detect the position. The bat algorithm performs with
the following assumptions (Allawi et al., 2018a, 2018b;
Ehteram et al., 2017):

(1) All bats can produce sound and receive its echo.
Based on this ability, they can distinguish between
a food source and a barrier.

(2) Bats fly randomly and have a wavelength λ, constant
frequency fmin, and velocity Vi in position Xi dur-
ing flight. They can also produce sound pulses with
values between 0 and 1.

(3) The loudness of bats can vary from a large positive
value of A0 to a small positive value of Amin.

It can be assumed that the value of the frequency f
can vary between the two values fmin and fmax and the
corresponding wavelength between λmin and λmax. The
wavelength range can also vary. The wavelength should
be selected based on the search space of the problem.
Xbest is considered in the bat algorithm as the universal
answer to the problem or the best position of bats. Equa-
tions (7) to (9) show the frequency, speed and updated
position of the bats, respectively:

fi = fmin + (fmax − fmin)β (7)

vti = vt−1
i + (xt−1

i − xbest)fi (8)

xti = xt−1
i + vti (9)

In the above equations: fi is the frequency of bat i, vit is
the new speed of bat i, vit−1 is the previous speed of bat i,
xit is the new position of bat i, xit−1 is the previous posi-
tion of the bat i, β is a random vector with arrays between
0 and 1. In the first step, a randomnumber between 0 and
1 is assigned to each bat. Then the bat’s speed and posi-
tion are updated based on Equations (8) and (9). Then a
random number is generated. If the pulse output rate is
less than this random number, local search is performed
using a random step based on the relation (10):

xti = xt−1
i + εAt (10)

In this equation, ε is a random number and At is the
average loud sound. The flowchart of the LSSVM-BA
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Figure 1. Flow chart of the LSSVM-BA algorithm.

algorithm has been shown in Figure 1 adapted from (Bo
et al., 2020).

2.6. Least-squares support vectormachine–bat
algorithm (LSSVM-BA)

The LSSVM approach relies on its parameters and the
kernel function. Parameter optimization is an indispens-
able part of any LSSVM model. The BA, regarded as
a population intelligent optimization algorithm, offers a
novel idea for searching for optimal parameters (Wu &
Lin, 2019; Wu & Peng, 2016). In the present study, a
hybrid combination of the least-squares support vector
machine and the bat optimization algorithm (LSSVM-
BA) was used to predict labyrinth overflow discharge.

The different steps of this algorithm are as follows (Wu
& Lin, 2019; Wu & Peng, 2016).

(1) Determining the initial parameters of the bat
algorithm including population number, maximum
and minimum frequency, maximum and maximum
sound height and maximum number of iterations.

(2) Dividing of laboratory data into two sets: training
and testing.

(3) Producing a primary population.
(4) LSSVM training according to the training set data

and decision variables of each artificial bat.
(5) LSSVM testing and determination of a target func-

tion for each bat.
(6) Controlling the termination condition and, if it is

reached, returning the optimal values of the parame-
ters of the LSSVM; otherwise informing the position
of each bat and repeating steps 4 and 5.

The results of the study of Bo et al. (2020) show that the
LSSVM_BA model has better prediction accuracy and
effects compared with multiple linear regression models.

2.7. Laboratory data used

To run our soft computing models discussed in this
paper, we use the empirical results obtained from the
laboratory of Crookston and Tullis (2012) to predict
the discharge coefficient of curved labyrinth overflows.
They examined the effect of changes in the angle of
the arc cycle as well as the lateral wall on the dis-
charge coefficient of curved labyrinth weirs in a channel
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Figure 2. The plan of a curved labyrinth weir.

with dimensions 1.5× 7.7× 6.3m. Figure 2 presents the
plan of a curved labyrinth weir along with its geometric
parameters adapted from (Crookston&Tullis, 2012). The
experimental models studied by Crookston and Tullis
used in this study include labyrinth overflows with: a lat-
eral wall angle of 6° and a bending angle of 10°; a lateral
wall angle of 6° and a bending angle of 20°; a lateral wall
angle of 6° and a bending angle of 30°; a lateral wall angle
of 12° and a bending angle of 10°; a lateral wall angle of
12° and a bending angle of 20°; and a lateral wall angle
of 12° and a bending angle of 30°. In the this study, we
use the ratio of total upstream head to overflow height
(Ht /P), side wall angle (α) and curvature angle (θ) as
input data, while the discharge coefficient (Cd) is the tar-
get output that we try to predict using a suite of intelligent
algorithms.

