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Abstract: (1) Background: Ultrasound provides a radiation-free and portable method for assessing
swallowing. Hyoid bone locations and displacements are often used as important indicators for the
evaluation of swallowing disorders. However, this requires clinicians to spend a great deal of time
reviewing the ultrasound images. (2) Methods: In this study, we applied tracking algorithms based on
deep learning and correlation filters to detect hyoid locations in ultrasound videos collected during
swallowing. Fifty videos were collected from 10 young, healthy subjects for training, evaluation, and
testing of the trackers. (3) Results: The best performing deep learning algorithm, Fully-Convolutional
Siamese Networks (SiamFC), proved to have reliable performance in getting accurate hyoid bone
locations from each frame of the swallowing ultrasound videos. While having a real-time frame rate
(175 fps) when running on an RTX 2060, SiamFC also achieved a precision of 98.9% at the threshold
of 10 pixels (3.25 mm) and 80.5% at the threshold of 5 pixels (1.63 mm). The tracker’s root-mean-
square error and average error were 3.9 pixels (1.27 mm) and 3.3 pixels (1.07 mm), respectively.
(4) Conclusions: Our results pave the way for real-time automatic tracking of the hyoid bone in
ultrasound videos for swallowing assessment.

Keywords: tracking; deep learning; correlation filters; dysphagia; ultrasound videos; hyoid bone;
swallowing; SiamFC; real-time

1. Introduction

Swallowing problems, also called dysphagia, have a prevalence of 16–23% in the
general population, reaching 27% in those over 76 years of age [1]. It influences 16% of
87 years or older group in the Netherlands [2], affecting up to 40% of people in permanent-
care settings [3] and 50 to 75% of nursing home residents [4]. Martino et al. (2005) reported
that up to 37–78% of stroke patients have dysphagia [5]. Sapir et al. (2008) demonstrated
that 90% of Parkinson’s disease patients present with dysphagia [6].

The clinical gold standard for swallowing disorder assessments is the videofluo-
roscopy swallowing study (VFSS). It requires the patient to stay in a fixed position and
consume barium-coated materials; X-ray videos are taken, usually on the sagittal plane.
This modality, however, has a risk of excessive radiation exposure, resulting in low repeata-
bility in clinical use [7,8]. The recent development of point-of-care ultrasound (POCUS)
increases the possibility of using it to monitor swallowing function at the bedside [9].
Ultrasound imaging is a rising star as it is “simple and repeatable” and “gives real-time
feedback” [10].
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The hyoid bone excursion is a significant clinical indicator when using ultrasound
for swallowing assessments. Hyoid has a uniform movement pattern in different individ-
uals: on the sagittal plane, it first rises and then moves anteriorly to reach its maximum
displacement, before returning to its original place [11–13]. This pattern can be classified
as the elevation, anterior movement, and return phases. Gender [14] and age [11] might
influence the duration that the hyoid spends in each phase and the moving distance. For
example, age-related physiological changes can result in suprahyoid and infrahyoid muscle
atrophy that reduces hyoid bone elevation [11]. The elderly also exhibit reduced maximum
vertical and anterior hyoid bone movement [15], while the likelihood of having aspiration
is 3.7 times greater for individuals who demonstrate reduced hyoid excursion [16]. Quanti-
tatively, ultrasound can be used to make kinematical measurements of hyoid excursion.
In previous literature that used manual annotation, hyoid movement analysis using ultra-
sound ranged from 1.3 cm to 1.7 cm in patients with different medical histories [17] and
varied from 1.34 cm to 1.66 cm for different age groups [11]. Meanwhile, Hsiao et al. (2012)
proved that hyoid bone displacements measured using submental ultrasonography and
by VFSS have good correlations [17]. While mandible structures can sometimes block the
structures of the hyoid bone in VFSS [18], it does not happen in ultrasound midsagittal
images as the mandible is located away from the hyoid bone location at the midsagittal
plane of the body.

