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A B S T R A C T   

Nigeria is second to South Africa with the highest reported cases of COVID-19 in sub-Saharan Africa. In this 
paper, we employ an SEIR-based compartmental model to study and analyze the transmission dynamics of SARS- 
CoV-2 outbreaks in Nigeria. The model incorporates different group of populations (that is, high- and- moderate 
risk populations) and is use to investigate the influence on each population on the overall transmission dynamics. 
The model, which is fitted well to the data, is qualitatively analyzed to evaluate the impacts of different schemes 
for controlstrategies. Mathematical analysis reveals that the model has two equilibria; i.e., disease-free equi
librium (DFE) which is local asymptotic stability (LAS) if the basic reproduction number (R 0) is less than 1; and 
unstable for R 0 > 1, and an endemic equilibrium (EE) which is globally asymptotic stability (LAS) whenever 
R 0 > 1. Furthermore, we find that the model undergoes a phenomenon of backward bifurcation (BB, a coex
istence of stable DFE and stable EE even if the R 0 < 1). We employ Partial Rank Correlation coefficients (PRCCs) 
for sensitivity analyses to evaluate the model’s parameters. Our results highlight that proper surveillance, 
especially movement of individuals from high risk to moderate risk population, testing, as well as imposition of 
other NPIs measures are vital strategies for mitigating the COVID-19 epidemic in Nigeria. Besides, in the absence 
of an exact solution for the proposed model, we solve the model with the well-known ODE45 numerical solver 
and the effective numerical schemes such as Euler (EM), Runge–Kutta of order 2 (RK-2), and Runge–Kutta of 
order 4 (RK-4) in order to establish approximate solutions and to show the physical features of the model. It has 
been shown that these numerical schemes are very effective and efficient to establish superb approximate so
lutions for differential equations.   

Introduction 

Coronavirus disease 2019 (COVID-19) is a pandemic disease that 
spread very rapidly across the globe [1–5]. It has affected human lives 
tremendously with more than 163 million confirmed cases and killing 
over 3 million people in more than 220 countries and territories by May 
17, 2021 [6]. As of this date, 6 January 2021, there were over 160 
thousands confirmed cases including more than 2000 COVID-19 deaths 
cases in Nigeria [7]. COVID-19 is caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [8] with symptoms resemble that 
of pneumonia, namely; dry cough, fever, and, in more severe cases, 
difficulty in breathing [1,9–11]. Some set of non-pharmaceutical in
terventions (NPIs) measures against contracting the disease were rec
ommended by the World Health Organization (WHO) [10], they include 
use of face mask to cover nose and mouth, keeping a distance of at least 2 
meters in public places, regular hand washing, use of tissue to cover nose 
when sneezing, borders and school closures, quarantine, isolation, and 
mass testing [10,12]. 
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Mathematical modeling is a very versatile and effective instrument 
for studying infectious disease transmission dynamics [13]. Mathemat
ical analysis and numerical simulations of the model can be used to 
develop and test efficient control strategies. The predominant model of 
epidemiological forecast applicable to COVID-19 is based on the use of 
deterministic SEIR-type model which is vital in modeling aggregate 
population evolution under a scenario where population can be sub- 
divided into mutually exclusive compartments [12]. See, Fig. 1 for the 
proposed model diagram. 

Nigeria is one of the developing sub-Saharan African countries hitted 
by the double burdens of diseases (mostly infectious) [7], whose health 
care system does not provide basic and regular health services 
adequately for its citizens even before the current pandemic of the 
COVID-19 [14–17]. With the emergence of COVID-19, the situation 
becomes evn more devastating and resulted in a more serious health and 
socioeconomic problems [14]. However, to tackle the pandemic sce
nario, the Nigerian government has adopted most of the NPIs measures 
even before the index case detected in February 27, 2020 [7,18,14,19]. 
Considering the exponential increasing nature in the number of COVID- 
19 cases and deaths, the NPIs measures need to be strictly sustained and 
improve to effectively curtail the spread of the COVID-19 pandemic even 
with availability of the vaccine in the country [18,7]. Moreover, reports 
shows that about 48.843% of the total population in Nigeria lives in the 
rural area, where there are less or no access to improved education and 
clean water supply which makes regular handwashing practice and face 
masks wearing an ideal, as well as lack of sufficient social media for 
dessimination of infromation that enhances awareness campaigns 
[19–21]. Hence, the provision of clean water and constant awareness 
programs is vital in curtailing the current pandemic in Nigeria and 
beyond. Thus, it is imperative to prioritize the fraction of the population 
at high risk when implementing pharmaceutical or non-pharmaceutical 
intervention control measures to effectively control the epidemic. 

