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A B S T R A C T   

Comfort performance of high-rise structures during strong winds is significant to habitants. 
Despite the significance, procedures for evaluating occupant comfort in serviceability limit states 
have not been as well developed as those for strength-based design of high-rise structures. One of 
the difficulties arises from uncertainties associated with the parameters in occupant comfort 
assessment, which pertain to the acceleration response magnitude and its relationship to human 
reaction to the motion. The comfort assessment is in general conducted by examining whether the 
wind-induced acceleration response satisfies some occupant comfort criteria. Such a deterministic 
approach, however, fails to account for uncertainty inherent in the wind-induced acceleration 
response as it is affected by the wind field of stochastic nature and uncertainty about the aero
dynamic loads and the structure’s dynamic behavior. In view of this, a Bayesian probabilistic 
approach is proposed in this study to evaluate the occupant comfort of high-rise structures. First, 
a Bayesian regression model is formulated for characterizing wind-induced acceleration responses 
of a structure by use of structural health monitoring (SHM) data acquired during strong winds, 
thereby enabling to account for the uncertainty contained in the monitored acceleration re
sponses and quantify the uncertainty in modeling and prediction. Based on the predicted accel
eration distribution and reliability theory, a safety index is then elicited to perform probabilistic 
assessment of occupant comfort in wind-induced motion of the structure. In the case study, field 
monitoring data acquired from a supertall structure of 600 m high during six tropical cyclones are 
used to illustrate the proposed approach, including the evaluation of occupant comfort of the 
structure under extreme wind speeds.   

1. Introduction 

The use of high strength materials and advanced structural systems makes the modern tall buildings to be higher and more flexible, 
enabling the possibility of buildings soaring to the height of 1000 m [1]. As a result, such supertall structures are susceptible to wind- 
induced vibration. It has been reported that high-rise structures in coastal cites became unserviceable when suffering from excessive 
wind-induced motion during windstorms. Prolonged exposure to these vibrations may cause occupant discomfort, triggering 
emotional and physical reactions such as concern, anxiety, fear, dizziness, and headaches [2,3]. In Hong Kong, the typhoon Mangkhut 
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in 2018 with a record-breaking strength and devastating damage is a live example. High winds caused some high-rise buildings to sway 
violently, and shattered windows of others. Many habitants residing in higher building stories felt uncomfortable and even scared due 
to excessive vibration [4]. These facts evidence again that occupant comfort is a crucial issue in the design of high-rise structures. 

Occupant comfort during wind-induced motion of high-rise structures can be assessed by means of dynamic response indicators 
such as acceleration, velocity and displacement [5]. Among them, acceleration is unanimously recognized as the one most intimately 
related to the occupant comfort [6,7]. With the purpose of better understanding this relationship, a number of studies have been 
pursued over the years, including simulations and experimental tests, field measurements of real structures, and survey via ques
tionnaires to habitants [8–10]. In the current design of modern tall buildings, wind tunnel tests are routinely employed to determine 
the wind-induced top floor acceleration [11] so that occupant comfort can be assessed against some occupant comfort criteria such as 
ISO 6897 [12], ISO 10,137 [13], and AIJ Guidelines [14]. When the wind tunnel test results reveal that the wind-induced acceleration 
exceeds the occupant comfort limit states, certain mitigation measures such as increase of structural damping by installing vibration 
control devices and/or amendment of structural system or building aerodynamic shape are usually suggested. 

While wind tunnel test is widely used in the design stage of tall buildings, full-scale measurements under real wind conditions are 
viewed as the most reliable method for evaluating the wind-induced vibration and occupant comfort of built tall buildings [15]. The 
first report of field investigation was the landmark study conducted by Hansen et al. [16], where the occupants of two tall office 
buildings (167 m high) were surveyed after a wind-attack event and questioned concerning “how many times a year a similar 
experience would occur before it become objectionable?”. By performing so, the investigators gained a sense of the relationship be
tween the motion intensity and the percentage of people objecting to the building vibration. Later on, more field tests of wind-induced 
vibration and surveys of the residents were conducted on high-rise structures during wind storms [9,17–20]. One of the longest on- 
going and perhaps most monumental studies is the Chicago full-scale monitoring program [9]. The program was established in 
2001 to correlate the in-situ full-scale measured response characteristics of tall buildings, with computer-based analytical and wind 
tunnel models for the advancement of state-of-the-art design of tall buildings. Over the recent decades, full-scale measurements of both 
wind effects on and the ensuing dynamic characteristics of supertall structures (greater than 300 m in height) have been increasingly 
executed, and the results of which were highly valuable to the professionals involved in designing such buildings. For example, 
structural health monitoring (SHM) system has been implemented on the world’s tallest building, Burj Khalifa of 828 m high, for wind 
and structural response monitoring [21]. Also, wind effects on over 10 supertall structures in China during tropical cyclones have been 
comprehensively evaluated through deploying long-term or short-term SHM systems [22–28]. 

