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Abstract: The global positioning system (GPS) can provide the daily coordinate time series to help
geodesy and geophysical studies. However, due to logistics and malfunctioning, missing values are
often “seen” in GPS time series, especially in polar regions. Acquiring a consistent and complete
time series is the prerequisite for accurate and reliable statical analysis. Previous imputation studies
focused on the temporal relationship of time series, and only a few studies used spatial relationships
and/or were based on machine learning methods. In this study, we impute 20 Greenland GPS
time series using missForest, which is a new machine learning method for data imputation. The
imputation performance of missForest and that of four traditional methods are assessed, and the
methods’ impacts on principal component analysis (PCA) are investigated. Results show that
missForest can impute more than a 30-day gap, and its imputed time series has the least influence
on PCA. When the gap size is 30 days, the mean absolute value of the imputed and true values for
missForest is 2.71 mm. The normalized root mean squared error is 0.065, and the distance of the first
principal component is 0.013. missForest outperforms the other compared methods. missForest can
effectively restore the information of GPS time series and improve the results of related statistical
processes, such as PCA analysis.

Keywords: missForest; imputation; GPS time series; RegEM

1. Introduction

Modern data measurement and acquisition consistently encounter the problem of
missing data. For example, due to logistics and malfunctioning, missing values are often
“seen” in GPS daily time series [1]. In particular, in polar regions with a harsh environment,
logistics personnel cannot immediately deal with emerging GPS battery-/hardware-related
problems; hence, cases of missing values are much more common in polar regions than in
other regions. Regardless of the reason for the missing data, consistent and complete data
are the prerequisite for an accurate and reliable statistical analysis. Most conventional time
series analysis methods, such as wavelet transform [2], principal/independent component
analysis [3–5], and spectrum analysis [6], require non-missing data. This requirement
forces geodetic researchers who wish to perform further analysis of GPS time series to
select between imputing or discarding missing data. Simply discarding missing data is
not a reasonable practice because it would inevitably discard valuable information and/or
compromise inferential power, especially for polar regions where GPS sites are rare. How
to make full use of every dataset is of great importance. Data imputation, which focuses
on the use of available information in existing data to impute missing data, is a more
reasonable and practical approach than discarding missing data [7]. Here, we use the term
“imputation” instead of the commonly used term “interpolation” in geodetic studies and
adopt the definition that the former is meant to fill in missing values in the dataset, whereas
the latter predicts values at unsampled locations [8].
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Imputation of missing data is a crucial pre-processing step in GPS time series analysis.
Dong et al. [4] used three-point Lagrange imputation to fill GPS daily time series with time
gaps shorter than two days and iterative principal component analysis (PCA) algorithm for
larger gaps. He et al. [5] used a third-order spline imputation method for time gaps shorter
than three days and simple linear imputation for other gaps to maintain the original trend
of GPS time series. Xu et al. [9] proposed a method based on iterative empirical orthogonal
functions to reconstruct gappy GPS time series and confirmed that it is superior to the
conventional least-squares method in the estimation of periodic amplitude in wavelet
analysis. Wang et al. [10] proposed an imputation method based on singular spectrum
analysis; their method does not need prior information and shows good performance
when the missing rate is 20%. Liu et al. [1] introduced an imputation method based on
the Kalman filter that can consider the spatial correlation between stations. The regulated
expectation maximization (RegEM) proposed by Schneider et al. [11] was initially designed
for meteorological data, and Li et al. [12] used it to impute GPS daily time series before
spatiotemporal filtering and further analysis. The performance of these methods usually
depends on the tuning parameters or specification of a parametric model [13] and makes
assumptions about the data distribution, such as uniform or normal distribution [14]. These
drawbacks mean that these imputation models must be appropriately specified for analyses
based on imputed data [15]. Moreover, studies that used PCA, RegEM, and other spatial-
related methods to impute GPS time series led to a new stage of considering the complex
interactions and nonlinearity of variables, rather than just a standalone continuous variation
changing with time [4,16]. An imputation algorithm that can consider the spatiotemporal
changes in variables and make as few assumptions as possible about the structural aspects
of data must be established to obtain unbiased and consistent spatiotemporal imputation
results and avoid problematic situations.

