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Abstract: Gelatine methacryloyl (GM) shows high biocompatibility and is extensively used in
tissue engineering; however, few works have explored the use of GM in bioactive agent delivery.
This study adopts a microfluidic approach involving the use of flow-focusing microfluidic geometry
for microgel fabrication. This approach generates highly monodisperse microgels whose size can
be tuned by altering various fabrication conditions (including the concentration of the gel-forming
solution and the flow rates of different phases). By using tetracycline hydrochloride as a model
agent, the fabricated microgels enable prolonged agent release, with the encapsulation efficiency
being around 30–40% depending on the concentration of the gel-forming solution. Along with their
negligible cytotoxicity, our microgels show the potential to serve as carriers of bioactive agents for
food and pharmaceutical applications.

Keywords: microgels; microfluidics; flow-focusing geometry; nutraceuticals; controlled release

1. Introduction

Gelatine is a hydrolysis product of collagen [1–3], but compared to collagen, it shows
less antigenicity and higher aqueous solubility [4]. While a gelatine solution can undergo
gelation to form physical hydrogels upon a decrease in temperature, few derivatives
of gelatine are capable of forming chemical hydrogels [5]. A good example is gelatine
methacryloyl (GM), which is a derivative generated upon conjugation of methacrylate
groups to amine-containing groups of gelatine. One favourable property of GM is its high
tunability in properties, which can be manipulated simply by changing various synthetic
and processing parameters [4]. In addition, the surface of GM supports cell adherence and
growth [6]. This, along with the possibility of GM to undergo polymerisation in mild con-
ditions, enables GM to be widely adopted as scaffolds for cell encapsulation [7–9]. In fact,
the properties of GM as mentioned above are favourable not only for tissue engineering
but also for bioactive agent delivery. Along with its polymerisability upon UV irradiation,
GM can potentially be used to generate microgels via emulsion polymerisation as carriers
of bioactive agents.

Emulsion polymerisation is one of the commonly used approaches to generate micro-
gels. During the process, high shear energy is applied to mix a gel-forming solution with an
immiscible continuous phase to obtain emulsion particles for subsequent polymerisation
reactions [10–12]. This method enables quick preparation of a large number of emulsion
particles; however, the polydispersity of the generated microgels is high. Fragile bioactive
agents (e.g., peptides and proteins) may also be damaged by high shear energy during the
process of agent loading, which is generally performed concomitantly with the process of
emulsion polymerisation. To address these problems, this study incorporates a microfluidic
approach into the conventional process of emulsion polymerization to generate microgels
for bioactive agent delivery. During microgel fabrication, an aqueous gel-forming solution
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flowing in one channel is subjected to the shear stress generated by the continuous oil phase
flowing in another channel to produce microdroplets for subsequent photopolymerisation.
By using flow-focusing microfluidic geometry, along with the manipulation of various
fabrication conditions (including the concentration of the gel-forming solution and the flow
rates of different phases), we have successfully produced microgels with different sizes
and degrees of swelling for delivery of bioactive agents.

2. Materials and Methods
2.1. Materials

4-dimethylaminopyridine (DMAP), gelatine, and various other chemicals were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). SU-8 2000 was purchased from Mi-
croChem (Newton, MA, USA). Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco,
Grand Island, NE, USA), penicillin G-streptomycin sulphate (Life Technologies Corpo-
ration, Chicago, IL USA), and foetal bovine serum (FBS; Hangzhou Sijiqing Biological
Engineering Materials Co., Ltd., Hangzhou, China) were used as the cell culture medium.
Trypsin-EDTA (0.25% trypsin-EDTA) was obtained from Invitrogen (Carlsbad, CA, USA).

2.2. Synthesis of GM

7 g of gelatine and 0.35 g of DMAP were dissolved in 60 mL of dimethyl sulfoxide at
50 ◦C. Then, 3 mL of glycidyl methacrylate was added dropwise under constant stirring
at 50 ◦C in an inert nitrogen atmosphere. After 48 h of reaction, the mixture was dialysed
against deionized (DI) water for 3 days before lyophilisation to obtain GM.

