
1.  Introduction
A Moho recovery is one of a classical geophysical inversion problem, which is typically realized using re-
sults from seismic tomographic surveys (e.g., Bassin et al., 2000; Laske et al., 2013; Lebedev et al., 2013; 
Meier et al., 2007; Mooney et al., 1998; Nataf & Ricard, 1996; Shapiro & Ritzwoller, 2002; Soller et al., 1982). 
Since seismic data over large parts of the world are still not yet available or their coverage is limited and 
irregular, products from the Earth's satellite observation systems are used in gravimetric or gravimetric–
seismic methods for a Moho recovery. This became particularly relevant after launching two gravity-dedi-
cated satellite missions, the Gravity Recovery and Climate Experiment (GRACE) (Tapley, Bettadpur, Ries, 
et al., 2004; Tapley, Bettadpur, Watkins, et al., 2004) and the Gravity field and steady-state Ocean Circulation 
Explorer (GOCE) (e.g., Floberghagen et al., 2011) that provide information about the Earth's gravity field 
globally with high accuracy and relatively high resolution (∼80 km on equator). Gravimetric methods for a 
Moho recovery require topographic information that is globally provided from satellite altimetry missions, 
such the Shuttle Radar Topography Mission. Bathymetric information offshore is obtained from processing 
Sea Surface Topography (SST) data from the TOPEX/Poseidon, Jason-2, and other satellite altimetry mis-
sions by means of converting relative SST changes into corresponding relative marine gravity changes that 
are then used to predict the seafloor relief.

Various algorithms have been developed for a gravimetric Moho recovery. The Parker–Oldenburg's method 
(Oldenburg, 1974; Parker, 1972) is probably the most widely used for this purpose. Parker (1972) derived a 
gravity forward modeling formula to calculate gravity caused by an uneven, uniform material layer by means 
of a Fourier series. Later, Oldenburg (1974) rearranged the forward modeling formula in order to find the 
depth of density interface iteratively from gravity profiles. Braitenberg et al. (1997) developed independently 
an iterative scheme in which the inversion is carried out in the spectral domain, and the forward calculation 
with prisms is done in the spatial domain. Braitenberg et al. (2000) applied this method to determine the 
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Moho geometry in Tibet. Gómez-Ortiz and Agarwal (2005) generalized the Parker–Oldenburg's method for 
a 3D gravity inversion. The Parker–Oldenburg's method has been applied in local and (small-scale) regional 
studies, for instance, by Rui (1985), Reamer and Ferguson (1989), Ferguson et al. (1988), Tiberi et al. (2001), 
Tirel et al. (2004), Gómez-Ortiz and Agarwal (2005), Shin et al. (2006, 2007, 2015), Chappell and Kusznir 
(2008), Kiamehr and Gómez-Ortiz (2009), Block et al. (2009), Prutkin and Saleh (2009), Hsieh et al. (2010), 
Steffen et al. (2011), Gómez-Ortiz et al. (2011), Bagherbandi (2012), Jiang et al. (2012), Aitken et al. (2013), 
Prasanna et al. (2013), Van der Meijde et al. (2013, 2015), Zhang et al. (2015), and Grigoriadis et al. (2016). 
The application of this method in (large-scale) regional, continental, or global studies is, however, somehow 
restricted by the fact that this method is formulated in the frame of the Cartesian planar topocentric coordi-
nates, while disregarding the Earth's sphericity.

For global and large-scale regional studies, the Vening Meinesz–Moritz (VMM) method (Moritz,  1990; 
Sjöberg, 2009; Vening Meinesz, 1931) is preferably used. Mathematical foundations of this method were 
formulated by Moritz (1990). He extended the Vening Meinesz's isostatic hypothesis from regional to glob-
al model and derived an iterative algorithm for a Moho recovery from isostatic gravity anomalies. Lat-
er, Sjöberg (2009) reformulated Moritz's problem by means of solving the (nonlinear) Fredholm's integral 
equation of the first kind and called it the VMM's inverse problem of isostasy. The VMM functional model 
comprises linear spectral terms as well as the (second-order) spatial term that is solved by means of surface 
integrals. Consequently, the solution of VMM inverse problem is numerically relatively complex and time 
consuming because it involves a global integration to solve the second-order term. The Parker–Oldenburg's 
method is, on the other hand, numerically more efficient but applicable only for local and (small-scale) 
regional studies due to disregarding the Earth's sphericity.