A lot of mathematical models have been developed recently to study 
and analyze the dynamics of COVID-19 epidemics [22,23,64–66]. Some 
models have adapted to the traditional ‘SEIR’-based [24–27]. Instead, 
several other models established a stochastic transition model for eval
uating COVID-19 transmission, and also stressed the need for interven
tion strategies such as social distancing, quarantine, and isolation 
[28,29]. Since March 26, 2020, many countries and territories had 
passed COVID-19 travel restrictions, including border closures. Some 
countries put a restriction on domestic traveling except for the move
ment of essential materials. In most African counties, many people fail to 
comply with NPIs measures likely due to negligence and/or poor eco
nomic situation. Example, non-compliance of lock-down, social 
distancing, handwashing policy (due to insufficient water supply), face- 

masks use, and travel restriction (movement from one community to the 
other), etc., causing more risk to COVID-19 infection [21]. This will 
eventually endanger the lives of many people, especially those residing 
in rural communities or in cities that are hosting a large number of 
internally displaced people (IDPs). These set of individuals are described 
as high-risk population due to the following reasons: (i) they live in rural 
areas where the illiteracy rate is high; (ii) poor economic situation; (iii) 
internally displaced people living in camps; (iv) have no access to 
potable water which make hands washing policy a practically impos
sible; and (v) insufficient medical resources. Whereas other sets of 
people, especially those residing in the urban areas, are considered as 
moderate risk population. 

Considering the global scenario on the series of waves and different 
(new) starins of COVID-19, there is a need for more studies/research to 
timely and effectively curtail the spread of the disease. Thus, here, we 
proposed and analyzed an epidemic model that will be used to shed light 
and understanding on the transmission of SARS-CoV-2, and to access the 
role played by each sub-population (high and moderate risk pop
ulations) on the overall transmission of COVID-19 in Nigeria and 
beyond. The proposed model incorporates the effects of high and mod
erate risk populations [30,31] on the overall transmission dynamics to 
provide suggestions to public health practitioners and policymakers on 
the optimal control strategies to effectively control the spread of the 
disease. The model considered set of people living in urban communities 
as the moderate risk population, since they have more access to hospitals 
(adequate medical resources compared to the rural communities that are 
regarded as high-risk population), sufficient social media for awareness 
campaigns, and better transport systems, the influence of human 
behavior on the spread of infectious diseases, etc., which can help 
greatly in the prevention and control of diseases [19,32–38]. 

In this work, we developed an SEIR-based model to investigate the 
dynamics of COVID-19 in Nigeria with the effect of high-and-moderate 
risk populations. A noteworthy characteristic of the current model is the 
inclusion of the role of high-and moderate risk populations on the spread 
of COVID-19 infection. The model, which fitted well to the COVID-19 
cases data collected from the Nigerian Center for Disease Control 
(NCDC) [7], is adopted to examine the impacts of different schemes for 
control and mitigation strategies. We examine the dynamics of the 
model with human-to–human transmission route and ignore other 
modes of transmission since most of COVID-19 infection occurs via 
person to person transmission route. 

Model formulation 

We proposed a deterministic model based on the standard SEIR- 

Fig. 1. The schematic diagram of the COVID-19 model with-high-and-moderate risk populations.  
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based model to study the transmission dynamics of the COVID-19 
epidemic [30,31]. The proposed model incorporates high-and- 
moderate risk population to investigate the dynamics of COVID-19 
transmission epidemic in Nigeria and beyond [30,31,39]. 

Some fraction of the population are considered to be at moderate risk 
due to the availability of resources such as hospitals, good transport 
systems, adequate social media for dissemination of information and 
other awareness campaigns, influences of human behavior on the spread 
of infectious diseases due to high rate of educated people, which helps 
largely in the prevention and control on the spread of infectious diseases 
[32,34,36–38]. The rest of the population (especially those residing in 
the rural areas) are regarded as high risk population due to poor re
sources, awareness, education, and social media. 

The total human population N at time t, denoted by N(t), is sub- 
divided into mutually exclusive compartments, which are susceptible 
humans with moderate risk of COVID-19 infection (SM(t)),susceptible 
humans with high risk of COVID-19 infection (SH(t)), exposed humans 
e(t), asymptomatically infected humans IA(t), symptomatically infected 
humans (IS(t)), and recovered humans r(t). Thus, N(t), is given by N(t)
= SM(t) + SH(t) + E(t) + IA(t) + IS(t) + R(t). The model’s flow diagram 
is depicted in Fig. 1, while the state variables and parameters (assumed 
to be all positive) are summarized in Table 1. The proposed model’s 
system is given by the following non-linear ordinary differential 
equations 

dSM

dt
= αΛ + ρ1SH − ρ2SM − ηSM − μSM ,

dSH

dt
= (1 − α)Λ + ρ2SM − σηSH − ρ1SH − μSH ,

dE
dt

= η(SM + σSH) − (ψ + μ)E,

dIA

dt
= kψE − (γ1 + μ)IA,

dIS

dt
= (1 − k)ψE − (θ + γ2 + μ)IS,

dR
dt

= γ1IA + γ2IS − μR.

(1)  

The force of infection of the model (1) above is given by η =
β(ϕIA+IS)

N . 