2.3. Structural Characterisation

GM was solubilized in deuterium oxide (D2O). Proton nuclear magnetic resonance (1H-
NMR) spectra were recorded using an NMR spectrometer (500 MHz; Bruker Corporation,
Rheinstetten, Germany). The structures of gelatine, GM and MM were also characterized
by using Fourier-transform infrared (FT-IR) spectroscopy (Nicolet5700; Thermo Nicolet
Company, Waltham, MA, USA) at ambient conditions. Spectra were reported as an average
of 16 scans.

2.4. Generation of Microgels by Using a Microfluidic Flow-Focusing Device

A silicon wafer was spin-coated with SU-8 2000 and baked at 95 ◦C. A photomask
with patterns for microfluidic channels was placed on top of the wafer, followed by
UV irradiation to crosslink the patterned area. The crosslinked photoresist was further
solidified upon baking at 95 ◦C. After that, the wafer was put into the SU-8 developer,
and was rinsed with isopropanol. A silicone elastomer base and a curing agent were mixed
in a 10:1 ratio. The mixture was poured onto the master. Upon curing at 80 ◦C for 3 h,
a polydimethylsiloxane (PDMS) elastomer with engraved microchannels was detached
from the master. A hole punch (diameter = 0.5 mm) was adopted to produce the fluid inlet
and outlet. A glass slide was irreversibly bonded to the PDMS elastomer upon surface
treatment with oxygen plasma for 3 minutes to obtain a microfluidic device.

During microgel fabrication, plastic tubing (inner diameter = 0.3 mm, outer
diameter = 0.76 mm) was used to connect the inlet and outlet of the device. The aqueous
phase was prepared by dissolving GM (5 or 8% (w/v)) and 2-hydroxy-4′-(2-hydroxyethoxy)-
2-methylpropiophenone (0.2% (w/v)) in phosphate-buffered saline (PBS, pH 7.4)); whereas
the oil phase was prepared by mixing Span 80 (20% (v/v)) with mineral oil (Sigma Aldrich,
St. Louis, MO, USA). Different phases were injected into the device with controlled flow
rates by using syringe pumps (PHD 2000; Harvard Apparatus, Holliston, MA, USA).
Microgels were generated upon UV irradiation of the droplets generated in the device.
They were retrieved by centrifugation, followed by washing with PBS five times. Microgels
were designated as MM, with those fabricated from 5% (w/v), 6.5% (w/v) and 8% (w/v)
GM solutions being designated as MM50, MM65 and MM80, respectively.



Pharmaceutics 2021, 13, 787 3 of 10

2.5. Determination of the Swelling Behaviour

Microgels were immersed in PBS. Changes in the diameter of the microgels were
recorded under an inverted optical microscope (Eclipse TE2000-U; Nikon, Tokyo, Japan) at
regular time intervals and were analysed by using Image J software.

2.6. Thermogravimetric Analysis (TGA)

TGA of gelatine, GM and MM was performed using a Q50 TGA analyser (TA Instruments,
New Castle, DE, USA) equipped with platinum pans. Analysis was performed in an inert
nitrogen atmosphere from 40 ◦C to 740 ◦C. The heating rate was set as 10 ◦C min−1.

2.7. Evaluation of Cytotoxicity

3T3 mouse fibroblasts and HEK293 cells were cultured as previously described [13].
The cells were seeded in a 96-well plate at a density of 5,000 cells per well. The plates
were incubated at 37 ◦C under a humidified atmosphere of 5% CO2 for 24 h. Meanwhile,
lyophilised MM80 was ground in DMEM using mortar and pestle to obtain a suspension
with the desired concentration. The cell culture medium was replaced with 100 µL of the
suspension. After 5 h incubation at 37 ◦C, the suspension in each well was replaced with
the fresh cell culture medium. The CellTiter 96 Aqueous Non-radioactive Cell Proliferation
Assay (MTS assay; Promega Corp., Madison, WI, USA) was performed according to the
manufacturer’s instructions, either immediately or after 24 h of post-treatment incubation
to determine the cell viability (%) in each well.