In this study, we developed an alternative algorithm for a regional/global gravimetric Moho recovery in 
spatial and spectral domains that are functionally simple and numerically very efficient. This is possible 
because gravity changes are proportionally related to density changes. To facilitate this linear functional 
model between gravity and density changes in the context of a gravimetric Moho recovery, we first defined 
the Moho depth undulations in terms of a condensation layer with respect to a mean Moho depth. We then 
used a linear relationship between gravity and surface density to derive the expressions for a Moho recovery 
from gravity data and provided also respective expressions for gravity gradiometry data. Our functional 
model assumes a variable density contrast at the Moho interface and takes into consideration the Earth's 
sphericity but. Moreover, as mentioned above, this method is also numerically more efficient than the VMM 
or Parker–Oldenburg's methods.

The study is organized into four sections. Functional models are derived in Section 2. These functional 
models are then tested using real data to estimate the Moho depth beneath Tibet in Section 3. Results are 
presented in Section 4 and discussed in Section 5. The study is concluded in Section 6. We note that in this 
study we mainly focus on a validation of newly developed algorithms rather than tectonic and geological 
interpretation of results.

2.  Functional Models
In this section, we derived functional models for a gravimetric Moho recovery from gravity and gravity gra-
diometry data in terms of a condensation layer in spherical and spatial domains.

2.1.  Functional Models in Spectral Domain

We first define the Moho depth undulations in terms of a single condensation layer on a sphere of which 
radius is defined as    0R R D , where R is the Earth's mean radius and 0D  denotes the mean Moho depth. 
The gravitational potential T generated by the Moho depth undulations can then be described by the fol-
lowing surface integral:

   
 

  
  

   

 




 Σ

,
, , Σ,

, , , , ,
T r G d

l r R
∬� (1)

CHEN ET AL.

10.1029/2020EA001261

2 of 19



Earth and Space Science

where       , , , , ,l r R  is the Euclidian's spatial distance between a computation point   , ,r  and an inte-

gration point     , ,R ,    
2

0Σd R D d  is an infinitesimal surface element ( d  denotes a unit sphere), 
and Σ is the total integral surface.

We further define the surface density anomaly    ,  as a function of the (variable) Moho density contrast 
Δ  and the Moho undulation h (with respect to 0D ). We write

            , Δ , , .h� (2)

To find a functional model for a gravimetric Moho recovery in spectral domain, we first define the reciprocal 
spatial distance l−1 in Equation 1 as follows (e.g., Heiskanen & Moritz, 1967):

 
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where cos reads

          cos cos cos sin sin cos .� (4)

Applying the additional theorem, the Legendre polynomials nP are expressed in terms of the (fully normal-
ized) Legendre associated functions nmP  in the following form:
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We further define the (fully normalized) surface spherical harmonic functions 
nmY  of degree n and order m 

by (e.g., Colombo, 1981)
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Substituting from Equation 6 to Equation 5, we arrive at
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Combining Equations 1, 3 and 7, we get
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We apply a spherical harmonic analysis to define    ,  in terms of their spherical harmonics. We write

    


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The substitution from Equation 9 back to Equation 8 yields

        


      



  


    



12 0
0 10 0 0

1, , 4 , .
2 1

n
n

nm nmnn m

R D
T r G R D Y

nr
� (10)

CHEN ET AL.

10.1029/2020EA001261

3 of 19



Earth and Space Science

We further scale the expression in Equation 10 by the geocentric gravitational constant GM that is defined 
by

  34 .
3 EGM R� (11)

From Equations 11 and 10, we get
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where
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From Equation 13, we define the spherical harmonic coefficients of surface density anomalies as follows:
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The application of spherical harmonic synthesis in Equation 14 yields
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Now we introduce the Moho depth as a function of surface density anomalies. From Equations 2 and 15, 
we write
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where Δ  is a variable Moho density contrast.

If  Δ const., Equation 16 reduces to

     
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,
, .

Δ
D D� (17)

The expression in Equation 14 defines a functional relation between the spherical harmonic coefficients 
of the surface density anomaly and the disturbing potential (Chen et al., 2018). A similar spectral expres-
sion for a Moho depth recovery from the disturbing potential coefficients was derived before by Reguzzoni 
et al. (2013). The expressions for a Moho modeling from the GOCE gravity gradient data were derived in 
Reguzzoni and Sampietro (2015) and Eshagh and Hussain (2016).

In the next section, we derive the expressions for gravity and gravity gradient data in spatial and spectral 
forms. We note that the expressions derived in the spatial form are suitable for a regional gravimetric Moho 
recovery. As mentioned above, the developed algorithm is numerically very efficient. The reason is that the 
algorithm is based on a linear relation between gravity (or gravity gradient) and density changes.