A standout in the fields of computer vision and natural language processing, machine
learning has strong modeling capability and can find the optimal model for the imputed
data through iteration without a priori knowledge [17–20]. Many imputation applications
are based on machine learning in the field of time series analysis. Cao et al. [21] proposed
the bidirectional recurrent impact for time series methods based on the bidirectional
recurrent neural network and spatial correlation. Yoon et al. [22] proposed a novel method
called Generative Adversarial Imputation Nets (GAIN) for imputing missing data by
adapting the well-known Generative Adversarial Nets (GAN) framework. Both methods
show better performance than traditional ones in the multivariate time series imputation.
In this study, we introduce an iterative imputation method (missForest) based on Breiman’s
random forests [23]. missForest has desirable characteristics for imputation; namely, it (1)
can address complex interactions and nonlinearity as a non-parametric method, (2) can
handle mixed types of missing data and is easy to scale to high dimensions, even in cases
where the number of variables exceeds the number of observations, and (3) does not need a
priori knowledge about the original data but still provides excellent imputation results. The
missForest algorithm, as an extended random forest algorithm, allows for estimating the
so-called out-of-bag (OOB) error, which is the mean of squared differences between each
observed value and the prediction, based on trees for which that observation is not included
in the bootstrap sample. This feature offers missForest a means to assess its imputation
quality without the need to set aside test data nor perform laborious cross-validations.

Given that the missForest algorithm meets all the characteristics for handling missing
data and its effectiveness and robustness have been verified in many previous studies [24,25],
using missForest to impute the missing data of GPS coordinate time series is reasonable
and desirable. However, to our knowledge, little guidance has been provided about the
performance of missForest compared with that of other traditional imputation algorithms
for GPS time series in the literature. In this study, we assess the imputation performance
of missForest and several state-of-the-art methods by using gappy GPS time series with
artificially missing rates of up to ~40%. The OOB imputation error of missForest provides a
good approximation of the true imputation error. PCA is also used to assess the imputation



Remote Sens. 2021, 13, 2312 3 of 17

performance of missForest and other algorithms. The advantages and disadvantages
of the imputation algorithms in maintaining the data structure are verified through the
statistics on the variance percentage of the first three components to the total variance
and the distance and angle of the first component between the imputed and original data.
Through comparison and assessment, we aim to prove that missForest is a promising and
easy-to-use imputation algorithm.

2. Methods and Data
2.1. missForest

missForest is an iterative imputation method based on random forest. By averaging
many unpruned classification or regression trees, random forest intrinsically constitutes a
multiple imputation scheme. By using the built-in OOB error estimates of random forest,
missForest can estimate the imputation error without the need for a test set. In other
comparative studies, missForest outperformed other methods of imputation, especially in
data settings where complex interactions and nonlinear relations are suspected. The OOB
error estimations of missForest are adequate in all settings. In this study, we verify the
effectiveness of OOB in GPS time series imputation.

Let X be an n× p GPS coordinate matrix that requires imputation, that is,

X =
(
X1, X2, . . . , Xp

)
=


x11 x12
x21 x22

. . . x1p

. . . x2p
...

...
xn1 xn2

...
...

. . . xnp

, (1)

where n is the total observation epochs of the time series and p is the number of GPS
stations. Every variable Xs (s ⊆ {1, 2, . . . , p}) that contains missing values at entries i(s)mis ⊆
{1, 2, . . . , n} will divide X into the following four parts (Figure 1).

Figure 1. Four parts of X divided by Xs.

1. y(s)obs, the non-missing observed values of variable Xs;

2. y(s)mis, the missing values of variable Xs;

3. x(s)obs, the variable with observations i(s)obs ⊆ {1, 2, . . . , n}r i(s)mis other than Xs;

4. x(s)mis, the variables with observations i(s)mis other than Xs.

Notably, x(s)obs (x(s)mis) are usually not completely observed (missing).
The imputation procedure of missForest begins with making an initial guess for

the missing values in X by using, for example, mean imputation, and by sorting the
variables (Xs) according to their number of missing values from low to high. For each vari-
able (Xs), the missing values are imputed by training a random forest with responses
(y(s)obs) and predictors (x(s)obs) and predicting the missing values (y(s)mis) by applying the

trained random forest to x(s)mis. This procedure is repeated until the difference (defined by

Equation (2)) between the imputed matrix (Ximp
new), and the previous one (Ximp

old ) did not
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increase. Algorithm 1 gives a representation of the missForest method. In this study, the
maximum iteration of the missForest is 10, and the number of trees is 100.

