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Abstract: Particle swarm optimization (PSO) is a well-known iterative algorithm commonly
adopted in wavefront shaping for focusing light through or inside scattering media. The
performance is, however, limited by premature convergence in an unstable environment. Therefore,
we aim to solve this problem and enhance the focusing performance by adding a dynamic mutation
operation into the plain PSO. With dynamic mutation, the “particles,” or the optimized masks,
are mutated with quantifiable discrepancy between the current and theoretical optimal solution,
i.e., the “error rate.” Gauged by that, the diversity of the “particles” is effectively expanded,
and the adaptability of the algorithm to noise and instability is significantly promoted, yielding
optimization approaching the theoretical optimum. The simulation and experimental results
show that PSO with dynamic mutation demonstrates considerably better performance than PSO
without mutation or with a constant mutation, especially under a noisy environment.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Multiple scattering occurs when light passes through a material with wavelength-scale inhomo-
geneity of refractive index, e.g., biological tissue. This has long been an obstacle for deep-tissue
optical focusing and/or imaging, and other biomedical applications, such as optical coherence
tomography (OCT) [1,2] and two-photon microscopy [3]. To address this dilemma, wavefront
shaping has been invented [4], with which the input wavefront can be modulated or “shaped”
by a spatial light modulator (SLM) before it reaches the scattering media. The scattering can
be, therefore, reversed or compensated through optical phase conjugation [5], transmission
matrix measurement [6], or iterative optimization [7–17]. Iterative optimization approaches
are commonly adopted as they are straight-forward and easy to implement. By confining
light to a specific output optical field, e.g., a focus, inside/through a scattering medium, an
optimal SLM mask can be iteratively optimized so that the phase or intensity distortions can be
overcome. In recent years, various iterative optimization algorithms, such as genetic algorithm
(GA) [7,8], particle swarm optimization (PSO) [10–13], simulated annealing algorithm (SA)
[14,15], continuous sequential algorithm (CSA) [16], stepwise sequential algorithm (SSA) [16],
partitioning algorithm (PA) [16], and artificial intelligence assisted algorithms [18,19], have been
demonstrated for successful optical focusing.

Particle swarm optimization (PSO) is a well-established swarm intelligence algorithm developed
by Kennedy and Eberhart in 1995 [20]. It is inspired by the social behavior of animals such as bird
flocking and fish schooling. Every possible solution is a “bird” in the search space and is called a
“particle”. The fitness of the particles is evaluated, and their positions and velocities are updated
according to the individual and global best solutions in each iteration. The particles “fly” through
the search space until the optimal solution is found. The PSO algorithm was originally developed
to operate in a continuous problem space. With further development, Kennedy and Eberhart
remodeled it to a discrete binary version in 1997 [21]. And Li et al. firstly applied it to amplitude
optimization for wavefront shaping in 2017 [12]. Due to its simplicity in implementation (e.g.,
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fewer parameters to be set) and robustness in global optimization, PSO is gaining popularity in
the field of wavefront shaping [10–13,17].

In principle, PSO and GA are similar: technically their optimizations start with a large
population containing various randomly generated SLM masks. Nevertheless, each sample
or SLM mask in PSO, called “particle”, evolves individually based on the fitness, without
involving crossover between samples like GA. PSO has an intrinsic guidance strategy that leads
the particles to move according to the best individual to reach better positions. It also has a
memory mechanism to store the previous best solution achieved by each particle. Once the
particles move to an undesirable path and reach an unsatisfactory position, their memories guide
them back to the previous stage. These unique properties allow the entire population to converge
concurrently to an optimal position quickly and be better immune to degradation. In general, a
larger population size can lead to higher probability of approaching the global optimum, but it
cannot be very large (i.e., no more than 50) [22]. By going through every single “particle” in
a large-size population, the efficiency of the optimization will be greatly suppressed. A small
population, however, limits the sample diversity and probably traps the optimization in the local
optimum.

To balance the performance and efficiency of PSO, a mutation procedure is suggested: a tiny
ratio (mutation rate) of the modulating modes of the “particle” is mutated in every iteration to
expand the diversity [10,23]. Nevertheless, having a suitable mutation rate in wavefront shaping
is challenging. Reported mutation rates so far are pre-set before the optimization, to be either a
constant or a decaying value across the optimization. Such a design is no more than a guess and
its adaptability to medium perturbations is doubted. A perturbed medium continuously varies
the optimal SLM mask for optical focusing, while a pre-determined mutation essentially assumes
the medium is unchanged or sufficiently stable.