To begin with, we first define the gravity disturbance as a negative radial derivative of the disturbing poten-
tial generated by the Moho depth undulations, that is,

 
 


.Tg

r
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Inserting from Equation 18 to Equation 12, we get

      


    



  

 
     

 

2 1

2 0 0 0
, , 1 , Δ .

n n

nm nm
n m

GM Rg r n Y V
rR

� (19)

The combination of Equations 13 and 19 yields
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After some algebra, we arrive at
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We further simplify Equation 21 as follows:
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The expression in Equation  22 defines the relationship between spherical harmonics of surface density 
anomalies and spherical harmonics of gravity disturbances.

By analogy with Equation 18, we define the expression for a Moho depth recovery from gravity gradiometry 
data. We first define the vertical gravity gradient by
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Substituting from Equation 12 to Equation 23, we arrive at
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The combination of Equations 13 and 24 yields
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Finally, we simplify the expression in Equation 26 as follows:
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The expressions in Equations 22 and 27 define (linear) functional models for a Moho recovery from gravity 
and gravity gradiometry data, respectively, in the spectral domain. The corresponding expressions in the 
spatial domain are derived next.
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2.2.  Functional Models in Spatial Domain

Applying spherical harmonic synthesis on both sides of Equation 13, we get
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We further rearrange Equation 28 into the following form:
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where    ,n  is defined by (e.g., Heiskanen & Moritz, 1967)
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The substitution from Equation 29 to Equation 30 yields
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Introducing the parameter     0 /R D R, the expression in Equation 31 becomes
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From Equation 32, we define the surface integral kernel S as follows:
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We further write the following identity:
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Combining Equations 33 and 34, the closed form of the kernel function S is found to be
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Inserting from Equation 35 back to Equation 32, the relationship between the disturbing potential and the 
surface density anomalies is obtained. It reads
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Applying spherical harmonic synthesis on both sides of Equation 20, we arrive at
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From Equation 37, we further write
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Combining Equations 30 and 38, we get
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Consequently,
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Introducing the parameter    1 0 /R D r, we write
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We further define the integral kernel Sg by
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By analogy with Equation 34, we get
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The first derivative of the expression in Equation 43 with respect to 1 reads
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Inserting from Equations 43 and 44 back to Equation 42, the closed form of Sg is found to be

 
 

  


     




   

2 3
1 1

2 2
1 1 1 1

cos
.

1 2 cos 1 2 cos
gS� (45)

The spatial expression for a Moho recovery from gravity data then reads

     


        , , .gg G S d∬� (46)

Applying spherical harmonic synthesis on both sides of Equation 25, that is,
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and some algebra, we arrive at
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Combining Equations 30 and 48, we get
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From Equation 49 and the definition of    1 0 /R D r, we introduce the integral kernel SΓ in the follow-
ing form:
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Moreover, we adopt the following notation:
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The first derivative of Equation 44 with respect to 1 reads
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Combining Equations 44, 51 and 52, the kernel function SΓ is obtained in the following closed form:
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The relationship between the gravity gradient and the surface density anomalies is then described by
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The surface integral equations (for gravity and gravity gradient data) in Equations 46 and 54 are discretized 
to form a system of linearized observation equations to solve the gravimetric inverse problem for a Moho 
depth recovery. Using the vector–matrix notation, the system of observation equations is written as

  ,Ax b ε� (55)

where A is the design matrix, x is the vector of the unknown surface density anomaly values, b is the vector 
of observations (gravity or gravity gradient values), and ε is the vector of residuals.

The linearized system of observation equations in Equation 55 is ill-conditioned, and it inverse solution is 
sensitive to a noise from observation data. The Tikhonov's regularization (Phillips, 1962; A. Tikhonov, 1963; 
A. N. Tikhonov & Arsenin, 1977) is often applied to stabilize an inversion procedure. The principle is to 
define the regularization solution Xλ that minimizes the following weighted combination of the residual 
norm and the side constraint:

X Ax b Ix»    argmin
2

2 2

2

2
 ,� (56)

where I is the identity matrix, and  is a regularization parameter. We applied the generalized cross-valida-
tion to find the optimal regularization parameter.

Combining Equations 55 and 56, the solution for x reads

 


 
12 ,T TX A A I A bλ� (57)

where Xλ is a regularized solution which can reduce noise from input data.

3.  Numerical Realization
We applied numerical models in the spatial form to estimate the Moho depth in Tibet. Input data acquisi-
tion and computational procedures are summarized next.