γ =
∑j∈N

(
Ximp

new −Ximp
old

)2

∑j∈N

(
Ximp

new

)2 , (2)

Algorithm 1 missForest

Require: X an n× p matrix, stopping criterion γ

1: Sort X by amount of missing values of stations descend;
2: Make an initial guess for missing values using another method;
3: while not γ do
4: Ximp

old ← store previously imputed matrix;
5: for s in 1 · · · p do
6: Fit a random forest: y(s)obs ∼ x(s)obs;

7: Predict y(s)mis using x(s)mis;

8: Ximp
new ← update impute matrix, using predicted y(s)obs;

9: update γ;
10: return the imputed matrix Ximp;

2.2. Baseline Methods

Several traditional imputation/interpolation methods of GPS time series are used
as baseline methods for comparison to validate the performance of missForest. These
methods are described below.

Cubic spline [26] is a form of imputation method that uses a special type of piecewise
polynomial called spline. This method provides an imputing polynomial that is smoother
and has a smaller error than several other imputing polynomials, such as Lagrange and
Newton polynomials.

Orthogonal polynomial [27] imputation uses a family of polynomials to impute miss-
ing data, such that any two different polynomials in the sequence are orthogonal to each
other under an inner product.

Hermite imputation [28] is an application of the Chinese remainder theorem for
univariate polynomials that may involve moduli of arbitrary degrees (Lagrange imputation
involves only moduli of degree one).

RegEM [11] neither depends on the data model nor introduces a priori information,
but it relies on the self-characteristics of the data to impute the missing values while taking
the physical background and the correlation of the time series into account. With GPS time
series as an example, RegEM uses maximum likelihood estimation to estimate the linear
relationship between different GPS stations. The linear relationship between stations can be
expressed by Equation (3). X is the time series, and y is the predicted value. We can obtain
θ by maximum likelihood (Equation (4)). In RegEM, ridge regression is introduced as a
regularization term. Hence, we can derive θ related to α (Equation (5)). We can find the best
α value by iteration and obtain reliable results. In this study, the maximum iteration of the
RegEM process is 10 (the same iteration as missForest), and the multiple ridge regression
is used.

Xθ = y (3)

θ =
(

XTX
)−1

XTy (4)

θ(α) =
(

XTX + αI
)−1

XTy (5)

Among the methods, cubic spline, orthogonal polynomial, and Hermite are based only
on time correlation, whereas RegEM and missForest consider spatial correlation. Moreover,
RegEM only considers the linear relationship between stations, whereas missForest can
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consider the nonlinear relationship between stations. The difference between RegEM
and missForest is that missForest uses RandomForest but RegEM uses linear to fit the
relationship of y(s)obs and x(s)obs.

2.3. Evaluation Indicators

The mean absolute error (MAE, Equation (6)) and normalized root mean squared error
(NRMSE, Equation (7)) are used to evaluate the imputation performance of missForest and
the baseline methods.

MAE =
1
n

n

∑
k=1

∣∣∣Xtrue −Ximp
∣∣∣, (6)

NRMSE =

√√√√√mean
((

Xtrue −Ximp
)2
)

var
(
Xtrue) , (7)

where Xtrue and Ximp are the true and imputed matrixes, respectively. Mean and var denote
empirical mean and variance notations, respectively. For NRMSE, the closer the value is to
0 (1), the better (worse) the imputation performance is.

missForest, as an extended random forest algorithm, allows for estimating the OOB
error, which is the mean of squared differences between each observed value and the
predicted value based on trees, for which that observation is not included in the bootstrap
sample. Over many iterations, the OOB error produces a similar error estimate as cross-
validation. That is, once the OOB error stabilizes, it converges to the cross-validation error.
The advantage of the OOB method is that it requires minimal computation and allows
model assessment as it is being trained. We compare the OOB error of missForest to that of
NRMSE for all GPS time series and confirm that OOB, as the true imputation error, is an
accurate and reliable indicator of imputation performance.