In the model (1), the susceptible individuals are recruited into the 
population by birth (or immigration) at a rate Λ. A parameter α repre
sent a fraction of recruits joining the compartment, Sc, and the 
remaining fraction, 1 − ρ, joins SH. ρ1 and ρ2 represent movement from 
SH to SM and vice versa. Susceptible humans in SM and SH joins the 
exposed class, E, following effective contacts with an infected individual 
from IA or IS, at a rate η and ση, respectively. It is worth noting that σ(⩾1)
account for the modification parameter for the increase of infectivity of a 
high-risk population. This further indicates that there will be more 
contact (and a high rate of non-compliance of NPIs measures) in the 
high-risk population than the moderate-risk population, likely due to 
lack of awareness, insufficient availability of resources, human behav
iors, and other factors mentioned above [30,34,37,38,40]. ψ denote 
progression rate from the exposed humans to infectious humans. A 
fraction k is the modification parameter that account for the reduction in 
infectiousness from E to IA (and the remaining fraction, 1 − k, represent 
modification parameter moving from E to IS). γ1 (γ2) measure the re
covery rate of humans from IA (IS). θ account for the COVID-19 induced 
death rate, while μ represent the natural death rate of humans. 

Basic qualitative properties of the model 

In this subsection, we qualitatively analyzed some basic property of 
the model (1). For mathematical convenience, the following equation 
represent the rate of change of the total population of humans, which is 
given by N′

(t). Here, the prime denotes differentiation with respect to 
time, and thus, following [41], we have 

dN
dt

= Λ − θIS − μN⩽Λ − μN. (2) 

Consider solutions of Eq. (1), which is given by Ω =
{(

SM, SH,E, IA, IS,R) ∈ R6
+ : N⩽Λ

μ

}
, and simplifying N it from Eqn. (2), 

one can see that all solutions of the model starting in Ω remain in Ω for 
all t⩾0. Thus, Ω is positive-invariant, and it is enough to evaluate so
lutions that are restricted in Ω. Therefore, for the model (1), the exis
tence, uniqueness and continuation results hold provided the solutions 
that are restricted in Ω hold [42]. 

Theoretical analysis of the model 

Disease-free equilibrium and reproduction number 

In the absence of the disease, the infected components of the model 
are considered as zero (that is, E = IA = I = IS = R = 0). Then, the DFE 
of the system (1), which is always feasible, obtained at steady state is 
given by 

E0
1 =

(
S0

M , S0
H ,E

0, I0
A, I

0
S,R

0)

=

(
Λ(αμ + ρ1)

μ(μ + ρ1 + ρ2)
,
Λ((1 − α)μ + ρ2 )

μ(μ + ρ1 + ρ2)
, 0, 0, 0, 0

)

.

The next-generation matrix method (NGM) [43] is applied to scru
tinize the characteristics of the asymptotic stability of the DFE. Specif
ically, adopting the expression in [43], the associated NGMs, F and V, for 
the new infection terms and the transition terms, are given, respectively, 
by 

F =

⎡

⎣
0 g1 g2
0 0 0
0 0 0

⎤

⎦andV =

⎡

⎣
L3 0 0
− kψ L4 0

− (1 − k)ψ 0 L5

⎤

⎦, (3)  

where, N0 = Λ
μ,g1 =

βϕμ(S0
M+σS0

H)

Λ ,g2 =
βμ(S0

M+σS0
H)

Λ ,b1 = 1 − α,b2 = 1 − k,L1 =

μ + ρ2,L2 = μ + ρ1,L3 = μ + ψ,L4 = μ + γ1,L5 = μ + γ2 + θ. Therefore, 
the basic reproduction number, R 0, is given by 

Table 1 
Interpretation of the state variables and parameters used for the Eqn (1).  

Variable Description 

N Total population of human 
SM  Susceptible humans with moderate risk of COVID-19 infection 
SH  Susceptible humans with high risk of COVID-19 infection 
E Exposed humans 
IA  Asymptomatically infected humans 
IS  Symptomatically infected humans 
R  Recovered humans 

Parameter  
Λ  Recruitment rate of humans 
α  Fraction of newly recruited humans moving to SM  

σ  Modification parameter for the increase of infectivity of SH  

ρ1  Rate of movement from SH to SM  

ρ2  Rate of movement from SM to SH  

β  Transmission/contact rate 
ϕ  Relative infectiousness factor for asymptomatic humans 
ψ  Disease progression rate 
k Fraction of infected humans moving to IS  

γ1  Recovery rates from I1  

γ2  Recovery rates from I2  

θ  COVID-19 induced death rate 
μ  Natural death rate  
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R 0 = R
IA
0 +R

IS
0 =

ψkg1

L3L4
+

ψ(1 − k)g2

L3L5

=
(((1 − α)σ + α )μ + σ ρ2 + ρ1 )β ((1 − k)L4 + kL5ϕ )μψ

(μ + ρ1 + ρ2)L3L4L5
. (4) 

The threshold quantity, R 0, is the basic reproduction number of the 
model (1), which measures the average number of secondary infections 
produced by a typical infected person introduced into a fully susceptible 
population during the period of the individual infection. It is the sum of 
the component reproduction numbers linked with new cases produced 
by asymptomatically-infected (R IA

0 ) and symptomatically-infected (R IS
0 ) 

individuals. 
For the local asymptotic stability (LAS) of the DFE of the model (1), 

we obtained the following result which is inline with Theorem 1 of [43]. 