3.1.  Input Data Acquisition

We computed the (free-air) gravity disturbances and the corresponding (radial) gravity gradient values 
from the satellite gravitational model GOCO06S (Kvas et al., 2019) with a spectral resolution up to degree/
order of 180 after removing the GRS80 (Moritz, 2000) normal gravity and gravity gradient components, 
respectively. We then applied the tesseroid method (Asgharzadeh et al., 2007; Grombein et al., 2013; Wild-
Pfeiffer, 2008) to compute the topographic and stripping corrections (to gravity and gravity gradient) due to 
bathymetry, sediments, and consolidated (crystalline) crust. The topographic and bathymetric gravity and 
gravity gradient corrections were computed from the ETOPO1 (Amante & Eakins, 2009) topographic/ba-
thymetric data. The density and thickness data of sediments and consolidated curst were retrieved from the 
CRUST1.0 global seismic crustal model (Laske et al., 2013). It is worth mentioning that a spectral resolution 
up to degree of 180 corresponds to a spatial resolution of about 1° (in terms of a half wavelength) or about 
110 km (on equator) used in this study to compute gravity field quantities and to estimate the Moho depth 
is adequate for a gravimetric Moho modeling. Turcotte and Schubert (2014, p. 252) acquired that the spatial 
resolution of about 100 km represents a limit below which loads are not compensated. In other words, the 
gravimetric determination of more detailed features in the Moho geometry might not be realistic. A more 
detailed regional modeling of the Moho depth from gravity data is possible only if there is enough seismic 
Moho estimates to constrain the gravimetric result.

We adopted the upper continental crustal density of 2,670 kg/m3 (cf., Hinze, 2003) to compute the topo-
graphic correction. To compute the bathymetric correction, we used a seawater density–depth equation 
(Gladkikh & Tenzer,  2012) which is more accurate than a uniform density model (cf., Tenzer, Novák, 
et al., 2012; Tenzer, Pavel, et al., 2012; Tenzer et al., 2010, 2011). We then used the CRUST1.0 sediment and 
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consolidated crustal density and thickness data to compute the sediment and consolidated crust gravity and 
gravity gradient corrections. To realistically simulate a gravimetric Moho recovery from satellite-derived 
gravitational models, all computations were realized on a 1° × 1° grid of spherical coordinates at satellite 
elevation of 250 km within the data area that extends the study area by 5° in each direction. The topography 
and tectonic setting of the study area are shown in Figure 1.

We applied the computed gravity corrections to the free-air gravity disturbances. By analogy, we applied the 
corresponding gravity gradient corrections to values of the vertical gravity gradient. In addition, we subtract-
ed also a long-wavelength part of gravity and gravity gradient spectra up to degree 17 of spherical harmonics 
in order to suppress a signature of density heterogeneities within the lower mantle (e.g., Bowin, 2000). This 
spherical harmonic degree was selected based on a principle of minimizing a bias between the gravimetric 
and seismic (CRUST1.0) Moho depths. The Bouguer gravity disturbances and gravity gradient values ob-
tained after applying these procedures are shown in Figure 2. We note that regional maps of individual grav-
ity and gravity gradient corrections as well as intermediate results obtained after applying these corrections 
to observed gravity disturbances and vertical gravity gradient values are not presented here. Tenzer and 
Chen (2019) presented and interpreted globally these gravity corrections and step-wise corrected gravity 
disturbances, and Novák and Tenzer (2013) conducted a similar study for the gravity gradient.

We see a similar spatial pattern in both the Bouguer gravity and gravity gradient maps. Maximum negative 
values of the Bouguer gravity disturbances and gravity gradients are detected over Tibet and Himalayas. 
Small negative values (and partially also small positive gravity gradients) are seen over continental basins 
(Tarim, Sichuan, and Ganga) as well as over the Alashan Block. This prevailing spatial pattern confirms a 
high (negative) correlation between both gravity field quantities and a Moho geometry that is dominated by 
an isostatic signature of mountains and elevated plateau. This isostatic signature is obviously characterized 
by large negative values of the Bouguer gravity disturbances and gravity gradient. In contrast, lowlands and 
continental basins are characterized by small, typically negative values.
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Figure 1.  Topography and tectonic setting of the study area. Abbreviations used: Sichuan Basin (SB), Northwest 
Sichuan Subblock (NSSB), Bayan Hara Block (BHB), Alashan Block (AB), Qaidam Basin (QDB), Lhasa Block (LB), 
Tarim Block (TRB), Himalayan Block (HB), Qilian Block (QLB), Qiangtang Block (QTB), and Tian Shan Block (TSB). 
Yellow beach balls indicate locations of large earthquakes occurring between 1976 and 2019 with magnitude exceeding 
6.0 (on Richter's scale) (see website: https://www.globalcmt.org).
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Figure 2.  Regional maps of (a) Bouguer gravity disturbances (statistics: min, −947 mGal; max, −59 mGal; mean, −553 
mGal; standard deviation STD, 223 mGal) and (b) Bouguer gravity gradients (statistics: min, −8.6 E; max, 1.1 E; mean, 
−3.9 E; STD, 2.6 E).
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3.2.  Moho Parameters