The Pearson correlation coefficient is used to measure the linear correlation between
the interpolation result and the true value.

r =
∑i

(
Xtrue −Xtrue

)(
Ximp −Ximp

)
√

∑i

(
Xtrue −Xtrue

)2
√

∑i

(
Ximp −Ximp

)2
(8)

2.4. PCA

PCA is a widely used data analysis tool to reduce dimensionality and increase inter-
pretability while minimizing information loss [29]. It is useful in exploratory data analysis
and for building predictive models. In GPS time series analysis, PCA is often adopted as a
spatiotemporal filter to eliminate common-mode errors (CME) [4]. PCA spatial filtering
can extract CME more accurately and effectively than the conventional overall filtering
method.

The n × m matrix X represents the normalized daily coordinate time series of n sites
and time spanning m days. We compute the variance–covariance matrix B = XTX with
equal weighting on every normalized coordinate time series. We let vj and λj be the
eigenvector and eigenvalue of B, respectively. The symmetric matrix B can be decomposed
as B = vΛvT , where v is an eigenvector matrix and Λ is a diagonal matrix with eigenvalues
of the data matrix ordered according to magnitude (sorted in descending order). Matrix X
can be given as X = vP, where P is a matrix. The kth row vector pk in P is called the kth
principal component (PC) of the original data X, and the kth column vector vk in v is its
corresponding spatial responses. Matrix P can be obtained by P = vTX. The regional GPS
coordinate time series can be expressed as the product of PCs and their spatial responses.

Given that vT
j Bvj = vT

j XTXvj = λ2
j , we determine that λ2

j is the variance of the
projection of the observation matrix on the eigenvector. S = vTBv, and we can derive the
proportion of variance of the observation matrix in each eigenvector direction by using
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Equation (9). By comparing the Vj between the raw and imputed time series, we can
quantify the influence of different imputation methods on the original time series.

Vj = Sjj/sum(trace(S)) (9)

Let X′ be the observation matrix after imputation and A′j = X′vj be the projection of
the observation matrix on the principal component. We can obtain the distance of projection
before and after imputation by applying Equation (10).

dj = Aj −A′j (10)

Through Vj and dj, we can analyze the influence of imputation on PCA so that
the advantages and disadvantages of the imputation algorithms in maintaining the data
structure can be verified.

2.5. Out-of-Bag Error (OOB)

The OOB error, also known as the out-of-bag estimate, is a way of calculating the
prediction error of random forests, boosted decision trees, and other machine learning
models using bootstrap aggregation (bagging). Bagging creates training samples for the
model learning by using subsampling with replacement. The OOB error is the mean
prediction error in each training sample utilizing just the trees in the bootstrap sample
that did not have data [30]. The OOB error is often used for assessing the prediction
performance of RF and is often claimed to be an unbiased estimator for the true error.
However, using out-of-bag error may overestimate the true prediction error depending on
the choices of random forest parameters [31]. In our study, OOB is the estimated values of
the NRMSE of real and imputed data. When a large deviation exists between OOB and
NRMSE, the results of missForest are not credible. Therefore, we can use the true NRMSE
to check the OOB and yield less biased estimates of the true prediction error.

2.6. GPS Time Series and Experiment Settings

The GPS time series records used in this study are downloaded from the Nevada
Geodetic Laboratory, the University of Nevada at Reno (http://geodesy.unr.edu/NGLSta
tionPages/GlobalStationList, accessed at 12 May 2021) [32], and correspond to IGb2014
products. On the basis of the distribution and integrity of the GPS time series, we select
20 GPS stations in Greenland. Figure 2A shows the location of the 20 GPS stations, and
Figure 2B shows the observation epochs of all sites. We focus on the vertical component
of the GNSS coordinate time series. The average missing rate of all of the time series is
13.28%. We use time series from January 2016 to June 2018 because the time series of this
period has no gaps.

http://geodesy.unr.edu/NGLStationPages/GlobalStationList
http://geodesy.unr.edu/NGLStationPages/GlobalStationList
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Figure 2. (A) Distribution of GPS stations. (B) Observation epoch of the stations.