Theorem 1. The DFE, E0
1, of the model (1), is LAS inside the region of 

attraction, Ω, if R 0 < 1, and unstable if R 0 > 1. 

The epidemiological consequence of the above result is that a small 
influx of COVID-19 cases will not generate an outbreaks if R 0 < 1. It 
should be mentioned, however, that, for epidemic models such as Eq. 
(1), the requirement for obtaining R 0 < 1 is only adequate, but not 
necessary, for mitigating the outbreaks. This is in addition to the fact 
that, in one hand, for some epidemic models the disease always dies out 
with time (regardless of the value of R 0). On the other hand some 
endemic models, the disease will persist in the community whenever 
R 0 > 1. The reason for this is that, by allowing for the recruitment of 
susceptible individuals, the population of wholly-susceptible individuals 
is continually being replenished, thereby allowing the disease to find 
potential targets to infect. This allows the outbreaks to sustain itself in a 
population [44]. 

Endemic equilibrium 

Existence of endemic equilibria 
The endemic equilibrium, EE, of the system (1) is the steady state 

where the disease spreads and persists in a community, that is, when at 
least one of the infected compartments of the model (1) is non-empty. 
Suppose Ξ* = (S*

M, S
*
H, E*, I*

A, I
*
S,R*) be an EE solution of the system (1). 

Equating the right hand side of the model (1) to zero, the EE in terms of 
E∗ and η∗, is given by 

S*
M =

Λ (αη∗ σ + αμ + ρ1)

η∗2σ + ((σ + 1)μ + σ ρ2 + ρ1 )η∗ + μ (μ + ρ1 + ρ2)
,

S*
H =

Λ ((η∗ + μ)(1 − α) + ρ2 )

η2σ + ((σ + 1)μ + σ ρ2 + ρ1 )η∗ + μ(μ + ρ1 + ρ2)
,

I*
A =

kψE*

L4
,

I*
S =

(1 − k)ψE*

L5
,

R* =
Eψ (kL5γ1 + L4(1 − k)γ2 )

μL5L4
.

(5)  

Where the force of infection in terms of the EE is now given by 

η* =
β(ϕI*

A + I*
S)

N* . (6) 

Similarly, the total human population in terms of EE is given by 

N* = S*
M + S*

H +E* + I*
A + I*

S +R*. (7)  

Hence, Eq. (6) can now be written as 

S*
M + S*

H +E* +(1 −
βϕ
η* )I

*
A +(1 −

β
η*)I

*
S +R* = 0. (8)  

Existence of backward bifurcation 
In this subsection, we analyse the scenario of backward bifurcation 

(BB), which has been studied in previous works [45–47]. The appear
ance of BB in the current model indicates that R 0 < 1, is although 
adequate, but not necessary for effectual control of the COVID-19 
epidemic. Therefore, we explore the analysis of BB for the system (1) 
below. 

Substituting Eq. (5) into Eq. (6), and solving, we have the following 
Eqn in terms of η*, 

A1η∗2 +A2η* +A3 = 0, (9)  

where, 

A1=σ((kL5+L4(1− k))ψ+L4L5)μ+ψσ(kL5γ1+L4(1− k)γ2),

A2=(σ(1− α)+α)((kL5+L4(1− k))ψ+L4L5)μ2

+(((((ρ2+γ2− β)(1− α)+α(ρ2− β))σ+(1− α)ρ1+α(ρ1+γ2))(1− k)L4
+L5k(((− βϕ+γ1+ρ2)(1− α)+α(− βϕ+ρ2))σ+(1− α)ρ1+α(ρ1+γ1)))ψ
+L5L4(((1− α)ρ2+α(L3+ρ2))σ+(L3+ρ1)(1− α)+αρ1))μ
+ψ(σρ2+ρ1)(kL5γ1+L4(1− k)γ2),

A3=μ(L3L4L5(ρ1+ρ2+μ)− ((σ(1− α)+α)μ+σρ2+ρ1)(kϕL5+L4(1− k))ψβ)
=μL3L4L5(ρ1+ρ2+μ)[1− R 0].

Hence, we have the following Result 2. 

Theorem 2. The model system (1) has  

i) a unique EE, if A3 < 0;  
ii) a unique EE, if A2 < 0 and A3 = 0;  
iii) two EEs, if A2 < 0,A3 > 0 and Δ > 0; and  
iv) no EE otherwise. 

Obviously, one can verify that, case (i) of Theorem 2 highlights the 
existence of unique EE of the model (1) whenever R 0 < 1. While, case 
(iii) indicates the possibility of the existence of BB. The existence of the 
BB phenomenon in the current model show that the DFE which is LAS 
co-exists with a stable EE whenever R 0 < 1 [45,46,48]. To show this, 
the discriminant of the quadratic equation is set to zero, i.e., 
A2

2 − 4A1A3 = 0, then we solve for the critical value of the basic repro
duction number, represented by R c

0 and is given by 

R
c
0 = 1 −

A2
2

4A1μL3L4L5(ρ1 + ρ2 + μ) . (10) 

Hence, the following result is established. 