With progressively cumulated SHM data, numerous researchers have attempted to establish correlation regularity between the 
wind-induced RMS/peak acceleration of high-rise structures and the mean wind speed [22,23,25,29,30]. However, the correlation 
models were mostly obtained in a deterministic manner. With such formulated models, maximum acceleration response can be 
predicted and compared with the comfort criteria for occupant comfort assessment. One major drawback is that the accuracy of model 
parameter estimation is affected by the valid data volume. Limited incomplete data would lead to inaccurate parameter estimation. 
More importantly, the formulated models fail to account for the uncertainty inherent in the monitoring data and interpret the model 
error. In fact, the RMS/peak acceleration response is affected by the wind field of stochastic nature and by epistemic uncertainties on 
the structure’s aerodynamic behavior and its structural properties [6]. It is therefore particularly essential to characterize these un
certainties in the assessment of structural dynamic response and occupant comfort. The effects of these uncertainties in the service
ability design of buildings have been addressed by different ways [3,6,31,32], but all in the conventional (frequentist) probabilistic 
context rather than the Bayesian probabilistic context. 

This study aims to develop a Bayesian probabilistic framework for occupant comfort evaluation of high-rise structures using SHM 
data. The Bayesian probabilistic approach offers two appealing merits: (i) the model parameters in Bayesian context are treated as 
random variables rather than deterministic quantities and thus are able to accommodate uncertainty contained in the monitoring data, 
and (ii) the formulated model enables the quantification of model error and prediction uncertainty. In this connection, a Bayesian 
methodology will first be developed for probabilistic modeling of the nonlinear relationship between the acceleration response and 
wind speed as well as for probabilistic assessment of the occupant comfort in serviceability limit states. Long-term monitoring data of 
wind velocity and acceleration response recorded by an SHM system deployed on the 600 m high Canton Tower during 6 tropical 
cyclones between 2011 and 2013 will then be utilized to verify the proposed methodology. This paper is structured as follows. Section 
1 briefly reviews the state-of-the-art research in relation to occupant comfort assessment of high-rise structures. In Section 2, a 
Bayesian wind-acceleration-relation (WAR) model characterizing the wind-induced structural response is formulated. Section 3 in
troduces the instrumented supertall structure, the SHM system, and the monitoring data collected during 6 tropical cyclones. In Section 
4, the occupant comfort of the supertall structure in serviceability limit states is evaluated. Conclusions are drawn in Section 5. 

2. Bayesian approach for wind-induced response modeling 

2.1. Bayesian WAR model 

The previous field measurements of wind effects on high-rise structures have revealed that there exists a power function rela
tionship between the acceleration response and mean wind speed [22,23,25,29,30], which can be expressed as 

Acci = a1Ub1
i , i = 1, 2,⋯, n (1)  

where Acci represents the root mean square (RMS) or peak acceleration at the ith time interval (e.g., 10 min for each interval); Ui is the 
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corresponding mean wind speed; a1 and b1 are unknown parameters; and n denotes the total number of time intervals in consideration. 
Taking the logarithm of both sides of Eq. (1), we obtain 

logAcci = loga1 + b1logUi , i = 1, 2,⋯, n (2) 

By defining yi = logAcci, xi = logUi, β1 = loga1 and β2 = b1, the above log-transformed power function becomes the following 
linear function 

yi = β1 + β2xi , i = 1, 2,⋯, n (3) 

In the Bayesian context, the linear regression model of the relationship between the response variables yi and explanatory variables 
xi can be expressed in matrix form as [33–35] 

Y = Xβ + ε, ε ∼ N
(
0, σ2I

)
(4) 

with 

Y =

⎡

⎢
⎢
⎣

y1
y2
⋮
yn

⎤

⎥
⎥
⎦, β =

[
β1
β2

]

, X =

⎡

⎢
⎣

1 x1
1 x2
⋮ ⋮
1 xn

⎤

⎥
⎦, ε =

⎡

⎢
⎢
⎣

ε1
ε2
⋮
εn

⎤

⎥
⎥
⎦

where the error ε is a normally distributed random variables with zero mean and variance σ2; I represents the unit matrix of dimension 
n. The density form of Eq. (4) can be expressed as 

f
(
Y|X, β, σ2) =

1
(2πσ2)

n/2 exp
[

−
(Y − Xβ)T

(Y − Xβ)
2σ2

]

(5)  

where the coefficient vector β and the regression variance σ2 are unknown parameters to be estimated. In pursuit of Bayesian inference, 
a prior distribution should be specified for β and σ2. A popular choice of the prior distribution is conjugate normal inverse gamma, that 
is, normal distribution for β and inverse gamma distribution for σ2. As the variance σ2 is non-negative, the inverse gamma distribution 
describing a continuous probability distribution on the positive real abscissa is perfectly suitable for the variance [36,37]. Its prior 
distribution can be expressed as 

f
(
β, σ2) = f

(
β|σ2)f

(
σ2) (6) 

with 

f
(
β|σ2) = N

(
β0, σ2

∑

0

)
=

1

(2πσ2)
k/2⃒⃒
∑

0

⃒
⃒1/2 exp

[

−
(β − β0)

T∑
0
− 1
(β − β0)

2σ2

]

f
(
σ2) = IG

(
a
2
,
b
2

)

=

(
b
2

)a/2

Γ
(

a
2

)
(
σ2)− a/2− 1exp

(

−
b

2σ2

)

where the coefficients β0, Σ0, a and b can be determined based on the prior information stemming from an earlier data analysis, the 
expert knowledge, or the published literature. 