3. Imputation Results
3.1. Different Gap Size Analysis

We use 20 GPS time series in Greenland from January 2016 to June 2018 as test datasets.
We randomly remove (a) 90 by 2-day, (b) 20 by 7-day, (c) 6 by 30-day, and (d) 1 by 180-day
data at ten random stations as gappy time series to perform the following analysis. To avoid
the contingency of the experimental results, we conduct 200 random trials and average
their MAE, NRMSE, and calculate one correlation coefficient (Rp) for all 200 trials together
(Figure 3 and Table 1). Due to the range of sites, we regularize the time series to calculate
the NRMSE and Rp (the following experiments are the same). When the gap size is 2 days,
the 5 mm MAE of cubic spline is the largest, whereas the 2.55 mm MAE of missForest is
the smallest. The Rp of all the methods is better than 0.68. We can conclude from Figure 3
that RegEM and missForest have the best correlation with the true values, and the three
other methods show large dispersion. When the gap size increases to 7 days, the results
of orthogonal polynomial worsen, and its MAE and NRMSE values increase to 6.27 and
0.152, respectively. Hermite also exhibits some degradation. Meanwhile, missForest is
more stable than the Hermite and orthogonal polynomial. When the gap size is 30 days,
cubic spline and orthogonal polynomial become unstable, and the Rp of the orthogonal
polynomial is less than 0.3, indicating that the differences between the imputed and true
values increase with increasing gap size. When the gap size is 180 days, the results of
RegEM and missForest change little with respect to the 2-day results, indicating that
considering the spatial correlation makes the imputation results more robust to gap size
than those of temporal-only correlation methods. The larger the gap is, the lower the
temporal correlation is. missForest has stronger modeling capabilities (e.g., to address
complex interactions and nonlinearity) than RegEM, and the results of missForest are the
best overall.
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Figure 3. Comparisons of the imputed and true values for different gaps and methods for 200 trials together. The x-axis is
true values, and the y-axis is the imputation values (normalized to (0–1) for clarity).

Table 1. MAE, NRMSE, and Pearson coefficient (Rp) of different imputation methods with 90 by
2-day, 20 by 7-day, 6 by 30-day, and 1 by 180-day gaps of GPS time series caption.

Method Evaluation 90 * 2-Day 20 * 7-Day 6 * 30-Day 1 * 180-Day

Cubic spline
MAE (mm) 5.00 5.10 5.31 6.18

NRMSE 0.115 0.116 0.121 0.141
Rp 0.68 0.67 0.68 0.42

Orthogonal
polynomial

MAE (mm) 3.67 6.27 19.08 99.88
NRMSE 0.088 0.152 0.471 2.509

Rp 0.85 0.64 0.30 0.11

Hermite
MAE (mm) 3.02 3.68 4.47 5.63

NRMSE 0.072 0.088 0.106 0.129
Rp 0.89 0.83 0.79 0.61

RegEM
MAE (mm) 2.81 2.84 2.96 3.40

NRMSE 0.065 0.066 0.068 0.074
Rp 0.92 0.91 0.91 0.83

missForest
MAE (mm) 2.55 2.61 2.71 2.95

NRMSE 0.062 0.063 0.065 0.066
Rp 0.93 0.92 0.92 0.90

3.1.1. 2-Day Gap

For the imputation results of the 90 by 2-day gap data of the different methods, one
trial of the 200 imputation results is shown in Figure 4. MAE, NRMSE, and the correlation
coefficient (Rp) are shown in Table 1. No obvious difference is observed among the different
imputation methods in Figure 4, and only RegEM imputation shows anomalous results
in 2016/11. This anomaly is due to a large fluctuation in 2016/11, and RegEM cannot
impute this large fluctuation well. missForest can impute the fluctuation well due to its
strong modeling capability. Figure 4 and Table 1 indicate that the correlation coefficients
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of each method are high with a 2-day gap. The Rp, MAE, and NRMSE of missForest are
0.93, 2.55 mm, and 0.062, respectively. The cubic spline has an Rp of 0.68, but those of the
others are all above 0.85. The MAE values of the temporal methods range from 3.02 to
5.00, and the cubic spline is about twice the values of missForest. In the case of a small gap
size, the temporal relationship methods are not worse than the spatial methods (RegEM
and missForest) because the missing points have a strong relationship with their adjacent
observations.

Figure 4. Imputation results of 90 by 2-day gap GPS coordinate time series. The y-axis is denormalized to real scale (in mm).