Lemma 3. The BB phenomenon exists for the Eqn (1) when case (iii) of the 
Theorem 2 is satisfied with R c

0 < R 0 < 1. 

By implications, the existence the phenomenon of BB in the model 
(1) divulge that the classical requirement of getting R 0 < 1 is although 
necessary but not a prerequisite for effectual control of COVID-19 
epidemic. Thus, disease elimination would depend on the initial sizes 
of sub-populations of the model (1) [42,45,46,48–50]. 

Non-existence of backward bifurcation 
In order to rule out the existence of BB for the model (1) completely, 

the following corollary is considered (under a special scenario where σ =

0). 

Corollary 4. The model (1) does not undergoes BB phenomena if σ = 0. 

In this scenario, we set the parameter σ = 0, which represent 
modification parameter for the increase of infectiousness of SH from the 
model (1), and all other parameter values remains fixed as in the 
Table 2. So that, the R 0 can now be written as R *

0 =

βϕμS0
M

Λ

(
ψk

L3L4
+

ψ(1− k)
L3L5

)〈

1. Therefore, the model (1) assumes a unique 

stable DFE and is consistent with Theorem 1. Since, the DFE is LAS 
whenever R *

0 < 1 (see Theorem 1). Thus, the coefficients of the Eqn (7) 
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are now given by 

A1 = 0,A2 = α ((kL5 + L4(1 − k))ψ + L4L5)μ2

+((((1 − α)ρ1 + α (ρ1 + γ2))(1 − k)L4L5k((1 − α)ρ1 + α (ρ1 + γ1)))ψ
+L5L4((L3 + ρ1)(1 − α) + αρ1))μ + ψρ1(kL5γ1 + L4(1 − k)γ2), and

A3 = μ2πθg1g2(1 − R
n
0).

Therefore, according to Theorem 2, the EE does not exists when 
R

*
0 ≤ 1, since the Eqns (9) will be automatically linear, i.e., η∗ = − A3

A2
, 

highlighting the non-existence of EE for the model (1) whenever 
R

*
0 ≤ 1. From the above, we reveal that the parameter σ is the caused for 

the existence of BB of the model (1), and obviously this parameter 
differentiated the compartment of high and moderate risk susceptible 
populations. This further, revealed the role of high-and-moderate risk 
populations in curtailing the spreads of the COVID-19 pandemic in 
Nigeria and beyond. 

Furthermore, based on the result in Theorem 3.2, the mode (1) does 
not undergo the phenomenon of BB at R0 = 1. For more general dis
cussion on BB and its causes, see [45,46,48–50]. Thus, the following 
global asymptotic stability result is obtained to completely rule out the 
existence of the BB phenomenon in the current model). 

Global stability analysis of the endemic equilibrium 
Following previous studies [45,50,51], we obtained the following 

result (see Theorem 5). 

Theorem 5. The EE of the COVID-19 model (1), Ξ*, is globally- 
asymptotically stable (GAS) in the region of attraction whenever R 0 > 1, 

with 
(

1 −
η
η∗

)(

1 −
IAη

IA∗η∗

)

≥ 0, and 
(

1 −
η
η∗

)(

1 −
ISη

IS∗η∗

)

≥ 0. 

For the proof of the above theorem, see Appendix part. 

Simulation results 

Model fitting 

The data-fitting process in this section involves implementing the 
Pearson’s Chi-square and the least square sampling method using the R 
statistical software (version 3.4.1 or above) [41]. We fitted the model (1) 
to the weakly COVID-19 reported cases in Nigeria from February 28 to 
August 13, 2020. The time series of COVID-19 reported cases for Nigeria 
can be obtained from the World Health Organization (WHO) available 
fromhttps://covid19.who.int/ [6] or Nigeria Center for Disease Control 
(NCDC) available from https://covid19.ncdc.gov.ng/ [7]. Demographic 
time series and parameters were computed based on the data from the 
World Bank [52]. All other parameters can be found in the Table 2 and 
the following initial conditions: SM = 10.5 × 107, SH = 8.5 × 107,E =

12.1 × 104, IA = 12, IS = 6 and R = 2, with θ = 0.85015(0.001 − 0.89). 
Fig. 2 indicates the fitting results of the Eqn (1) for each of the daily and 
cumulative number of COVID-19 cases for Nigeria. This further shows 
that the proposed model can capture well the epidemics curves from the 
daily cases of COVID-19 for Nigeria from 28 February to 25 August. 