The discharge coefficient of labyrinth weirs is calcu-
lated using the general equation of wide-edge overflows
using Equation (11):

Cd = Q
2
3L

√
2gH1.5

t
(11)

where Q is the flow rate of the overflow, L is the length
of the overflow, Ht is the total upstream head on the
overflow and Cd is the discharge coefficient. The num-
ber of data obtained from the experiment to predict the
discharge coefficient of curved labyrinth weirs is 355.
The range of parameters used in the intelligent models
is shown in Table 1.

Statistical indicators

We used a number of statistical indicators to evaluate
and compare the performance of the different models.
These indicators are the correlation coefficient (R), the
mean absolute square (MAE) and the root mean square

Table 1. The range of parameters used to model curved piano-
key overflows with the intelligent method.

Parameters Min Max

α 6 12
θ 10 30
Ht /P 0.0240 0.6950
Cd 0.1800 0.7780

error (RMSE) as outlined in Equations (12), (13) and
(14), respectively. The R index indicates the degree of
correlation between laboratory values and smart model
outputs, and the closer it is to one, the better the match
between the laboratory data and the smart model results.
The MAE and RMSE indicators also indicate the error
rate of the experiment, and thus the closer they are to
zero, the more accurate the prediction of the intelligent
model.

R =

√√√√√√√√√√√√
1 −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1
(Ei − Gi)

2

n∑
i=1

Ei2 −
⎛
⎝

n∑
i=1

Gi
2

N

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

MAE = 1
N

n∑
i=1

|Ei − Gi| (13)

RMSE =

√√√√√
n∑
i=1
(Ei − Gi)

2

N
(14)

In the above equations, Ei is the value obtained from
the laboratory model, Gi is the value predicted by the
intelligent model and N is the number of variables.

3. Results and discussion

Across all our experiments, and following the recommen-
dations and conclusions given by Karami et al. (2018), we
used 70% of the dataset for training and the remaining
30% for testing.

Figure 3 depicts the performance of the ANFIS, SVM,
M5, LSSVMand LSSVM-BAmodels using different indi-
cators in the training and testing phases.

Each of these selected algorithms has its own advan-
tages. For example, the main practical advantage of the
ANFIS model over physical models is that predictions
can be measured in an easy, fast and accurate way, which
is crucial for practical purposes. The number of experi-
ments, and therefore the costs, can be reduced in this way
(Vural et al., 2009).
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Figure 3. Performance indicators of differentmodels in predicting the discharge coefficient of curved labyrinthweirs during the training
and testing phases.
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The great merit of the SVM approach is the formu-
lation of its learning problem, leading to the quadratic
optimization task. It considerably reduces the number of
operations in the learningmode. This is seen verywell for
large data sets, where the SVM algorithm is usually much
quicker (Osowski et al., 2004).

The advantage of using the M5model tree is the avail-
ability of simple linear models to estimate the discharge,
as well the use of less computational time (Sattari et al.,
2013).

The LSSVMmodel has some advantages. For example,
LSSVM uses only one hidden layer, this benefit leads to
more simplicity in the structure. Moreover, LSSVM uses
the global optimization algorithm (least-squares opti-
mization) instead of gradient descent, and therefore does
not become trapped in local optima.

The advantage of the bat optimization algorithm is
the powerful combination between a population-based
algorithm and local search; however, the advantage is
more noticeable in local search (Heraguemi et al., 2015)

Through the training phase, the highest correla-
tion coefficient is for the LSSVM-BA model with a

value of 0.9995, and the lowest correlation coefficient
is for the ANFIS model with a value of 0.9477. Based
on the MAE indicator, the LSSVM-BA algorithm has
the lowest value (0.0027) while the ANFIS algorithm
has the highest (0.0288). The RMSE criterion shows
that the LSSVM-BA algorithm has the lowest value
(0.0038) and the ANFIS algorithm has the highest value
(0.0368).

Through the testing phase, the highest value of the R2

index is attributed to the LSSVM-BAmodel with 0.9990,
and the lowest value is for the ANFIS model with 0.9234.
The highest value of the MAE index is for the ANFIS
model with 0.0309, while the lowest value is for the
LSSVM-BA model with 0.0035. The highest value of the
RMSE index belongs to the ANFISmodel, with a value of
0.0427, and the lowest value belongs to LSSVM-BA with
0.0050.