According to Bayes’ theorem, the posterior distribution f
(
β, σ2|Y,X

)
is proportional to the likelihood function f

(
Y|X, β, σ2)

multiplied by the prior distribution f
(
β, σ2) [38] 

f
(
β, σ2|Y,X

)
∝f
(
Y|X, β, σ2)× f

(
β, σ2)

∝
(
σ2)− n/2exp

[

−
(Y − Xβ)T

(Y − Xβ)
2σ2

]

×
(
σ2)− k/2exp

[

−
(β − β0)

T∑
0
− 1
(β − β0)

2σ2

]

×
(
σ2)− a/2− 1exp

(

−
b

2σ2

)

(7) 

Combining the density functions and the joint posterior yields 
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f
(
β, σ2|Y,X

)
∝
(
σ2)− k/2exp

{

−
1

2σ2

(

βT

[

XT X +
∑

0

− 1
]

β − 2βT

[

XT Y +
∑

0

− 1
β0

]

+ YT Y + β0
T
∑

0

− 1
β0

)}

×
(
σ2)− (a+n)/2− 1exp

(

−
b

2σ2

)

(8) 

It is found that Eq. (8) is again a kernel normal inverse gamma distribution, factored as the conditional posterior distribution of β 
multiplied by the marginal posterior distribution of σ2 

f
(
β, σ2|Y,X

)
= f
(
β|σ2,Y,X

)
× f
(
σ2|Y

)
(9)  

where 

f
(
β|σ2, Y,X

)
∼ N

(
β*, σ2

∑
∗
)

(10)  

f
(
σ2|Y

)
∼ IG

(
a*

2
,
b*

2

)

(11) 

with 

β* =

(

XT X +
∑− 1

0

)− 1(

XT Y +
∑− 1

0
β0

)

,
∑*

=

(

XT X +
∑− 1

0

)− 1  

a* = a + n, b* = b + YT Y + β0
T
∑− 1

0
β0 − β*

(∑
∗
)− 1

β*  

2.2. Gibbs sampler for parameter estimation 

With the assumption of natural conjugate prior, the analytical expression of joint posterior distribution for the unknown parameters 
has been elicited in the previous section. However, the marginal posterior distributions of β and σ2 are what we are concerned about. In 
practice, it is intractable to get the marginal posterior distributions by integrating σ2 and β out of the joint posterior distribution, so we 
use Markov chain Monte Carlo (MCMC) sampling methods to draw samples from the posterior in order to approximate the marginal 
posterior distributions. As one of MCMC methods, Gibbs sampler has been widely used since its advent in 1990 [39]. It is favorable for 
scenarios where sampling from a multivariate posterior is infeasible, but rather sampling from the conditional distributions for each 
variable is feasible. The idea behind the Gibbs sampler is to generate a sample from the distribution of each variable in turn, condi
tional on the current values of other variables. It is provable that the sample sequences constitute a Markov chain, and the stationary 
distribution of the Markov chain is just the sought-after posterior distribution of the variable addressed. The iterative process of Gibbs 
sampler is as follows [38]:  

(1) Initialize the parameter values 
{

β(0), σ2(0)} and set k = 1;  
(2) Sample β(k) from the conditional distribution f

(
β|Y,X, σ2(k− 1)) (Eq. (10));  

(3) Sample σ2(k) from the conditional distribution f
(
σ2|Y,β(k)) (Eq. (11));  

(4) Let k = k + 1, go back to (2) and (3) and repeat until L samples 

{
β(k), σ2(k); k = 1,⋯, L

}
are obtained. 

After sufficient iterations, the samples generated from the Gibbs sampler can be viewed as the samples of the marginal distribution. 
Thus, discarding the preceding part of the samples, the remainder (after convergence) can be used for Bayesian inference. The simplest 
way to determine convergence of the Markov chain is visual inspection, that is, by checking the trend of the trace plot. If a Markov 
chain has converged to its distribution, the trace plot will fluctuate smoothly without any trend. Otherwise, a trend will appear. Care 
must also be taken as to whether the Markov chain converges to a local solution. A more rational approach is based on the convergence 
diagnostic (CD) test statistic proposed by Geweke [40], which measures the equality of both the means of the first and last parts of a 
Markov chain. Involved is a division of a total of L draws from the Gibbs sampler into initial L0 draws discarded as burn-in replications, 
and the remaining L1 draws. Further, the latter is divided into three sets: a first set of LA draws, a middle set of LB draws and a final set of 
LC draws. It has been shown that the setting of LA = 0.1L1, LB = 0.5L1, LC = 0.4L1 works well in practice [41]. For the purpose of 
calculating the convergence diagnostic, the middle set of draws is discarded for making it likely that the first and last sets of draws are 
independent of each other. Let MLA and MLC be the averages of the first and last sets of draws, and σLA and σLC be the standard errors of 
these two parts, the test statistic is then obtained by 

CD =
MLA − MLC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
LA

LA
+

σ2
LC

LC

√ (12) 
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which is an asymptotic standard normal distribution as N(0,1). Large CD value implies a significant difference between the first and 
last sets of draws, and in such situation the number of total Gibbs iterations should be increased to generate more samples. If the 
convergence diagnostic indicates that enough draws have been obtained, then finial results can be calculated based on the complete set 
of the remaining L1 draws. 