Since a Moho depth recovery from the gravity (or gravity gradiometry) data is a nonunique problem, some a 
priori assumptions are required to solve this problem, particularly by selecting a mean Moho depth and the 
Moho density contrast. In our approach, we used the mean Moho depth of 50.6 km. This value was obtained 
as the average Moho depth within the study area based on the CRUST1.0 model. For the constant Moho 
density contrast, different values can be used. Dziewonski and Anderson (1981) adopted a constant value 
of 480 kg/m3 in the Preliminary Reference Earth Model. Sjöberg and Bagherbandi (2011) estimated that the 
global average Moho density contrast is 448 ± 187 kg/m3. They also provided individual estimates for the 
continental crust of 678 ± 78 kg/m3 and for the oceanic crust of 334 ± 108 kg/m3. The estimated value of 
485 kg/m3 by Tenzer, Novák, et al. (2012) and Tenzer, Pavel, et al. (2012) was later updated to 445 kg/m3 (cf., 
Tenzer et al., 2015) based on applying more advanced methods and using more recent data sets. We adopted 
this value to define the uniform Moho density contrast. We also adopted this density value for the crust 
in definition of the variable Moho density contrast and used the uppermost mantle density data from the 
CRUST1.0 global seismic model. We note that by removing low-degree spherical harmonics (up to degree 
17) from gravity and gravity gradient spectra, we mainly removed a signature of density heterogeneities 
within the lower mantle, while a gravitational signature of more localized density heterogeneities within 
the uppermost mantle (including a Moho geometry) is still present at a medium-to-higher frequency of 
gravity and gravity gradient spectra. The variable Moho density contrast is shown in Figure 3. Within the 
study area, these density contrast variations are within 560–780 kg/m3.

We used the Bouguer gravity disturbances and gravity gradient values computed (on a 1° × 1° grid at sat-
ellite elevation of 250 km) within the data area to estimate the Moho depth (on a 1° × 1° grid) within the 
study area of Tibet. The results were obtained by solving the system of normal equations with regularization 
in Equation 57.

4.  Results
Results of a Moho recovery from the Bouguer gravity disturbances and gravity gradient values for the uni-
form and variable Moho density contrasts are presented in Figure 4. All four gravimetric Moho solutions 
have a similar spatial pattern. Nevertheless, we also see some significant regional differences between them. 
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Figure 3.  Moho density contrast computed as the difference between the CRUST1.0 uppermost mantle density and the 
reference crustal density (statistics: min, 560 kg/m3; max, 780 kg/m3; mean, 701 kg/m3; STD, 37 kg/m3).
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This is particularly evident from deeper Moho estimates beneath central Tibet and Himalaya when disre-
garding density contrast variations at the Moho interface. To inspect these differences, we compared these 
four gravimetric results with existing seismic and gravimetric models.

We used the two seismic and two gravimetric Moho models (see Figure 5 and statistics in Table 1) to validate 
our results obtained by applying our algorithm (shown in Figure 4). In particular, we used the Moho depth 
from the CRUST1.0 seismic global model. We then used the regional seismic Moho model prepared by Li 
et al. (2014). We also compared our results with the gravimetric results obtained by applying the VMM and 
Parker–Oldenburg's methods. For this purpose, we applied the Parker–Oldenburg's method to compute the 
Moho depth and used the same input gravity data and parameters (i.e., the mean Moho depth and the con-
stant Moho density contrast) as for the computation of our gravimetric result (for the uniform Moho density 
contrast). The VMM gravimetric Moho depth model was prepared by Bagherbandi (2012). The Moho depth 
differences between gravimetric and seismic results are plotted in Figure 6; for their statistical summary see 
Table 2.