3.1.2. 7-Day Gap

For the imputation results of the 20 by 7-day gap data of the different methods, one
trial of the imputation results is shown in Figure 5. Cubic spline and orthogonal polynomial
show large fluctuations in Figure 5 because these methods become unstable when the gap
size increases. As shown in Table 1, the MAE of orthogonal polynomial increases from
3.67 to 6.27 mm and is worse than that of cubic spline, which means that this method is
unstable for large gaps. The Rp and NRMSE of missForest are 0.92 and 0.063, respectively,
and the MAE of missForest is 2.61 mm, which is increased by only 0.06 mm. The smallest
degradation of missForest among all the methods means that missForest is more stable
than the others. missForest uses the bootstrap approach to sample the dataset and generate
many regression trees to derive the missing value. This procedure prevents any poor
regression tree from affecting the overall results.
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Figure 5. Imputation results of 20 by 7-day gap GPS coordinate time series. The y-aixs is denormalized to real scale (in mm).

3.1.3. 30-Day Gap

For the imputation results of the 6 by 30-day gap data of the different methods,
one trial of the imputation results is shown in Figure 6. The results of cubic spline and
orthogonal polynomial in Figure 6 have large biases from the true value, and the MAE of
the orthogonal polynomial in Table 1 is larger than 19 mm. The Hermite methods produce
over-smooth results with respect to the other methods because Hermite requires the values
of functions on nodes and the values of corresponding derivatives (even those of higher
derivatives) to be equal. The correlation coefficient of the orthogonal polynomial is below
0.7. The Rp, MAE, and NRMSE of missForest are 0.92, 2.71 mm, and 0.065, respectively.
The results of the methods using temporal correlation are smoother than those of the
methods using spatial correlation, and the MAE and NRMSE of RegEM and missForest are
smaller than those of the others. The methods that use temporal correlation cannot react to
complicated time variations, obtain poor results with a large gap size, and may result in
artificial signals.

3.1.4. 180-Day Gap

For the imputation results of the 180-day gap data of the different methods, one trial
of the imputation results is shown in Figure 7. The results of cubic spline and orthogonal
polynomial in Figure 7 show large deviations. Hermite only fits a major linear trend and
loses many details. As indicated in Table 1, missForest has a strong linear correlation.
The Rp of missForest and RegEM is 0.90 and 0.83, respectively. The MAE and NRMSE
of missForest are 2.95 mm and 0.066, respectively, which are about half of the values of
Hermite and cubic spline. Figures 4–7 show that cubic spline and orthogonal polynomial
are only suitable for small gap sizes. Comparison of the results of RegEM and missForest
indicates that RegEM has several outliers (Figure 7), but no obvious outliers are found in
the missForest method. The results of missForest outperform those of RegEM, indicating
that missForest can restore more information from data than RegEM can. Moreover, the
dataset (GPS coordinate time series) contains several nonlinear relationships that only
missForest can restore because missForest can consider nonlinear relationships, whereas
RegEM only considers linear relationships.
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Figure 6. Imputation results of 6 by 30-day gap GPS coordinate time series. The y-aixs is denormalized to real scale (in mm).

Figure 7. Imputation results of 180-day gap GPS coordinate time series. The y-aixs is denormalized to real scale (in mm).

3.2. Different Missing Rate Analysis

To understand the performance of the various methods under different missing rates,
we randomly remove 10%, 20%, 30%, and 40% data at 10 random stations with a 7-day
gap as a gappy time series to perform the following analysis. We also conduct 200 random
trials and average the MAE, NRMSE, and Rp of all trials (Figure 8 and Table 2). Among all
the results of different methods for different missing rates shown in Figure 8 and Table 2,
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those of missForest are the best. The imputation results of different methods have different
distribution characteristics, as shown in Figure 8. The traditional method is divergent, and
missForest has the best correlation relationship. When the missing rate is 10%, the results
of cubic spline and orthogonal polynomial are the worst; the MAE and NRMSE values
of RegEM and missForest are about half of the values for cubic spline and orthogonal
polynomial. When the missing rate increases to 20%, the MAE and Rp of the temporal
methods change slightly because cubic spline and orthogonal polynomial focus on local
time correlation, and MAE changes only slightly. When the missing rate increases to
30%, the MAE of RegEM increases from 2.82 to 3.12, whereas the MAE of missForest only
changes from 2.66 to 2.68. The change for RegEM is larger than that for missForest. When
the missing rate increases to 40%, the RP, MAE, and NRMSE of missForest are 0.91, 2.74 mm,
and 0.064, respectively, and those of RegEM are 0.88, 3.48 mm, and 0.081, respectively. This
result indicates that when the number of observations is small, missForest can obtain more
information and produce better imputation results than RegEM. The temporal methods
only use the before and after observations at the time of the gap, whereas RegEM and
missForest can take information from other stations at the missing time. Comparison of
RegEM and missForest indicates that missForest has slightly better imputation results
because it considers nonlinear relationships and can therefore restore more information
and improve the imputation performance.

