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Abstract: With the development of human healthcare devices, smart sensors, e-skins, and pressure
sensors with outstanding sensitivity, flexibility, durability and biocompatibility have attracted more
and more attention. In this paper, to develop a novel flexible pressure sensor with high sensitivity,
different poly (vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based composite membranes were
fabricated, characterized and tested. To improve the β-phase crystallinity and piezoelectricity of the
membranes, and for the purpose of comparison, nano ZnO particles with different concentrations
(99:1, 9:1 in a weight ratio of PVDF-TrFE to ZnO) were, respectively added into PVDF-TrFE polymer
acting as a nucleating agent and dielectric material. To facilitate the formation of β-phase crystal,
the membranes were fabricated by electrospinning method. After the electrospinning, an annealing
process was conducted to the fabricated membranes to increase the size and content of β-phase crystal.
Then, the fabricated PVDF-TrFE membranes, acting as the core sensing layer, were, respectively built
into multiple prototype sensors in a sandwich structure. The sensitivity of the prototype sensors
was tested by an auto-clicker. The stimulation of the auto-clicker on the prototype sensors generated
electrical signals, and the electrical signals were collected by a self-built testing platform powered by
LabVIEW. As a result, combining the addition of ZnO nanofillers and the annealing process, a highly
sensitive pressure sensor was fabricated. The optimal peak-to-peak voltage response generated
from the prototype sensor was 1.788 V which shows a 75% increase compared to that of the pristine
PVDF-TrFE sensor. Furthermore, a human pulse waveform was captured by a prototype sensor
which exhibits tremendous prospects for application in healthcare devices.

Keywords: PVDF-TrFE; PVDF-TrFE/ZnO; β phase crystal; human pulsation sensor

1. Introduction

In recent years, the development directions of pressure sensors have been subdivided
based on physical application scenarios [1]. With the progress of many new emerging areas
like wearable devices, e-skins and robots, miniature, flexible and sensitive pressure sensors
have become the mainstream direction of research [2–4]. In this field, composites based on
piezoelectric materials attracted much attention due to their brilliant flexibility, controllable
response and tunable mechanical, electrical and chemical properties [4]. In 2015, James S.
Lee and his teammates demonstrated a flexible tactile sensor that utilizes a PVDF/ZnO
nanorod composite as the sensing material [5]. With their piezoelectric sensor, a change
in pressure as small as 10 Pa can be detected. In Lee’s research, PVDF acted as a matrix
material in the piezoelectric composite due to its brilliant flexibility and piezoelectricity.
Generally, the sensitivity of PVDF-based nanocomposite sensors is dominantly determined
by their permittivity and piezoelectricity, which are resultant parameters of the content
and size of the β-phase crystal in the fabricated sensing material [6]. Therefore, increasing
the content and size of the β-phase crystal shown in Figure 1 is one of the most effective
methods to improve the sensitivity of sensing materials. Due to a substitution of a hydrogen
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atom by a fluorine atom in the molecular chain shown in Figure 1 which facilitates the
formation of β-phase crystal, PVDF-TrFE, which is a co-polymer of PVDF with a similar
chain structure, could show even stronger piezoelectricity than that of PVDF under the
same situation.
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Recently in 2020, Li et al., presented poly (vinylidenefluoride-co-trifluoroethylene)/
carbon-based nanomaterial composite films for pressure sensing applications [9]. In their
study, the PVDF-TrFE-based composite piezoelectric film was treated by polarization
and annealing for an improvement of crystallinity and piezoelectric effect. Their study
showed an increase in the β-phase content from 73.6% to 86.4% and an increase in the
piezoelectric coefficient from 19.8 ± 1.0 to 26.4 ± 1.3 pC/N. However, there is still room
for improvement in the fabrication method of the films in their research. In terms of
β-phase crystal formation and piezoelectricity of the composite, a fabrication method is as
important as material selection. To elongate a composite solution to a membrane with a
designated thickness which could keep sufficient flexibility and durability, dip coating and
spin coating are the most popular fabrication methods [10]. As is known to all, treatment
of stretching and poling performed simultaneously to the PVDF or PVDF-TrFE polymer
could significantly induce the formation of β phase crystal to improve its piezoelectricity
and dielectricity [11]. Therefore, electrospinning, a membrane fabrication method that
could stretch the composite fiber in a strong electric field, would be an attractive method in
the fabrication of PVDF-TrFE-based piezoelectric material.