3. Instrumentation and monitoring during tropical cyclones 

3.1. Instrumented structure 

The Canton Tower located in the city of Guangzhou, China, is a supertall structure with a total height of 600 m. It includes a main 
tower and a mast above. The main tower is 454 m high and comprises an interior reinforced concrete (RC) column structure sur
rounded by an exterior latticed steel frame with helical shape. The interior column has a constant ellipse cross-section of 14 m × 17 m, 
while the geometric configuration of the exterior frame varies with height, which decreases from 50 m × 80 m at the ground level to 
the minimum of 20.7 m × 27.7 m at the height of 280 m (waist level), and then increases to 41 m × 55 m at the very top of the main 
tower (454 m). There are 37 unevenly distributed floors connecting the interior RC column and exterior steel frame that serve for 
various sightseeing and tourism functions including observatory decks, revolving restaurants, exhibition spaces, conference rooms, 
etc. The mast reaching 146 m high above the tower top is a latticed steel structure with an octagonal cross-section of 14 m in the 
maximum diagonal. 

A sophisticated long-term SHM system consisting of over 700 sensors has been implemented on the Canton Tower by The Hong 
Kong Polytechnic University [42–44]. Only the sensors in relation to this study are described herein. As part of the SHM system, a total 
of twenty uniaxial accelerometers of Model AS-2000C (Tokyo Sokushin Co. Ltd., Tokyo, Japan) were installed at eight levels of the 
interior RC column at the heights of 30.6 m, 119.3 m, 171.1 m, 228.5 m, 275.3 m, 332.2 m, 384.2 m and 446.8 m, as shown in Fig. 1a. 
The 4th and 8th levels were equipped with four uniaxial accelerometers, two along the short-axis of the RC column and the other two 
along the long-axis. On the other six levels, each cross-section was equipped with two uniaxial accelerometers, one along the short-axis 
of the RC column and the other along the long-axis (Fig. 1c and 1d). One propeller anemometer of Model 05103L (R. M. Young 
Company, Traverse City, Michigan, USA) was deployed at the top of the main tower, which is 461 m above the ground (Fig. 1b). The 
data acquired by the accelerometers and anemometer were recorded synchronously using a data acquisition unit at a sampling rate of 
50 Hz. The specifications of the accelerometers and anemometer are given in Table 1. 

Fig. 1. (a) Deployment of accelerometers, anemometer and data acquisition system; (b) Anemometer; (c) Layout of accelerometers in cross-section 
plane; (d) Accelerometers. 
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3.2. Acceleration responses collected during tropical cyclones 

This study uses the field monitoring data collected by the SHM system during 6 tropical cyclone events between 2011 and 2013, 
that imposed intense structural vibrations of the Canton Tower. The basic information about these tropical cyclones is listed in Table 2. 
The total time duration of the extracted data during the 6 tropical cyclones attacking the city is about 11,210 min (186.8 h). According 
to the Hong Kong Observation (HKO), the threat or the effect of a tropical cyclone is indicated by a set of tropical cyclone warning 
signals. The warning signal No. 10 indicates that the winds near sea level reach a sustained speed exceeding 118 km/h (33.8 m/s), 
while the warning signals No. 8 and No. 3 indicate that the winds near sea level reach sustained speeds of 63–117 km/h (17.5–32.5 m/ 
s) and 41–62 km/s (11.4–17.2 m/s), respectively. Fig. 2 illustrates the time histories of 10-min mean wind speed and wind direction 
during the 6 tropical cyclones. It can be intuitively observed that most of the mean wind speeds are greater than 5 m/s, with the largest 
reaching nearly 30 m/s. The winds were blowing mostly from the southeast and southwest directions. 

As the accelerations in both X and Y directions make significant contributions to the structural motions felt by habitants, it is 
reasonable to adopt the resultant acceleration [24]. The nondirectional RMS acceleration combining the two perpendicular motions is 
defined as 

δacc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2
accx

+ δ2
accy

√

(13)  

where δacc is the resultant RMS acceleration; δaccx and δaccy are the RMS accelerations in X and Y directions, respectively. Similarly, the 
resultant peak acceleration can be defined as [45] 

Pacc = φ ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
accx

+ P2
accy

√

(14)  

where Pacc is the resultant peak acceleration; Paccx and Paccy are the peak accelerations in X and Y directions, respectively; φ is a joint 
action factor which ranges between 0.7 and 1.0, and typically 0.8 to 0.9 [45]. The relationship between the RMS and peak acceler
ations can also be expressed as 

Pacc = gf δacc = gf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2
accx

+ δ2
accy

√

(15)  

where gf is the gust factor, which can be estimated by the term 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(fT)