Figure 8. Comparison of imputed and true values with different missing rates and methods for 200 trials together. The
x-axis is true values, and the y-axis is the imputation values (normalized to [0–1] for clarity).
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Table 2. MAE, NRMSE, and Rp of different imputation methods with 10%, 20%, 30% and 40%
missing rates of GPS time series.

Method Evaluation 10% 20% 30% 40%

Cubic spline
MAE (mm) 5.48 5.52 5.53 5.58

NRMSE 0.126 0.128 0.129 0.130
Rp 0.64 0.64 0.64 0.62

Orthogonal
polynomial

MAE (mm) 6.89 6.89 6.92 7.04
NRMSE 0.161 0.161 0.162 0.165

Rp 0.65 0.64 0.64 0.62

Hermite
MAE (mm) 3.71 3.82 4.02 4.17

NRMSE 0.093 0.093 0.095 0.098
Rp 0.82 0.82 0.82 0.81

RegEM
MAE (mm) 2.76 2.82 3.12 3.48

NRMSE 0.065 0.066 0.073 0.081
Rp 0.92 0.91 0.90 0.88

missForest
MAE (mm) 2.64 2.66 2.68 2.74

NRMSE 0.061 0.062 0.063 0.064
Rp 0.92 0.92 0.92 0.91

3.3. OOB versus NRMSE

To compare the distance between OOB and NRMSE, we calculate the OOB and NRMSE
of 200 trials with a gap rate of 20% and gap size of 2-day, 7-day, 30-day, and 180-day.
Figure 9 shows 2-day gap size results and we can see that OOB and NRMSE are close,
although OOB is a little smaller than NRMSE, which is usually caused by overfitting. The
Pearson correlation coefficient of OOB and NMSE is 0.74. Figure 10 shows all results of
2-day, 7-day, 30-day, and 180-day, and we can see the OOB estimates exhibit a lot less
variability than NRMSE in all gap sizes. The OOB estimates tend to slightly underestimate
the imputation error with all gap sizes. However, on average, the estimation is comparably
good. This result indicates that we can use OOB as the approximate value of the real
NRMSE.

Figure 9. OOB and NMSE of 200 trials with 2-day gap size.

Figure 10. 2-day, 7-day, 30-day and 180-day gap size OOB–NRMSE comparison of 200 trials.
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3.4. PCA of Different Gap Sizes

To determine the influence of different methods on PCA, we use the results of 200 trials
and perform PCA on them. We compute the proportion of the variance of the first three
PCs and the distance and angle of PC1 between the original data and imputed data
(Table 3 and Figure 11). Figure 11 shows that the two best methods are RegEM and
missForest. The other methods somewhat change the proportion of PCs. As the gap
size increases, the difference between imputed and original data becomes increasingly
obvious (especially for the orthogonal polynomial method) because of the instability of
the temporal methods with gap size. When the gap size is 2 days, the distance of RegEM
and missForest are 0.008 and 0.009, respectively (Table 3). Cubic spline and Hermite have
0.049 and 0.023, respectively, which are several times larger than those of RegEM and
missForest. The angle of the results from cubic spline is the largest, whereas that from
RegEM is the smallest. When the gap size increases to 7 days, the orthogonal polynomial
method changes considerably. When the gap size increases to 30 days, the distance of
orthogonal polynomial changes to 0.341, which is smaller than that of cubic spline, but the
angle of orthogonal polynomial is 19.707, whereas that of cubic spline is 2.790. This result
indicates that only distance and angle can reflect the real difference. When the gap size is
180 days, the distance of missForest is 0.024, and the angle is 1.408; both are the smallest
among all the values for the compared methods. Hence, missForest can better restore
the information in the time series and is more robust than the other methods using time
correlation. In other words, missForest can restore abundant information from existing
data, and imputed data from missForest are suitable and reliable to use in PCA.

Table 3. Results of PCA of different methods with multiple gap sizes.

