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Abstract: The addition of macro-polypropylene fibres improves the stress-strain performance of
natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance
of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the vari-
ability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain
performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm
long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to
produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance
of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the
increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of
samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition
on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres
is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain,
toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with
the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can
be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain
model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC
and BFRAC is also examined.

Keywords: axial stress-strain performance; macro-polypropylene fibres; fibre-reinforced concrete;
recycled aggregate concrete

1. Background

Concrete is the most widely used construction material globally, which is attributed
to the availability of raw materials, low cost, and excellent performance [1,2]. To further
improve the properties, various types of fibres are used in concrete [3–5]. The addition of
fibres in concrete develops the stress transfer mechanism by bridging the cracks of samples
after failure [6]. This mechanism improves the crack resisting ability and can help avoid
the brittle failure of concrete samples [7]. Fibre-reinforced concrete (FRC) shows improved
flexural strength, tensile strength, creep behaviour, ductility and post-cracking properties
compared to conventional concrete and results in structural safety [8–10]. In the past few
decades, FRC has been used widely for various non-structural and structural applications,
including tunnel linings, precast elements, ground slabs, and pavements [11–13].

Various types of fibres are used to produce FRC. Generally, fibres are classified as
steel, synthetic, glass and natural fibres [3–5]. Among all these fibres, steel fibres are
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most commonly used to produced FRC owing to their excellent structural properties [14].
However, the durability properties, particularly the corrosion of steel FRC is a significant
drawback, which increases the importance of other types of fibres [6]. The utilisation of
synthetic fibres, such as polypropylene fibres, to produce FRC has increased rapidly in
the past few years [7,15]. Polypropylene is a low cost and inert material that makes the
polypropylene FRC cost-effective and durable [7]. Moreover, improved fracture toughness,
impact resistance, ductility, tensile and bending capacity are leading to an increase in
applications of polypropylene FRC [7,16,17]. Polypropylene fibres also increase thermal
stability and improve the properties of concrete samples exposed to elevated tempera-
tures [18–20]. Fibres are divided into two categories by their size, specifically, micro and
macro fibres. Micro-fibres range from 6–20 mm in length and have a diameter of tens of
microns, whereas macro-fibres range from 30–60 mm in length and have a diameter of
more than 0.3 mm [21]. Micro-fibres are mostly used to control plastic shrinkage and have
a limited contribution to the structural performance of FRC [21]. However, macro-fibres are
quite useful in enhancing the structural performance of FRC, especially in a post-cracking
scenario [22].

In the past few decades, the generation of concrete related waste has increased alarm-
ingly due to the demolition of old buildings/structures [23,24]. As a result, there is a
high demand for recycling the concrete waste generated in the production of new con-
crete [25,26]. The manufacturing and utilisation of recycled aggregate concrete (RAC) can
solve a variety of issues, including natural resource depletion, landfill demand and related
environmental pollution [1,27]. However, the low performance of RAC is a significant
hurdle in the recycling of concrete waste, which is due to the weak and porous adhered
mortar of recycled aggregates [28,29]. Therefore, the utilisation of RAC for new construc-
tion activities is quite limited [30]. Around a 20% reduction in compressive strength was
observed for RAC compared to traditional concrete [31]. Likewise, decreases of 40 and 10%
in the modulus of elasticity and tensile strength was reported for RAC compared to natural
aggregate concrete (NAC) in past studies [32,33].

Many researchers are working to improve the performance of RAC [34–36]. In this
context, various techniques, including pre-soaking in acid, mechanical grinding, pre-
soaking in water, pozzolan slurry, heat grinding, polymer emulsion, carbonation, and
calcium carbonate bio deposition, were used to enhance the performance of RAC [37–42].
A variety of fibres were also used to improve the deformation, bending, compressive,
ductility, toughness, impact, and fatigue performance of RAC [43–48]. Steel fibre-reinforced
RAC with 25% coarse natural aggregates (CNA) replaced with coarse recycled aggregates
(CRA) showed a 13% rise in compressive strength for a 0.75% steel fibre dosage [45].
Likewise, polypropylene fibre-reinforced RAC with 55% CNA replaced with CRA showed
4 and 31% increases in flexural and tensile strengths, respectively, for a 1% polypropylene
fibre dosage [49]. The number of fibres also strongly influences the residual flexural
tensile strength (an important parameter to describe the post-cracking behaviour of fibre-
reinforced concrete through the crack mouth opening displacement test) and fracture
energy of RAC [7]. FRC incorporating macro-polypropylene fibres has no considerable
effect on the compressive strength of concrete [50,51]. However, the other properties,
including elastic modulus, toughness and strain of concrete, are influenced by the addition
of macro-polypropylene fibres.