2.8. Determination of the Encapsulation Efficiency

Tetracycline hydrochloride was adopted as a model agent. To form agent-loaded
microgels, MM50, MM65 and MM80 were prepared as usual but tetracycline hydrochlo-
ride was added to the aqueous phase at a concentration of 0.6% (w/v) prior to microgel
fabrication. The concentration of unloaded tetracycline hydrochloride was determined
using a ultraviolet-visible (UV-Vis) spectrophotometer (Cary 300; Varian, Palo Alto, CA,
USA) at λmax of 360 nm. The encapsulation efficiency (EE) was calculated using the
following equation:

EE(%) =
ml
mt
× 100% (1)

where ml is the mass of tetracycline hydrochloride encapsulated successfully by the micro-
gels, and mt is the total mass of tetracycline hydrochloride added during the encapsula-
tion process.

2.9. Evaluation of the Kinetics of Agent Release

The release sustainability of the microgels was evaluated based on a previously re-
ported protocol [14]. In brief, 1 g of lyophilised, agent-loaded microgels was placed in
10 mL of PBS (pH 7.4) and incubated at 37 ◦C. At regular time intervals, 1 mL of the release
medium was withdrawn and replenished by the same amount of PBS. The amount of
tetracycline hydrochloride released from the microgels was analysed using a UV-Vis spec-
trophotometer (Cary 300; Varian, Palo Alto, CA, USA) at λmax of 360 nm. The percentage
of cumulative agent release was calculated using the following equation:

Cumulative release (%) =
∑t

t=0 mt

m∞
× 100% (2)

where mt is the mass of tetracycline hydrochloride released from the microgels at time t,
and m∞ is the total mass of tetracycline hydrochloride loaded into the microgels. The re-
lease curves were fitted into different kinetic models (including the zero-order model,
the first-order model, the Higuchi model and the Korsmeyer-Peppas model) to analyse the
mechanism of agent release.
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2.10. Statistical Analysis

All data were presented as the means ± standard deviations of triplicate experiments.
Student’s t-test was performed to assess the statistical significance. Differences with a
p-value < 0.05 were considered to be statistically significant.

3. Results
3.1. Microgel Generation and Structural Characterisation

GM is a derivative of gelatine. The successful incorporation of methacryloyl sub-
stituent groups into gelatine was confirmed by 1H-NMR, in which the spectrum of GM
shows peaks at 5.8 and 6.2 ppm (Figure 1A). These peaks were assigned to the acrylic
protons of the grafted methacryloyl group. In addition, a peak was found at 1.9 ppm.
This peak was contributed by the methyl proton signal of the grafted methacryloyl group.
GM was adopted for the generation of microgels in a PDMS-based microfluidic device
(Figure 1B). During microgel formation, a pre-gel solution containing GM and 2-hydroxy-4′-
(2-hydroxyethoxy)-2-methylpropiophenone was used as the aqueous phase while mineral
oil containing Span 80 was used as the oil phase (Figure 1C).
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Figure 1. (A) 1H-NMR spectrum of GM. (B) A photo of the microfluidic device fabricated for microgel
generation. (C) A schematic diagram depicting flow-focusing microfluidic geometry.

In the microfluidic device, the aqueous phase flowed through one channel and was
intersected by the oil flow. A high concentration of Span 80 was adopted in this study
to increase the viscosity of the oil phase so that adequate shear stress could be generated
to produce aqueous droplets. In addition, the presence of a high concentration of Span
80 helped stabilise the aqueous droplets and prevent coalescence for the subsequent
formation of monodisperse microgels for bioactive agent delivery (Figure 2A). The structure
of the fabricated microgels, along with those of gelatine and GM, were characterised
by using FT-IR (Figure 2B). In the spectrum of gelatine, a peak was found at around
1617 cm−1. This amide I band was attributed to C=O stretching vibrations of the amide
group. In addition, a signal was detected at 1540 cm−1 and was assigned to N–H bending
vibrations and C–H stretching vibrations. Similar peaks were also found in the spectrum
of GM, which displayed characteristic bands at around 1631 cm−1 (amide I), 1556 cm−1

(amide II). In the spectrum of GM, a signal was detected at around 1720 cm−1. This signal
was attributed to the carbonyl signal from the methacrylate group (C=O stretching) and was
also found in the spectrum of MM. The methacrylate group in GM and MM was expected
to be the functional group that enabled photo-crosslinking during microgel formation.
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and MM.