Many studies used manual labeling [14,17,19,20] to identify the change in hyoid loca-
tion, hyoid movement pattern, and maximum displacement during swallowing. Identify-
ing the locations of the hyoid bone in ultrasound images is a laborious and time-consuming
task. An automation process with the help of recent progress in computer vision and
artificial intelligence would be preferred to reduce the time needed for reviewing the
ultrasound video frame by frame. Lopes et al. (2019) used You Only Look Once version
3 (YOLOv3)to locate the hyoid bone in the ultrasound imaging [21], which gives some
insights on automatically labeling the hyoid location in one single ultrasound image, yet
they did not test tracking of hyoid bone locations in subsequent frames in ultrasound
videos. Detection and segmentation-related deep learning methods have been applied
to track the locations of the hyoid bone in VFSS [22,23]. However, tracking-related deep
learning methods have not been applied to ultrasound videos. Therefore, we propose to
use the state-of-the-art deep learning tracking algorithms (i.e., Fully-Convolutional Siamese
Networks (SiamFC) [24], Accurate Tracking by Overlap Maximization (ATOM) [25], Dis-
criminative Model Prediction (DiMP) [26]) and correlation filter tracking algorithms (i.e.,
Discriminative Correlation Filter Tracker with Channel and Spatial Reliability (CSRT) [27],
Efficient Convolution Operators (ECO) [28,29]) to a new ultrasound swallowing video
(USV) dataset. These methods could potentially reduce the requirement on manual assess-
ment of 300–400 frames of ultrasound down to only one frame. After the hyoid bone’s
location in the first frame of the ultrasound image series is annotated with a bounding
box, tracking algorithms will then predict the bounding boxes in each subsequent frame to
indicate the location of the hyoid bone.

2. Materials and Methods
2.1. Ultrasound Swallowing Videos (USV) Dataset

The USV were collected from 10 young and healthy adults (5 M + 5 F, aged
25.0 ± 2.6 years). They had no history of dysphagia, swallowing complaints, nor any
craniofacial anomalies. Each subject performed five types of swallows in different volumes
and consistencies: 5 mL and 10 mL of paste liquid, 5 mL and 10 mL of thin liquid, and
dry swallow. Paste liquids were thickened to level 4 of the International Dysphagia Diet
Standardisation Initiative (IDDSI) framework [30]. Ethical approval was obtained from the
Human Subjects Ethics Sub-Committee (HSESC) of the Hong Kong Polytechnic University
(HSESC Reference Number: HSEARS20191130001).

A convex ultrasound transducer (Aixplorer Multiwave Ultrasound System with an
XC6-1 convex probe, Supersonics imagine, Aix-en-Provence, France), with a frequency
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bandwidth of 1–6 MHz, depth setting of 80 mm, in harmonic mode was placed in the
midsagittal plane sub-mentally of the subject. The settings of the gain and time gain
compensation (TGC) of the machine were set the same for all subjects. The subjects sat in
an upright position. Two gel-pads (Acton® BOL-I-X bolus with film, Action®, Hagerstown,
MD, USA) of different dimensions 10 × 10 × 1 cm3 and 10 × 2 × 1 cm3 were placed at
the submental area participants to ensure ultrasound coupling from the transducer to the
subject as demonstrated in previous study [31]. The swallowing process was recorded with
32 frames per second (fps). Timestamps of the anatomical movement events were identified
manually and recorded by trained speech therapists, such as the start of humming, the onset
and offset of hyoid bone movement and the end of the swallow. Specifically, humming
was used to check the alignment of the ultrasound probe and the anatomical center of the
subject before the start of swallow. The hyoid onset and offset were the first frame when
the hyoid bone moved forward and the frame when the hyoid bone started to return from
its most anterior position. The end of a swallow is when the hyoid bone returned to its
original position. The recordings were trimmed from humming to 50 frames after the end
of a swallow, forming the final dataset with 50 videos and an average of 382 frames per
video sequence.