Recently, an adaptive mutation concept was proposed to enhance the adaptability of iterative
algorithms, such as GA [24], whose mutation rate is based on an instant error rate (r) of the
modulating mask. In a strong scattering regime, the instant error rate can be calculated according
to a square rule, i.e., Eq. (1), where η′ represents the relative peak-to-background ratio (PBR), ηr
is the experimental PBR, and η0 is the theoretical average PBR (η0 = N/2π for binary-amplitude
modulation and N is the number of mode used for modulation). The error rate indicates the
number of modes of the SLM mask that incorrectly modulates the input wavefront. In other
words, the status of the optimization, like how the current mask deviates from the theoretical one,
can be directly accessed. For simplicity, the mutation rate (µ) is set to be proportion to the error
rate, i.e., Eq. (2), so that a adaptive mutation rate is obtained.

η′ = ηr/η0 = (1 − 2r)2 (1)

µ = r/mutation constant (2)
In this study, the adaptive mutation is introduced to the PSO for binary-amplitude modulation

to achieve optical focusing in a strong scattering regime. The performances among PSO without
mutation, with constant (single-point) mutation, and with dynamic mutation, are compared
through both simulation and experiment. The effect of the dynamic mutation on improving the
adaptability and overall performance of PSO will be validated.

The workflow of the PSO is depicted in Fig. 1(a). In the PSO for wavefront shaping, each
“particle” is characterized by a “position”, i.e., the SLM mask, and a “velocity”, i.e., the variation
factor for the SLM mask. In the first step, before optimization, a number of “particles” are
randomly generated with a population size (M), whose “position”, xi = (xi,1, . . . , xi,d, . . . , xi,D),
and “velocity”, vi = (vi,1 . . . , vi,d, . . . , viD), where D is the number of input mode N of the
modulating mask and i = 1, 2, . . . , M. Since the binary-amplitude modulation is of interest in
this study, xi,d is equal to 0 or 1 and vi,d is in the range of [0,1] (Step 1 in Fig. 1(a)). Then, the
optimization can be started. In every iteration, the fitness, i.e., PBR, of all the “particles” is
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measured, and “pbest” and “gbest” are recorded (Step 2), where “pbest” represents the “position”
with the highest fitness achieved by an individual “particle” so far, and “gbest” represents the
global best “position” among the entire population of the investigated “particles”. With “pbest”
and “gbest” identified, the “velocities” of each “particle” are updated according to Eq. (3)
and Eq. (4), respectively, for the next iteration (Step 3), where vk

i,d and xk
i,d denote the velocity

and position of the ith particle at the kth iteration, c1 and c2 are learning factors affecting the
convergence speed, and r1 and r2 are random numbers between 0 and 1. As the optimization
works in a discrete space, the update of position is a probability problem. The new velocity
(vk+1

i,d ) is transformed by a logistic sigmoid function S(vk+1
i,d ) and constrained to the interval [0, 1].

Thereby, the new position (xk+1
i,d ) has a probability of S(vk+1

i,d ) equal to one. A mutation operation
is added after finding the new velocities and positions of the particles in each iteration (Step 4).
Some of the pixels in the mask are flipped, i.e., 0 (OFF) becomes 1 (ON) or 1 (ON) becomes
0 (OFF). For constant mutation, a fixed number of pixels are flipped (i.e., 1 as single-point
mutation). For dynamic mutation, the mutation rate of each particle is adjusted according to
its error rate calculated from Eq. (1) and a total of µ × N pixels are mutated. The concepts of
different mutation schemes are illustrated in Fig. 1(b). The process continues until a termination
condition (e.g., convergence of the PBR) has been met or it reaches the optimal solution.

vk+1
i,d = vk

i,d + c1rk
1(pbestki,d − xk

i,d) + c2rk
2(gbestkd − xk

i,d) (3)⎧⎪⎪⎨⎪⎪⎩
xk+1

i,d = 1, if rand( )<S(vk+1
i,d )

xk+1
i,d = 0, otherwise

, where S(vk+1
i,d ) =

1
1 + exp(−vk+1

i,d )
(4)