Sensitivity analysis 

In this subsection, by adopting previous works [42,53–55], we 
computed Partial Rank Correlation Coefficients (PRCCs) for sensitivity 
analysis of the model (1). The PRCCs of the R 0 and infection attack rate 
for the sensitivity analysis of the model (1), depicted in Fig. 3, was used 
to revealed the influences of the model parameters on reproduction 
number, R 0, and infection attack rate. We applied 5000 random sam
ples taken from uniform distributions of each model parameters (see 
Table 2 using the R statistical software (version 3.4.1 or above) with 
package “sensitivity” to estimates the impact of each parameter on R 0 
and attack rate to show the most important parameter for effectual 
control. Furthermore, for each random parameter sample set, the model 
(1) was simulated to examine the target epidemiological parameter 
values. We found that the most sensitive epidemic parameters of the 
model (1) that should be emphasized for COVID-19 control are the ρ1 
and ρ2 (those parameters are directly linked to the high risk and mod
erate risk populations or compartments) followed by β and γ2. This 
further indicates that to effectively control the COVID-19 epidemic there 
is a need for total (or high rate) of compliance for the NPIs measures as 
well as implementing movement restriction, especially from high risk to 
moderate risk populations and vice versa. 

Numerical simulations 

Here, we use 3 efficient approaches namely EM, RK-2, and RK-4 to 
examine the transmission dynamics (in each scenario) of COVID-19 in 
Nigeria with the effect of a high-and-moderate risk population. We make 
a comparison with the ode45 function for each of the 3 approaches 
mentioned. 

In the absence of an exact solution for the proposed model, we need 
to establish approximate solutions to show the behavior of the model 
(1). To this aim, the above-described numerical schemes have been 
employed to describe the clear vision of the behaviour of the proposed 
model. The initial conditions and the initial values of the parameters 
that have been used in carrying out the numerical results are as 
described in Table 2. Based on the performed numerical simulation, 4 
displays the approximate outlook of the proposed model with the 
ODE45 function and EM. 

Fig. 5 displays the approximate outlook of the proposed model with 
ODE45 and the RK-2 approach. It should be noted that the method of 
RK’s-2 provides a better approximation than EM. In this case, this is 
because of the indistinguishable existence of the solution. 

Fig. 6 displays the approximate outlook of the proposed model with 
ODE45 and the RK-4 approach. The results of the RK-4 approach gave a 
good outcome. The overall comparison of all schemes used for the 
approximation of the proposed model is shown in Fig. 7. Besides, Rk-2 
and Rk-4 require two and four evaluations per step and their global 
truncation errors are O(h2) and O(h4), respectively and it very well- 
known that these truncation errors measure the amount at a stated 
step, where the exact solutions to the differential equations fail to hold 
for the difference equation under consideration for approximation. This 
may seem like an improper way of measuring the error of multifarious 
methods since we want to know how well the approximations provided 
by the methods follow the differential equation and not the other way 
around. However, the exact solution is not known, so this can not 
generally be determined, and the truncation error can very well serve to 
determine not only the error of a method but also the actual approxi
mation error. 

Table 2 
Baseline values of the parameters used for the model (1).  

Parameter Baseline values (day− 1)  Sources 

Λ  2500 (1000–5000) [55] 
α  0.5 (0–1) estimated by [56] 
σ  1.3 (1–2) estimated by [30] 
ρ1  0.0714 (0.01–0.5) assumed 
ρ2  0.0461 (0.01–0.5) assumed 
β  0.745 (0.599–1.68) [57,58] 
ϕ  0.5 (0.4–0.6) [59] 
ψ  0.143 (0.05–0.275) [2,60] 
k 0.86834 (0–1) [60] 
γ1  1/7 (1/14–1/3) [60] 
γ2  1/7 (1/30–1/3) [59,60] 
θ  0.015 (0.001–0.1) [58,59] 
μ  0.00005 (0.00003–0.00006) [55]  
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Conclusions 

The world has been confronting an overwhelming scenario of 
COVID-19 pandemic caused by SARS-CoV-2, which appeared in Wuhan, 
China in early 2020. Despite tremendous efforts from the public health, 
the disease has killed over 3 million people and caused a huge burden in 

the socio-economic sector globally. Although a number of vaccines are 
currently available (or being developed) [61], however, most of the 
control efforts are directed primarily on the use of non-pharmaceutical 
interventions (NPIs) measures, such as social-distancing, use of mask, 
lockdown, contact tracing, quarantine, and isolation. 

In this study, we used the classical (Susceptible-Exposed-Infected- 

Fig. 2. Fitting results of the model (1) to the reported number of COVID-19 cases in Nigeria from February 28 to August 25, 2020. In both panels, the green dots are 
the observed number of cases, and the red curves are the fitting results. The left panel shows the cumulative number of cases, and the right panel represents the daily 
number of new cases. 