Considering that the size of the hyoid bone is small, the location of the hyoid bone
on every frame was annotated as a point by trained speech therapists to meet the clinical
standard. In the ultrasound images, the hyoid was identified as “a high echoic area with a
posterior acoustic shadow” [11]. Therefore, a point was placed at the intersection of the
geniohyoid muscle and the superior border of the acoustic shadow, as shown in Figure 1.
First, the annotation point was placed manually in every 5 or 10 frames with the help of
interpolation mode of Computer Vision Annotation Tool (CVAT), then the points in each
frame were revised and corrected to achieve frame by frame annotations. The size of each
frame of USV is 720 × 540 pixels. Calibrated from the scale bar of the image, conversion
between real distance to pixel is about 1 mm to 3.078 pixels, where the real anatomical size
of 1 pixel was 0.325 mm. A bounding box of 30 × 30 pixels2 (~95 mm2), with a center at
the ground truth annotation point, was given in the first frame to initialize tracking. The
tracking algorithms would provide a bounding box in each subsequent frame (Figure 1),
and the centers of those bounding boxes were considered to be the center locations of the
hyoid bone. None of the ground truth point annotations in frames other than the first
frame were used to generate bounding boxes; they were only intended to evaluate the
performance of the tracking methods.
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Figure 1. The left side of the figure shows an example ultrasound image with labeled anatomical structures, as illustrated
on the right side. The hyoid bone annotation point was placed at the intersection of the geniohyoid muscle (left) and the
acoustic shadow (above). During inference, a bounding box tracked the hyoid bone location.
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2.2. Algorithms for Hyoid Bone Tracking

Several state-of-the-art deep learning tracking algorithms and correlation filter track-
ing algorithms were applied to track the hyoid bone location in swallowing ultrasound.
They were either known for superior performance in visual object tracking (VOT) chal-
lenges [32,33] or have reported a great performance gain. Most importantly, they are all
real-time trackers, which would facilitate the clinical translation of evaluating ultrasound
swallowing videos.

2.2.1. Siamese Trackers

Siamese trackers use the same offline-trained backbones for the template branch and
detection branch, in which the previous reference frame is served as a model template for
the current frame. The pioneer, SiamFC (Figure 2), uses the fully convolutional network
to extract features and computes the similarity between two image patches on a single
dense grid, namely a score map, in one evaluation [24]. During tracking (inference), the
exemplar patch and search patches of different scales are normalized to the exemplar
image (127 × 127 × 3) and three search images (255 × 255 × 3) and fed to the same
backbone. Exemplar and search feature maps are generated after passing the feature
extraction backbone. Applying cross-correlation on the output exemplar feature map
and three search feature maps would produce three score maps. Then up-sampling the
three score maps by bicubic interpolation [34] could give three score maps with higher
resolution. The peak response out of the three score maps was selected, and its relative
distance away from the center represents the displacement of the hyoid from the previous
frame to the current frame. During training, SiamFC uses weighted binary cross-entropy
loss to optimize the results on the score map by minimizing the distance of the elements on
the score map and the label matrix.
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Figure 2. Workflow of Siamese trackers. The center of the yellow bounding box indicates the hyoid location in the last
frame; the green box and orange box centered on the last frame hyoid location will crop exemplar patch and search patch on
the previous frame and current frame, respectively. The green point indicates the peak response on the score map, while the
yellow one denotes the center location of the current frame.