√
(f is the fundamental frequency of the structure, T is the time 

interval in second) proposed by Melbourne and Palmer [46]. With the fundamental frequency f = 0.0928 Hz for the Canton Tower and 
the time interval T = 10 min = 600 s, the gust factor is estimated to be 2.83. In practice, the joint action factor can be indirectly 

estimated from the peak factor which is defined as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2

accx
+ P2

accy

√
/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ2

accx
+ δ2

accy

√
. The histogram of the peak factor values obtained from 

the measured acceleration responses in both X and Y directions is shown in the inserted panel of Fig. 3; it is seen that the majority of the 
peak factor values range from 2 to 5, with a mean of 3.28. Using this mean value of the peak factor, the joint action factor φ is estimated 
by equating Eqs. (14) with (15) to be approximately 0.85. Fig. 3 shows the time histories of the peak acceleration and the 10-min RMS 
acceleration. As expected, the variation tendencies of the peak and RMS accelerations during tropical cyclones are consistent roughly 
with the wind speed shown in Fig. 2(a). 

4. Occupant comfort assessment 

4.1. Formulation of Bayesian WAR models 

As aforementioned, RMS and peak accelerations are appropriate indices for evaluating the occupant comfort of high-rise structures 
under wind actions. Hence, this study focuses on the RMS and peak acceleration responses under strong winds, 

δacc = a1Ub1 (16)  

Pacc = a2Ub2 (17)  

where δacc and Pacc are the 10-min RMS and peak accelerations, respectively; U is the 10-min mean wind speed; a1, b1, a2 and b2 are 
unknown parameters to be estimated. According to the Bayesian modeling methodology described in Section 2, Eqs. (16) and (17) are 

Table 1 
Specifications of sensors.  

Sensor Measurand Model Specifications 

Anemometer Wind speed and 
direction 

Model 05103L, R. M. Young Company, Traverse City, 
Michigan, USA 

Rang: 0–100 m/s, 0-360◦; Accuracy: wind speed ± 0.3 m/s, 
direction ± 3◦

Accelerometer Acceleration Model AS-2000C, Tokyo Sokushin Co. Ltd., Tokyo, 
Japan 

Rang: ±2 G; Accuracy: 1.225 V/G  
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firstly transferred to linear regression models as Eq. (4). To implement the Bayesian regression analysis, a normal inverse gamma prior 
is adopted to depict the conjugate prior of the model parameters. Because of very little certainty of the parameters, we choose the prior 
distributions enabling to cover a wide range of the possible values. Here, we set 

∑
0 = 100 × I2 (I2 is two-dimensional unit matrix) and 

a = b = 0.001, which makes the prior distribution highly diffuse. In implementing the Gibbs sampler for estimation of the model 
parameters β1, β2 and σ2, the total Markov chain iterations is chosen as 100,000, of which the first 50,000 (L0 = 50,000) iterations are 
discarded as burn-in replications. Thus, there remain 50,000 (L1 = 50,000, LA = 0.1L1, LB = 0.5L1, LC = 0.4L1) posterior samples 
generated from the Gibbs sampler. In order to check if the posterior samples arise from a stationary distribution, both trace plots and 
CD test statistic are used to evaluate the convergence of the remaining posterior samples. As two Bayesian WAR models are formulated 
in terms of the peak and RMS accelerations, two sets of parameters are to be examined. Fig. 4 shows the sample paths and estimated 
posterior densities of the model parameters for RMS acceleration. Shown in the left panel are the sample paths of 50,000 remaining 
draws. By examining the trace plots, it is obvious that the Markov chain of posterior samples is stationary. The values of the CD listed in 
Table 3 are all close to zero, justifying that the retained samples meet the convergence criterion. The right panel in Fig. 4 shows the 
marginal posterior distributions of the model parameters (β1, β2 and σ2) and their fitting distributions, where normal and student-t 
distributions are applied to fit the distributions of β1 and β2, and normal and inverse gamma distributions are used to fit the distri
bution of σ2. Based on the maximum likelihood estimation for the goodness-of-fit tests, it is found that the performance of student-t 
distribution is better than normal distribution for fitting β1 and β2, and inverse gamma distribution is more suitable for fitting σ2. With 
the same prior distribution (conjugate normal inverse gamma) for model parameters, it is proven by analytic analysis that the marginal 
posterior distributions of β1 and β2 are of student-t distribution and the marginal posterior distribution of σ2 conforms to inverse 

Table 2 
Information about the 6 tropical cyclones (TC).  

No. Tropical cyclone Date Highest warning signal Max 10-min mean wind speed (m/s) Measurement duration (×10 min) 

TC1 Haima 23 June 2011 3  14.33 113 
TC2 Nockten 29 July 2011 3  11.65 144 
TC3 Nanmadol 31 Aug. 2011 3  10.16 144 
TC4 Vicente 23–24 July 2012 10  28.75 288 
TC5 Utor 14 Aug. 2013 8  14.26 144 
TC6 Usagi 22–23 Sept. 2013 8  21.59 288  

Fig. 2. Sequences of 10-min mean wind speed and direction: (a) Wind speed; (b) Wind direction.  