Although previous works of other researchers have achieved satisfactory results, there
is still room for improvement in the sensitivity of piezoelectric composite pressure sensors.
Therefore, in this study, four measures are adopted to improve sensitivity. Firstly, PVDF-
TrFE is used to replace the traditional PVDF to act as the matrix material of the composite
to facilitate the formation of β-phase crystal. Secondly, ZnO with its promising dielectric
property, biocompatibility, and a substantial effect in the facilitation of crystallization in
PVDF-TrFE, is used as the filler material in our novel flexible pressure sensing compos-
ite [12]. Thirdly, electrospinning is conducted to fabricate the piezoelectric membrane to
maximize the size and content of β-phase crystal. Fourthly, annealing post-treatment is
adopted to improve the piezoelectric property of the membrane [13].

Combining all of the abovementioned outcomes, novel flexible pressure sensors made
of PVDF-TrFE, PVDF/TrFE/ZnO (99:1, 90:10 in weight ratio of PVDF-TrFE to ZnO) were
fabricated by electrospinning in this paper. The morphology of the fabricated samples
was characterized by SEM. Phase identification and crystallinity determination of the
piezoelectric polymer were conducted by XRD. The performance of the fabricated sensors
was tested by a self-built testing platform powered by LabVIEW. As a result, a 1.788 V
peak-to-peak voltage was generated by the optimal sample under the auto-clicking test.
This voltage value shows a 75% increase than that of the pristine PVDF-TrFE sample.
Furthermore, a human pulse waveform was captured by a prototype sensor which exhibits
tremendous prospects for application in healthcare devices.
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2. Materials and Methods
2.1. Materials

PVDF-TrFE with the brand name PIEZOTECH®FC30 (typical TrFE content (in mol %)
is 30) was purchased from Piezotech, Pierre-Bénite, France. Zinc Oxide particles with a
diameter of 30 nm were purchased from Aladdin, Shanghai, China. Acetone in ACS Grade
was purchased from AQA, Anaqua Global International Inc. Limited, Hong Kong, China.
N,N dimethylformamide (DMF) came from International Laboratory USA.

2.2. Fabrication
2.2.1. Fabrication of Sensing Materials

To fabricate a sensitive and optimal sensing layer based on PVDF-TrFE and nano-ZnO,
eight different comparison groups were designed, fabricated and analyzed in this project.
They are annealed and unannealed PVDF-TrFE, annealed and unannealed PVDF-TrFE
doped with ZnO particles in different weight ratios, respectively. Abbreviations for eight
comparison groups are listed in Table 1.

Table 1. Abbreviations for eight comparison groups in the research.

- PVDF-TrFE (PT) PVDF-TrFE to ZnO
(99:1)

PVDF-TrFE to ZnO
(90:10)

unannealed PTua PT1Zua PT10Zua
annealed PTad PT1Zad PT10Zad

To completely dissolve the PVDF-TrFE and ZnO particles and control the rate of
evaporation during electrospinning, the organic solvent was mixed by DMF and Acetone
at a volume ratio of 3:2. Regarding the viscosity of the solution and the quality of the
electrospinning product, a 15% weight to volume ratio of the PVDF-TrFE powder to organic
solvent was determined after adjustment. Once the organic solvent was completely mixed,
PVDF-TrFE powder in 15% w/v was added to it. For a complete dissolution, the solution
was treated by ultrasonic stirring for 1 h and magnetic stirring for 12 h, respectively.

In the preparation of the solution of PVDF-TrFE doped with ZnO in different concen-
trations, the weight to volume ratio of solute to solvent was kept as 15%, the same as the
abovementioned pristine PVDF-TrFE solution. In these PVDF-TrFE/ZnO solutions, the
ZnO particles were added into the solvent first. The ZnO solution was treated by ultrasonic
stirring for 1 h. Then, the PVDF-TrFE powder was poured into the ZnO solution gradually
for full integration. The solutions were treated by ultrasonic stirring for 1 h and magnetic
stirring for 12 h, respectively, the same as the previously mentioned procedure.