2.2.2. Multi-Stage Trackers

Deep multi-stage trackers split the tracking task into coarse localization of the object,
usually done by classification, and refined bounding box estimation, through methods like
bounding box regression or Intersection over Union (IoU) prediction (Figure 3). ATOM [25]
was the pioneer to break the tracking task into a classification branch and a target estimation
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branch. Online classification generates proposals close to the peak response in the score
map by adding Gaussian or uniform random noises. Offline trained IoU Net [35] in
the target refinement branch optimizes the coarse locations given by the proposals and
produces a series of IoU scores for each initialized proposal bounding box. Averaging sizes
and locations of the top three proposals, ranked in IoU scores, generates the predicted
bounding box. During training, the IoU Net is optimized by gradient ascent with the
help of precise region of interests (PrRoI) pooling layers. DiMP [26] improves the online
classification to offline trained networks to extend the control over the tracking performance
while not losing the discriminative power by integrating background appearance in the
model prediction architecture. It uses hinge-like loss to distinguish the foreground from
the background better and to ensure excellent classification performance.
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Figure 3. Workflow of multi-stage trackers. Precise region of interests (PrRoI) pooling layers [35] can convert features of
different sizes into the same size while enabling the computation of the gradient of Intersection over Union (IoU) with
respect to the bounding box coordinates. IoU Net outputs IoU scores for each proposal, and the top three ranked proposals
are averaged to produce a robust prediction bounding box location.

2.2.3. Correlation Filter Trackers

Discriminative correlation filter (DCF) trackers (i.e., CSRT [27] and ECO [28,29]) per-
form convolution between the target and the detection frame and train a filter online,
at the same time as performing tracking in the Fourier domain to generate a response
map (Figure 4) [36]. The filter localizes the target in the successive frame before being
updated. The superior performances of correlation filter trackers can be attributed to the
dense sampling achieved by circulantly shifting the target path samples, which profoundly
augments the training data, as well as by using the element-wise product in the Fourier
domain in place of the time domain convolution, to save tremendous computational power.
CSRT (also named CSR-DCF) uses the channel reliability map to tune more adaptable
spatial maps while training. It is implemented with an OpenCV Multitracker class in this
study. ECO uses the VGG-M network (pre-trained on ImageNet) [37] to replace hand-
crafted features and produce a multi-resolution (deep) feature map. It also adjusts C-COT’s
iterative optimization strategy [38] to a sparser updating scheme to decrease the model
complexity and save memory for remembering earlier frames. ECO is implemented with
GitHub PyTracking repository in this study.
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2.3. Implementation and Training Details of Deep Trackers

Out of the 50 sequences from five females and five males of five types of swallow
each, 30 sequences from three females and three males were used to train the models; 10
sequences from one female and one male were used for validation; 10 sequences from one
female and one male were used for the tests. All models were implemented in PyTorch, and
they were trained on the Ubuntu 20.04 system with an Intel i5 CPU processor, 15G RAM,
an NVIDIA RTX2060 GPU. During training, video sequences were uniformly selected; two
images within 100 frames in one sequence, also called an image pair, were used to pass
through the reference and test branch separately.

A few feature extraction backbones, including AlexNet [39], VGG 16 [40], ResNet
18 and 50 [41], and CIResNet 22 [42], were used in SiamFC, ATOM, and DiMP. Several
trackers were selected for further evaluation, including SiamFC trained with AlexNet [43]
and CIResNet22 from scratch, ATOM trained with ResNet 18 from scratch, ATOM finetuned
from pre-trained ResNet 50, DiMP finetuned from pre-trained ResNet 18 and ResNet 50,
since they have demonstrated a relative superior performance in the preliminary results of
precision. The baselines used in SiamFC were slightly different from their original design
due to the no padding specification in SiamFC. The details of how the baselines were
revised can be found in [24] and [42]. Meanwhile, ATOM with ResNet 50 and DiMP with
ResNet50 could be roughly compared with SiamFC with CIResNet 22, as ATOM and DiMP
use ResNet block 1-3 as one of the feature extraction levels which is around the level of
ResNet 22.