From the comparison of results in Figures 4 and 5, we see that all our four regional gravimetric solutions 
(Figure 4) exhibit a spatial pattern that is generally consistent with the regional seismic Moho model pre-
pared by Li et al. (2014) (Figure 5b). In contrast, the CRUST1.0 seismic and regional gravimetric solutions 
computed by applying the VMM (Bagherbandi, 2012) and Parker–Oldenburg's methods (Figures 5a, 5c, 
and 5d) exhibit much more complex spatial variations in the Moho depth. This is most evident by the exist-
ence of two or more localized maxima of the Moho deepening in these three results located in Hindu Kush 
and central Himalaya.
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Figure 4.  Gravimetric Moho depth solutions computed from the Bouguer gravity disturbances for (a) the uniform and (b) variable Moho density contrasts. 
The corresponding solutions obtained from the Bouguer gravity gradient values for the uniform and variable Moho density contrasts are shown in (c) and (d), 
respectively.
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5.  Discussion
As seen in Table 2, the gravimetric results obtained by applying our algorithm very closely agree with the 
CRUST1.0 model by means of a bias. This is particularly evident for the results obtained from the Bouguer 
gravity disturbances (with a minimum bias), while the corresponding results obtained from the Bouguer 
gravity gradients are slightly biased. This is explained by the fact that we computed the mean Moho depth 
parameter by averaging from CRUST1.0 data. The same applies for the gravimetric results computed by 
applying the VMM and Parker–Oldenburg's methods. All these regional gravimetric solutions are, however, 
slightly biased when compared with the regional seismic model prepared by Li et al. (2014). In this case, 
the most biased is the result obtained from the Bouguer gravity gradient data based on applying our algo-
rithm. This finding is explained by the fact that a gravity gradient inversion has a more localized support. 
A far-zone contribution typically affects more results from a gravity gradient rather than gravity inversion. 
Nevertheless, a similar bias is also found for the VMM result from the Bouguer gravity disturbances.

We observe much more significant inconsistencies between the gravimetric and seismic results. The Moho 
depth differences locally reach or even exceed 20 km. These large differences exist also between individual 
regional gravimetric solutions. These large differences are obviously reflected also in the RMS of Moho 
depth differences (Table  2). All four regional gravimetric solutions computed from the Bouguer gravity 
disturbances (i.e., based on applying the VMM and Parker–Oldenburg's methods as well as our algorithm) 
closely agree with the regional seismic model prepared by Li et al. (2014). These gravimetric results have 
also a very similar agreement with the CRUST1.0 global seismic model. When comparing the RMS fit of 
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Figure 5.  Moho models used for the validation: (a) CRUST1.0 global seismic model, (b) regional seismic model prepared by Li et al. (2014), (c) regional 
gravimetric model based on applying the Parker–Oldenburg's method, and (d) regional gravimetric model prepared by Bagherbandi (2012) based on solving the 
VMM inverse problem. VMM, Vening Meinesz–Moritz.
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our gravimetric results obtained by applying our algorithm with respect 
to both seismic models, we see that the results computed for the variable 
Moho density contrast are slightly worse than those obtained for the uni-
form Moho density contrast. This could be explained by uncertainties in 
the CRUST1.0 uppermost density data that propagate to uncertainties of 
the variable Moho density contrast values used for the computation of 
this regional gravimetric model.

Despite some relatively large regional differences found in presented re-
sults, these inconsistencies between gravimetric and seismic models are 
not unexpected when taking into consideration uncertainties in seismic 
and gravimetric Moho models (e.g., Knapmeyer-Endrun et al., 2014) as 
well as relatively large Moho depth variations in Tibet and Himalaya. 
These differences are attributed to several factors. Seismic models are 
likely to a large extent affected by a relatively low resolution of seismic 
surveys in this study area. Gravimetric results are, on the other hand, 
affected by relatively large uncertainties of used lithospheric density 
models that are determined from limited seismic data in that region. 
Moreover, another factor that limits availability of a lithospheric densi-
ty information is the fact that there is not a direct link between seismic 
wave velocity and mass density. In other words, this factor significantly 
limits the accuracy of lithospheric density models derived from seismic 
data and consequently affect the accuracy of estimated Moho depth from 
gravity data corrected for the gravitational contribution of crustal density 
structure, while also taking into consideration the lithospheric mantle 
density information in the variable Moho density contrast.

Interestingly, our algorithm provides the best result when using the Bouguer gravity gradients. As seen in 
Table 2, this result has the best agreement (by means of the RMS fit) with the regional as well as global 
seismic Moho models, but only in case of using the uniform Moho density contrast. Surprisingly, possibly 
large uncertainties in the CRUST1.0 uppermost density data much more significantly affect the gravimetric 
results obtained from the Bouguer gravity gradients than those obtained from the Bouguer gravity distur-
bances. A possible explanation is that the results from the Bouguer gravity gradients are more affected by 
these density uncertainties beneath Tibet. On the contrary, these uncertainties are partially mitigated in 
the results from the Bouguer gravity disturbances that depend on larger area where these uncertainties are 
likely smaller than beneath Tibet with a relatively low seismic data coverage.