2. Significance

The application of macro-polypropylene fibres in normal concrete has been attract-
ing attention from the construction industry due to their better performance than other
fibres in terms of better distribution in concrete, lower weight, higher impact resistance
and flexural strength, improved economy and better corrosion resistance [7,52]. Major
areas of applications for macro synthetic fibres are tunnel linings, industrial floors and
pavements, etc. [53]. Despite all the advantages of macro-polypropylene fibres and the
availability of various studies in the literature related to the stress-strain performance of
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macro-polypropylene fibre-reinforced NAC, very limited studies focus on the stress-strain
performance of macro-polypropylene fibre-reinforced RAC [6]. Furthermore, considering
the variability of CRA, more studies are needed to investigate the stress-strain perfor-
mance of macro-polypropylene fibre-reinforced RAC. Therefore, in this study, a new type
of 48 mm long BarChip macro-polypropylene fibre with continuously embossed surface
texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC).
This new type of continuously embossed surface fibre develops a stronger fibre-cement
paste bond compared to fibres with straight surfaces leading to a more compact concrete
structure [54]. The stress-strain behaviour of BFNAC and BFRAC is studied for varying
dosages of BarChip fibres. The applicability of the stress-strain model previously devel-
oped for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC
is also examined.

3. Experimental Scheme
3.1. Materials and Preparation of Samples

In this work, 48 mm long BarChip macro-polypropylene fibres with a continuously
embossed surface texture, as shown in Figure 1, are used to produce BFNAC and BFRAC.
Table 1 presents the properties of BarChip macro-polypropylene fibres.
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Figure 1. Barchip macro-polypropylene fibres. Figure 1. Barchip macro-polypropylene fibres.

Table 1. Properties of BarChip macro-polypropylene fibres.

Base Material Modified Olefin

Surface texture Continuously embossed
Young modulus (GPa) 10

Eq. diameter (mm) 0.65
Specific gravity 0.91

Length (mm) 48
Tensile strength (MPa) 640

To produce BFNAC and BFRAC, tap water, ordinary Portland cement, and natural
river sand were used. Crushed basalt was used as NCA with a maximum size of 14 mm.
Similarly, CRA of a maximum 14 mm size were obtained from a construction and demo-
lition waste recycling plant. CRA are referred to as class 1B with impurities (ceramics,
glass, asphalt and bricks) less than 10% [28,55]. The gradation of coarse aggregates (CA) is
presented in Figure 2. The grading of both CA is quite close and follows the criteria of AS
2758.1:2014 [56]. Properties of CA are also presented in Table 2, where the higher water
absorption of CRA compared to CNA shows the inferior performance of CRA.
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Figure 2. Gradation of CA.

Table 2. Properties of CA.

Type of CA Water Absorption (%) Bulk Density (kg/m3) Specific Gravity

CNA 2.06 1512 2.53
CRA 7.61 1413 2.32

Table 3 presents the details of concrete mixtures. All the concrete mixes were prepared
following ASTM C192:2016 [57] guidelines. In this study, three different fibre dosages (i.e.,
0, 0.5 and 1% of the concrete volume) were used. All the aggregates were dried in the
oven, and then additional water was added to each concrete mix to compensate for the
water absorption of aggregates, similar to previous studies [6,52,58]. For each mix, three
samples of size 150 × 300 mm were prepared and tested, and results are reported as an
average. Concrete samples were designated to represent the concrete type (NC and RC
show NAC and RAC, respectively) and the dosage of BarChip macro-polypropylene fibres
(B0.5 and B1 show 0.5 and 1% fibre dosage, respectively). For instance, RC-B0.5 samples
represent the BFRAC samples reinforced with a 0.5% dosage of BarChip fibres. A drop in
the workability/slump of concrete was observed with the increase in fibre dosage (Table 3).

Table 3. Details of concrete mixtures.