Data augmentation tricks, such as jittering on the center to crop images with offsets
and stretching, were applied. All models had trained 50 epochs, and all checkpoints at
30 epochs were selected for evaluation according to the validation loss. Five thousand
image pairs were used in one epoch to train SiamFC for 50 epochs with an SGD optimizer.
The learning rate was annealed exponentially from 1 × 101 to 1 × 105 for SiamFC with
AlexNet and from 1 × 102 to 1 × 103 for SiamFC with CIResNet 22. Eight thousand image
pairs were used in one epoch to train ATOM. Adam [44] was used to optimize ATOM with
ResNet 18 and ResNet 50 starting from learning rate 1e-1, with a gamma decay of 0.2 every
15 epoch. Six thousand image pairs were used in one epoch to train DiMP, with the settings
listed in the PyTracking repo [26].
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2.4. Evaluation

The evaluation of all trackers was performed on ten test video sequences, which were
five types of swallowing clips collected from one female and one male. Given that (1) the
center location of the hyoid bone in each frame was of more interest; and (2) the size of
the prediction bounding box was less concerned; only evaluation metrics that compare
the error between the predicted location (the center of the prediction bounding box) and
ground truth annotation point were used to evaluate the data, including center error (1),
precision (2), RMSE (3), and average error (4) [45–48].

CE = {δt}N
t=1, δt = ‖xP

t − xGT
t ‖ =

√(
xP

t − xGT
t
)2

+
(
yP

t − yGT
t
)2 (1)

Precision =
success

total
=

1
N

N

∑
t=1

δt ≤ threshold (2)

RMSE =

√√√√ 1
N

N

∑
t=1

δ2
t (3)

AE =
1
N

N

∑
t=1

δt (4)

In one sequence of N frames, we have a center error, which is the set of Euclidean
distance between prediction and annotation at every frame; precision scores at different
thresholds; a root-mean-square-error; and an average error.

The standard one-pass evaluation (OPE) was used for precision analysis, as zero
reinitialization would most adequately simulate the case of the application reported in this
study [46]. A frame would be considered as correctly tracked if its center error was within
a distance threshold. The precision plot showed the percentage of correctly tracked frames
for a range of distance thresholds. This curve was unambiguous and easy to interpret: A
higher precision at low thresholds means the tracker is more accurate; high precision on
a high threshold can indicate the robustness of the trackers. This is because robustness
is defined as the tracker’s resilience to failures in challenging scenarios and its ability to
recover, and a lost target would prevent the tracker from achieving perfect precision for a
very high threshold range.

The Pearson correlation coefficient of the x and y-axis between ground truth and the
inference of all frames was calculated to provide clinically relevant comparisons between
the trackers. The range of motion (ROM) of the hyoid bone was calculated from hyoid onset
to maximum displacement before hyoid offset, which represents the maximum elevation
and anterior displacement of the hyoid during swallowing [49]. Furthermore, the relative
error of ROM was calculated using Equation (5).

|ROM o f ground truth− ROM o f in f erence|
ROM ground truth

× 100% (5)

3. Results

In the experiment, ten annotated test sequences were used for evaluating the tracker’s
performance. The inferred hyoid locations were compared with the corresponding manual
annotation in each video sequence. Video S1 in Supplementary Materials showed an
example case (female swallowing 10 mL of thin liquid), tracked with SiamFC (AlexNet). As
visualized in the video, the traces of predicted hyoid and ground truth hyoid were moving
similarly, and the locations of those two points were always staying close.

With the recorded timestamps of hyoid onset and offset, a comparison of the hyoid
movement pattern between these two events of annotation and inference from an example
case is shown in Figure 5. Ground truth hyoid onset locations are set as the origin of
Figure 5a,c,d. In the 2D Cartesian plot Figure 5a, the two traces moved towards the left
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then vertically downwards, representing elevation and anterior movement of hyoid in
anatomical displacement. Since the timestamp of hyoid onset did not happen at the first
frame, the starting location of inference and ground truth were not the same in Figure
5a. For polar plot Figure 5b, both ground truth and inference locations of hyoid bone
at hyoid onset were set at the origin of the plot for visualization of relative movement.
The two traces moved in a similar angle and range of distance. The inference traces also
stayed close to the ground truth traces in the x/y-axis coordinates Figure 5c,d. Thus, the
prediction result, generated by SiamFC (AlexNet), had a comparable movement pattern
and displacement to the ground truth one, i.e., manual annotation.
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Figure 5. Hyoid center trace plots between the timestamps of hyoid onset (the frame when the hyoid starts to move) to
offset (at the moment when the hyoid starts to move away from its maximum position of superior-anterior movement) in
2D Cartesian axis (a), polar axis (b), x-axis (c), and y-axis (d). From an example test sequence of 10 mL thin liquid swallow,
female subject, from hyoid onset to offset. The blue line represents the ground truth of the hyoid path, and the yellow one
represents the inference path. Length unit at the polar axis is in pixels.