Figure 4 compares the discharge coefficient of curved
labyrinth weirs in two laboratory settings with predic-
tions generated from the ANFIS, SVM, M5, LSSVM and
LSSVM-BA models in the training phase. The obtained
data reveal that the LSSVM-BA model has the highest

Figure 4. A comparison between laboratory data and the results of the intelligent models in the training phase: (a) ANFIS; (b) SVM; (c)
M5; (d) LSSVM; and (e) LSSVM-BA.
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Figure 5. Comparison between laboratory data and intelligentmodel results in the test phase: (a) ANFIS; (b) SVM; (c) M5; (d) LSSVM; and
(e) LSSVM-BA.

correlation and density among the studied models with
a correlation coefficient of 0.9995.

Based on their performance, the remainingmodels are
ranked as follows: M5, LSSVM, SVM and ANFIS, with
values of 0.9969, 0.9948, 0.9495 and 0.9477 for the cor-
relation coefficient, respectively. The good performance
of LSSVM-BAmight be justified by the automatic search
mechanism with which the LSSVMmodel is augmented,
which led to better learning and generalization ability and
consequently an easily acquired global optimal solution
(Wu & Lin, 2019).

Figure 5 examines the correlation between laboratory
data and the results of the ANFIS, SVM,M5, LSSVM and
LSSVM-BA intelligent models in the test phase. Again,
the LSSVM-BA model with a correlation coefficient of
0.9990 outperforms the rest of the models: the LSSVM
model has a correlation coefficient of 0.9923, the M5
model has a correlation coefficient of 0.9911, the SVM
model has a correlation coefficient of 0.9867 and the
ANFIS model has a coefficient correlation of 0.9234. The
good performance of the hybrid LSSVM-BA algorithm
was also examined in the study of Wu and Peng (2016).

Figure 6 shows the distribution of the prediction error
of the discharge coefficient in the training phase for
the ANFIS, SVM, M5, LSSVM and LSSVM-BA mod-
els. As can be seen, the error of the ANFIS model is
between −10% and 13%, the error of the SVM model
is between −10% and 16%, the error of the M5 model
is between −3% and 5%, the error is of the LSSVM
model is between−5% and 4% and the LSSVM-BA error
is between −2% and 2%. The good results of LSSVM-
BA are attributable to the BA algorithm’s better con-
vergence rate and to the better prediction accuracy of
LSSVM kernel parameters, which are optimized by the
BA algorithm (Wu & Lin, 2019). In this set of results,
the performance of the ANFIS model is not satifactory
because it uses gradient-based learning techniques such
as back-propagation, which need a considerable amount
of computation to optimize and train (Shihabudheen &
Pillai, 2018).

Figure 7 shows the distribution of the prediction
error of the discharge coefficient in the testing phase for
the ANFIS, SVM, M5, LSSVM and LSSVM-BA mod-
els. In this diagram, the error parameter represents the
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Figure 6. Distribution of the predictive error of the discharge coefficients of intelligent models in the training phase: (a) ANFIS; (b) SVM;
(c) M5; (d) LSSVM; and (e) LSSVM-BA.

discrepancy between the laboratory data and the data
predicted by the intelligent models. As can be seen in
this testing phase, the error of the ANFIS model is
between −11% and 15%, the error of the SVM model
is between −10% and 15%, the error of the M5 model
tree is between −4% and 6%, the error of the LSSVM
model is between−5% and 5% and the LSSVM-BA error
is between −2% and 2%.

Figure 8 shows the distribution of the predicted error
on the threshold of different errors in the training phase
for the ANFIS, SVM, M5, LSSVM and LSSVM-BAmod-
els. As seen, more than 70, 82, 95, 96 and 100% of the
predicted data in the ANFIS, SVM, LSSVM, M5 and
LSSVM-BA models, respectively, have less than 2% rela-
tive error. The diagram also indicates that approximately
100% of the data have less than 2% error in LSSVM-
BA, less than 4% error in the LSSVM model, less than
5% error in the M5 model tree, less than 13% error in
the ANFIS model and less than 17% error in the SVM
model.

Figure 9 shows the distribution of the predicted error
on the threshold of different errors in the testing phase for

the ANFIS, SVM, M5, LSSVM and LSSVM-BA models.
The diagram shows that more than 71, 80, 88, 92 and
100% of the predicted data in the ANFIS, SVM, M5,
LSSVM and LSSVM-BA models, respectively, have less
than 2% relative error. In general, almost all data in the
ANFIS, SVM, M5, LSSVM and LSSVM-BA models are
estimated to have an error of less than 16, 15, 6, 5 and
2%, respectively.