From these findings, we could conclude that our algorithm for a gravimetric Moho recovery performs sim-
ilarly as the VMM and Parker–Oldenburg's methods. Our algorithm, however, improves the results when 
the Bouguer gravity gradients are used as the input data.

6.  Summary and Concluding Remarks
Data products obtained from the Earth's satellite observation systems have become indispensable in vari-
ous geoscience studies that are not limited to only the research of climate, surface processes, hydrosphere, 
atmosphere, or cryosphere but involve also studies of the Earth's interior as well as geodynamic processes 
inside the Earth, such as the glacial isostatic adjustment, mantle convection, or global tectonism. In the 
context of the Earth's inner structure studies, particularly focusing on the Moho geometry and closely re-
lated isostatic mechanisms, the gravity information from the satellite missions GRACE and GOCE is the 
most relevant for these studies together with satellite altimetry products that provide information about 
the Earth's surface geometry. The main advantage of these data products is their global and homogenous 
coverage with well-defined stochastic properties. In contrast, seismic data that have been primarily used to 
investigate the Earth's interior do not yet sufficiently cover large parts of the world. Exploiting possibilities 
of using satellite data in geoscience studies, we developed a numerically efficient algorithm for a Moho 
recovery from satellite gravity and gravity gradiometry data.
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Moho depth Min (km) Max (km) Mean (km) STD (km)

1.0CRUSTD 33.3 74.8 50.6 9.2

SeismicD 32.5 82.0 53.3 10.2

POD 29.7 75.4 51.5 9.3

VMMD 34.8 80.2 50.3 10.6

uniformD 34.5 73.5 50.5 8.8

Dvariable 35.4 70.5 50.6 6.2
Γ
uniformD 31.5 70.6 50.2 9.3

Γ
variableD 36.2 68.2 49.4 6.4

Note. Notation used: 1.0CRUSTD  is CRUST1.0 Moho depth; SeismicD  is the 
seismic Moho depth provided by Li et al. (2014); POD  is the gravimetric 
Moho depth obtained by applying the Parker–Oldenburg's method; VMMD  
is the gravimetric depth obtained by applying VMM method; uniformD  and 
Dvariable are Moho depth estimates from the Bouguer gravity disturbances 
(for the uniform and variable Moho density contrasts) by applying our 
algorithm; and Γ

uniformD  and Γ
variableD  are the corresponding Moho depth 

estimates from the Bouguer gravity gradient values (for the uniform and 
variable Moho density contrasts), respectively.

Table 1 
Statistics of the Moho Depth Results
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Figure 6.  Moho depth differences: (a) 1.0CRUST uniformD D , (b) 1.0CRUST variableD D , (c) seismic uniformD D , (d) seismic variableD D , (e) PO uniformD D , (f) PO variableD D ,  
(g) VMM uniformD D , (h) VMM variableD D , (i) 1.0CRUST POD D , (j) seismic POD D , (k) VMM POD D , (l)  Γ

1.0CRUST uniformD D , (m)  Γ
1.0CRUST variableD D , (n) 

 Γ
seismic uniformD D , (o)  Γ

seismic variableD D , (p)  Γ
PO uniformD D , (q)  Γ

PO variableD D , (r)  Γ
VMM uniformD D , (s)  Γ

VMM variableD D , (t)  1.0VMM CRUSTD D , and (u) VMM seismicD D . 
For notation used, see legend of Table 1.
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The developed algorithm utilizes a linear relation between gravity and 
density by means of defining the Moho depth undulations as a single 
condensation layer at depth corresponding to a mean Moho depth chosen 
for a particular study area. We first introduced the relation between the 
Moho depth undulations and surface density variations, and then con-
verted this functional model to link the Moho depth undulations directly 
with the Bouguer gravity and gravity gradiometry data.

A commonly used procedure was applied to compute the Bouguer gravity 
and gravity gradiometry data. This procedure involves the application of 
corrections to observed gravity and gravity gradiometry data in order to 
enhance an isostatic signature in the Bouguer gravity and gravity gradi-
ent maps. First, the topographic gravity correction was applied to remove 
the gravitational contribution of topographic masses. The bathymetric, 
sediment, and consolidated crust gravity corrections were then applied to 
remove the gravitational contributions of crustal density heterogeneities. 
To suppress a long-wavelength signal from deep mantle density heteroge-
neities, we subtracted low-degree spherical harmonics from gravity and 
gravity gradiometry data. The gravitational contribution of variable den-
sity structure within the uppermost mantle, on the other hand, was treat-
ed implicitly by considering the variable density contrast at the Moho 
interface that was computed from the CRUST1.0 uppermost mantle den-
sity data and the reference crustal density. The numerical test, however, 
revealed that such assumption might actually worsen gravimetric results. 
A possible explanation is that the CRUST1.0 uppermost mantle data are 
affected by large uncertainties beneath Tibet.