Fig. 3. Sequences of peak and RMS accelerations.  
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gamma distribution [47]. These findings are consistent with the theoretical solutions. More detailed parameter information, such as 
posterior mean, variance, and the 95% confidence interval, is also derived from the retained 50,000 samples and given in Table 3. 
Similarly, the parameters of the Bayesian WAR model for peak acceleration are obtained in Fig. 5 and Table 3 after validation. 

Fig. 6 illustrates the relationships of the RMS (δacc) and peak (Pacc) acceleration responses versus 10-min wind speed (U) in log
arithmic scale. It is evident that the increase in acceleration responses is in relation with the increase in mean wind speed. The 
estimated most plausible accelerations (red solid line) by the Bayesian approach match well with the measured responses, and the vast 
majority of the measurements lie, as expected, with the 95% predictive interval (red dashed lines). 

By transferring the linear function form back to the power function expression, the corresponding parameters in the power 
regression models are obtained as listed in Table 4. Note that the coefficient b2 in the power regression model for peak acceleration is 
greater than b1 for RMS acceleration, which is consistent with the fact that the peak acceleration is larger than the RMS acceleration 
under the same wind speed. In order to investigate the performance of the formulated power regression models, R-squared (R2) is 
evaluated as a goodness-of-fit indicator. The R-squared is defined as [48] 

R2 = 1 −

∑n
i=1(yi − fi)

2

∑n
i=1(yi − y)2 (18)  

where yi is the measured acceleration; fi is the predicted acceleration by the regression models; and y is the mean of the measured 
accelerations. The R2 ranges between 0 and 1. In the best case, the modeled values exactly match the observed values, which results in 
R2 = 1. On the contrary, the model offers the worst predictions when R2 = 0. The values of R2 for the two regression models are 0.891 

Fig. 4. Sample paths and estimated posterior densities for parameters (RMS acceleration).  

Table 3 
Parameters of regression model in Eq. (4).  

Model Parameter Mean Standard deviation 95% confidence interval CD 

RMS β1  − 12.357  0.116 − 12.584 − 12.132  0.001 
β2  2.527  0.046 2.437 2.619  − 0.001 

σ2  0.131  0.008 0.115 0.149  − 0.004 

Peak β1  − 11.829  0.105 − 12.036 − 11.623  0.000 
β2  2.686  0.042 2.603 2.769  0.001 

σ2  0.167  0.011 0.147 0.189  0.005  
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and 0.869, respectively, indicating that the formulated models perform favorably in prediction. 
Fig. 7 illustrates the relationships between the RMS (δacc) and peak (Pacc) acceleration responses and 10-min mean wind speed (U) 

in power function form. As shown in the figure, the estimated most plausible accelerations (red solid curves) with maximum prob
ability match well with the measured responses, and the majority of the measurements lie within the 95% predictive interval except for 
some extrema. 

Since most of the measurement data are obtained at wind speeds below 30 m/s (Fig. 7a (1) and Fig. 7b (1)) during the 6 tropical 

Fig. 5. Sample paths and estimated posterior densities for parameters (peak acceleration).  

(a)

(b)

Fig. 6. Formulated Bayesian WAR models in logarithmic scale: (a) RMS acceleration; (b) Peak acceleration.  
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cyclones, field measurement data under high wind speeds (greater than 30 m/s) are not available to validate the predictive abilities of 
the formulated models in the case of strong wind conditions. Here, we instead use the wind tunnel test results to examine the prediction 
performance in extreme cases. The wind tunnel test of a scaled aeroelastic 3D model of the Canton Tower has been conducted in the TJ- 
2 Boundary Layer Wind Tunnel at Tongji University, China [49]. According to the wind tunnel test results, the maximum peak ac
celeration responses in all wind angels are 0.159 m/s2 for 10-year return period (the wind speed atop the structure is 36.7 m/s) and 
0.458 m/s2 for 100-year return period (the wind speed atop the structure is 52.4 m/s), respectively. As the peak factor was set as gf = 4 
in wind tunnel test, the corresponding maximum RMS acceleration responses in all wind angles can be calculated to be 0.040 m/s2 for 
10-year return period and 0.115 m/s2 for 100-year return period, respectively. As shown in Fig. 7, the acceleration responses (marked 
with △) measured in wind tunnel test are slightly larger than the most plausible responses (red curves) estimated by the formulated 

Table 4 
Parameters of regression models in Eqs. (16) and (17).  