Figure 10 shows a Taylor diagram (Taylor, 2001) that
illustrates the simulation results of the ANFIS, SVM,M5,
LSSVMandLSSVM-BAmodels in the testing phase. This
graph was plotted to analyze the values of standard devi-
ation, correlation coefficient and root mean square error
between the observed data and simulated data generated
by the intelligent models. It should be noted that, in
the Taylor diagram, the longitudinal distance from the
origin of the coordinates represents the standard devia-
tion, the radial lines represent the correlation coefficient
and the segmental lines represent the root mean square
error values. By increasing the circle segment, the men-
tioned parameter value is increased. In other words, each
point on Taylor’s graph represents simultaneously the
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Figure 7. Distribution of the predictive error of the discharge coefficients of intelligent models in the testing phase: (a) ANFIS; (b) SVM;
(c) M5; (d) LSSVM; and (e) LSSVM-BA.

Figure 8. Distribution of the predicted error on the threshold of
different errors in the training phase.

three parameters standard deviation, correlation coeffi-
cient and root mean square error. From this diagram,
it can be concluded that the accuracies of the LSSVM-
BA, LSSVM and M5 models are very close to each other,
and the LSSVM-BA model has the best result while the
ANFIS model has the lowest accuracy.

Based on the obtained prediction accuracy during the
training phase, we can rank the models (best to worst)
as follows: LSSVM-BA, M5, LSSVM, SVM and ANFIS.

Figure 9. Distribution of the predicted error on the threshold of
different errors in the testing phase.

In the testing phase, they are ranked (best to worst):
LSSVM-BA, LSSVM, M5, SVM and ANFIS.

Table 2 shows the number of input and output data
in the test phase for laboratory data and the values pre-
dicted by the LSSVM-BAmodel. According to this table,
the observed discharge coefficient and the discharge coef-
ficient predicted by the LSSVM-BA model have a high
correlation.
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Figure 10. Taylor diagrams of predictions in the testing phase.

Table 2. Input and output values of the LSSVM-BA model.

α θ Ht /P Cd (EXP) Cd (LSSVM-BA)

12.0000 30.0000 0.6626 0.3550 0.3571
6.0000 10.0000 0.0465 0.6154 0.6189
6.0000 10.0000 0.2033 0.5768 0.5727
6.0000 10.0000 0.4471 0.3103 0.3121
6.0000 30.0000 0.2256 0.5174 0.5167
6.0000 20.0000 0.3105 0.4291 0.4298
6.0000 30.0000 0.4552 0.2702 0.2683
6.0000 20.0000 0.0445 0.6491 0.6538
12.0000 10.0000 0.3490 0.5763 0.5727

Conclusions

Overflows are one of the methods of flood control in
dams, and diversion and flow measurement in canals.
The discharge capacity is one of the significant hydraulic
parameters in the context of overflows. In this study, the
ANFIS, SVM, M5, LSSVM and LSSVM-BA intelligent
models have been used to estimate the discharge coeffi-
cients of curved labyrinth overflows. To achieve this goal,
out of a total of 355 data extracted from laboratory results,
248 data were used in the training and 107 data were used
in the testing.

The results of the evaluation indicators showed that,
in both the training and testing courses, the LSSVM-
BA model has the best performance among the mod-
els examined in estimating the discharge coefficient of
curved labyrinth overflows. Also, the correlation values
for the LSSVM-BA model in the training and testing
phases were 0.9995 and 0.9990, for the M5 model tree in
the training and testing phases were 0.9969 and 0.9911,
for the SVM model in the training and testing phases
were 0.9495 and 0.9867, and for the ANFIS model in

the training and testing phases were 0.9477 and 0.9234,
respectively. This confirms the superiority of the LSSVM-
BA model. It is important to note that, in order to pre-
dict more accurately the discharge coefficients of curved
labyrinth overflows, they can be modeled in the labora-
tory and related tests on them conducted, but doing so
requires cost and time, which has many limitations. But
the use of powerful new algorithms such as LSSVM-BA,
as well delivering acceptable results, also saves time and
money. It is suggested that the LSSVM-BA algorithm can
be considered for predicting the discharge coefficients
of new overflows such as curved piano-key overflows,
and the accuracy of this algorithm in this field should be
examined.
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