The regional gravimetric results obtained based on applying three differ-
ent techniques, namely the VMM, Parker–Oldenburg's, and newly devel-
oped condensation approaches, have a similar RMS fit with the regional 
seismic model prepared by Li et al. (2014). All three regional gravimetric 
results also exhibit a spatial pattern that closely mimics a spatial pattern 
of this regional seismic model. Our result from the gravity gradient data 
inversion and for a uniform Moho density contrast has the best RMS fit 
the regional seismic model as well as a very similar spatial pattern. We 
speculate that this is possible because our algorithm reduces the influ-
ence of far-zone crust density uncertainties, especially when applied for 
gravity gradient data.

We demonstrated that the developed algorithm provides similar results 
as the VMM and Parker–Oldenburg's methods. An additional improve-
ment was achieved by applying the developed algorithm for gravity gra-
dient data. This result has the best agreement with tested regional and 
global seismic Moho models. We explained this by a more localized sup-
port of a gravity gradiometry inversion. In this case, however, gravimet-
ric Moho results could be affected more significantly by density errors of 

lithospheric structure models. It is thus essential to test results for the uniform and variable Moho density 
contrast models, while also involving existing seismic results for the validation of gravimetric results.

Data Availability Statement
The CRUST1.0 model is available at https://igppweb.ucsd.edu/-gabi/crust1.html. The Earth Gravity Model 
(EGM) GOCO06S is available at http://icgem.gfz-potsdam.de. The seismic Moho depth data are accessi-
ble from https://ars.els-cdn.com/content/image/1-s2.0-S0040195113006847-mmc2.txt. ETOPO1 model is 
available at https://www.ngdc.noaa.gov/mgg/global/. The inverted Moho depth and Bouguer gravity data 
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Moho depth differences Min (km) Max (km) Mean (km)
RMS 
(km)

1.0CRUST uniformD D −14.9 16.9 0.1 5.4

1.0CRUST variableD D −19.1 15.9 0.0 5.5

seismic uniformD D −19.5 18.5 2.8 6.4

seismic variableD D −21.8 17.3 2.7 6.5

PO uniformD D −13.1 17.8 1.0 4.7

PO variableD D −13.3 20.5 0.9 5.2

VMM uniformD D −13.3 22.1 −0.2 6.5

VMM variableD D −12.0 21.7 −0.3 7.0

1.0CRUST POD D −25.7 16.7 −0.9 6.5

seismic POD D −18.7 21.7 1.8 6.4

VMM POD D −19.0 17.2 −1.2 6.9

 Γ
1.0CRUST uniformD D −15.7 16.4 0.7 4.4

 Γ
1.0CRUST variableD D −12.2 13.8 1.5 4.8

 Γ
seismic uniformD D −12.4 23.8 3.1 5.6

 Γ
seismic variableD D −14.2 23.8 3.8 6.8

 Γ
PO uniformD D −13.7 20.9 1.3 5.0

 Γ
PO variableD D −14.8 22.8 2.0 5.4

 Γ
VMM uniformD D −9.3 14.8 0.1 5.2

 Γ
VMM variableD D −10.7 21.6 0.9 7.0

 1.0VMM CRUSTD D −16.9 15.2 −0.3 5.5

VMM seismicD D −22.6 13.1 −3.1 6.9

Note. For the notation used, see legend of Table 1.

Table 2 
Statistics of the Moho Depth Differences Between Our Four Gravimetric 
Results (for the Uniform and Variable Moho Density Contrasts and 
Computed From the Bouguer Gravity and Gravity Gradient Data) and the 
Four Models Used for the Validation

https://igppweb.ucsd.edu/%2Dgabi/crust1.html
http://icgem.gfz-potsdam.de/
https://ars.els-cdn.com/content/image/1-s2.0-S0040195113006847-mmc2.txt
https://www.ngdc.noaa.gov/mgg/global/
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are accessible on the GitHub (https://github.com/wjchennjtech/gravity-and-Moho-data). Figures were pre-
pared using Generic Mapping Tools (Wessel et al., 2013).
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