3.2. Thermal Properties and Size Control

The thermal properties of gelatine, as well as those of GM and MM, were characterised
by using TGA (Figure 2C). The curve of gelatine exhibited two stages of weight loss.
The first stage occurred below 220 ◦C, accounting for a weight loss of around 13.5%.
This weight loss step was attributed to the loss of adsorbed moisture. The second stage
occurred at the temperature range of 258–485 ◦C, leading to a weight loss of around
60%. In the curves of GM and MM, the percentage of weight loss in the first stage of
the decomposition process from 50 to 220 ◦C was significantly reduced as compared to
that of gelatine, suggesting an increase in the hydrophobicity of gelatine after structural
modification. This is consistent with the observation made previously by Rajitha and
colleagues [15], who modified gelatine with diethylenetriamine (DETA) and found that an
increase in the hydrophobicity of gelatine leads to a decrease in the percentage of weight
loss in the stage of moisture evaporation.

The use of a flow-focusing microfluidic device for microgel fabrication in this study
enabled the generation of microgels with controlled size. The size of the microgels was
manipulated by varying the ratio of the flow rates of the aqueous and oil phases (Qaq/Qo),
and hence the magnitude of shear stress applied to the aqueous flow (Figure 3). Our re-
sults showed that the Qaq/Qo values are positively related to the microgel diameter
(Figure 4) and are negatively related to the surface-area-to-volume ratio (SA:V) of the
microgels formed (Figure 5). The concentration of GM in the aqueous phase also had a
positive relationship with the size of the generated microgels. This was attributed to the
fact that an increase in the GM concentration led to an increase in viscosity, leading to the
formation of larger droplets. The size of the microgels further increased upon immersion
in PBS, leading to a reduction in the SA:V values.
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changes in the Qaq/Qo value. The diameter was measured immediately after microgel fabrication
and after swelling in PBS for 24 h.
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3.3. Performance in Bioactive Agent Delivery

In order to be used as carriers, the microgels have to possess a high safety pro-
file [16–19]. The toxicity of the microgels was examined in vitro by using the MTS assay.
No significant loss of cell viability was observed after 5 h treatment with the microgels.
This indicated that the microgels have negligible acute cytotoxicity (Figure 6). To deter-
mine the chronic cytotoxicity of the microgels, the viability of the treated cells was further
studied after 24 h post-treatment incubation. No detectable cytotoxicity was observed
in all concentrations tested. This illustrated the negligible toxicity of the microgels for
biological applications.
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Figure 6. Viability of 3T3 fibroblasts and HEK 293 cells after 5 h treatment with MM, (A) before and
(B) after 24 h post-treatment incubation.

To evaluate the performance of the microgels in bioactive agent delivery, tetracycline
hydrochloride was adopted as a model agent. Depending on the concentration of GM
in the microgels, the EE was estimated to be around 30–40% (Figure 7A). Among the
microgels tested, MM80 displayed the highest sustainability of agent release (Figure 7B).
This was partially attributed to the fact that, under the same Qaq/Qo value, microgels
generated from a pre-gel solution containing a lower concentration of GM have a smaller
size. Because a reduction in the particle size may cause a decrease in the diffusion length
and an increase in the SA:V value [20–23], this favours the diffusion of the loaded molecules
from the microgels to the surrounding medium and hence reduces the sustainability of
agent release [24].

Upon fitting the curves of agent release into various kinetic models (including the
zero-order model, the first-order model, the Higuchi model and the Korsmeyer-Peppas
model) and based on the calculated regression coefficient (r2) values (Table 1), the release
profiles of the agent-loaded microgels were found to fit the Higuchi model the most.
This suggested that the process of agent release involves the penetration of the release
medium into the hydrogel matrix. In addition, the release exponents (n), as calculated by
using the Korsmeyer-Peppas’ equation, were 0.611, 0.516 and 0.461 for MM80, MM65 and
MM50, respectively. This indicated that the release of tetracycline hydrochloride from the
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microgels is controlled by multiple processes (including polymer relaxation and agent
diffusion), with anomalous non-Fickian transport being the major release mechanism.
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