Fig. 3. Result of the Partial Ranked Correlation coefficients (PRCCs) for the basic reproduction number and infection attack rate against the model’s parameters. The 
dots denotes the PRCCs estimates; and the bars represents the 95% confidence intervals (CI). The values and ranges of the model parameters are summarized 
in Table 2. 
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Recovered) SEIR-based model to qualitatively analyzed the dynamics 
behavior of COVID-19 infection in Nigeria with effects of high-and- 
moderate risk population. We computed the basic reproduction num
ber, R 0, of the proposed COVID-19 model, which was used to deter
mined the asymptotic stability behavior of the model. Further 
mathematical analysis reveals that the model has two equilibria; that is, 
the DFE (absence of disease in a population); and the EE (speediness and 
persistence ability of disease in a population). The local asymptotic 
stability (LAS) of the DFE exists for the model (1) if the R 0 < 1; and 
unstable if R 0>1. In addition, we found that the model (1) undergoes the 
BB phenomenon i.e., a situation where the stable DFE coexists with the 

stable EE even if the R 0 < 1. The epidemiological implication for the 
existence of the BB phenomenon in the proposed model is that, if R 0 < 1 
the COVID-19 control would hinge on the initial size of individuals in 
each compartment, thereby making the control more difficult, indi
cating the needs for additional intervention strategy for effectual con
trol. Our model, fitted to the cumulative number of reported cases, was 
able to capture well the epidemic curves from the daily cases of COVID- 
19 for Nigeria from 28 February to 25 August. The jump in the right 
panel of Fig. 2 indicates that the COVID-19 outbreaks in Nigeria may 
have been started earlier than reported, which is in line with previous 
estimates [16,62]. Moreover, we adopted the Partial Rank Correlation 

Fig. 4. EM versus ODE45 function.  

Fig. 5. RK-2 versus ODE45 function.  
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coefficients for the sensitivity analyses between the model outcomes and 
the parameters to evaluate the top rank parameters for effective control 
and mitigation of COVID-19 epidemic in Nigeria and beyond. 

We found that the top-ranked epidemiological parameters of the 
model (1) that should be emphasized for controlling the COVID-19 
epidemic are ρ1 and ρ2 (those parameters are directly related to the 
high risk and moderate risk populations or compartments), followed by 
transmission/contact rate (β) and recovery of individuals from the 
symptomatically-infected compartment (γ2). Our results suggest that 
proper surveillance (more especially with regard to the movement of 
individuals from high risk to moderate risk population), testing, face- 

masks use, and tracing of contacts from the suspected and confirmed 
cases and other NPIs measures are vital strategies and should be sus
tained to effectively mitigate the COVID-19 outbreaks in Nigeria. 

Furthermore, since it is very difficult (nearly impossible) to obtain an 
exact solution for the proposed model, in this case, we designed 
approximate solutions to explain the approximate behavior of the 
model. To this end, three effective numerical schemes which are EM, RK- 
2, and RK-4 have been employed and compared with the well-known 
ODE-45 in order to explain the approximating behavior of the model. 
EM is one of the simplest schemes that gives a captivating approximation 
of the feature of each system variable. 

Fig. 6. RK-4 versus ODE45 function.  

Fig. 7. Overall comparison of the 3 approaches with ODE45 function.  
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In the literature, the singular and non-singular fractional operators 
have been tested to have depicted many interesting dynamics for the 
real-world problems. So, in the future we aim to extend the proposed 
model to the fractional domain in order to extract novel dynamics be
haviours/features. 
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Appendix 

Proof. Following previous works [39,50,51], we consider the following Lyapunov function, defined by; 

Y(t) = a1

(

SM − S*
M − S*

M ln SM
S*

M

)

+ a2

(

SH − S*
H − S*

Hln SH
S*

H

)

+ a3

(

E − E∗ − E∗ln E
E∗

)

+ a4

(

IA − I*
A − I*

Aln IA
I*
A

)

+ a5

(

IS − I*
S − I*

Sln IS
I*
S

)

.
(A1)  

Then, the Lyapunov derivative is given by 

dY
dt

= a1

(

1 −
S∗

M

SM

)

˙SM + a2

(

1 −
S∗

H

SH

)

ṠH + a3

(

1 −
E∗

E

)

Ė + a4

(

1 −
I∗A
IA

)

İA + a5

(

1 −
I∗S
IS

)

İS.

Calculating terms of the above derivetive, we obtain the following Eqns :

a1

(

1 −
S∗

M

SM

)

˙SM = a1

(

1 −
S∗

M

SM

)

(α ∧ +ρ1SH − ρ2SM − ηSM − μSM)

= a1

(

1 −
S∗

M

SM

)
(
η∗S∗

M + L1S∗
M − ηSM − L1SM

)

= a1η∗S∗
M

(

1 −
S∗

M

SM

)(

1 −
ηSM

η∗S∗
M

)

− L1

(
SM − S∗

M

)2

SM
≤ a1η∗S∗

M

(

1 −
ηSM

η∗S∗
M
−

S∗
M

SM
+

η
η∗

)

Similarly,

a2

(

1 −
S∗

H

SH

)

ṠH ≤ a2δη∗S∗
H

(

1 −
ηSH

η∗S∗
H
−

S∗
H

SH
+

η
η∗

)

,

a3

(

1 −
E∗

E

)

Ė = a3η∗S∗
M

(
ηSM

η∗S∗
M
−

E
E∗ −

ηSME∗

η∗S∗
ME

+ 1
)