Model Parameter Mean Standard deviation 95% confidence interval R2  

RMS a1  4.325E-6 0.504E-6 3.552E-6 5.201E-6 0.891 
b1  2.527 0.046 2.437 2.619 

Peak a2  7.331E-6 0.775E-6 6.128E-6 8.888E-6 0.869 
b2  2.686 0.042 2.603 2.769  

Fig. 7. Formulated Bayesian WAR models in power function form: (a) RMS acceleration: (1) view zoomed in measurement range, (2) predicted RMS 
acceleration under wind speed 36.7 m/s, (3) predicted RMS acceleration under wind speed 52.4 m/s; (b) Peak acceleration: (1) view zoomed in 
measurement range, (2) predicted peak acceleration under wind speed 36.7 m/s, (3) predicted peak acceleration under wind speed 52.4 m/s. 
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Bayesian WAR models in both 10-year return period (Fig. 7a (2) and Fig. 7b (2)) and 100-year return period (Fig. 7a (3) and Fig. 7b (3)) 
wind speeds, but they are within the 95% predictive interval. The reason for this difference may be due to the error of the scaled model 
used in the wind tunnel test or the error of the formulated prediction models. The proposed method is a data-driven approach, of which 
one drawback is its incapability to consider the difference in structural aerodynamics (e.g. aerodynamic damping) at low winds and 
high winds. Due to this difference, the Bayesian WAR models formulated using measurement data obtained under low winds may not 
fully represent the actual relationship between wind speed and wind-induced acceleration under high winds. However, the Bayesian 
WAR models can easily be updated with Bayes’ theorem when new measurement data (especially those under wind speeds higher than 
30 m/s) become available, enabling to generate evolutionary models for occupant comfort prediction of instrumented high-rise 
structures. 

4.2. Comfort assessment by different criteria 

A comparative study on the occupant comfort assessment of the monitored supertall structure during tropical cyclones is conducted 
herein by adopting four widely used comfort criteria, namely, ISO 6897 [12], ISO 10,137 [13], AIJ Guidelines [14], and Melbourne 
and Palmer’s criterion [46]. Note that the ISO 6897 comfort criterion is based on RMS acceleration, while the other criteria are based 
on peak acceleration. 

The ISO 6897 suggests using an RMS acceleration criterion with a 5-year return period for building structures. The RMS accel
eration under wind actions with a 5-year return period should not exceed 

δ̃acc = 0.026 × f − 0.412 (19)  

where ̃δacc is the RMS acceleration response of a structure; and f is the fundamental natural frequency (Hz) of the structure. A factor of 
0.72 is used to convert the 5-year return period assessment curve into a 1-year return period curve. 

The ISO 10,137 proposes two evaluation curves for 1-year return period: one for residences and the other for offices. It predicts a 
strong dependence of the peak acceleration upon the vibration frequency. The peak acceleration criterion for residences and offices is 
stipulated as: 

P̃acc = 0.04 × f − 0.445 for residences (20)  

P̃acc = 0.06 × f − 0.445 for offices (21) 

Melbourne and Palmer [46] proposed a peak acceleration criterion for occupant comfort assessment with the following formula: 

P̃acc =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(fT)

√
(

0.68 +
lnR
5

)

exp( − 3.65 − 0.41lnf ) (22)  

where f is the fundamental frequency of a structure; T is the time interval of segmented measurements in seconds; R is the return period 
in years; and the term 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(fT)

√
is essentially the gust factor for a normally distributed process. Hence, the RMS acceleration criterion 

)b()a(

Melbourne and Palmer

ISO 6987

ISO 10137 offices

ISO 10137 residences

AIJ H90

AIJ H70

AIJ H50

AIJ H30

AIJ H10

Tropical cyclone No.

Melbourne and Palmer

ISO 6987

ISO 10137 offices

ISO 10137 residences

AIJ H90

AIJ H70

AIJ H50

AIJ H30

AIJ H10

Tropical cyclone No.

Fig. 8. Field-measured accelerations during 6 tropical cyclones against comfort criteria: (a) RMS acceleration; (b) Peak acceleration.  
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in line with Melbourne and Palmer’s peak acceleration can be deduced as 

δ̃acc =

(

0.68 +
lnR
5

)

exp( − 3.65 − 0.41lnf ) (23) 

The Architectural Institute of Japan Guidelines for evaluation of habitability building vibration provides five curves of motion 
perception, in which 10%, 30%, 50% 70% and 90% of people can perceive the vibration specified on each respective curve. 

As aforementioned, the ISO 6897 criterion is stipulated in terms of RMS acceleration, while the other three criteria are based on 
peak acceleration. Hence, a conversion between the RMS acceleration and the peak acceleration should be made according to Eqs. (13) 
to (15) and by use of the gust factor 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ln(fT)

√
proposed by Melbourne and Palmer [46]. 

Fig. 8 provides the maximum RMS and peak accelerations obtained from the measurement data during the 6 tropical cyclone 
events, and the comfort assessment results by the above four criteria after modulation to 1-year return period. The results show that 
both maximum RMS and peak accelerations during the tropical cyclones are all lower than the critical values suggested by the ISO 
6897, ISO 10137, and Melbourne and Palmer’s criterion. The maximum RMS and peak accelerations generated during TC4 (Typhoon 
Vicente) merely exceed the H70 curve and H50 curve suggested by the AIJ Guidelines. It is concluded that the occupant comfort of the 
monitored supertall structure was satisfactory during the violent tropical cyclones between 2011 and 2013 according to the four 
widely used comfort criteria. 