Analyzing the performance of the models quantitatively with a precision plot could
reflect the accuracy and robustness of the model at different location error thresholds, as
a way to verify whether the models could accurately extract the information of hyoid
bone locations. It was considered that the model had comparable accountability to manual
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annotations if it had a high precision at an acceptable error threshold. The threshold
was chosen at 10 pixels and 5 pixels, which are anatomical lengths of anatomical length
3.25 mm and 1.63 mm in the dataset, comparable to the measurement error reported using
VFSS with human annotation of 2.62 to 2.89 mm [50]. As shown in Figure 6, SiamFC with
AlexNet backbone achieved the highest mean precision of 98.9% at the threshold of 10
pixels and a mean precision of 80.5% at 5 pixels.
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Figure 6. Precision plot shows the mean distance precision of 10 test sequences in full-length at
different location error thresholds. The legend shows the precisions of different trackers at the
threshold of 10 pixels.

Quantitative analysis conducted over the 10 test sequences in full-length were shown
in Table 1. The results of all trackers were real-time on an RTX 2060, though slower perfor-
mance would be expected on an embedded system for portable ultrasound devices. Results
from Table 1 suggested SiamFC had better performance in all analysis methods in terms of
accuracy and speed (175 fps). SiamFC trained with USV gave an RMSE of 3.85 pixels± 1.06
pixels (1.25 mm ± 0.34 mm) and an AE of 3.28 pixels ± 1.10 pixels (1.07 mm ± 0.36 mm).
This result appears to outperform a reported RMSE of 3.2 mm ± 0.4 mm in a previous
study using deep learning trackers on VFSS [23].
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Table 1. Results of quantitative evaluation between ground truth hyoid locations and hyoid locations of 10 test sequences in full-length: Precision at 5 and 10 pixels, RMSE, AE, Pearson
correlation on x-axis and y-axis, relative error of ROM in the x-axis, y-axis and straight-line distance, and tracker frame rate.

Tracking
Methods

Precision at
10 Pixels ±

SD (%) ↑

Precision at 5
Pixels ± SD

(%) ↑

RMSE ± SD
(Pixel) ↓

AE ± SD
(Pixel) ↓

Pearson
Correlation

x-Axis ↑

Pearson
Correlation

y-Axis ↑

Relative Error
of ROM in

x-Axis (%) ↓

Relative Error
of ROM in

y-Axis (%) ↓

Relative Error
of ROM (%) ↓

Tracker Frame
Rate (FPS) ↑

SiamFC
(AlexNet) 98.9 ± 1.7 80.5 ± 18.9 3.85 ± 1.06 3.28 ± 1.10 0.985 ± 0.013 0.919 ± 0.034 13.3 ± 9.6 67.4 ± 70.1 9.5 ± 6.1 175 ± 2

DiMP
(ResNet-18) 98.5 ± 3.3 79.9 ± 18.20 4.66 ± 2.24 3.65 ± 1.29 0.980 ± 0.013 0.883 ± 0.102 12.8 ± 8.2 69.8 ± 34.1 11.2 ± 7.7 63 ± 2

DiMP
(ResNet-50) 97.7 ± 5.5 81.1 ± 15.6 4.95 ± 3.13 3.87 ± 1.61 0.979 ± 0.016 0.890 ± 0.123 14.4 ± 12.9 81.5 ± 85.4 14.4 ± 10.2 48 ± 1