Fig. 1. (a) Flow chart of the PSO algorithm with dynamic mutation. (b) Concepts of
different mutation schemes

The optimization performances of PSO without mutation, with constant mutation, and with
dynamic mutation are first compared by simulations under different levels of noise. Each
simulation is repeated for 50 times with a new transmission matrix generated following the
circular Gaussian distribution, and then the results are averaged. N=64 × 64 input modes are
used, and the output mode at the center of the detection plane is selected as the target for focusing
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optimization. The PBR of the focus, defined as the ratio of the average intensity of the focal
region to the average background intensity, is employed as the fitness value. Every time the
PBR is measured, it is counted as a measurement and an iteration is completed when the PBR
of all particles are evaluated. To simulate the noise emanating from unstable optical systems,
additive Gaussian noises with standard deviations of 30%, 60%, and 80% of the initial average
intensity< I0> are added to the intensity in every PBR measurement to mimic the low-noise,
medium-noise, and high-noise situations, respectively. The parameters used in the simulations,
which are optimized for each noise level, are summarized in Table 1. From Eq. (2), the mutation
rate is bounded between 0.5/mutation constant and 0 if we assume the initial and final error rates
to be 0.5 and 0, respectively. Therefore, a smaller mutation constant is employed in higher noise
situations to provide a wider range of mutation rates for greater solution diversity.

Table 1. Simulation Parameters

Noise level Population c1 c2 Mutation constant

Noise-free

10

6 2 400

Noise=0.3<I0> 4 2 350

Noise=0.6<I0> 4 2 300

Noise=0.8<I0> 4 2 150

The simulation results (Fig. 2) show that the PSO with dynamic mutation is of significant
advantage in a noisy environment. Although optimizations without mutation, with constant
mutation, and with dynamic mutation show similar focusing performance in the noise-free
situation, the difference among the three mutation schemes becomes more obvious as the noise
level increases. In the low-noise situation, the PSOs with mutation operations (both dynamic and
constant mutation) achieve slightly better final PBR than the plain PSO. In the medium-noise
situation, the PSO with dynamic mutation shows a better noise-resisting ability than the other
two schemes and starts to outperform the PSO with constant mutation after 13000 measurements.
When it comes to the high-noise situation, the PSO without mutation and with constant mutation
suffer from premature convergence after around 10000 measurements. Meanwhile, with dynamic
mutation, the PBR of the focal point keeps increasing throughout the optimization and the final
PBR is ∼50% higher than that of the other two schemes.

The premature convergence can be attributed to the small population size (i.e., 10 particles)
as it limits the sample diversity. The black dashed line in Fig. 2(d) shows that with a larger
population size (i.e., 50 particles), the PSO without mutation is less likely to be trapped in a local
optimum. Nevertheless, the trade-off is a lower efficiency at the start. The optimization has a
slow convergence speed and notably, the final PBR is still ∼16% lower than that of the PSO with
dynamic mutation with a smaller population size. The result has proved that a small population
PSO with dynamic mutation can beat a large population PSO. Having a dynamic mutation can
effectively expand the population diversity to prevent the optimization from falling into local
optima, and at the same time, achieve satisfactory focusing performance with a high efficiency.

To validate the simulation results, experiments are conducted with the setup shown in Fig. 3(a).
A continuous 532 nm laser (EXLSR-532-300-CDRH, Spectra Physics, USA) is used as the
light source. The light beam is expanded after passing through a pair of convex lenses (L1 and
L2) and illuminates the digital micromirror device (DMD) (DLP4100, Texas Instruments Inc.,
USA). 64 × 64 input modes with 16 × 25 DMD pixels grouped as a superpixel (172.8 um ×

270 um) are used. The modulated light beam is then contracted by L3 and L4, and focused
onto a scattering sample, which is a 4 mm thick ground glass diffuser, by a 10x objective lens
(NA=0.25). A CMOS camera (Blackfly S BFS-U3-04S2M-CS, FLIR, Canada) is used to capture
the image behind the ground glass. The optical system is built on an optical table supported by
pneumatic isolators (M-OTS-ST-48-12-I, Newport, USA), in which compressed air is used to
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Fig. 2. Simulations results of PSO without mutation, with constant mutation, and with
dynamic mutation under different levels of noise. (a) Noise-free. (b) Low- noise. (c)
Medium-noise. (d) High-noise.