Method Gap Size PC1 (%) PC2 (%) PC3 (%) SUM (%) Ddistance Aangle

Original - 75.24 8.73 3.57 87.55 0 0

Cubic spline

2 72.53 9.17 3.63 85.35 0.049 2.828
7 72.22 9.09 3.56 84.88 0.050 2.890
30 72.32 9.41 3.38 85.12 0.048 2.790

180 71.05 9.28 3.51 83.85 0.057 3.26

Orthogonal
polynomial

2 74.17 8.76 3.58 86.52 0.009 0.555
7 69.87 8.55 3.72 82.15 0.318 1.823
30 45.89 6.86 4.25 57.02 0.341 19.707

180 22.00 5.69 5.41 33.10 1.041 63.12

Hermite

2 74.89 8.81 3.56 87.27 0.023 1.374
7 74.11 8.77 3.60 86.49 0.026 1.494
30 73.37 8.87 3.41 85.66 0.029 1.668

180 71.48 9.26 3.53 84.29 0.050 2.881

RegEM

2 75.86 8.65 3.54 88.06 0.008 0.501
7 75.79 8.69 3.51 88.00 0.015 0.859
30 75.83 8.73 3.44 88.01 0.027 1.572

180 75.27 8.69 3.57 87.53 0.037 2.121

missForest

2 76.36 8.59 3.43 88.38 0.009 0.572
7 76.38 8.61 3.41 88.41 0.010 0.619
30 76.45 8.68 3.31 88.45 0.013 0.764

180 76.23 8.55 3.45 88.24 0.024 1.408
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Figure 11. Proportion of the variance of the first three principal components after imputation.

3.5. Time Consumption

The time consumption does not change too much with the gap size and gap rate.
We compared the average time of 200 trials. We evaluate the time consumption of our
algorithm and the baseline methods on a desktop PC (with i5-9600k). As shown in Table 4,
the orthogonal polynomial and Hermite run fastest, and the missForest is slower than other
methods because of the usage of many random forests. missForest’s time consumption
(5.58 s) in the GPS time series process is tolerable with the 20 GPS station time series of
2016-2018 in Greenland to process.

Table 4. The time consumption for all imputation methods.

METHOD Cubic Spline Orthogonal
Polynomial Hermite RegEM missForest

Time (s) 0.14 0.10 0.09 0.48 5.58

4. Discussion and Conclusions

In this study, GPS time series from January 2016 to June 2018 in Greenland were
processed using different imputation methods. The performance of five methods was
assessed, and the methods’ impact on PCA was investigated by comparing the change in
principal components. The NRMSE and MAE of missForest were the best overall. When
the gap size increased from 2 days to 180 days, the MAE of missForest changed by only
0.4 mm. This result means that missForest can perform well regardless of the gap size. It
can simplify our process of GPS time series because in traditional methods, we need to use
different methods/assumptions to impute missing values for different gap sizes.

To investigate the impact of different imputation methods on the signals in GPS
time series, we used PCA to assess the results of the different imputation methods. We
computed the proportion of the variance of the first three principal components after
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imputation. The results showed that the traditional methods changed the proportion
to some extent and their performance worsened as the gap size increased. RegEM and
missForest obtained stable and reliable imputation results relative to the original (true)
data. To further investigate the variations caused by different imputation methods on the
principal components, we computed the distance and angle of PC1 between the original
and imputed data. The result of missForest was the best. This method is beneficial to the
subsequent analysis of GPS time series.

Traditional methods only use the temporal correlation in the data, and their results
worsen as the gap size increases. Inspired by RegEM, we utilized the spatial correlation
between time series and a machine learning method (missForest) to restore abundant
information in the imputation. By using spatial correlation, we can use observations from
other stations to impute the missing stations while restoring the missing information as
much as possible and avoiding the introduction of artificial information, such as in temporal
methods. From the statistical results of different missing rates for the different methods, we
can conclude that considering the spatial relationship produces more reliable and robust
imputation results than considering only the temporal relationship. The main results of this
study are as follows; (1) missForest can fill more than a 7-day gap with high accuracy, (2)
missForest can fill data with a high gap rate or few samples, (3) missForest can effectively
restore the information in time series. Overall, the MAE and NRMSE of missForest are
only half of those of traditional methods. The MAE and NRMSE of missForest show a 12%
improvement compared with the values for RegEM. Obtaining accurate imputed data can
improve the results of related processes, such as PCA.
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