+ a3δη∗S∗
H

(
ηSH

η∗S∗
H
−

E
E∗ −

ηSHE∗

η∗S∗
HE

+ 1
)

,

a4

(

1 −
I∗A
IA

)

İA ≤ a4kψE∗

(
E
E∗ −

IA

I∗A
−

I∗AE
IAE∗ + 1

)

, and

a5

(

1 −
I∗S
IS

) ˙
İS ≤ a5(1 − k)ψE∗

(
E
E∗ −

IS

I∗S
−

I∗SE
ISE∗ + 1

)

(A2)  

Setting a1 = a2 = a3 = 1, a4 =
η∗S∗

M
kψE∗, and a5 =

η∗δS∗
H

(1− k)ψE∗ and above Eqns, we obtain the following :,  

Ẏ ≤ η∗S∗
M

(

2 −
S∗

M
SM

− E
E∗ −

ηSME∗

η∗S∗
ME +

η
η∗

)

+ δη∗S∗
H

(

2 −
S∗

H
SH

− E
E∗ −

ηSHE∗

η∗S∗
HE +

η
η∗

)

+ η∗S∗
M

(
E
E∗ −

IA
I∗A
−

I∗AE
IAE∗ + 1

)

+ δη∗S∗
H

(
E
E∗ −

IS
I∗S
−

I∗SE
ISE∗ + 1

)

(A3) 
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Now, we concider a function u(x) = 1-x + lnx, thus, if x > 0 it leads to u(x) ≤ 0. And, if x = 1, then u(x) = 0. Therefore, x-1 ≥ ln(x) for any x > 0 [50,51]. 
Emplying the above Eqns, previous calculations, and the conditions from the GAS Theorem, we have 

(

2 −
S∗M
SM

− E
E∗ −

ηSM E∗

η∗S∗M E +
η
η∗

)

=

(

−
(

1 −
η
η∗

)(

1 −
IAη∗
I∗Aη

)

+ 3 −
S∗M
SM

−
ηSM E∗

η∗S∗M E −
IAη∗
I∗Aη − E

E∗ +
IA
I∗A

)

≤

(

−

(
S∗

M

SM
− 1

)

−

(
ηSME∗

η∗S∗
ME

− 1
)

−

(
IAη∗

I∗Aη − 1
)

−
E
E∗

+
IA

I∗A

)

≤

(

− ln
(

S∗
MηSME∗IAη∗

SMη∗S∗
MEI∗Aη

)

−
E
E∗

+
IA

I∗A

)

=

(
IA

I∗A
− ln

(
IA

I∗A

)

+ ln
(

E
E∗

)

−
E
E∗

)

Similarly,(

2 −
S∗

M

SM
−

E
E∗

−
ηSME∗

η∗S∗
ME

+
η
η∗

)

≤

(
IS

I∗S
− ln

(
IS

I∗S

)

+ ln
(

E
E∗

)

−
E
E∗

)

Also,
E
E∗

−
IA

I∗A
−

I∗AE
IAE∗

+ 1 =

(

u
(

I∗AE
IAE∗

)

+
E
E∗

− ln
(

E
E∗

)

−
IA

I∗A
+ ln

(
IA

I∗A

))

≤
E
E∗

− ln
(

E
E∗

)

+ ln
(

IA

I∗A

)

−
IA

I∗A
.

and,
E
E∗

−
IS

I∗S
−

I∗SE
ISE∗

+ 1 =

(

u
(

I∗SE
ISE∗

)

+
E
E∗

− ln
(

E
E∗

)

−
IS

I∗S
+ ln

(
IS

I∗S

))

≤
E
E∗

− ln
(

E
E∗

)

+ ln
(

IS

I∗S

)

−
IS

I∗S
.

(A4)  

Hence, from the above Eqs. (A1)–(A4) 

˙V(t) ≤ η∗S∗
M

((
IA
I∗A
− ln

(
IA
I∗A

)

+ ln
(

E
E∗

)

− E
E∗

))

+

δη∗S∗
H

((
IS

I∗S
− ln

(
IS

I∗S

)

+ ln
(

E
E∗

)

−
E
E∗

))

+

η∗S∗
M

(
E
E∗

− ln
(

E
E∗

)

+ ln
(

IA

I∗A

)

−
IA

I∗A

)

+

δη∗S∗
H

(
E
E∗

− ln
(

E
E∗

)

+ ln
(

IS

I∗S

)

−
IS

I∗S

)

(A5)  

Therefore, according to LaSalle’s Invariance Principle [63], and combining Eqs. (A1)–(A5), we have Ẏ⩽0. Also, the equality 
Ẏ = 0 holds only if SM = S∗

M, SH = S∗
H, E = E∗, IA = I∗A , and IS = I∗S.

Thus, the given EE is the only positive invariant set for the system, which is contained in the domain, omega.
(. V̇⩽0 (S*

M, S
*
H, E*, I*

A, I
*
S and R*)⩽0 and 

thus, the positive EE is GAS. □ 
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