In this project, a 20 mL prepared solution with four different compositions was poured
into a syringe for further electrospinning. Several key setting parameters that can dramati-
cally influence the process of electrospinning should be considered based on the material
used and the environment of the laboratory such as temperature and humidity [14]. There-
fore, after multiple trials and analyses, the setting of the electrospinning was determined.
The voltage between the needle of the syringe and the collector which can create the high
electric field was set as 20 kV. The feed rate of the solution in the syringe which could ensure
a uniform and continuous nanofiber was set as 0.036 mL/min. The distance between the
needle of the syringe and the electrospinning fiber collector which determines the distance
of ejected solution flight and volatilization time was 15 cm. The relative humidity must
be kept between 20% and 50%. After the electrospinning, an annealing process for the
electrospinning membranes was conducted at 120 ◦C for one hour.

2.2.2. Fabrication of Prototype Sensors

In this project, a simple stacking sandwich structure was applied to test the piezoelec-
tric response of the electrospinning membranes. The upper and lower parts of the sensor
were composed of ultrathin flexible copper electrodes with the size of 15 mm ×15 mm. The
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middle part of the sensor was the sensing layer with the size of 18 mm × 18 mm fabricated
by electrospinning. As shown in Figure 2, the stacked sensor was encapsulated by the
flexible silicon rubber tape with the size of 25 mm ×25 mm.
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2.3. Characterization

A Scanning Electron Microscope (Tescan VEGA3) was used for the morphology
analysis of the nanofiber fabricated by electrospinning. A X-Ray Diffractometer (Rigaku
SmartLab 9) was applied for the phase identification and crystallinity determination of the
electrospinning fibers.

2.4. Piezoelectric Response Test Method

The piezoelectric response of the fabricated sensors was validated by a continuous
clicking test. The stimuli from an auto-clicking device with a frequency of 2 hz were
allowed to continuously hit the tested sensors. The electrical signal generated by hitting
was collected by a data acquisition device and transferred into a computer. A virtual
oscilloscope based on LabVIEW was built up and applied for recording and processing
the information of the collected signal. In addition to the continuous clicking test, a pulse
capture test was conducted for the sensor consisting of a PT10Zad sensing layer which
has produced optimal piezoelectric response during the previous tests. By utilizing the
PT10Zad sample which has the optimal sensitivity to stimulus, the human pulse pressure
with a relatively weak pressure signal was captured. The sensor was mounted onto the
wrist of human body which mimics the manner of palpation. As this is a prototype sensor,
assistance by hand is necessary for positioning the pulse. Then, human pulse signals can
be captured by the sensor and transferred to the computer for further processing.

3. Results and Analysis
3.1. SEM Results

The SEM results for all eight samples are shown in Figure 3.
By analyzing the SEM images for all samples, we can conclude that:

1. Morphology of the electrospinning membranes is clearly captured by the SEM. The
flexible membranes composed of fiber structure were well fabricated by electrospin-
ning. The average diameter of the electrospinning fiber is 200~300 nm. The thickness
of the membrane is 40~50 µm as shown in Figure 4;

2. The degree of alignment of annealed samples is notably higher than that of the
unannealed samples. The bend and knots of the fibers decreased by the treatment of
annealing. The improvement of the degree of alignment would induce a significant
increase in the piezoelectric performance of the fabricated sensors;

3. With the increase in the weight ratio of nano ZnO particles in different samples, bead
structure which was validated as Zinc and oxygen by EDS analysis occurred and its
amount increased. These ZnO structures would improve the piezoelectricity of the
fabricated membrane by acting as not only a dielectric material but also a nucleating
agent to facilitate the formation of β phase crystal in the polymer [12].
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3.2. XRD Results

By analyzing the XRD diagrams, the elemental composition of the electrospinning
membrane can be obtained. Additionally, the size of β phase crystal which dominantly
determines the piezoelectricity of PVDF-TrFE-based membrane can be calculated based on
the XRD diagrams [6]. The XRD diagrams are shown in Figure 5.

In these diagrams, an obvious increase in the magnitude of the diffraction peaks
can be observed at both the 18.2◦ (202) corresponding to the α-phase and 20.8◦ (110/220)
corresponding to the β-phase PVDF crystal with the annealing treatment and the addi-
tion of nano ZnO fillers. The peaks on 36.16◦, 47.58◦, and 56.62◦ for all PT/Z samples
corresponding to (101), (102), and (110) planes confirmed the formation of a ZnO nanos-
tructure. The increase in the magnitude of ZnO diffraction corresponds to the increase in
the concentration of ZnO nanofillers.
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Based on the XRD diagram, the full width at half maxima (FWHM) can be measured.
Then, by substituting the FWHM and the theta degree of corresponding diffraction peak
into the Scherrer equation shown below, the crystal size can be calculated.