SiamFC
(CIResNet-22) 97.6 ± 3.2 83.2 ± 17.0 5.21 ± 3.59 3.64 ± 1.54 0.951 ± 0.109 0.735 ± 0.424 34.1 ± 83.1 157.5 ± 228.2 35.5 ± 90.8 116 ± 7

ATOM
(ResNet-50) 97.1 ± 3.6 77.0 ± 18.8 7.93 ± 5.95 4.78 ± 1.81 0.910 ± 0.145 0.751 ± 0.243 28.8 ± 32.2 227.2 ± 391.3 21.2 ± 29.6 32 ± 2

ATOM
(ResNet-18) 96.9 ± 3.4 74.0 ± 19.7 7.36 ± 4.35 4.71 ± 2.05 0.956 ± 0.061 0.734 ± 0.212 56.3 ± 84.7 229.6 ± 361.3 52.0 ± 89.8 43 ± 1

ECO 94.1 ± 12.8 65.8 ± 30.6 5.16 ± 2.16 4.43 ± 2.10 0.978 ± 0.021 0.890 ± 0.083 191 ± 18.7 150.4 ± 238.5 17.4 ± 13.6 24 ± 3

CSRT 91.4 ± 9.4 63.1 ± 25.3 8.23 ± 5.19 5.90 ± 2.75 0.922 ± 0.116 0.710 ± 0.263 27.6 ± 26.4 93.0 ± 100.9 26.9 ± 25.3 61 ± 3

↑ ↓: Arrow pointing up indicates larger value is preferred and arrow pointing down indicates smaller value is preferred.
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Good correlations were shown between ground truth and inference location with a
Pearson’s correlation coefficient of 0.985 ± 0.013 and 0.919 ± 0.034 on the x and y-axis,
respectively. The relative error of ROM was 9.5% ± 6.1%, compared to the relative error of
3.3% to 9.2% reported in the previous study [49].

The precisions at both thresholds of 10 pixels and 5 pixels were tested to explore the
case of a possible stricter system. In the precision plot, the results at 10 pixels were quite
convincing. However, the standard deviation was dramatically increased at the threshold
of 5 pixels. The high standard deviation indicated that the performances for different
frames vary, and there could be outliers existing in some frames.

4. Discussion

In this study, we proposed to use deep learning tracking algorithms and correlation
filter tracking algorithms to automatically track the locations of the hyoid bone in swal-
lowing clips collected using ultrasound imaging. Generally, SiamFC trackers outperform
ATOM, DIMP, CSRT, and ECO. This could be attributed to the fact that hyoid bone tracking
in ultrasound images has a relatively simple background and contains no distractor with
similar features; it can also be attributed to the reason that only the center location of the
tracking box is concerned and tested. This minimum requirement in such a task could make
the proposal refinement step in ATOM and DiMP overcomplex for this task. Meanwhile,
Siamese trackers contain no online learning parts, which ensures their speed performance.
For such a tracking task, deeper feature extraction backbones did not have significant
performance gain but instead slowed the tracking process.

Overall, SiamFC has a superior tracking performance. This method could facilitate
speech therapists to perform routine evaluations on patients’ swallowing conditions using
ultrasound imaging by replacing manual annotations frame by frame with automatic track-
ing. The method was proven to have reliable performance qualitatively with visualized
traces and quantitatively with precision, RMSE, AE, Pearson correlation, and relative error
of ROM. Although the subject group in this study might be different from other studies,
the center error seems to be comparable with the manual measurement error of VFSS and
could be smaller than other automatic hyoid tracking methods on VFSS.

While the relative error of ROM suggests good agreement between inference and
ground truth, the y-axis ROM showed a more significant relative error in all tracking
methods. Pearson correlation of center location was also lower in the y-axis. This could be
due to: (1) acoustic shadow in the ultrasound image vertically above the hyoid bone and
(2) reduced range of motion in the y-axis due to ultrasound probe compression on the gel
pads and the tissue.