4.3. Probabilistic evaluation of occupant comfort 

A noticeable feature of the Bayesian WAR models lies in that the predicted wind-induced acceleration given a wind speed is not a 
deterministic value, but rather a probability distribution. In practice, a primary concern is the probability of failure when a new set of 
measurements or predictions is available. For any structural component, the probability of failure is defined as the probability of 
violating a limit state. A limit-state function can be expressed as [38] 

g(x) = R − S (24)  

where R is the resistance in terms of the maximum allowable acceleration stipulated in specifications, S is the measured/predicted 
acceleration during a strong wind, and g(x) is a performance function featuring the limit state of the structure in terms of acceleration. 
Failure occurs when the acceleration S exceeds the resistance R or when g(x) < 0. With the limit-state function, the probability of 
failure can be expressed as 

Pf = P(g(x) < 0 ) =
∫ ∞

− ∞
FR(x)fS(x)dx (25)  

where FR(x) is the cumulative distribution function (CDF) of the capacity and fS(x) is the probability density function (PDF) of the 
measured/predicted acceleration. If R and S are independent Gaussian random variates with their mean values μR and μS and variances 
σ2

R and σ2
S , the failure probability can be determined as 

Pf = Φ

(

−
μR − μS̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

R + σ2
S

√

)

(26)  

where Φ(∙) is a standard normal probability function. The safety index is defined as 

λ = − Φ− 1( Pf
)
=

μR − μS̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

R + σ2
S

√ (27)  

where Φ− 1(∙) is the inverse of the standard normal cumulative distribution function. The value of λ can be used to determine in a 
probabilistic manner whether the acceleration response S is within an acceptable range as compared to the resistance R. Obviously, a 
decrease of λ will result in a higher failure probability. For better quantifying the serviceability, the safety index λ is categorized into 
several ranges for assessing the significance of discrimination: λ < 0 denotes “Complaints will occur”; 0 ≤ λ < 1 denotes “Complaints 
may occur”, 1 ≤ λ < 2 denotes “Perceptible but no complaints”, and λ ≥ 2 denotes “Not perceptible in majority” [50]. 

To illustrate how the proposed method performs an alarm in ‘discomfort’ cases, the predicted accelerations at the wind speed 36.7 
m/s (10-year return period) and 52.4 m/s (100-year return period) are considered as an example. The predicted distribution of the 
RMS acceleration at wind speed 52.4 m/s is first obtained by substituting the wind speed 52.4 m/s into the formulated Bayesian WAR 
model. Then the μS and σ2

S can be calculated based on the predicted probability distribution. As all the comfort assessment criteria 
stipulate only the maximum allowable acceleration values, the μR is set as the maximum allowable acceleration while σ2

R = 0. The 
safety index characterizing comfort performance is then evaluated according to Eq. (27). As illustrated in Fig. 9, all safety indices 
(denoted with ⋄ and £ ) in terms of RMS and peak accelerations at wind speed 52.4 m/s are far less than 0 (red dotted horizontal line), 
indicating that the predicted acceleration exceeds all comfort criteria suggested in the four guidelines, and occupant complaints will 
occur. In the case of wind speed 36.7 m/s, safety indices (denoted with ◦ and *) calculated according to the ISO 6897, ISO 10,137 for 
offices, Melbourne and Palmer’s criterion and AIJ H90 are larger than 2 (blue dotted horizontal line), implying that the vibration will 
not be perceived by occupants in majority, which satisfactorily meets the comfort criteria. Whereas safety indices derived from the AIJ 
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H70, AIJ H50, AIJ H30 and AIJ H10 are less than 0, which do not meet the comfort criteria and will invoke occupant complaints. Safety 
indices calculated according to the ISO 10,137 for residences are between 1 and 2, that is, the vibration will be perceived by habitants 
but without complaint. 

5. Conclusions 

In this study, a probabilistic method in the context of Bayesian inference is proposed for the occupant comfort assessment of high- 
rise structures during tropical cyclones. In the formulated WAR model, the model parameters are treated as random variables with 
their distributions identified from monitoring data, and thus the model can explicitly account for uncertainties arising from mea
surement noise, environmental variability, and model error. By combining the formulated model and reliability theory, the elicited 
safety index provides a practical alternative to assess occupant comfort of wind-excited high-rise structures. 

The proposed method has been verified by use of 186.8-hour field measurement data of wind effects on a 600 m high supertall 
structure during 6 tropical cyclones. The case study made the following observations: (i) The formulated Bayesian WAR models 
favorably characterize the correlation between the wind-induced acceleration response and wind speed, where uncertainties are duly 
reflected in the random model parameters and error parameters; (ii) The predicted acceleration responses by the Bayesian WAR models 
at 10-year and 100-year return periods wind speeds are a little less than the wind tunnel results; (iii) Occupant comfort evaluation 
results by four criteria in terms of RMS and peak accelerations indicate that the structural performance of the skyscraper was satis
factory over the three years of monitoring even during the violent tropical cyclones; (iv) The proposed safety index is capable of 
evaluating the probability of discomfort when the predicted acceleration distribution in regard to a future tropical cyclone is obtained. 
The larger the safety index, the higher the probability of comfort satisfaction for a high-rise structure. 
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Fig. 9. Safety index for different comfort criteria: (a) RMS acceleration; (b) Peak acceleration (Note: The digits 1 through 9 denote the different 
comfort criteria: 1 – ISO 6897; 2 – ISO 10137 for residences; 3 – ISO 10137 for offices; 4 – Melbourne and Palmer’s criterion; 5 – AIJ H90; 6 – AIJ 
H70; 7 – AIJ H50; 8 – AIJ H30; 9 – AIJ H10). 
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