Group CNA
(kg/m3)

CRA
(kg/m3)

Sand
(kg/m3)

Water
(kg/m3) Fibres (%) Cement

(kg/m3)
Additional

Water (kg/m3)
Slump
(mm)

NC 822 -

709 185

-

451

17 50
NC-B0.5 822 - 0.5 17 30
NC-B1 822 - 1.0 17 10

RC - 822 - 63 60
RC-B0.5 - 822 0.5 63 40
RC-B1 - 822 1.0 63 30

3.2. Test Plan

In the beginning, all the concrete samples were compressed to 30% of their peak
load three times following past studies [6,59] to remove the slackness of the system and
eccentricity of loading. For measuring the stress-strain performance, the concrete samples
were compressed through a compression testing machine of 1000 kN capacity under
displacement control mode of 0.3 mm/min, and the applied load was recorded through a
data acquisition system. The deformation of concrete samples was measured in this study
through two linear variable displacement transducers (LVDTs) placed at 180◦ to each other.
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4. Results and Discussion
4.1. General Behaviour

Figure 3 presents the failed concrete samples after the compression test. NC samples
show smaller sized cracks in larger numbers compared to RC samples, which are related to
the lower ductility and energy dissipation capacity of RC samples compared to NC sam-
ples [1,60]. During the compression testing, RC samples also show more brittle behaviour
than NC samples due to the weak bond of CRA with the cement paste [34,61]. The failure
pattern of concrete samples without fibres changes from a single large crack to a group
of small cracks after the addition of fibres [6]. For BFNAC and BFRAC samples, fibres
control the cracking and result in higher ultimate capacity and ductility of samples. All the
BFNAC and BFRAC samples show minor cracks on the surface owing to the arresting
of crack growth by the fibres. This phenomenon is observed to be more prominent for
NC-B1 and RC-B1 samples than for NC-B0.5 and RC-B0.5 samples, respectively. BFNAC
and BFRAC samples sustain the load and show large deformation without crushing into
pieces. The failure pattern of BFNAC and BFRAC samples is observed to be quite similar,
which shows the effectiveness of fibres to control the brittle nature of RC samples.
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Figure 3. Concrete samples after compression test.

4.2. Axial Stress-Strain Behaviour

Figure 4 shows the stress-strain behaviour of NAC and RAC samples for different
fibre dosages. The axial strain of concrete samples was measured in this study through
an average displacement of two LVDTs placed at 180◦ to each other. Due to the relative
movement between test machine platens, the slackness of the measurement system and
loading, along with the deformability of any type of capping at the end of the sample,
LVDT measurement systems show higher displacement values than the actual values [62].
To minimise this error, both sides of the samples were first ground and then samples were
pre-compressed to 30% of their peak load three times, following past studies [5,41], before
compression testing.
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Figure 4. Stress-strain performance of concrete samples for different fibre dosages: (a) NAC samples
and (b) RAC samples.

Figure 4 shows the increase in energy dissipation capacity (i.e., area under the curve),
peak stress and peak strain of samples with an increase in fibre dosage, indicating the
positive effect of fibre addition on concrete. The strength enhancement due to the addition
of fibres is higher for RC samples than NC samples, according to the conclusions reported
by Nataraja et al. [63] that fibre addition more prominently affects the low-strength concrete
than high-strength concrete.

The stress-strain performance of all the concrete samples for different CA is presented
in Figure 5. Lower stress-strain curves are observed for concrete samples with CRA than
samples with CNA. A lower peak strength along with a lower elastic modulus (i.e., the
smaller initial slope of the stress-strain curve) is observed for all the RAC samples compared
to NAC samples. RC samples also show a steeper and shorter descending part of the stress-
strain curve than NC samples, which is related to the more brittle characteristics of the
RC samples compared to the NC samples, similarly to past studies [58,64,65]. Moreover,
the area under the curve, i.e., energy absorption capacity, is also lower for RC samples
compared to NC samples. However, no such behaviour is observed for BFRAC samples
compared to BFNAC samples. The reduction in strength due to CRA is also observed
relatively lower for RC-B0.5 and RCB1 samples compared to the RC samples, similarly to a
past study [66].
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samples with 0.5% fibre dosage, (c) BFNAC and BFRAC samples with a 1% fibre dosage.