As mentioned previously, the model had a high standard deviation at the threshold of
5 pixels (1.63 mm), so we assessed possible outliers using the test sequence of the largest
RMSE (5.95 pixels) and AE (5.70 pixels). As shown in Figure 7, we concluded that the
sequence had a higher error than other sequences because the prediction location was
always on the left of ground truth, which generated a higher systematic error. Meanwhile,
the figure demonstrated outliers around frame 542 for a short range of time. While
the tracker chose the location left to acoustic shadow, ground truth was at the middle
acoustic shadow.
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Figure 7. Performance plot. Center error of all frames from a test sequence in full-length where the female swallows 10 mL
of paste liquid. The y-axis is a center error in pixel and the x-axis is frame number. Three example images from every
200 frames were chosen and displayed above the plot. The pink dot represents the center of inference, and the blue dot
represents the center of ground truth (annotation).

To analyze the possible cases where the model failed expectation, the frames in the
test data where center error exceeded 10 pixels were also examined. It was found that large
center errors existed when hyoid movement speed was higher. As ultrasound imaging
requires the line-by-line acquisition of reflected sound waves to form an image, objects
could repeatedly exist in different locations in one frame when objects move faster than
image acquisition lines. Figure 8 shows an ultrasound frame where two acoustic shadows
can be observed as the hyoid bone exists in both locations during fast movement. This
could be solved by using ultrasound imaging with higher frame rates, such as ultrafast
ultrasound, or by introducing a velocity smoothing function to find the highest possible
location of hyoid bone during the fast-moving frames. This might also be addressed with
model training approaches, such as applying a higher weight in loss function if one image
in the pair is close to hyoid movement events.

This study has several potential future directions. Training of detection algorithms,
such as YOLO [51], Faster-RCNN [52], and SSD [53] can be added in the first frame to
complete the entire automation process. Algorithms could also be developed to distin-
guish the hyoid movement events such as hyoid onset and hyoid offset. Multiple object
tracking can be used to detect the absolute or relative distance between the hyoid bone and
the laryngeal cartilage. Besides, segmentation algorithms may be used to discern other
anatomical landmarks like geniohyoid muscles and tongue.
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Figure 8. A frame in which two acoustic shadows of hyoid bone were seen due to fast hyoid
movement speed. Ground truth location (blue dot) and prediction (pink dot with pink bounding box).

A limitation of the study is that it has only included young and healthy adults,
considering elderly and dysphagia subjects might have different movement patterns.
Another limitation is that the number of trials was also not enough for comparisons of
performance between swallowing of different bolus types. Since only ten videos from
one male and one female, five bolus types each, were used for testing, the data size was
not enough for statistical analysis of tracker’s performance on types of swallow. Future
direction will need to include a larger dataset, i.e., older adults or dysphagia patients, or
more videos per type of swallows, to enhance the tracking algorithm’s applicability to
broader population groups.

5. Conclusions

In this work, we tested the performance of state-of-art deep learning algorithms and
correlation filters on tracking the hyoid bone location in ultrasound swallowing videos. The
performance of SiamFC in quantitative analysis methods was superior to other methods
tested in terms of speed and accuracy. It had comparable performance with the manual
annotation and could serve as a powerful tool to relieve the clinical practitioners from
reviewing hyoid locations frame by frame tediously in ultrasound images.

The precision of this method is 98.9%. RMSE and AE, suggesting the error of the
tracking method is around 1.07 mm to 1.25 mm. The tracker has also demonstrated accurate
results in ROM with a relative error of 9.5%± 6.1%. The results have shown that the tracker
has comparable performance with human annotation in our USV dataset and comparable
measurement error of hyoid bone on VFSS. This approach could also possibly outperform
other hyoid tracking methods on VFSS with lower RMSE.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21113712/s1, Video S1: Trace video. From a test sequence where the male swallows 10 mL of
paste liquid. Prediction hyoid locations (pink), which is the center of tracking bounding boxes, and
ground truth locations (blue) are visualized as points in each frame.
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