τ =
Kλ

β cos θ
(1)

where: K is a dimensionless shape factor, with a value of 0.89; λ is the X-ray wavelength which
equals 0.15046 nm; β is the full width at half maxima (FWHM) and θ is the Bragg angle.

Table 2 and Figure 6 listed below present the calculation results for all eight samples.

Table 2. β phase crystal size calculation results.

Sample K λ (nm) β (Rad) θ (Deg) τ (nm)

PTua 0.89 0.154056 0.799 10.4 9.996
PTad 0.89 0.154056 0.749 10.4 10.664

PT1Zua 0.89 0.154056 0.816 10.4 9.788
PT1Zad 0.89 0.154056 0.751 10.4 10.635
PT10Zua 0.89 0.154056 0.792 10.4 10.085
PT10Zad 0.89 0.154056 0.718 10.4 11.124

By analyzing the XRD calculation results, a limited nucleating agent effect of the nano
ZnO in PVDF-TrFE polymer can be observed. Compared with the nucleating agent effect
of ZnO, the annealing treatment has induced a much stronger coagulation effect of the β

phase PVDF crystal.

3.3. Piezoelectric Response Test Results

The auto-clicking test on the prototype sensors is conducted for measurement of their
sensitivity to constant clicking. By comparing the test results, an optimal composition of
the sensing material can be obtained. The results of the auto-clicking test are shown in
Figure 7.
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For facilitating a comparison among the performance of all six samples, the peak-to-
peak voltage for all samples was measured and is listed in Table 3 and Figure 8.

Table 3. Peak-to-peak voltage table.

Peak to Peak Voltage (V) Recovery Time (ms)

PTua 1.019 300
PTad 1.54 397

PT1Zua 1.182 332
PT1Zad 1.637 307
PT10Zua 1.28 350
PT10Zad 1.788 355
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In the auto-clicking test, the recovery time of all samples, which varied between 300
and 397 ms was measured. The addition of ZnO nanofillers induced an increase in peak-to-
peak voltage response due to the nucleating agent effect and inherent high permittivity
of ZnO. The annealing process showed a significant increase in the sample membranes’
piezoelectric response. This increase was mainly caused by the coagulation effect which
was validated by the XRD results and the alignment effect which was validated by the
SEM images. Combining the addition of nano ZnO and the annealing process, the optimal
peak-to-peak voltage response from sample PT10Zad was 1.788 V which, shows a 75%
improvement compared to that of the pristine PT.

In addition to the auto-clicking tests, a human pulse test was also conducted for the
PT10Zad sample which has the best performance in the auto-clicking test. The captured
signal of a human pulse capturing is shown in Figure 9. The human pulse with a frequency
of around 1 Hz can be captured and identified easily.
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4. Conclusions

In this paper, novel piezoelectric PVDF-TrFE and PVDF-TrFE-ZnO membranes were
fabricated by electrospinning, characterized and investigated. To test the piezoelectric
response of the fabricated membranes, the pressure sensors in a simple sandwich structure
were designed and fabricated. From the characterization of SEM and XRD and piezoelectric
response test results, the conclusions of this research can be drawn. The PVDF-TrFE and
PVDF-TrFE-doped ZnO with two different weight ratios (99:1, 90:10) were well fabricated
into membranes by electrospinning. The fibers in the membranes were fully elongated and
polarized so that the β phase crystal can be transformed and stabilized as much as possible.
The annealing treatment for the electrospinning membranes significantly improved their
piezoelectric response in two respects: 1. improving the degree of alignment of the fibers
in membranes by reducing their bend and knots and 2. increasing the size of the β phase
crystal which was validated by XRD results. The addition of the ZnO nanofillers played
two roles which were nucleating agent to enlarge the size of the β phase crystal and
dielectric material to increase the piezoelectric response. Through the auto-clicking test for
all eight samples, the efforts of ZnO nanofillers and annealing treatment emphasized above
were validated again. Combining the addition of nano ZnO and the annealing process, the
optimal peak-to-peak voltage response from sample PT10Zad was 1.788 V which shows
a 75% improvement compared to that of the pristine PT. At last, a clear human pulse
waveform was captured by the sample PT10Zad.

These conclusions and results provide a path to the development of flexible pressure
sensors. In this paper, the feasibility and potential of the novel electrospinning sensing
membranes were confirmed. In the future, the industries of humanoid robots, e-skins, vital
sign monitoring, etc. would be the potential application scenarios of this investigation.
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