4.3. Stress-Strain Properties
4.3.1. Peak Stress

Figure 6a presents the peak stress of BFNAC and BFRAC samples. NC samples show
a peak stress of 50 MPa, which reduces to 38 MPa for RC samples. However, increased
peak stress of concrete samples is observed with an increase in fibre dosage. NC-B1 and
RC-B1 samples show peak stress 3 and 6% higher than NC and RC samples, respectively.
The fibre addition reduces the wing-crack growth rate by resisting the development of
micro-cracks and results in the improved mechanical performance of concrete samples [67].
Still, the peak stress of RC-B0.5 and RC-B1 samples is lower than the NC samples.

RC samples show peak stress 23% lower than NC samples. Previously, Kou et al. [68]
also reported a 26% lower peak stress of RAC samples than NAC samples. Comparing
RC with NC and RC-B1 with NC-B1, the reduction in strength due to CRA reduces from
23% to 21%. Hence, the negative effect of CRA on the properties of concrete samples can
be slightly reduced (up to 2%) by adding BarChip macro-polypropylene fibres. In a past
study [66], similar behaviour was observed for steel fibre-reinforced RAC.

4.3.2. Peak Strain

Figure 6b presents the peak strain of BFNAC and BFRAC samples. NC samples show
a peak strain of 0.0025, which reduces to 0.0022 for RC samples. However, an increased
peak strain of concrete samples is noticed with an increase in fibre dosage. NC-B1 and
RC-B1 samples show peak strain 15 and 18% higher than NC and RC samples, respectively.
The peak strain of all the FRC samples is higher than the NC samples.
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Figure 6. Stress-strain properties of BFNAC and BFRAC samples: (a) peak stress, (b) peak strain, (c) ultimate strain,
(d) elastic modulus, (e) toughness, (f) specific toughness.

All the RAC samples have peak strain lower than respective NAC samples. Previously,
the peak strain of RAC samples was observed to be higher compared to NAC samples [69].
However, the opposite trend is noticed in this study, which is related to the elastic modulus
of samples similar to a previous study [1]. A higher drop in the modulus of elasticity results
in higher deformation and higher peak strain. For example, Xiao et al. [70] reported a 45%
higher drop in the modulus of elasticity for RAC samples compared to NAC samples, which
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resulted in larger deformation and a 20% increase in the peak strain of RAC compared
to NAC. However, RC samples show only a 4% decrease in elastic modulus than NC
samples in this study, which results in a lower peak strain of RC samples (i.e., lesser than
NC samples).

4.3.3. Ultimate Strain

Figure 6c presents the ultimate strain of BFNAC and BFRAC samples, which is
determined at 85% of peak strength following past studies [1,60]. NC samples show an
ultimate strain of 0.0031, which reduces to 0.0025 for RC samples. However, an increased
ultimate strain of concrete samples is observed with an increase in fibre dosage. NC-B1
and RC-B1 samples show an ultimate strain that is 23 and 40% higher than NC and RC
samples, respectively. The ultimate strain of all the FRC samples is higher than the NC
samples. Comparing RC with NC and RC-B1 with NC-B1, the reduction in ultimate strain
due to CRA decreases from 18% to 6%. Hence, the negative effect of CRA on the ultimate
strain of samples can be minimised by adding BarChip macro-polypropylene fibres. In a
past study [45], similar behaviour is observed for steel fibre-reinforced RAC.

4.3.4. Elastic Modulus

Figure 6d presents the modulus of elasticity of BFNAC and BFRAC samples, which
is calculated following past studies [6,60]. NC samples have a modulus of elasticity of
23 GPa, which decreases to 22 GPa for RC samples. The low elastic modulus of RC samples
comparer to NC samples is related to inferior RCA performance compared to NCA [70,71].
Previously, 45% decreased elastic modulus of RAC compared to NAC is reported by Xiao
et al. [70]. Decreased modulus of elasticity of concrete samples is also noticed with an
increase in fibre dosage. NC-B1 and RC-B1 samples show elastic modulus 9 and 10%
lower than NC and RC samples, respectively. The elastic modulus of all the concrete
samples is lower than the NC samples. In a previous study, Suksawang et al. [72] also
reported the reduced elastic modulus of concrete samples reinforced with a variety of fibres.
Generally, the addition of BarChip macro-polypropylene fibres should not influence the
elastic modulus of samples. Therefore, the reduced elastic modulus of BFNAC and BFRAC
samples is due to the influence of the fibre addition on the compaction/consolidation of
concrete samples [72]. Moreover, the elastic modulus of concrete samples is also affected
by the fibres in the direction parallel to the application of load being acting as voids [14].