provide vibration damping and isolation. In order to investigate the noise adaptability of different
PSO schemes, the compressed air in the pneumatic isolators is released to reduce the stability of
the system. The stability is evaluated by measuring the Pearson’s correlation coefficient (c.c.)
between the speckle patterns before optimization and during optimization when all the DMD
pixels are in the “ON” state. A larger c.c. indicates a higher stability. The parameters used
in the experiments with and without the vibration isolation follow the simulation settings for
noise=0.6<I0> and noise=0.8<I0>, respectively.

Figures 3(b)-(d) show the experimental results of PSO without mutation, with constant
mutation, and with dynamic mutation. With pneumatic isolation in the optical table, the optical
system is highly stable and the c.c. decreases to 0.97 after 10,000 measurements (∼60 minutes).
The result with such a high system stability in Fig. 3(c) is comparable to the simulation result with
a medium noise level (Fig. 2(c)) that the PSO with dynamic mutation can achieve a higher final
PBR than the other two mutation schemes. When there is no vibration isolation, the optical system
becomes less stable, and the stability gradually decreases to 0.9 after 10,000 measurements. As
shown in Fig. 3(d), similar to the simulation result in the high-noise situation (Fig. 2(d)), the
PSO without mutation encounters premature convergence after around 4,000 measurements. The
growth of PBR in the PSO with constant mutation also becomes slow after 5,000 measurements.
With dynamic mutation, the final PBR is ∼51% and ∼28% higher than those obtained in PSO
without mutation and with constant mutation, respectively. From Fig. 3(b), the peak intensity of
the focus obtained by PSO with dynamic mutation is 2.6 times and 1.2 times stronger than that
without mutation and with constant mutation, respectively.
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Fig. 3. (a) Experimental setup. L1: f=60 mm; L2 & L3: f=250 mm; L4: f=50 mm; DMD:
1920× 1080 digital micromirror device; OBJ: 10x objective lens (NA=0.25); S: 4 mm ground
glass. (b) Speckle patterns before optimization (top) and the focuses obtained by 3 different
mutation schemes without vibration isolation after 10000 measurements (bottom). The 200
µm scale bar is applicable to all images in (b). (c-d) PBR change in 10,000 measurements
of PSO without mutation, with constant mutation, and with dynamic mutation (c) with
vibration isolation and (d) without vibration isolation. The insets in (c) and (d) show the
stability change during the experiments.

As each experiment lasts around 60 minutes, the speckle patterns gradually decorrelate due to
system instability. Without a suitable mutation operation, the diversity of the PSO population is
not large enough to adapt to the decorrelation effect and the optimization is prone to fall into local
optima. Although increasing the population size can alleviate this problem, the optimization
efficiency is acutely affected (grey dashed line in Fig. 3(d). By employing a dynamic mutation, we
can strike a balance between the performance and the efficiency. The mutation rate is adaptively
adjusted according to the real-time DMD error rate. An increase of error rate may imply speckle
decorrelation, and thus a larger mutation rate is required to increase the particles’ diversity to
help it escape from local maxima.

In this study, a dynamic mutation is applied to PSO for binary-amplitude modulation based
wavefront shaping. From the simulation and experimental results, by including a dynamic
mutation operation into the PSO, premature convergence of the focusing optimization can be
effectively prevented. And the diversity of solution for a small population size can be effectively
expanded such that the good optimization efficiency and performance can be assured, even
in high-noise situations. This study also demonstrates a further application of the dynamic
mutation concept and the square rule described in Ref. [24]. With the enhanced focusing
performance by dynamic mutation, PSO is more applicable to be used in unstable scattering
media and holds great potential for applications in biomedical scenes, such as deep tissue focusing
and imaging. Likewise, the dynamic mutation operation can also be incorporated into other
optimization algorithms for iterative wavefront shaping, such as genetic algorithm (GA) and
simulated annealing (SA), to enhance their focusing performance and adaptability. It is also
possible to extend the dynamic mutation operation to phase modulation by deriving a phase
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version error rate and square rule for a broader application and more promising optimization
results.
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