4.3.5. Toughness

Figure 6e presents the toughness of BFNAC and BFRAC samples, which is calculated
following past studies [6,60]. NC samples show a toughness of 0.09 MPa, which reduces
to 0.06 MPa for RC samples. The reduced toughness of RAC samples compared to NAC
samples is due to the lower peak stress of RAC samples than NAC samples [73]. However,
increased toughness of concrete samples is observed with an increase in fibre dosage.
NC-B1 and RC-B1 samples show toughness 32 and 62% higher than NC and RC samples,
respectively. The toughness of all the BFNAC and BFRAC samples is higher than the NC
samples. Comparing RC with NC and RC-B1 with NC-B1, the reduction in toughness due
to CRA reduces from 37% to 22%. Hence, the negative effect of CRA on the properties of
concrete samples can be minimised by adding BarChip macro-polypropylene fibres.

4.3.6. Specific Toughness

The specific toughness of concrete in compression is the ratio of the area under the
stress-strain curve to the compressive strength of the concrete cylinder [74,75]. Figure 6f
presents the specific toughness of BFNAC and BFRAC samples, which is calculated follow-
ing past studies [6,60]. NC samples show the specific toughness of 0.19%, which reduces
to 0.15% for RC samples. However, increased specific toughness of concrete samples is
observed with an increase in fibre dosage. NC-B1 and RC-B1 samples show specific tough-
ness 28 and 52% higher than NC and RC samples, respectively. The specific toughness of
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all the BFNAC and BFRAC samples is higher than the NC samples. Comparing RC with
NC and RC-B1 with NC-B1, the reduction in specific toughness due to CRA reduces from
18% to 2%, similar to a past study [43]. Hence, the negative effect of CRA on the specific
toughness of concrete samples can be minimised by adding BarChip macro-polypropylene
fibres.

4.4. Analytical Modelling

Recently, Kazmi et al. [5] developed a model to predict the axial stress-strain behaviour
of steel and macro-synthetic fibre-reinforced RAC and NAC, considering an extensive test
database. Equations (1)–(5) present the Kazmi et al. [5] stress-strain model for predicting
the behaviour of macro-synthetic fibre-reinforced NAC and RAC.

fc = (fcf · x · β)/(β − 1 + xβ) (1)

where
x = εc/εcf (2)

β = 5.65(RI)0.3 + 0.14R (3)

fcf = fc
′

+ (1.96 + 0.8(R)0.18)RI (4)

εcf = εc
′

+ (0.00054 + 0.000008(R)8.5)RI (5)

where fc and εc are the axial stress and axial strain at any point of the stress-strain curve,
respectively; fc

′
and fcf are the peak stresses of unreinforced and macro-polypropylene fibre-

reinforced concrete samples, respectively; εc
′

and εcf are the peak strains of unreinforced
and macro-polypropylene fibre-reinforced concrete samples, respectively; R is the CRA
replacement ratio ranges from 0–1 (which is equal to 0 for 0% CRA replacement ratio and 1
for 100% CRA replacement ratio); RI is the reinforcing index determined by multiplying the
aspect ratio with the volume of fibres. The Kazmi et al. [6] model is applicable for RI from
0.08–0.88, fc

′
from 28–54 MPa, CRA replacement ratio from 0–100% and wavy, embossed

and smooth texture of macro-polypropylene fibres.
The applicability of the stress-strain model developed by Kazmi et al. [6] for macro-

synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is examined
in this work. The performance of the Kazmi et al. [6] model to predict the stress-strain
relationships of BFNAC and BFRAC samples is presented in Figure 7. The predicted results
are evaluated through an error index [6]:

Error index = ∑ (|RExp. − RAna.|/RExp.)/N (6)

where N is the number of BFNAC and BFRAC samples considered in this study; RAna. and
RExp. are predicted and measured results of BFNAC and BFRAC samples, respectively.
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Figure 7. Evaluation of the Kazmi et al. [5] model to predict the (a) peak stress and (b) peak strain of
BFNAC and BFRAC samples.

The predicted values of peak stress and peak strain are close to the measured results of
BFNAC and BFRAC samples by an error index of 1 and 4%, respectively. Figure 8 presents
the prediction of the axial stress-strain performance of BFNAC and BFRAC samples by the
Kazmi et al. [6] model. The experimental curves are observed quite close to the predicted
curves. Therefore, the Kazmi et al. [6] model can effectively predict the axial stress-strain
behaviour of BFNAC and BFRAC samples.
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4.5. Effect of Fibre Type on the Axial Stress-Strain Behaviour

The Kazmi et al. [6] model is applicable for the wavy, embossed and smooth texture of
macro-polypropylene fibres with Young’s modulus between 6–14 GPa and tensile strength
between 320–660 MPa. The BarChip macro-polypropylene fibres considered in this study
have an embossed texture with Young’s modulus and tensile strength of 10 GPa and
640 MPa, respectively. Thus, the Kazmi et al. [6] model is suitable to predict the stress-
strain performance of BFNAC and BFRAC samples. The mechanical properties of fibre-
reinforced concrete are greatly affected by the fibre characteristics, including surface texture,
Young’s modulus and tensile strength [17,76]. Scant work is available in the literature
focusing on the stress-strain performance of macro-polypropylene fibre-reinforced RAC
and NAC, which is a major hurdle in establishing the effect of different types of macro
polypropylene fibres on the axial stress-strain behaviour of concrete samples. Therefore,
a detailed investigation to understand the effect of different types of macro-polypropylene
fibres on the stress-strain performance of concrete is recommended for future research.

5. Summary and Conclusions

The following are the conclusions of this study:

• Increases in energy dissipation capacity (i.e., area under the curve), peak stress, and
peak strain of samples are noticed with an increase in fibre dosage, indicating the
positive effect of fibre addition on the stress-strain performance of concrete. Strength
enhancement due to the addition of fibres is also noticed to be higher for RC samples
than for NC samples.

• An increase of 3 and 6% in the peak stress is observed for the NC-B1 and RC-B1
samples, respectively. The fibre addition reduces the wing-crack growth rate by
resisting the development of micro-cracks and results in the improved mechanical
performance of concrete samples.

• NC samples show a peak strain of 0.0025, which reduces to 0.0022 for RC samples.
However, an increased peak strain of concrete samples is noticed with an increase in
fibre dosage. NC-B1 and RC-B1 samples show peak strain 15 and 18% higher than NC
and RC samples, respectively. The peak strain of all the FRC samples is higher than
the NC samples.

• NC samples show an ultimate strain of 0.0031, which reduces to 0.0025 for RC samples.
However, an increased ultimate strain of concrete samples is observed with an increase
in fibre dosage. NC-B1 and RC-B1 samples show an ultimate strain 23 and 40% higher
than NC and RC samples, respectively. The ultimate strain of all the FRC samples is
higher than the NC samples.
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• NC samples have a modulus of elasticity of 23 GPa, which decreases to 22 GPa for
RC samples. Decreased modulus of elasticity of concrete samples is also noticed with
an increase in fibre dosage, which is due to the influence of the fibre addition on the
compaction/consolidation of concrete samples. The elastic modulus of all the concrete
samples is lower than the NC samples.

• NC samples show the specific toughness of 0.19%, which reduces to 0.15% for RC
samples. However, increased specific toughness of concrete samples is observed with
an increase in fibre dosage. NC-B1 and RC-B1 samples show specific toughness 28
and 52% higher than NC and RC samples, respectively. The specific toughness of all
the BFNAC and BFRAC samples is higher than the NC samples. Hence, the negative
effect of CRA on the properties of concrete samples can be minimised by adding
BarChip macro-polypropylene fibres.

• The applicability of the stress-strain model developed by Kazmi et al. [5] for macro-
synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is examined
in this study. The predicted values of peak stress and peak strain are close to the
measured results of BFNAC and BFRAC samples by an error index of 1 and 4%,
respectively. The experimental stress-strain curves are also quite close to the predicted
curves. Therefore, the Kazmi et al. [5] model can effectively predict the axial stress-
strain behaviour of BFNAC and BFRAC samples.
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